~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/memcontrol.h

Version: ~ [ linux-5.18-rc6 ] ~ [ linux-5.17.6 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.38 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.114 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.192 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.241 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.277 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.312 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /* memcontrol.h - Memory Controller
  3  *
  4  * Copyright IBM Corporation, 2007
  5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  6  *
  7  * Copyright 2007 OpenVZ SWsoft Inc
  8  * Author: Pavel Emelianov <xemul@openvz.org>
  9  */
 10 
 11 #ifndef _LINUX_MEMCONTROL_H
 12 #define _LINUX_MEMCONTROL_H
 13 #include <linux/cgroup.h>
 14 #include <linux/vm_event_item.h>
 15 #include <linux/hardirq.h>
 16 #include <linux/jump_label.h>
 17 #include <linux/page_counter.h>
 18 #include <linux/vmpressure.h>
 19 #include <linux/eventfd.h>
 20 #include <linux/mm.h>
 21 #include <linux/vmstat.h>
 22 #include <linux/writeback.h>
 23 #include <linux/page-flags.h>
 24 
 25 struct mem_cgroup;
 26 struct obj_cgroup;
 27 struct page;
 28 struct mm_struct;
 29 struct kmem_cache;
 30 
 31 /* Cgroup-specific page state, on top of universal node page state */
 32 enum memcg_stat_item {
 33         MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
 34         MEMCG_SOCK,
 35         MEMCG_PERCPU_B,
 36         MEMCG_NR_STAT,
 37 };
 38 
 39 enum memcg_memory_event {
 40         MEMCG_LOW,
 41         MEMCG_HIGH,
 42         MEMCG_MAX,
 43         MEMCG_OOM,
 44         MEMCG_OOM_KILL,
 45         MEMCG_SWAP_HIGH,
 46         MEMCG_SWAP_MAX,
 47         MEMCG_SWAP_FAIL,
 48         MEMCG_NR_MEMORY_EVENTS,
 49 };
 50 
 51 struct mem_cgroup_reclaim_cookie {
 52         pg_data_t *pgdat;
 53         unsigned int generation;
 54 };
 55 
 56 #ifdef CONFIG_MEMCG
 57 
 58 #define MEM_CGROUP_ID_SHIFT     16
 59 #define MEM_CGROUP_ID_MAX       USHRT_MAX
 60 
 61 struct mem_cgroup_id {
 62         int id;
 63         refcount_t ref;
 64 };
 65 
 66 /*
 67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
 68  * it will be incremented by the number of pages. This counter is used
 69  * to trigger some periodic events. This is straightforward and better
 70  * than using jiffies etc. to handle periodic memcg event.
 71  */
 72 enum mem_cgroup_events_target {
 73         MEM_CGROUP_TARGET_THRESH,
 74         MEM_CGROUP_TARGET_SOFTLIMIT,
 75         MEM_CGROUP_NTARGETS,
 76 };
 77 
 78 struct memcg_vmstats_percpu {
 79         long stat[MEMCG_NR_STAT];
 80         unsigned long events[NR_VM_EVENT_ITEMS];
 81         unsigned long nr_page_events;
 82         unsigned long targets[MEM_CGROUP_NTARGETS];
 83 };
 84 
 85 struct mem_cgroup_reclaim_iter {
 86         struct mem_cgroup *position;
 87         /* scan generation, increased every round-trip */
 88         unsigned int generation;
 89 };
 90 
 91 struct lruvec_stat {
 92         long count[NR_VM_NODE_STAT_ITEMS];
 93 };
 94 
 95 struct batched_lruvec_stat {
 96         s32 count[NR_VM_NODE_STAT_ITEMS];
 97 };
 98 
 99 /*
100  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
101  * which have elements charged to this memcg.
102  */
103 struct memcg_shrinker_map {
104         struct rcu_head rcu;
105         unsigned long map[];
106 };
107 
108 /*
109  * per-node information in memory controller.
110  */
111 struct mem_cgroup_per_node {
112         struct lruvec           lruvec;
113 
114         /*
115          * Legacy local VM stats. This should be struct lruvec_stat and
116          * cannot be optimized to struct batched_lruvec_stat. Because
117          * the threshold of the lruvec_stat_cpu can be as big as
118          * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
119          * filed has no upper limit.
120          */
121         struct lruvec_stat __percpu *lruvec_stat_local;
122 
123         /* Subtree VM stats (batched updates) */
124         struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
125         atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126 
127         unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129         struct mem_cgroup_reclaim_iter  iter;
130 
131         struct memcg_shrinker_map __rcu *shrinker_map;
132 
133         struct rb_node          tree_node;      /* RB tree node */
134         unsigned long           usage_in_excess;/* Set to the value by which */
135                                                 /* the soft limit is exceeded*/
136         bool                    on_tree;
137         struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
138                                                 /* use container_of        */
139 };
140 
141 struct mem_cgroup_threshold {
142         struct eventfd_ctx *eventfd;
143         unsigned long threshold;
144 };
145 
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148         /* An array index points to threshold just below or equal to usage. */
149         int current_threshold;
150         /* Size of entries[] */
151         unsigned int size;
152         /* Array of thresholds */
153         struct mem_cgroup_threshold entries[];
154 };
155 
156 struct mem_cgroup_thresholds {
157         /* Primary thresholds array */
158         struct mem_cgroup_threshold_ary *primary;
159         /*
160          * Spare threshold array.
161          * This is needed to make mem_cgroup_unregister_event() "never fail".
162          * It must be able to store at least primary->size - 1 entries.
163          */
164         struct mem_cgroup_threshold_ary *spare;
165 };
166 
167 enum memcg_kmem_state {
168         KMEM_NONE,
169         KMEM_ALLOCATED,
170         KMEM_ONLINE,
171 };
172 
173 #if defined(CONFIG_SMP)
174 struct memcg_padding {
175         char x[0];
176 } ____cacheline_internodealigned_in_smp;
177 #define MEMCG_PADDING(name)      struct memcg_padding name;
178 #else
179 #define MEMCG_PADDING(name)
180 #endif
181 
182 /*
183  * Remember four most recent foreign writebacks with dirty pages in this
184  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
185  * one in a given round, we're likely to catch it later if it keeps
186  * foreign-dirtying, so a fairly low count should be enough.
187  *
188  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
189  */
190 #define MEMCG_CGWB_FRN_CNT      4
191 
192 struct memcg_cgwb_frn {
193         u64 bdi_id;                     /* bdi->id of the foreign inode */
194         int memcg_id;                   /* memcg->css.id of foreign inode */
195         u64 at;                         /* jiffies_64 at the time of dirtying */
196         struct wb_completion done;      /* tracks in-flight foreign writebacks */
197 };
198 
199 /*
200  * Bucket for arbitrarily byte-sized objects charged to a memory
201  * cgroup. The bucket can be reparented in one piece when the cgroup
202  * is destroyed, without having to round up the individual references
203  * of all live memory objects in the wild.
204  */
205 struct obj_cgroup {
206         struct percpu_ref refcnt;
207         struct mem_cgroup *memcg;
208         atomic_t nr_charged_bytes;
209         union {
210                 struct list_head list;
211                 struct rcu_head rcu;
212         };
213 };
214 
215 /*
216  * The memory controller data structure. The memory controller controls both
217  * page cache and RSS per cgroup. We would eventually like to provide
218  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
219  * to help the administrator determine what knobs to tune.
220  */
221 struct mem_cgroup {
222         struct cgroup_subsys_state css;
223 
224         /* Private memcg ID. Used to ID objects that outlive the cgroup */
225         struct mem_cgroup_id id;
226 
227         /* Accounted resources */
228         struct page_counter memory;             /* Both v1 & v2 */
229 
230         union {
231                 struct page_counter swap;       /* v2 only */
232                 struct page_counter memsw;      /* v1 only */
233         };
234 
235         /* Legacy consumer-oriented counters */
236         struct page_counter kmem;               /* v1 only */
237         struct page_counter tcpmem;             /* v1 only */
238 
239         /* Range enforcement for interrupt charges */
240         struct work_struct high_work;
241 
242         unsigned long soft_limit;
243 
244         /* vmpressure notifications */
245         struct vmpressure vmpressure;
246 
247         /*
248          * Should the OOM killer kill all belonging tasks, had it kill one?
249          */
250         bool oom_group;
251 
252         /* protected by memcg_oom_lock */
253         bool            oom_lock;
254         int             under_oom;
255 
256         int     swappiness;
257         /* OOM-Killer disable */
258         int             oom_kill_disable;
259 
260         /* memory.events and memory.events.local */
261         struct cgroup_file events_file;
262         struct cgroup_file events_local_file;
263 
264         /* handle for "memory.swap.events" */
265         struct cgroup_file swap_events_file;
266 
267         /* protect arrays of thresholds */
268         struct mutex thresholds_lock;
269 
270         /* thresholds for memory usage. RCU-protected */
271         struct mem_cgroup_thresholds thresholds;
272 
273         /* thresholds for mem+swap usage. RCU-protected */
274         struct mem_cgroup_thresholds memsw_thresholds;
275 
276         /* For oom notifier event fd */
277         struct list_head oom_notify;
278 
279         /*
280          * Should we move charges of a task when a task is moved into this
281          * mem_cgroup ? And what type of charges should we move ?
282          */
283         unsigned long move_charge_at_immigrate;
284         /* taken only while moving_account > 0 */
285         spinlock_t              move_lock;
286         unsigned long           move_lock_flags;
287 
288         MEMCG_PADDING(_pad1_);
289 
290         atomic_long_t           vmstats[MEMCG_NR_STAT];
291         atomic_long_t           vmevents[NR_VM_EVENT_ITEMS];
292 
293         /* memory.events */
294         atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
295         atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
296 
297         unsigned long           socket_pressure;
298 
299         /* Legacy tcp memory accounting */
300         bool                    tcpmem_active;
301         int                     tcpmem_pressure;
302 
303 #ifdef CONFIG_MEMCG_KMEM
304         int kmemcg_id;
305         enum memcg_kmem_state kmem_state;
306         struct obj_cgroup __rcu *objcg;
307         struct list_head objcg_list; /* list of inherited objcgs */
308 #endif
309 
310         MEMCG_PADDING(_pad2_);
311 
312         /*
313          * set > 0 if pages under this cgroup are moving to other cgroup.
314          */
315         atomic_t                moving_account;
316         struct task_struct      *move_lock_task;
317 
318         /* Legacy local VM stats and events */
319         struct memcg_vmstats_percpu __percpu *vmstats_local;
320 
321         /* Subtree VM stats and events (batched updates) */
322         struct memcg_vmstats_percpu __percpu *vmstats_percpu;
323 
324 #ifdef CONFIG_CGROUP_WRITEBACK
325         struct list_head cgwb_list;
326         struct wb_domain cgwb_domain;
327         struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
328 #endif
329 
330         /* List of events which userspace want to receive */
331         struct list_head event_list;
332         spinlock_t event_list_lock;
333 
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335         struct deferred_split deferred_split_queue;
336 #endif
337 
338         struct mem_cgroup_per_node *nodeinfo[0];
339         /* WARNING: nodeinfo must be the last member here */
340 };
341 
342 /*
343  * size of first charge trial. "32" comes from vmscan.c's magic value.
344  * TODO: maybe necessary to use big numbers in big irons.
345  */
346 #define MEMCG_CHARGE_BATCH 32U
347 
348 extern struct mem_cgroup *root_mem_cgroup;
349 
350 enum page_memcg_data_flags {
351         /* page->memcg_data is a pointer to an objcgs vector */
352         MEMCG_DATA_OBJCGS = (1UL << 0),
353         /* page has been accounted as a non-slab kernel page */
354         MEMCG_DATA_KMEM = (1UL << 1),
355         /* the next bit after the last actual flag */
356         __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
357 };
358 
359 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
360 
361 /*
362  * page_memcg - get the memory cgroup associated with a page
363  * @page: a pointer to the page struct
364  *
365  * Returns a pointer to the memory cgroup associated with the page,
366  * or NULL. This function assumes that the page is known to have a
367  * proper memory cgroup pointer. It's not safe to call this function
368  * against some type of pages, e.g. slab pages or ex-slab pages.
369  *
370  * Any of the following ensures page and memcg binding stability:
371  * - the page lock
372  * - LRU isolation
373  * - lock_page_memcg()
374  * - exclusive reference
375  */
376 static inline struct mem_cgroup *page_memcg(struct page *page)
377 {
378         unsigned long memcg_data = page->memcg_data;
379 
380         VM_BUG_ON_PAGE(PageSlab(page), page);
381         VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
382 
383         return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385 
386 /*
387  * page_memcg_rcu - locklessly get the memory cgroup associated with a page
388  * @page: a pointer to the page struct
389  *
390  * Returns a pointer to the memory cgroup associated with the page,
391  * or NULL. This function assumes that the page is known to have a
392  * proper memory cgroup pointer. It's not safe to call this function
393  * against some type of pages, e.g. slab pages or ex-slab pages.
394  */
395 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
396 {
397         VM_BUG_ON_PAGE(PageSlab(page), page);
398         WARN_ON_ONCE(!rcu_read_lock_held());
399 
400         return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
401                                      ~MEMCG_DATA_FLAGS_MASK);
402 }
403 
404 /*
405  * page_memcg_check - get the memory cgroup associated with a page
406  * @page: a pointer to the page struct
407  *
408  * Returns a pointer to the memory cgroup associated with the page,
409  * or NULL. This function unlike page_memcg() can take any  page
410  * as an argument. It has to be used in cases when it's not known if a page
411  * has an associated memory cgroup pointer or an object cgroups vector.
412  *
413  * Any of the following ensures page and memcg binding stability:
414  * - the page lock
415  * - LRU isolation
416  * - lock_page_memcg()
417  * - exclusive reference
418  */
419 static inline struct mem_cgroup *page_memcg_check(struct page *page)
420 {
421         /*
422          * Because page->memcg_data might be changed asynchronously
423          * for slab pages, READ_ONCE() should be used here.
424          */
425         unsigned long memcg_data = READ_ONCE(page->memcg_data);
426 
427         if (memcg_data & MEMCG_DATA_OBJCGS)
428                 return NULL;
429 
430         return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
431 }
432 
433 /*
434  * PageMemcgKmem - check if the page has MemcgKmem flag set
435  * @page: a pointer to the page struct
436  *
437  * Checks if the page has MemcgKmem flag set. The caller must ensure that
438  * the page has an associated memory cgroup. It's not safe to call this function
439  * against some types of pages, e.g. slab pages.
440  */
441 static inline bool PageMemcgKmem(struct page *page)
442 {
443         VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
444         return page->memcg_data & MEMCG_DATA_KMEM;
445 }
446 
447 #ifdef CONFIG_MEMCG_KMEM
448 /*
449  * page_objcgs - get the object cgroups vector associated with a page
450  * @page: a pointer to the page struct
451  *
452  * Returns a pointer to the object cgroups vector associated with the page,
453  * or NULL. This function assumes that the page is known to have an
454  * associated object cgroups vector. It's not safe to call this function
455  * against pages, which might have an associated memory cgroup: e.g.
456  * kernel stack pages.
457  */
458 static inline struct obj_cgroup **page_objcgs(struct page *page)
459 {
460         unsigned long memcg_data = READ_ONCE(page->memcg_data);
461 
462         VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
463         VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
464 
465         return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467 
468 /*
469  * page_objcgs_check - get the object cgroups vector associated with a page
470  * @page: a pointer to the page struct
471  *
472  * Returns a pointer to the object cgroups vector associated with the page,
473  * or NULL. This function is safe to use if the page can be directly associated
474  * with a memory cgroup.
475  */
476 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
477 {
478         unsigned long memcg_data = READ_ONCE(page->memcg_data);
479 
480         if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
481                 return NULL;
482 
483         VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
484 
485         return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
486 }
487 
488 #else
489 static inline struct obj_cgroup **page_objcgs(struct page *page)
490 {
491         return NULL;
492 }
493 
494 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
495 {
496         return NULL;
497 }
498 #endif
499 
500 static __always_inline bool memcg_stat_item_in_bytes(int idx)
501 {
502         if (idx == MEMCG_PERCPU_B)
503                 return true;
504         return vmstat_item_in_bytes(idx);
505 }
506 
507 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
508 {
509         return (memcg == root_mem_cgroup);
510 }
511 
512 static inline bool mem_cgroup_disabled(void)
513 {
514         return !cgroup_subsys_enabled(memory_cgrp_subsys);
515 }
516 
517 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
518                                                   struct mem_cgroup *memcg,
519                                                   bool in_low_reclaim)
520 {
521         if (mem_cgroup_disabled())
522                 return 0;
523 
524         /*
525          * There is no reclaim protection applied to a targeted reclaim.
526          * We are special casing this specific case here because
527          * mem_cgroup_protected calculation is not robust enough to keep
528          * the protection invariant for calculated effective values for
529          * parallel reclaimers with different reclaim target. This is
530          * especially a problem for tail memcgs (as they have pages on LRU)
531          * which would want to have effective values 0 for targeted reclaim
532          * but a different value for external reclaim.
533          *
534          * Example
535          * Let's have global and A's reclaim in parallel:
536          *  |
537          *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
538          *  |\
539          *  | C (low = 1G, usage = 2.5G)
540          *  B (low = 1G, usage = 0.5G)
541          *
542          * For the global reclaim
543          * A.elow = A.low
544          * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
545          * C.elow = min(C.usage, C.low)
546          *
547          * With the effective values resetting we have A reclaim
548          * A.elow = 0
549          * B.elow = B.low
550          * C.elow = C.low
551          *
552          * If the global reclaim races with A's reclaim then
553          * B.elow = C.elow = 0 because children_low_usage > A.elow)
554          * is possible and reclaiming B would be violating the protection.
555          *
556          */
557         if (root == memcg)
558                 return 0;
559 
560         if (in_low_reclaim)
561                 return READ_ONCE(memcg->memory.emin);
562 
563         return max(READ_ONCE(memcg->memory.emin),
564                    READ_ONCE(memcg->memory.elow));
565 }
566 
567 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
568                                      struct mem_cgroup *memcg);
569 
570 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
571 {
572         /*
573          * The root memcg doesn't account charges, and doesn't support
574          * protection.
575          */
576         return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
577 
578 }
579 
580 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
581 {
582         if (!mem_cgroup_supports_protection(memcg))
583                 return false;
584 
585         return READ_ONCE(memcg->memory.elow) >=
586                 page_counter_read(&memcg->memory);
587 }
588 
589 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
590 {
591         if (!mem_cgroup_supports_protection(memcg))
592                 return false;
593 
594         return READ_ONCE(memcg->memory.emin) >=
595                 page_counter_read(&memcg->memory);
596 }
597 
598 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
599 
600 void mem_cgroup_uncharge(struct page *page);
601 void mem_cgroup_uncharge_list(struct list_head *page_list);
602 
603 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
604 
605 static struct mem_cgroup_per_node *
606 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
607 {
608         return memcg->nodeinfo[nid];
609 }
610 
611 /**
612  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
613  * @memcg: memcg of the wanted lruvec
614  * @pgdat: pglist_data
615  *
616  * Returns the lru list vector holding pages for a given @memcg &
617  * @pgdat combination. This can be the node lruvec, if the memory
618  * controller is disabled.
619  */
620 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
621                                                struct pglist_data *pgdat)
622 {
623         struct mem_cgroup_per_node *mz;
624         struct lruvec *lruvec;
625 
626         if (mem_cgroup_disabled()) {
627                 lruvec = &pgdat->__lruvec;
628                 goto out;
629         }
630 
631         if (!memcg)
632                 memcg = root_mem_cgroup;
633 
634         mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
635         lruvec = &mz->lruvec;
636 out:
637         /*
638          * Since a node can be onlined after the mem_cgroup was created,
639          * we have to be prepared to initialize lruvec->pgdat here;
640          * and if offlined then reonlined, we need to reinitialize it.
641          */
642         if (unlikely(lruvec->pgdat != pgdat))
643                 lruvec->pgdat = pgdat;
644         return lruvec;
645 }
646 
647 /**
648  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
649  * @page: the page
650  * @pgdat: pgdat of the page
651  *
652  * This function relies on page->mem_cgroup being stable.
653  */
654 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
655                                                 struct pglist_data *pgdat)
656 {
657         struct mem_cgroup *memcg = page_memcg(page);
658 
659         VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
660         return mem_cgroup_lruvec(memcg, pgdat);
661 }
662 
663 static inline bool lruvec_holds_page_lru_lock(struct page *page,
664                                               struct lruvec *lruvec)
665 {
666         pg_data_t *pgdat = page_pgdat(page);
667         const struct mem_cgroup *memcg;
668         struct mem_cgroup_per_node *mz;
669 
670         if (mem_cgroup_disabled())
671                 return lruvec == &pgdat->__lruvec;
672 
673         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674         memcg = page_memcg(page) ? : root_mem_cgroup;
675 
676         return lruvec->pgdat == pgdat && mz->memcg == memcg;
677 }
678 
679 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
680 
681 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
682 
683 struct lruvec *lock_page_lruvec(struct page *page);
684 struct lruvec *lock_page_lruvec_irq(struct page *page);
685 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
686                                                 unsigned long *flags);
687 
688 #ifdef CONFIG_DEBUG_VM
689 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
690 #else
691 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
692 {
693 }
694 #endif
695 
696 static inline
697 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
698         return css ? container_of(css, struct mem_cgroup, css) : NULL;
699 }
700 
701 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
702 {
703         return percpu_ref_tryget(&objcg->refcnt);
704 }
705 
706 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
707 {
708         percpu_ref_get(&objcg->refcnt);
709 }
710 
711 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
712 {
713         percpu_ref_put(&objcg->refcnt);
714 }
715 
716 /*
717  * After the initialization objcg->memcg is always pointing at
718  * a valid memcg, but can be atomically swapped to the parent memcg.
719  *
720  * The caller must ensure that the returned memcg won't be released:
721  * e.g. acquire the rcu_read_lock or css_set_lock.
722  */
723 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
724 {
725         return READ_ONCE(objcg->memcg);
726 }
727 
728 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
729 {
730         if (memcg)
731                 css_put(&memcg->css);
732 }
733 
734 #define mem_cgroup_from_counter(counter, member)        \
735         container_of(counter, struct mem_cgroup, member)
736 
737 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
738                                    struct mem_cgroup *,
739                                    struct mem_cgroup_reclaim_cookie *);
740 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
741 int mem_cgroup_scan_tasks(struct mem_cgroup *,
742                           int (*)(struct task_struct *, void *), void *);
743 
744 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
745 {
746         if (mem_cgroup_disabled())
747                 return 0;
748 
749         return memcg->id.id;
750 }
751 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
752 
753 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
754 {
755         return mem_cgroup_from_css(seq_css(m));
756 }
757 
758 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
759 {
760         struct mem_cgroup_per_node *mz;
761 
762         if (mem_cgroup_disabled())
763                 return NULL;
764 
765         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
766         return mz->memcg;
767 }
768 
769 /**
770  * parent_mem_cgroup - find the accounting parent of a memcg
771  * @memcg: memcg whose parent to find
772  *
773  * Returns the parent memcg, or NULL if this is the root or the memory
774  * controller is in legacy no-hierarchy mode.
775  */
776 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
777 {
778         if (!memcg->memory.parent)
779                 return NULL;
780         return mem_cgroup_from_counter(memcg->memory.parent, memory);
781 }
782 
783 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
784                               struct mem_cgroup *root)
785 {
786         if (root == memcg)
787                 return true;
788         return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
789 }
790 
791 static inline bool mm_match_cgroup(struct mm_struct *mm,
792                                    struct mem_cgroup *memcg)
793 {
794         struct mem_cgroup *task_memcg;
795         bool match = false;
796 
797         rcu_read_lock();
798         task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799         if (task_memcg)
800                 match = mem_cgroup_is_descendant(task_memcg, memcg);
801         rcu_read_unlock();
802         return match;
803 }
804 
805 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
806 ino_t page_cgroup_ino(struct page *page);
807 
808 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
809 {
810         if (mem_cgroup_disabled())
811                 return true;
812         return !!(memcg->css.flags & CSS_ONLINE);
813 }
814 
815 /*
816  * For memory reclaim.
817  */
818 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
819 
820 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
821                 int zid, int nr_pages);
822 
823 static inline
824 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
825                 enum lru_list lru, int zone_idx)
826 {
827         struct mem_cgroup_per_node *mz;
828 
829         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
830         return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
831 }
832 
833 void mem_cgroup_handle_over_high(void);
834 
835 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
836 
837 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
838 
839 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
840                                 struct task_struct *p);
841 
842 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
843 
844 static inline void mem_cgroup_enter_user_fault(void)
845 {
846         WARN_ON(current->in_user_fault);
847         current->in_user_fault = 1;
848 }
849 
850 static inline void mem_cgroup_exit_user_fault(void)
851 {
852         WARN_ON(!current->in_user_fault);
853         current->in_user_fault = 0;
854 }
855 
856 static inline bool task_in_memcg_oom(struct task_struct *p)
857 {
858         return p->memcg_in_oom;
859 }
860 
861 bool mem_cgroup_oom_synchronize(bool wait);
862 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
863                                             struct mem_cgroup *oom_domain);
864 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
865 
866 #ifdef CONFIG_MEMCG_SWAP
867 extern bool cgroup_memory_noswap;
868 #endif
869 
870 struct mem_cgroup *lock_page_memcg(struct page *page);
871 void __unlock_page_memcg(struct mem_cgroup *memcg);
872 void unlock_page_memcg(struct page *page);
873 
874 /*
875  * idx can be of type enum memcg_stat_item or node_stat_item.
876  * Keep in sync with memcg_exact_page_state().
877  */
878 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
879 {
880         long x = atomic_long_read(&memcg->vmstats[idx]);
881 #ifdef CONFIG_SMP
882         if (x < 0)
883                 x = 0;
884 #endif
885         return x;
886 }
887 
888 /*
889  * idx can be of type enum memcg_stat_item or node_stat_item.
890  * Keep in sync with memcg_exact_page_state().
891  */
892 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
893                                                    int idx)
894 {
895         long x = 0;
896         int cpu;
897 
898         for_each_possible_cpu(cpu)
899                 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
900 #ifdef CONFIG_SMP
901         if (x < 0)
902                 x = 0;
903 #endif
904         return x;
905 }
906 
907 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
908 
909 /* idx can be of type enum memcg_stat_item or node_stat_item */
910 static inline void mod_memcg_state(struct mem_cgroup *memcg,
911                                    int idx, int val)
912 {
913         unsigned long flags;
914 
915         local_irq_save(flags);
916         __mod_memcg_state(memcg, idx, val);
917         local_irq_restore(flags);
918 }
919 
920 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
921                                               enum node_stat_item idx)
922 {
923         struct mem_cgroup_per_node *pn;
924         long x;
925 
926         if (mem_cgroup_disabled())
927                 return node_page_state(lruvec_pgdat(lruvec), idx);
928 
929         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
930         x = atomic_long_read(&pn->lruvec_stat[idx]);
931 #ifdef CONFIG_SMP
932         if (x < 0)
933                 x = 0;
934 #endif
935         return x;
936 }
937 
938 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
939                                                     enum node_stat_item idx)
940 {
941         struct mem_cgroup_per_node *pn;
942         long x = 0;
943         int cpu;
944 
945         if (mem_cgroup_disabled())
946                 return node_page_state(lruvec_pgdat(lruvec), idx);
947 
948         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
949         for_each_possible_cpu(cpu)
950                 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
951 #ifdef CONFIG_SMP
952         if (x < 0)
953                 x = 0;
954 #endif
955         return x;
956 }
957 
958 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
959                               int val);
960 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
961 
962 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
963                                          int val)
964 {
965         unsigned long flags;
966 
967         local_irq_save(flags);
968         __mod_lruvec_kmem_state(p, idx, val);
969         local_irq_restore(flags);
970 }
971 
972 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
973                                           enum node_stat_item idx, int val)
974 {
975         unsigned long flags;
976 
977         local_irq_save(flags);
978         __mod_memcg_lruvec_state(lruvec, idx, val);
979         local_irq_restore(flags);
980 }
981 
982 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
983                                                 gfp_t gfp_mask,
984                                                 unsigned long *total_scanned);
985 
986 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
987                           unsigned long count);
988 
989 static inline void count_memcg_events(struct mem_cgroup *memcg,
990                                       enum vm_event_item idx,
991                                       unsigned long count)
992 {
993         unsigned long flags;
994 
995         local_irq_save(flags);
996         __count_memcg_events(memcg, idx, count);
997         local_irq_restore(flags);
998 }
999 
1000 static inline void count_memcg_page_event(struct page *page,
1001                                           enum vm_event_item idx)
1002 {
1003         struct mem_cgroup *memcg = page_memcg(page);
1004 
1005         if (memcg)
1006                 count_memcg_events(memcg, idx, 1);
1007 }
1008 
1009 static inline void count_memcg_event_mm(struct mm_struct *mm,
1010                                         enum vm_event_item idx)
1011 {
1012         struct mem_cgroup *memcg;
1013 
1014         if (mem_cgroup_disabled())
1015                 return;
1016 
1017         rcu_read_lock();
1018         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019         if (likely(memcg))
1020                 count_memcg_events(memcg, idx, 1);
1021         rcu_read_unlock();
1022 }
1023 
1024 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1025                                       enum memcg_memory_event event)
1026 {
1027         bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1028                           event == MEMCG_SWAP_FAIL;
1029 
1030         atomic_long_inc(&memcg->memory_events_local[event]);
1031         if (!swap_event)
1032                 cgroup_file_notify(&memcg->events_local_file);
1033 
1034         do {
1035                 atomic_long_inc(&memcg->memory_events[event]);
1036                 if (swap_event)
1037                         cgroup_file_notify(&memcg->swap_events_file);
1038                 else
1039                         cgroup_file_notify(&memcg->events_file);
1040 
1041                 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1042                         break;
1043                 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1044                         break;
1045         } while ((memcg = parent_mem_cgroup(memcg)) &&
1046                  !mem_cgroup_is_root(memcg));
1047 }
1048 
1049 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1050                                          enum memcg_memory_event event)
1051 {
1052         struct mem_cgroup *memcg;
1053 
1054         if (mem_cgroup_disabled())
1055                 return;
1056 
1057         rcu_read_lock();
1058         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059         if (likely(memcg))
1060                 memcg_memory_event(memcg, event);
1061         rcu_read_unlock();
1062 }
1063 
1064 void split_page_memcg(struct page *head, unsigned int nr);
1065 
1066 #else /* CONFIG_MEMCG */
1067 
1068 #define MEM_CGROUP_ID_SHIFT     0
1069 #define MEM_CGROUP_ID_MAX       0
1070 
1071 struct mem_cgroup;
1072 
1073 static inline struct mem_cgroup *page_memcg(struct page *page)
1074 {
1075         return NULL;
1076 }
1077 
1078 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1079 {
1080         WARN_ON_ONCE(!rcu_read_lock_held());
1081         return NULL;
1082 }
1083 
1084 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1085 {
1086         return NULL;
1087 }
1088 
1089 static inline bool PageMemcgKmem(struct page *page)
1090 {
1091         return false;
1092 }
1093 
1094 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1095 {
1096         return true;
1097 }
1098 
1099 static inline bool mem_cgroup_disabled(void)
1100 {
1101         return true;
1102 }
1103 
1104 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1105                                       enum memcg_memory_event event)
1106 {
1107 }
1108 
1109 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1110                                          enum memcg_memory_event event)
1111 {
1112 }
1113 
1114 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1115                                                   struct mem_cgroup *memcg,
1116                                                   bool in_low_reclaim)
1117 {
1118         return 0;
1119 }
1120 
1121 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1122                                                    struct mem_cgroup *memcg)
1123 {
1124 }
1125 
1126 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1127 {
1128         return false;
1129 }
1130 
1131 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1132 {
1133         return false;
1134 }
1135 
1136 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1137                                     gfp_t gfp_mask)
1138 {
1139         return 0;
1140 }
1141 
1142 static inline void mem_cgroup_uncharge(struct page *page)
1143 {
1144 }
1145 
1146 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1147 {
1148 }
1149 
1150 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1151 {
1152 }
1153 
1154 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1155                                                struct pglist_data *pgdat)
1156 {
1157         return &pgdat->__lruvec;
1158 }
1159 
1160 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1161                                                     struct pglist_data *pgdat)
1162 {
1163         return &pgdat->__lruvec;
1164 }
1165 
1166 static inline bool lruvec_holds_page_lru_lock(struct page *page,
1167                                               struct lruvec *lruvec)
1168 {
1169         pg_data_t *pgdat = page_pgdat(page);
1170 
1171         return lruvec == &pgdat->__lruvec;
1172 }
1173 
1174 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1175 {
1176         return NULL;
1177 }
1178 
1179 static inline bool mm_match_cgroup(struct mm_struct *mm,
1180                 struct mem_cgroup *memcg)
1181 {
1182         return true;
1183 }
1184 
1185 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1186 {
1187         return NULL;
1188 }
1189 
1190 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1191 {
1192 }
1193 
1194 static inline struct lruvec *lock_page_lruvec(struct page *page)
1195 {
1196         struct pglist_data *pgdat = page_pgdat(page);
1197 
1198         spin_lock(&pgdat->__lruvec.lru_lock);
1199         return &pgdat->__lruvec;
1200 }
1201 
1202 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1203 {
1204         struct pglist_data *pgdat = page_pgdat(page);
1205 
1206         spin_lock_irq(&pgdat->__lruvec.lru_lock);
1207         return &pgdat->__lruvec;
1208 }
1209 
1210 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1211                 unsigned long *flagsp)
1212 {
1213         struct pglist_data *pgdat = page_pgdat(page);
1214 
1215         spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1216         return &pgdat->__lruvec;
1217 }
1218 
1219 static inline struct mem_cgroup *
1220 mem_cgroup_iter(struct mem_cgroup *root,
1221                 struct mem_cgroup *prev,
1222                 struct mem_cgroup_reclaim_cookie *reclaim)
1223 {
1224         return NULL;
1225 }
1226 
1227 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1228                                          struct mem_cgroup *prev)
1229 {
1230 }
1231 
1232 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1233                 int (*fn)(struct task_struct *, void *), void *arg)
1234 {
1235         return 0;
1236 }
1237 
1238 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1239 {
1240         return 0;
1241 }
1242 
1243 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1244 {
1245         WARN_ON_ONCE(id);
1246         /* XXX: This should always return root_mem_cgroup */
1247         return NULL;
1248 }
1249 
1250 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1251 {
1252         return NULL;
1253 }
1254 
1255 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1256 {
1257         return NULL;
1258 }
1259 
1260 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1261 {
1262         return true;
1263 }
1264 
1265 static inline
1266 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1267                 enum lru_list lru, int zone_idx)
1268 {
1269         return 0;
1270 }
1271 
1272 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1273 {
1274         return 0;
1275 }
1276 
1277 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1278 {
1279         return 0;
1280 }
1281 
1282 static inline void
1283 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1284 {
1285 }
1286 
1287 static inline void
1288 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1289 {
1290 }
1291 
1292 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1293 {
1294         return NULL;
1295 }
1296 
1297 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1298 {
1299 }
1300 
1301 static inline void unlock_page_memcg(struct page *page)
1302 {
1303 }
1304 
1305 static inline void mem_cgroup_handle_over_high(void)
1306 {
1307 }
1308 
1309 static inline void mem_cgroup_enter_user_fault(void)
1310 {
1311 }
1312 
1313 static inline void mem_cgroup_exit_user_fault(void)
1314 {
1315 }
1316 
1317 static inline bool task_in_memcg_oom(struct task_struct *p)
1318 {
1319         return false;
1320 }
1321 
1322 static inline bool mem_cgroup_oom_synchronize(bool wait)
1323 {
1324         return false;
1325 }
1326 
1327 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1328         struct task_struct *victim, struct mem_cgroup *oom_domain)
1329 {
1330         return NULL;
1331 }
1332 
1333 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1334 {
1335 }
1336 
1337 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1338 {
1339         return 0;
1340 }
1341 
1342 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1343                                                    int idx)
1344 {
1345         return 0;
1346 }
1347 
1348 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1349                                      int idx,
1350                                      int nr)
1351 {
1352 }
1353 
1354 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1355                                    int idx,
1356                                    int nr)
1357 {
1358 }
1359 
1360 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1361                                               enum node_stat_item idx)
1362 {
1363         return node_page_state(lruvec_pgdat(lruvec), idx);
1364 }
1365 
1366 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1367                                                     enum node_stat_item idx)
1368 {
1369         return node_page_state(lruvec_pgdat(lruvec), idx);
1370 }
1371 
1372 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1373                                             enum node_stat_item idx, int val)
1374 {
1375 }
1376 
1377 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1378                                            int val)
1379 {
1380         struct page *page = virt_to_head_page(p);
1381 
1382         __mod_node_page_state(page_pgdat(page), idx, val);
1383 }
1384 
1385 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1386                                          int val)
1387 {
1388         struct page *page = virt_to_head_page(p);
1389 
1390         mod_node_page_state(page_pgdat(page), idx, val);
1391 }
1392 
1393 static inline
1394 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1395                                             gfp_t gfp_mask,
1396                                             unsigned long *total_scanned)
1397 {
1398         return 0;
1399 }
1400 
1401 static inline void split_page_memcg(struct page *head, unsigned int nr)
1402 {
1403 }
1404 
1405 static inline void count_memcg_events(struct mem_cgroup *memcg,
1406                                       enum vm_event_item idx,
1407                                       unsigned long count)
1408 {
1409 }
1410 
1411 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1412                                         enum vm_event_item idx,
1413                                         unsigned long count)
1414 {
1415 }
1416 
1417 static inline void count_memcg_page_event(struct page *page,
1418                                           int idx)
1419 {
1420 }
1421 
1422 static inline
1423 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1424 {
1425 }
1426 
1427 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1428 {
1429 }
1430 #endif /* CONFIG_MEMCG */
1431 
1432 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1433 {
1434         __mod_lruvec_kmem_state(p, idx, 1);
1435 }
1436 
1437 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1438 {
1439         __mod_lruvec_kmem_state(p, idx, -1);
1440 }
1441 
1442 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1443 {
1444         struct mem_cgroup *memcg;
1445 
1446         memcg = lruvec_memcg(lruvec);
1447         if (!memcg)
1448                 return NULL;
1449         memcg = parent_mem_cgroup(memcg);
1450         if (!memcg)
1451                 return NULL;
1452         return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1453 }
1454 
1455 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1456 {
1457         spin_unlock(&lruvec->lru_lock);
1458 }
1459 
1460 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1461 {
1462         spin_unlock_irq(&lruvec->lru_lock);
1463 }
1464 
1465 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1466                 unsigned long flags)
1467 {
1468         spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1469 }
1470 
1471 /* Don't lock again iff page's lruvec locked */
1472 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1473                 struct lruvec *locked_lruvec)
1474 {
1475         if (locked_lruvec) {
1476                 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1477                         return locked_lruvec;
1478 
1479                 unlock_page_lruvec_irq(locked_lruvec);
1480         }
1481 
1482         return lock_page_lruvec_irq(page);
1483 }
1484 
1485 /* Don't lock again iff page's lruvec locked */
1486 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1487                 struct lruvec *locked_lruvec, unsigned long *flags)
1488 {
1489         if (locked_lruvec) {
1490                 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1491                         return locked_lruvec;
1492 
1493                 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1494         }
1495 
1496         return lock_page_lruvec_irqsave(page, flags);
1497 }
1498 
1499 #ifdef CONFIG_CGROUP_WRITEBACK
1500 
1501 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1502 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1503                          unsigned long *pheadroom, unsigned long *pdirty,
1504                          unsigned long *pwriteback);
1505 
1506 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1507                                              struct bdi_writeback *wb);
1508 
1509 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1510                                                   struct bdi_writeback *wb)
1511 {
1512         if (mem_cgroup_disabled())
1513                 return;
1514 
1515         if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1516                 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1517 }
1518 
1519 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1520 
1521 #else   /* CONFIG_CGROUP_WRITEBACK */
1522 
1523 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1524 {
1525         return NULL;
1526 }
1527 
1528 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1529                                        unsigned long *pfilepages,
1530                                        unsigned long *pheadroom,
1531                                        unsigned long *pdirty,
1532                                        unsigned long *pwriteback)
1533 {
1534 }
1535 
1536 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1537                                                   struct bdi_writeback *wb)
1538 {
1539 }
1540 
1541 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1542 {
1543 }
1544 
1545 #endif  /* CONFIG_CGROUP_WRITEBACK */
1546 
1547 struct sock;
1548 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1549 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1550 #ifdef CONFIG_MEMCG
1551 extern struct static_key_false memcg_sockets_enabled_key;
1552 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1553 void mem_cgroup_sk_alloc(struct sock *sk);
1554 void mem_cgroup_sk_free(struct sock *sk);
1555 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1556 {
1557         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1558                 return true;
1559         do {
1560                 if (time_before(jiffies, memcg->socket_pressure))
1561                         return true;
1562         } while ((memcg = parent_mem_cgroup(memcg)));
1563         return false;
1564 }
1565 
1566 extern int memcg_expand_shrinker_maps(int new_id);
1567 
1568 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1569                                    int nid, int shrinker_id);
1570 #else
1571 #define mem_cgroup_sockets_enabled 0
1572 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1573 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1574 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1575 {
1576         return false;
1577 }
1578 
1579 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1580                                           int nid, int shrinker_id)
1581 {
1582 }
1583 #endif
1584 
1585 #ifdef CONFIG_MEMCG_KMEM
1586 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1587 void __memcg_kmem_uncharge_page(struct page *page, int order);
1588 
1589 struct obj_cgroup *get_obj_cgroup_from_current(void);
1590 
1591 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1592 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1593 
1594 extern struct static_key_false memcg_kmem_enabled_key;
1595 
1596 extern int memcg_nr_cache_ids;
1597 void memcg_get_cache_ids(void);
1598 void memcg_put_cache_ids(void);
1599 
1600 /*
1601  * Helper macro to loop through all memcg-specific caches. Callers must still
1602  * check if the cache is valid (it is either valid or NULL).
1603  * the slab_mutex must be held when looping through those caches
1604  */
1605 #define for_each_memcg_cache_index(_idx)        \
1606         for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1607 
1608 static inline bool memcg_kmem_enabled(void)
1609 {
1610         return static_branch_likely(&memcg_kmem_enabled_key);
1611 }
1612 
1613 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1614                                          int order)
1615 {
1616         if (memcg_kmem_enabled())
1617                 return __memcg_kmem_charge_page(page, gfp, order);
1618         return 0;
1619 }
1620 
1621 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1622 {
1623         if (memcg_kmem_enabled())
1624                 __memcg_kmem_uncharge_page(page, order);
1625 }
1626 
1627 /*
1628  * A helper for accessing memcg's kmem_id, used for getting
1629  * corresponding LRU lists.
1630  */
1631 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1632 {
1633         return memcg ? memcg->kmemcg_id : -1;
1634 }
1635 
1636 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1637 
1638 #else
1639 
1640 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1641                                          int order)
1642 {
1643         return 0;
1644 }
1645 
1646 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1647 {
1648 }
1649 
1650 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1651                                            int order)
1652 {
1653         return 0;
1654 }
1655 
1656 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1657 {
1658 }
1659 
1660 #define for_each_memcg_cache_index(_idx)        \
1661         for (; NULL; )
1662 
1663 static inline bool memcg_kmem_enabled(void)
1664 {
1665         return false;
1666 }
1667 
1668 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1669 {
1670         return -1;
1671 }
1672 
1673 static inline void memcg_get_cache_ids(void)
1674 {
1675 }
1676 
1677 static inline void memcg_put_cache_ids(void)
1678 {
1679 }
1680 
1681 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1682 {
1683        return NULL;
1684 }
1685 
1686 #endif /* CONFIG_MEMCG_KMEM */
1687 
1688 #endif /* _LINUX_MEMCONTROL_H */
1689 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp