1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_KERNEL_H 3 #define _LINUX_KERNEL_H 4 5 6 #include <stdarg.h> 7 #include <linux/linkage.h> 8 #include <linux/stddef.h> 9 #include <linux/types.h> 10 #include <linux/compiler.h> 11 #include <linux/bitops.h> 12 #include <linux/log2.h> 13 #include <linux/typecheck.h> 14 #include <linux/printk.h> 15 #include <linux/build_bug.h> 16 #include <asm/byteorder.h> 17 #include <uapi/linux/kernel.h> 18 19 #define USHRT_MAX ((u16)(~0U)) 20 #define SHRT_MAX ((s16)(USHRT_MAX>>1)) 21 #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 22 #define INT_MAX ((int)(~0U>>1)) 23 #define INT_MIN (-INT_MAX - 1) 24 #define UINT_MAX (~0U) 25 #define LONG_MAX ((long)(~0UL>>1)) 26 #define LONG_MIN (-LONG_MAX - 1) 27 #define ULONG_MAX (~0UL) 28 #define LLONG_MAX ((long long)(~0ULL>>1)) 29 #define LLONG_MIN (-LLONG_MAX - 1) 30 #define ULLONG_MAX (~0ULL) 31 #define SIZE_MAX (~(size_t)0) 32 #define PHYS_ADDR_MAX (~(phys_addr_t)0) 33 34 #define U8_MAX ((u8)~0U) 35 #define S8_MAX ((s8)(U8_MAX>>1)) 36 #define S8_MIN ((s8)(-S8_MAX - 1)) 37 #define U16_MAX ((u16)~0U) 38 #define S16_MAX ((s16)(U16_MAX>>1)) 39 #define S16_MIN ((s16)(-S16_MAX - 1)) 40 #define U32_MAX ((u32)~0U) 41 #define S32_MAX ((s32)(U32_MAX>>1)) 42 #define S32_MIN ((s32)(-S32_MAX - 1)) 43 #define U64_MAX ((u64)~0ULL) 44 #define S64_MAX ((s64)(U64_MAX>>1)) 45 #define S64_MIN ((s64)(-S64_MAX - 1)) 46 47 #define STACK_MAGIC 0xdeadbeef 48 49 /** 50 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 51 * @x: value to repeat 52 * 53 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 54 */ 55 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 56 57 /* @a is a power of 2 value */ 58 #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 59 #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 60 #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 61 #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 62 #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 63 64 /* generic data direction definitions */ 65 #define READ 0 66 #define WRITE 1 67 68 /** 69 * ARRAY_SIZE - get the number of elements in array @arr 70 * @arr: array to be sized 71 */ 72 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 73 74 #define u64_to_user_ptr(x) ( \ 75 { \ 76 typecheck(u64, (x)); \ 77 (void __user *)(uintptr_t)(x); \ 78 } \ 79 ) 80 81 /* 82 * This looks more complex than it should be. But we need to 83 * get the type for the ~ right in round_down (it needs to be 84 * as wide as the result!), and we want to evaluate the macro 85 * arguments just once each. 86 */ 87 #define __round_mask(x, y) ((__typeof__(x))((y)-1)) 88 /** 89 * round_up - round up to next specified power of 2 90 * @x: the value to round 91 * @y: multiple to round up to (must be a power of 2) 92 * 93 * Rounds @x up to next multiple of @y (which must be a power of 2). 94 * To perform arbitrary rounding up, use roundup() below. 95 */ 96 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 97 /** 98 * round_down - round down to next specified power of 2 99 * @x: the value to round 100 * @y: multiple to round down to (must be a power of 2) 101 * 102 * Rounds @x down to next multiple of @y (which must be a power of 2). 103 * To perform arbitrary rounding down, use rounddown() below. 104 */ 105 #define round_down(x, y) ((x) & ~__round_mask(x, y)) 106 107 /** 108 * FIELD_SIZEOF - get the size of a struct's field 109 * @t: the target struct 110 * @f: the target struct's field 111 * Return: the size of @f in the struct definition without having a 112 * declared instance of @t. 113 */ 114 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 115 116 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 117 118 #define DIV_ROUND_DOWN_ULL(ll, d) \ 119 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 120 121 #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) 122 123 #if BITS_PER_LONG == 32 124 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 125 #else 126 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 127 #endif 128 129 /** 130 * roundup - round up to the next specified multiple 131 * @x: the value to up 132 * @y: multiple to round up to 133 * 134 * Rounds @x up to next multiple of @y. If @y will always be a power 135 * of 2, consider using the faster round_up(). 136 * 137 * The `const' here prevents gcc-3.3 from calling __divdi3 138 */ 139 #define roundup(x, y) ( \ 140 { \ 141 const typeof(y) __y = y; \ 142 (((x) + (__y - 1)) / __y) * __y; \ 143 } \ 144 ) 145 /** 146 * rounddown - round down to next specified multiple 147 * @x: the value to round 148 * @y: multiple to round down to 149 * 150 * Rounds @x down to next multiple of @y. If @y will always be a power 151 * of 2, consider using the faster round_down(). 152 */ 153 #define rounddown(x, y) ( \ 154 { \ 155 typeof(x) __x = (x); \ 156 __x - (__x % (y)); \ 157 } \ 158 ) 159 160 /* 161 * Divide positive or negative dividend by positive or negative divisor 162 * and round to closest integer. Result is undefined for negative 163 * divisors if the dividend variable type is unsigned and for negative 164 * dividends if the divisor variable type is unsigned. 165 */ 166 #define DIV_ROUND_CLOSEST(x, divisor)( \ 167 { \ 168 typeof(x) __x = x; \ 169 typeof(divisor) __d = divisor; \ 170 (((typeof(x))-1) > 0 || \ 171 ((typeof(divisor))-1) > 0 || \ 172 (((__x) > 0) == ((__d) > 0))) ? \ 173 (((__x) + ((__d) / 2)) / (__d)) : \ 174 (((__x) - ((__d) / 2)) / (__d)); \ 175 } \ 176 ) 177 /* 178 * Same as above but for u64 dividends. divisor must be a 32-bit 179 * number. 180 */ 181 #define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 182 { \ 183 typeof(divisor) __d = divisor; \ 184 unsigned long long _tmp = (x) + (__d) / 2; \ 185 do_div(_tmp, __d); \ 186 _tmp; \ 187 } \ 188 ) 189 190 /* 191 * Multiplies an integer by a fraction, while avoiding unnecessary 192 * overflow or loss of precision. 193 */ 194 #define mult_frac(x, numer, denom)( \ 195 { \ 196 typeof(x) quot = (x) / (denom); \ 197 typeof(x) rem = (x) % (denom); \ 198 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 199 } \ 200 ) 201 202 203 #define _RET_IP_ (unsigned long)__builtin_return_address(0) 204 #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 205 206 #ifdef CONFIG_LBDAF 207 # include <asm/div64.h> 208 # define sector_div(a, b) do_div(a, b) 209 #else 210 # define sector_div(n, b)( \ 211 { \ 212 int _res; \ 213 _res = (n) % (b); \ 214 (n) /= (b); \ 215 _res; \ 216 } \ 217 ) 218 #endif 219 220 /** 221 * upper_32_bits - return bits 32-63 of a number 222 * @n: the number we're accessing 223 * 224 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 225 * the "right shift count >= width of type" warning when that quantity is 226 * 32-bits. 227 */ 228 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 229 230 /** 231 * lower_32_bits - return bits 0-31 of a number 232 * @n: the number we're accessing 233 */ 234 #define lower_32_bits(n) ((u32)(n)) 235 236 struct completion; 237 struct pt_regs; 238 struct user; 239 240 #ifdef CONFIG_PREEMPT_VOLUNTARY 241 extern int _cond_resched(void); 242 # define might_resched() _cond_resched() 243 #else 244 # define might_resched() do { } while (0) 245 #endif 246 247 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 248 void ___might_sleep(const char *file, int line, int preempt_offset); 249 void __might_sleep(const char *file, int line, int preempt_offset); 250 /** 251 * might_sleep - annotation for functions that can sleep 252 * 253 * this macro will print a stack trace if it is executed in an atomic 254 * context (spinlock, irq-handler, ...). 255 * 256 * This is a useful debugging help to be able to catch problems early and not 257 * be bitten later when the calling function happens to sleep when it is not 258 * supposed to. 259 */ 260 # define might_sleep() \ 261 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 262 # define sched_annotate_sleep() (current->task_state_change = 0) 263 #else 264 static inline void ___might_sleep(const char *file, int line, 265 int preempt_offset) { } 266 static inline void __might_sleep(const char *file, int line, 267 int preempt_offset) { } 268 # define might_sleep() do { might_resched(); } while (0) 269 # define sched_annotate_sleep() do { } while (0) 270 #endif 271 272 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 273 274 /** 275 * abs - return absolute value of an argument 276 * @x: the value. If it is unsigned type, it is converted to signed type first. 277 * char is treated as if it was signed (regardless of whether it really is) 278 * but the macro's return type is preserved as char. 279 * 280 * Return: an absolute value of x. 281 */ 282 #define abs(x) __abs_choose_expr(x, long long, \ 283 __abs_choose_expr(x, long, \ 284 __abs_choose_expr(x, int, \ 285 __abs_choose_expr(x, short, \ 286 __abs_choose_expr(x, char, \ 287 __builtin_choose_expr( \ 288 __builtin_types_compatible_p(typeof(x), char), \ 289 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 290 ((void)0))))))) 291 292 #define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 293 __builtin_types_compatible_p(typeof(x), signed type) || \ 294 __builtin_types_compatible_p(typeof(x), unsigned type), \ 295 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 296 297 /** 298 * reciprocal_scale - "scale" a value into range [0, ep_ro) 299 * @val: value 300 * @ep_ro: right open interval endpoint 301 * 302 * Perform a "reciprocal multiplication" in order to "scale" a value into 303 * range [0, @ep_ro), where the upper interval endpoint is right-open. 304 * This is useful, e.g. for accessing a index of an array containing 305 * @ep_ro elements, for example. Think of it as sort of modulus, only that 306 * the result isn't that of modulo. ;) Note that if initial input is a 307 * small value, then result will return 0. 308 * 309 * Return: a result based on @val in interval [0, @ep_ro). 310 */ 311 static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 312 { 313 return (u32)(((u64) val * ep_ro) >> 32); 314 } 315 316 #if defined(CONFIG_MMU) && \ 317 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 318 #define might_fault() __might_fault(__FILE__, __LINE__) 319 void __might_fault(const char *file, int line); 320 #else 321 static inline void might_fault(void) { } 322 #endif 323 324 extern struct atomic_notifier_head panic_notifier_list; 325 extern long (*panic_blink)(int state); 326 __printf(1, 2) 327 void panic(const char *fmt, ...) __noreturn __cold; 328 void nmi_panic(struct pt_regs *regs, const char *msg); 329 extern void oops_enter(void); 330 extern void oops_exit(void); 331 void print_oops_end_marker(void); 332 extern int oops_may_print(void); 333 void do_exit(long error_code) __noreturn; 334 void complete_and_exit(struct completion *, long) __noreturn; 335 336 #ifdef CONFIG_ARCH_HAS_REFCOUNT 337 void refcount_error_report(struct pt_regs *regs, const char *err); 338 #else 339 static inline void refcount_error_report(struct pt_regs *regs, const char *err) 340 { } 341 #endif 342 343 /* Internal, do not use. */ 344 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 345 int __must_check _kstrtol(const char *s, unsigned int base, long *res); 346 347 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 348 int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 349 350 /** 351 * kstrtoul - convert a string to an unsigned long 352 * @s: The start of the string. The string must be null-terminated, and may also 353 * include a single newline before its terminating null. The first character 354 * may also be a plus sign, but not a minus sign. 355 * @base: The number base to use. The maximum supported base is 16. If base is 356 * given as 0, then the base of the string is automatically detected with the 357 * conventional semantics - If it begins with 0x the number will be parsed as a 358 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 359 * parsed as an octal number. Otherwise it will be parsed as a decimal. 360 * @res: Where to write the result of the conversion on success. 361 * 362 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 363 * Used as a replacement for the obsolete simple_strtoull. Return code must 364 * be checked. 365 */ 366 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 367 { 368 /* 369 * We want to shortcut function call, but 370 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 371 */ 372 if (sizeof(unsigned long) == sizeof(unsigned long long) && 373 __alignof__(unsigned long) == __alignof__(unsigned long long)) 374 return kstrtoull(s, base, (unsigned long long *)res); 375 else 376 return _kstrtoul(s, base, res); 377 } 378 379 /** 380 * kstrtol - convert a string to a long 381 * @s: The start of the string. The string must be null-terminated, and may also 382 * include a single newline before its terminating null. The first character 383 * may also be a plus sign or a minus sign. 384 * @base: The number base to use. The maximum supported base is 16. If base is 385 * given as 0, then the base of the string is automatically detected with the 386 * conventional semantics - If it begins with 0x the number will be parsed as a 387 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 388 * parsed as an octal number. Otherwise it will be parsed as a decimal. 389 * @res: Where to write the result of the conversion on success. 390 * 391 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 392 * Used as a replacement for the obsolete simple_strtoull. Return code must 393 * be checked. 394 */ 395 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 396 { 397 /* 398 * We want to shortcut function call, but 399 * __builtin_types_compatible_p(long, long long) = 0. 400 */ 401 if (sizeof(long) == sizeof(long long) && 402 __alignof__(long) == __alignof__(long long)) 403 return kstrtoll(s, base, (long long *)res); 404 else 405 return _kstrtol(s, base, res); 406 } 407 408 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 409 int __must_check kstrtoint(const char *s, unsigned int base, int *res); 410 411 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 412 { 413 return kstrtoull(s, base, res); 414 } 415 416 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 417 { 418 return kstrtoll(s, base, res); 419 } 420 421 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 422 { 423 return kstrtouint(s, base, res); 424 } 425 426 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 427 { 428 return kstrtoint(s, base, res); 429 } 430 431 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 432 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 433 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 434 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 435 int __must_check kstrtobool(const char *s, bool *res); 436 437 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 438 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 439 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 440 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 441 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 442 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 443 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 444 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 445 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 446 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 447 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 448 449 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 450 { 451 return kstrtoull_from_user(s, count, base, res); 452 } 453 454 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 455 { 456 return kstrtoll_from_user(s, count, base, res); 457 } 458 459 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 460 { 461 return kstrtouint_from_user(s, count, base, res); 462 } 463 464 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 465 { 466 return kstrtoint_from_user(s, count, base, res); 467 } 468 469 /* Obsolete, do not use. Use kstrto<foo> instead */ 470 471 extern unsigned long simple_strtoul(const char *,char **,unsigned int); 472 extern long simple_strtol(const char *,char **,unsigned int); 473 extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 474 extern long long simple_strtoll(const char *,char **,unsigned int); 475 476 extern int num_to_str(char *buf, int size, 477 unsigned long long num, unsigned int width); 478 479 /* lib/printf utilities */ 480 481 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 482 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 483 extern __printf(3, 4) 484 int snprintf(char *buf, size_t size, const char *fmt, ...); 485 extern __printf(3, 0) 486 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 487 extern __printf(3, 4) 488 int scnprintf(char *buf, size_t size, const char *fmt, ...); 489 extern __printf(3, 0) 490 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 491 extern __printf(2, 3) __malloc 492 char *kasprintf(gfp_t gfp, const char *fmt, ...); 493 extern __printf(2, 0) __malloc 494 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 495 extern __printf(2, 0) 496 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 497 498 extern __scanf(2, 3) 499 int sscanf(const char *, const char *, ...); 500 extern __scanf(2, 0) 501 int vsscanf(const char *, const char *, va_list); 502 503 extern int get_option(char **str, int *pint); 504 extern char *get_options(const char *str, int nints, int *ints); 505 extern unsigned long long memparse(const char *ptr, char **retptr); 506 extern bool parse_option_str(const char *str, const char *option); 507 extern char *next_arg(char *args, char **param, char **val); 508 509 extern int core_kernel_text(unsigned long addr); 510 extern int init_kernel_text(unsigned long addr); 511 extern int core_kernel_data(unsigned long addr); 512 extern int __kernel_text_address(unsigned long addr); 513 extern int kernel_text_address(unsigned long addr); 514 extern int func_ptr_is_kernel_text(void *ptr); 515 516 unsigned long int_sqrt(unsigned long); 517 518 #if BITS_PER_LONG < 64 519 u32 int_sqrt64(u64 x); 520 #else 521 static inline u32 int_sqrt64(u64 x) 522 { 523 return (u32)int_sqrt(x); 524 } 525 #endif 526 527 extern void bust_spinlocks(int yes); 528 extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 529 extern int panic_timeout; 530 extern unsigned long panic_print; 531 extern int panic_on_oops; 532 extern int panic_on_unrecovered_nmi; 533 extern int panic_on_io_nmi; 534 extern int panic_on_warn; 535 extern int sysctl_panic_on_rcu_stall; 536 extern int sysctl_panic_on_stackoverflow; 537 538 extern bool crash_kexec_post_notifiers; 539 540 /* 541 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 542 * holds a CPU number which is executing panic() currently. A value of 543 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 544 */ 545 extern atomic_t panic_cpu; 546 #define PANIC_CPU_INVALID -1 547 548 /* 549 * Only to be used by arch init code. If the user over-wrote the default 550 * CONFIG_PANIC_TIMEOUT, honor it. 551 */ 552 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 553 { 554 if (panic_timeout == arch_default_timeout) 555 panic_timeout = timeout; 556 } 557 extern const char *print_tainted(void); 558 enum lockdep_ok { 559 LOCKDEP_STILL_OK, 560 LOCKDEP_NOW_UNRELIABLE 561 }; 562 extern void add_taint(unsigned flag, enum lockdep_ok); 563 extern int test_taint(unsigned flag); 564 extern unsigned long get_taint(void); 565 extern int root_mountflags; 566 567 extern bool early_boot_irqs_disabled; 568 569 /* 570 * Values used for system_state. Ordering of the states must not be changed 571 * as code checks for <, <=, >, >= STATE. 572 */ 573 extern enum system_states { 574 SYSTEM_BOOTING, 575 SYSTEM_SCHEDULING, 576 SYSTEM_RUNNING, 577 SYSTEM_HALT, 578 SYSTEM_POWER_OFF, 579 SYSTEM_RESTART, 580 SYSTEM_SUSPEND, 581 } system_state; 582 583 /* This cannot be an enum because some may be used in assembly source. */ 584 #define TAINT_PROPRIETARY_MODULE 0 585 #define TAINT_FORCED_MODULE 1 586 #define TAINT_CPU_OUT_OF_SPEC 2 587 #define TAINT_FORCED_RMMOD 3 588 #define TAINT_MACHINE_CHECK 4 589 #define TAINT_BAD_PAGE 5 590 #define TAINT_USER 6 591 #define TAINT_DIE 7 592 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 593 #define TAINT_WARN 9 594 #define TAINT_CRAP 10 595 #define TAINT_FIRMWARE_WORKAROUND 11 596 #define TAINT_OOT_MODULE 12 597 #define TAINT_UNSIGNED_MODULE 13 598 #define TAINT_SOFTLOCKUP 14 599 #define TAINT_LIVEPATCH 15 600 #define TAINT_AUX 16 601 #define TAINT_RANDSTRUCT 17 602 #define TAINT_FLAGS_COUNT 18 603 604 struct taint_flag { 605 char c_true; /* character printed when tainted */ 606 char c_false; /* character printed when not tainted */ 607 bool module; /* also show as a per-module taint flag */ 608 }; 609 610 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 611 612 extern const char hex_asc[]; 613 #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 614 #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 615 616 static inline char *hex_byte_pack(char *buf, u8 byte) 617 { 618 *buf++ = hex_asc_hi(byte); 619 *buf++ = hex_asc_lo(byte); 620 return buf; 621 } 622 623 extern const char hex_asc_upper[]; 624 #define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 625 #define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 626 627 static inline char *hex_byte_pack_upper(char *buf, u8 byte) 628 { 629 *buf++ = hex_asc_upper_hi(byte); 630 *buf++ = hex_asc_upper_lo(byte); 631 return buf; 632 } 633 634 extern int hex_to_bin(char ch); 635 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 636 extern char *bin2hex(char *dst, const void *src, size_t count); 637 638 bool mac_pton(const char *s, u8 *mac); 639 640 /* 641 * General tracing related utility functions - trace_printk(), 642 * tracing_on/tracing_off and tracing_start()/tracing_stop 643 * 644 * Use tracing_on/tracing_off when you want to quickly turn on or off 645 * tracing. It simply enables or disables the recording of the trace events. 646 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 647 * file, which gives a means for the kernel and userspace to interact. 648 * Place a tracing_off() in the kernel where you want tracing to end. 649 * From user space, examine the trace, and then echo 1 > tracing_on 650 * to continue tracing. 651 * 652 * tracing_stop/tracing_start has slightly more overhead. It is used 653 * by things like suspend to ram where disabling the recording of the 654 * trace is not enough, but tracing must actually stop because things 655 * like calling smp_processor_id() may crash the system. 656 * 657 * Most likely, you want to use tracing_on/tracing_off. 658 */ 659 660 enum ftrace_dump_mode { 661 DUMP_NONE, 662 DUMP_ALL, 663 DUMP_ORIG, 664 }; 665 666 #ifdef CONFIG_TRACING 667 void tracing_on(void); 668 void tracing_off(void); 669 int tracing_is_on(void); 670 void tracing_snapshot(void); 671 void tracing_snapshot_alloc(void); 672 673 extern void tracing_start(void); 674 extern void tracing_stop(void); 675 676 static inline __printf(1, 2) 677 void ____trace_printk_check_format(const char *fmt, ...) 678 { 679 } 680 #define __trace_printk_check_format(fmt, args...) \ 681 do { \ 682 if (0) \ 683 ____trace_printk_check_format(fmt, ##args); \ 684 } while (0) 685 686 /** 687 * trace_printk - printf formatting in the ftrace buffer 688 * @fmt: the printf format for printing 689 * 690 * Note: __trace_printk is an internal function for trace_printk() and 691 * the @ip is passed in via the trace_printk() macro. 692 * 693 * This function allows a kernel developer to debug fast path sections 694 * that printk is not appropriate for. By scattering in various 695 * printk like tracing in the code, a developer can quickly see 696 * where problems are occurring. 697 * 698 * This is intended as a debugging tool for the developer only. 699 * Please refrain from leaving trace_printks scattered around in 700 * your code. (Extra memory is used for special buffers that are 701 * allocated when trace_printk() is used.) 702 * 703 * A little optimization trick is done here. If there's only one 704 * argument, there's no need to scan the string for printf formats. 705 * The trace_puts() will suffice. But how can we take advantage of 706 * using trace_puts() when trace_printk() has only one argument? 707 * By stringifying the args and checking the size we can tell 708 * whether or not there are args. __stringify((__VA_ARGS__)) will 709 * turn into "()\0" with a size of 3 when there are no args, anything 710 * else will be bigger. All we need to do is define a string to this, 711 * and then take its size and compare to 3. If it's bigger, use 712 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 713 * let gcc optimize the rest. 714 */ 715 716 #define trace_printk(fmt, ...) \ 717 do { \ 718 char _______STR[] = __stringify((__VA_ARGS__)); \ 719 if (sizeof(_______STR) > 3) \ 720 do_trace_printk(fmt, ##__VA_ARGS__); \ 721 else \ 722 trace_puts(fmt); \ 723 } while (0) 724 725 #define do_trace_printk(fmt, args...) \ 726 do { \ 727 static const char *trace_printk_fmt __used \ 728 __attribute__((section("__trace_printk_fmt"))) = \ 729 __builtin_constant_p(fmt) ? fmt : NULL; \ 730 \ 731 __trace_printk_check_format(fmt, ##args); \ 732 \ 733 if (__builtin_constant_p(fmt)) \ 734 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 735 else \ 736 __trace_printk(_THIS_IP_, fmt, ##args); \ 737 } while (0) 738 739 extern __printf(2, 3) 740 int __trace_bprintk(unsigned long ip, const char *fmt, ...); 741 742 extern __printf(2, 3) 743 int __trace_printk(unsigned long ip, const char *fmt, ...); 744 745 /** 746 * trace_puts - write a string into the ftrace buffer 747 * @str: the string to record 748 * 749 * Note: __trace_bputs is an internal function for trace_puts and 750 * the @ip is passed in via the trace_puts macro. 751 * 752 * This is similar to trace_printk() but is made for those really fast 753 * paths that a developer wants the least amount of "Heisenbug" effects, 754 * where the processing of the print format is still too much. 755 * 756 * This function allows a kernel developer to debug fast path sections 757 * that printk is not appropriate for. By scattering in various 758 * printk like tracing in the code, a developer can quickly see 759 * where problems are occurring. 760 * 761 * This is intended as a debugging tool for the developer only. 762 * Please refrain from leaving trace_puts scattered around in 763 * your code. (Extra memory is used for special buffers that are 764 * allocated when trace_puts() is used.) 765 * 766 * Returns: 0 if nothing was written, positive # if string was. 767 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 768 */ 769 770 #define trace_puts(str) ({ \ 771 static const char *trace_printk_fmt __used \ 772 __attribute__((section("__trace_printk_fmt"))) = \ 773 __builtin_constant_p(str) ? str : NULL; \ 774 \ 775 if (__builtin_constant_p(str)) \ 776 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 777 else \ 778 __trace_puts(_THIS_IP_, str, strlen(str)); \ 779 }) 780 extern int __trace_bputs(unsigned long ip, const char *str); 781 extern int __trace_puts(unsigned long ip, const char *str, int size); 782 783 extern void trace_dump_stack(int skip); 784 785 /* 786 * The double __builtin_constant_p is because gcc will give us an error 787 * if we try to allocate the static variable to fmt if it is not a 788 * constant. Even with the outer if statement. 789 */ 790 #define ftrace_vprintk(fmt, vargs) \ 791 do { \ 792 if (__builtin_constant_p(fmt)) { \ 793 static const char *trace_printk_fmt __used \ 794 __attribute__((section("__trace_printk_fmt"))) = \ 795 __builtin_constant_p(fmt) ? fmt : NULL; \ 796 \ 797 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 798 } else \ 799 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 800 } while (0) 801 802 extern __printf(2, 0) int 803 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 804 805 extern __printf(2, 0) int 806 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 807 808 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 809 #else 810 static inline void tracing_start(void) { } 811 static inline void tracing_stop(void) { } 812 static inline void trace_dump_stack(int skip) { } 813 814 static inline void tracing_on(void) { } 815 static inline void tracing_off(void) { } 816 static inline int tracing_is_on(void) { return 0; } 817 static inline void tracing_snapshot(void) { } 818 static inline void tracing_snapshot_alloc(void) { } 819 820 static inline __printf(1, 2) 821 int trace_printk(const char *fmt, ...) 822 { 823 return 0; 824 } 825 static __printf(1, 0) inline int 826 ftrace_vprintk(const char *fmt, va_list ap) 827 { 828 return 0; 829 } 830 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 831 #endif /* CONFIG_TRACING */ 832 833 /* 834 * min()/max()/clamp() macros must accomplish three things: 835 * 836 * - avoid multiple evaluations of the arguments (so side-effects like 837 * "x++" happen only once) when non-constant. 838 * - perform strict type-checking (to generate warnings instead of 839 * nasty runtime surprises). See the "unnecessary" pointer comparison 840 * in __typecheck(). 841 * - retain result as a constant expressions when called with only 842 * constant expressions (to avoid tripping VLA warnings in stack 843 * allocation usage). 844 */ 845 #define __typecheck(x, y) \ 846 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 847 848 /* 849 * This returns a constant expression while determining if an argument is 850 * a constant expression, most importantly without evaluating the argument. 851 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 852 */ 853 #define __is_constexpr(x) \ 854 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 855 856 #define __no_side_effects(x, y) \ 857 (__is_constexpr(x) && __is_constexpr(y)) 858 859 #define __safe_cmp(x, y) \ 860 (__typecheck(x, y) && __no_side_effects(x, y)) 861 862 #define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 863 864 #define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 865 typeof(x) unique_x = (x); \ 866 typeof(y) unique_y = (y); \ 867 __cmp(unique_x, unique_y, op); }) 868 869 #define __careful_cmp(x, y, op) \ 870 __builtin_choose_expr(__safe_cmp(x, y), \ 871 __cmp(x, y, op), \ 872 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 873 874 /** 875 * min - return minimum of two values of the same or compatible types 876 * @x: first value 877 * @y: second value 878 */ 879 #define min(x, y) __careful_cmp(x, y, <) 880 881 /** 882 * max - return maximum of two values of the same or compatible types 883 * @x: first value 884 * @y: second value 885 */ 886 #define max(x, y) __careful_cmp(x, y, >) 887 888 /** 889 * min3 - return minimum of three values 890 * @x: first value 891 * @y: second value 892 * @z: third value 893 */ 894 #define min3(x, y, z) min((typeof(x))min(x, y), z) 895 896 /** 897 * max3 - return maximum of three values 898 * @x: first value 899 * @y: second value 900 * @z: third value 901 */ 902 #define max3(x, y, z) max((typeof(x))max(x, y), z) 903 904 /** 905 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 906 * @x: value1 907 * @y: value2 908 */ 909 #define min_not_zero(x, y) ({ \ 910 typeof(x) __x = (x); \ 911 typeof(y) __y = (y); \ 912 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 913 914 /** 915 * clamp - return a value clamped to a given range with strict typechecking 916 * @val: current value 917 * @lo: lowest allowable value 918 * @hi: highest allowable value 919 * 920 * This macro does strict typechecking of @lo/@hi to make sure they are of the 921 * same type as @val. See the unnecessary pointer comparisons. 922 */ 923 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 924 925 /* 926 * ..and if you can't take the strict 927 * types, you can specify one yourself. 928 * 929 * Or not use min/max/clamp at all, of course. 930 */ 931 932 /** 933 * min_t - return minimum of two values, using the specified type 934 * @type: data type to use 935 * @x: first value 936 * @y: second value 937 */ 938 #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 939 940 /** 941 * max_t - return maximum of two values, using the specified type 942 * @type: data type to use 943 * @x: first value 944 * @y: second value 945 */ 946 #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 947 948 /** 949 * clamp_t - return a value clamped to a given range using a given type 950 * @type: the type of variable to use 951 * @val: current value 952 * @lo: minimum allowable value 953 * @hi: maximum allowable value 954 * 955 * This macro does no typechecking and uses temporary variables of type 956 * @type to make all the comparisons. 957 */ 958 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 959 960 /** 961 * clamp_val - return a value clamped to a given range using val's type 962 * @val: current value 963 * @lo: minimum allowable value 964 * @hi: maximum allowable value 965 * 966 * This macro does no typechecking and uses temporary variables of whatever 967 * type the input argument @val is. This is useful when @val is an unsigned 968 * type and @lo and @hi are literals that will otherwise be assigned a signed 969 * integer type. 970 */ 971 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 972 973 974 /** 975 * swap - swap values of @a and @b 976 * @a: first value 977 * @b: second value 978 */ 979 #define swap(a, b) \ 980 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 981 982 /* This counts to 12. Any more, it will return 13th argument. */ 983 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 984 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 985 986 #define __CONCAT(a, b) a ## b 987 #define CONCATENATE(a, b) __CONCAT(a, b) 988 989 /** 990 * container_of - cast a member of a structure out to the containing structure 991 * @ptr: the pointer to the member. 992 * @type: the type of the container struct this is embedded in. 993 * @member: the name of the member within the struct. 994 * 995 */ 996 #define container_of(ptr, type, member) ({ \ 997 void *__mptr = (void *)(ptr); \ 998 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 999 !__same_type(*(ptr), void), \ 1000 "pointer type mismatch in container_of()"); \ 1001 ((type *)(__mptr - offsetof(type, member))); }) 1002 1003 /** 1004 * container_of_safe - cast a member of a structure out to the containing structure 1005 * @ptr: the pointer to the member. 1006 * @type: the type of the container struct this is embedded in. 1007 * @member: the name of the member within the struct. 1008 * 1009 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1010 */ 1011 #define container_of_safe(ptr, type, member) ({ \ 1012 void *__mptr = (void *)(ptr); \ 1013 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1014 !__same_type(*(ptr), void), \ 1015 "pointer type mismatch in container_of()"); \ 1016 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1017 ((type *)(__mptr - offsetof(type, member))); }) 1018 1019 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1020 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 1021 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1022 #endif 1023 1024 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1025 #define VERIFY_OCTAL_PERMISSIONS(perms) \ 1026 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1027 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1028 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1029 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1030 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1031 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1032 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1033 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1034 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1035 (perms)) 1036 #endif 1037
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.