1 /* 2 * Host communication command constants for ChromeOS EC 3 * 4 * Copyright (C) 2012 Google, Inc 5 * 6 * This software is licensed under the terms of the GNU General Public 7 * License version 2, as published by the Free Software Foundation, and 8 * may be copied, distributed, and modified under those terms. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * The ChromeOS EC multi function device is used to mux all the requests 16 * to the EC device for its multiple features: keyboard controller, 17 * battery charging and regulator control, firmware update. 18 * 19 * NOTE: This file is copied verbatim from the ChromeOS EC Open Source 20 * project in an attempt to make future updates easy to make. 21 */ 22 23 #ifndef __CROS_EC_COMMANDS_H 24 #define __CROS_EC_COMMANDS_H 25 26 /* 27 * Current version of this protocol 28 * 29 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is 30 * determined in other ways. Remove this once the kernel code no longer 31 * depends on it. 32 */ 33 #define EC_PROTO_VERSION 0x00000002 34 35 /* Command version mask */ 36 #define EC_VER_MASK(version) (1UL << (version)) 37 38 /* I/O addresses for ACPI commands */ 39 #define EC_LPC_ADDR_ACPI_DATA 0x62 40 #define EC_LPC_ADDR_ACPI_CMD 0x66 41 42 /* I/O addresses for host command */ 43 #define EC_LPC_ADDR_HOST_DATA 0x200 44 #define EC_LPC_ADDR_HOST_CMD 0x204 45 46 /* I/O addresses for host command args and params */ 47 /* Protocol version 2 */ 48 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */ 49 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is 50 * EC_PROTO2_MAX_PARAM_SIZE */ 51 /* Protocol version 3 */ 52 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */ 53 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */ 54 55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff 56 * and they tell the kernel that so we have to think of it as two parts. */ 57 #define EC_HOST_CMD_REGION0 0x800 58 #define EC_HOST_CMD_REGION1 0x880 59 #define EC_HOST_CMD_REGION_SIZE 0x80 60 61 /* EC command register bit functions */ 62 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */ 63 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */ 64 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */ 65 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */ 66 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */ 67 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */ 68 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */ 69 70 #define EC_LPC_ADDR_MEMMAP 0x900 71 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */ 72 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */ 73 74 /* The offset address of each type of data in mapped memory. */ 75 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */ 76 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */ 77 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */ 78 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */ 79 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */ 80 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */ 81 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */ 82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */ 83 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */ 84 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */ 85 /* Unused 0x28 - 0x2f */ 86 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */ 87 /* Unused 0x31 - 0x33 */ 88 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */ 89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */ 90 /* Battery values are all 32 bits */ 91 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */ 92 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */ 93 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */ 94 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */ 95 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */ 96 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */ 97 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */ 98 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */ 99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */ 100 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */ 101 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */ 102 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */ 103 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */ 104 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */ 105 /* Unused 0x84 - 0x8f */ 106 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/ 107 /* Unused 0x91 */ 108 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */ 109 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */ 110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */ 111 112 113 /* Define the format of the accelerometer mapped memory status byte. */ 114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f 115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4) 116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7) 117 118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */ 119 #define EC_TEMP_SENSOR_ENTRIES 16 120 /* 121 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B. 122 * 123 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2. 124 */ 125 #define EC_TEMP_SENSOR_B_ENTRIES 8 126 127 /* Special values for mapped temperature sensors */ 128 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff 129 #define EC_TEMP_SENSOR_ERROR 0xfe 130 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd 131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc 132 /* 133 * The offset of temperature value stored in mapped memory. This allows 134 * reporting a temperature range of 200K to 454K = -73C to 181C. 135 */ 136 #define EC_TEMP_SENSOR_OFFSET 200 137 138 /* 139 * Number of ALS readings at EC_MEMMAP_ALS 140 */ 141 #define EC_ALS_ENTRIES 2 142 143 /* 144 * The default value a temperature sensor will return when it is present but 145 * has not been read this boot. This is a reasonable number to avoid 146 * triggering alarms on the host. 147 */ 148 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET) 149 150 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */ 151 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */ 152 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */ 153 154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */ 155 #define EC_BATT_FLAG_AC_PRESENT 0x01 156 #define EC_BATT_FLAG_BATT_PRESENT 0x02 157 #define EC_BATT_FLAG_DISCHARGING 0x04 158 #define EC_BATT_FLAG_CHARGING 0x08 159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10 160 161 /* Switch flags at EC_MEMMAP_SWITCHES */ 162 #define EC_SWITCH_LID_OPEN 0x01 163 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02 164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04 165 /* Was recovery requested via keyboard; now unused. */ 166 #define EC_SWITCH_IGNORE1 0x08 167 /* Recovery requested via dedicated signal (from servo board) */ 168 #define EC_SWITCH_DEDICATED_RECOVERY 0x10 169 /* Was fake developer mode switch; now unused. Remove in next refactor. */ 170 #define EC_SWITCH_IGNORE0 0x20 171 172 /* Host command interface flags */ 173 /* Host command interface supports LPC args (LPC interface only) */ 174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01 175 /* Host command interface supports version 3 protocol */ 176 #define EC_HOST_CMD_FLAG_VERSION_3 0x02 177 178 /* Wireless switch flags */ 179 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */ 180 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */ 181 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */ 182 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */ 183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */ 184 185 /* 186 * This header file is used in coreboot both in C and ACPI code. The ACPI code 187 * is pre-processed to handle constants but the ASL compiler is unable to 188 * handle actual C code so keep it separate. 189 */ 190 #ifndef __ACPI__ 191 192 /* 193 * Define __packed if someone hasn't beat us to it. Linux kernel style 194 * checking prefers __packed over __attribute__((packed)). 195 */ 196 #ifndef __packed 197 #define __packed __attribute__((packed)) 198 #endif 199 200 /* LPC command status byte masks */ 201 /* EC has written a byte in the data register and host hasn't read it yet */ 202 #define EC_LPC_STATUS_TO_HOST 0x01 203 /* Host has written a command/data byte and the EC hasn't read it yet */ 204 #define EC_LPC_STATUS_FROM_HOST 0x02 205 /* EC is processing a command */ 206 #define EC_LPC_STATUS_PROCESSING 0x04 207 /* Last write to EC was a command, not data */ 208 #define EC_LPC_STATUS_LAST_CMD 0x08 209 /* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */ 210 #define EC_LPC_STATUS_BURST_MODE 0x10 211 /* SCI event is pending (requesting SCI query) */ 212 #define EC_LPC_STATUS_SCI_PENDING 0x20 213 /* SMI event is pending (requesting SMI query) */ 214 #define EC_LPC_STATUS_SMI_PENDING 0x40 215 /* (reserved) */ 216 #define EC_LPC_STATUS_RESERVED 0x80 217 218 /* 219 * EC is busy. This covers both the EC processing a command, and the host has 220 * written a new command but the EC hasn't picked it up yet. 221 */ 222 #define EC_LPC_STATUS_BUSY_MASK \ 223 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING) 224 225 /* Host command response codes */ 226 enum ec_status { 227 EC_RES_SUCCESS = 0, 228 EC_RES_INVALID_COMMAND = 1, 229 EC_RES_ERROR = 2, 230 EC_RES_INVALID_PARAM = 3, 231 EC_RES_ACCESS_DENIED = 4, 232 EC_RES_INVALID_RESPONSE = 5, 233 EC_RES_INVALID_VERSION = 6, 234 EC_RES_INVALID_CHECKSUM = 7, 235 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */ 236 EC_RES_UNAVAILABLE = 9, /* No response available */ 237 EC_RES_TIMEOUT = 10, /* We got a timeout */ 238 EC_RES_OVERFLOW = 11, /* Table / data overflow */ 239 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */ 240 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */ 241 EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */ 242 }; 243 244 /* 245 * Host event codes. Note these are 1-based, not 0-based, because ACPI query 246 * EC command uses code 0 to mean "no event pending". We explicitly specify 247 * each value in the enum listing so they won't change if we delete/insert an 248 * item or rearrange the list (it needs to be stable across platforms, not 249 * just within a single compiled instance). 250 */ 251 enum host_event_code { 252 EC_HOST_EVENT_LID_CLOSED = 1, 253 EC_HOST_EVENT_LID_OPEN = 2, 254 EC_HOST_EVENT_POWER_BUTTON = 3, 255 EC_HOST_EVENT_AC_CONNECTED = 4, 256 EC_HOST_EVENT_AC_DISCONNECTED = 5, 257 EC_HOST_EVENT_BATTERY_LOW = 6, 258 EC_HOST_EVENT_BATTERY_CRITICAL = 7, 259 EC_HOST_EVENT_BATTERY = 8, 260 EC_HOST_EVENT_THERMAL_THRESHOLD = 9, 261 EC_HOST_EVENT_THERMAL_OVERLOAD = 10, 262 EC_HOST_EVENT_THERMAL = 11, 263 EC_HOST_EVENT_USB_CHARGER = 12, 264 EC_HOST_EVENT_KEY_PRESSED = 13, 265 /* 266 * EC has finished initializing the host interface. The host can check 267 * for this event following sending a EC_CMD_REBOOT_EC command to 268 * determine when the EC is ready to accept subsequent commands. 269 */ 270 EC_HOST_EVENT_INTERFACE_READY = 14, 271 /* Keyboard recovery combo has been pressed */ 272 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15, 273 274 /* Shutdown due to thermal overload */ 275 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16, 276 /* Shutdown due to battery level too low */ 277 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17, 278 279 /* Suggest that the AP throttle itself */ 280 EC_HOST_EVENT_THROTTLE_START = 18, 281 /* Suggest that the AP resume normal speed */ 282 EC_HOST_EVENT_THROTTLE_STOP = 19, 283 284 /* Hang detect logic detected a hang and host event timeout expired */ 285 EC_HOST_EVENT_HANG_DETECT = 20, 286 /* Hang detect logic detected a hang and warm rebooted the AP */ 287 EC_HOST_EVENT_HANG_REBOOT = 21, 288 /* PD MCU triggering host event */ 289 EC_HOST_EVENT_PD_MCU = 22, 290 291 /* EC desires to change state of host-controlled USB mux */ 292 EC_HOST_EVENT_USB_MUX = 28, 293 294 /* EC RTC event occurred */ 295 EC_HOST_EVENT_RTC = 26, 296 297 /* 298 * The high bit of the event mask is not used as a host event code. If 299 * it reads back as set, then the entire event mask should be 300 * considered invalid by the host. This can happen when reading the 301 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is 302 * not initialized on the EC, or improperly configured on the host. 303 */ 304 EC_HOST_EVENT_INVALID = 32 305 }; 306 /* Host event mask */ 307 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1)) 308 309 /** 310 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS 311 * @flags: The host argument flags. 312 * @command_version: Command version. 313 * @data_size: The length of data. 314 * @checksum: Checksum; sum of command + flags + command_version + data_size + 315 * all params/response data bytes. 316 */ 317 struct ec_lpc_host_args { 318 uint8_t flags; 319 uint8_t command_version; 320 uint8_t data_size; 321 uint8_t checksum; 322 } __packed; 323 324 /* Flags for ec_lpc_host_args.flags */ 325 /* 326 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command 327 * params. 328 * 329 * If EC gets a command and this flag is not set, this is an old-style command. 330 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with 331 * unknown length. EC must respond with an old-style response (that is, 332 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST). 333 */ 334 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01 335 /* 336 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response. 337 * 338 * If EC responds to a command and this flag is not set, this is an old-style 339 * response. Command version is 0 and response data from EC is at 340 * EC_LPC_ADDR_OLD_PARAM with unknown length. 341 */ 342 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02 343 344 /*****************************************************************************/ 345 /* 346 * Byte codes returned by EC over SPI interface. 347 * 348 * These can be used by the AP to debug the EC interface, and to determine 349 * when the EC is not in a state where it will ever get around to responding 350 * to the AP. 351 * 352 * Example of sequence of bytes read from EC for a current good transfer: 353 * 1. - - AP asserts chip select (CS#) 354 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request 355 * 3. - - EC starts handling CS# interrupt 356 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request 357 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in 358 * bytes looking for EC_SPI_FRAME_START 359 * 6. - - EC finishes processing and sets up response 360 * 7. EC_SPI_FRAME_START - AP reads frame byte 361 * 8. (response packet) - AP reads response packet 362 * 9. EC_SPI_PAST_END - Any additional bytes read by AP 363 * 10 - - AP deasserts chip select 364 * 11 - - EC processes CS# interrupt and sets up DMA for 365 * next request 366 * 367 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than 368 * the following byte values: 369 * EC_SPI_OLD_READY 370 * EC_SPI_RX_READY 371 * EC_SPI_RECEIVING 372 * EC_SPI_PROCESSING 373 * 374 * Then the EC found an error in the request, or was not ready for the request 375 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START, 376 * because the EC is unable to tell when the AP is done sending its request. 377 */ 378 379 /* 380 * Framing byte which precedes a response packet from the EC. After sending a 381 * request, the AP will clock in bytes until it sees the framing byte, then 382 * clock in the response packet. 383 */ 384 #define EC_SPI_FRAME_START 0xec 385 386 /* 387 * Padding bytes which are clocked out after the end of a response packet. 388 */ 389 #define EC_SPI_PAST_END 0xed 390 391 /* 392 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects 393 * that the AP will send a valid packet header (starting with 394 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes. 395 */ 396 #define EC_SPI_RX_READY 0xf8 397 398 /* 399 * EC has started receiving the request from the AP, but hasn't started 400 * processing it yet. 401 */ 402 #define EC_SPI_RECEIVING 0xf9 403 404 /* EC has received the entire request from the AP and is processing it. */ 405 #define EC_SPI_PROCESSING 0xfa 406 407 /* 408 * EC received bad data from the AP, such as a packet header with an invalid 409 * length. EC will ignore all data until chip select deasserts. 410 */ 411 #define EC_SPI_RX_BAD_DATA 0xfb 412 413 /* 414 * EC received data from the AP before it was ready. That is, the AP asserted 415 * chip select and started clocking data before the EC was ready to receive it. 416 * EC will ignore all data until chip select deasserts. 417 */ 418 #define EC_SPI_NOT_READY 0xfc 419 420 /* 421 * EC was ready to receive a request from the AP. EC has treated the byte sent 422 * by the AP as part of a request packet, or (for old-style ECs) is processing 423 * a fully received packet but is not ready to respond yet. 424 */ 425 #define EC_SPI_OLD_READY 0xfd 426 427 /*****************************************************************************/ 428 429 /* 430 * Protocol version 2 for I2C and SPI send a request this way: 431 * 432 * 0 EC_CMD_VERSION0 + (command version) 433 * 1 Command number 434 * 2 Length of params = N 435 * 3..N+2 Params, if any 436 * N+3 8-bit checksum of bytes 0..N+2 437 * 438 * The corresponding response is: 439 * 440 * 0 Result code (EC_RES_*) 441 * 1 Length of params = M 442 * 2..M+1 Params, if any 443 * M+2 8-bit checksum of bytes 0..M+1 444 */ 445 #define EC_PROTO2_REQUEST_HEADER_BYTES 3 446 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1 447 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \ 448 EC_PROTO2_REQUEST_TRAILER_BYTES) 449 450 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2 451 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1 452 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \ 453 EC_PROTO2_RESPONSE_TRAILER_BYTES) 454 455 /* Parameter length was limited by the LPC interface */ 456 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc 457 458 /* Maximum request and response packet sizes for protocol version 2 */ 459 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \ 460 EC_PROTO2_MAX_PARAM_SIZE) 461 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \ 462 EC_PROTO2_MAX_PARAM_SIZE) 463 464 /*****************************************************************************/ 465 466 /* 467 * Value written to legacy command port / prefix byte to indicate protocol 468 * 3+ structs are being used. Usage is bus-dependent. 469 */ 470 #define EC_COMMAND_PROTOCOL_3 0xda 471 472 #define EC_HOST_REQUEST_VERSION 3 473 474 /** 475 * struct ec_host_request - Version 3 request from host. 476 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it 477 * receives a header with a version it doesn't know how to 478 * parse. 479 * @checksum: Checksum of request and data; sum of all bytes including checksum 480 * should total to 0. 481 * @command: Command to send (EC_CMD_...) 482 * @command_version: Command version. 483 * @reserved: Unused byte in current protocol version; set to 0. 484 * @data_len: Length of data which follows this header. 485 */ 486 struct ec_host_request { 487 uint8_t struct_version; 488 uint8_t checksum; 489 uint16_t command; 490 uint8_t command_version; 491 uint8_t reserved; 492 uint16_t data_len; 493 } __packed; 494 495 #define EC_HOST_RESPONSE_VERSION 3 496 497 /** 498 * struct ec_host_response - Version 3 response from EC. 499 * @struct_version: Struct version (=3). 500 * @checksum: Checksum of response and data; sum of all bytes including 501 * checksum should total to 0. 502 * @result: EC's response to the command (separate from communication failure) 503 * @data_len: Length of data which follows this header. 504 * @reserved: Unused bytes in current protocol version; set to 0. 505 */ 506 struct ec_host_response { 507 uint8_t struct_version; 508 uint8_t checksum; 509 uint16_t result; 510 uint16_t data_len; 511 uint16_t reserved; 512 } __packed; 513 514 /*****************************************************************************/ 515 /* 516 * Notes on commands: 517 * 518 * Each command is an 16-bit command value. Commands which take params or 519 * return response data specify structs for that data. If no struct is 520 * specified, the command does not input or output data, respectively. 521 * Parameter/response length is implicit in the structs. Some underlying 522 * communication protocols (I2C, SPI) may add length or checksum headers, but 523 * those are implementation-dependent and not defined here. 524 */ 525 526 /*****************************************************************************/ 527 /* General / test commands */ 528 529 /* 530 * Get protocol version, used to deal with non-backward compatible protocol 531 * changes. 532 */ 533 #define EC_CMD_PROTO_VERSION 0x00 534 535 /** 536 * struct ec_response_proto_version - Response to the proto version command. 537 * @version: The protocol version. 538 */ 539 struct ec_response_proto_version { 540 uint32_t version; 541 } __packed; 542 543 /* 544 * Hello. This is a simple command to test the EC is responsive to 545 * commands. 546 */ 547 #define EC_CMD_HELLO 0x01 548 549 /** 550 * struct ec_params_hello - Parameters to the hello command. 551 * @in_data: Pass anything here. 552 */ 553 struct ec_params_hello { 554 uint32_t in_data; 555 } __packed; 556 557 /** 558 * struct ec_response_hello - Response to the hello command. 559 * @out_data: Output will be in_data + 0x01020304. 560 */ 561 struct ec_response_hello { 562 uint32_t out_data; 563 } __packed; 564 565 /* Get version number */ 566 #define EC_CMD_GET_VERSION 0x02 567 568 enum ec_current_image { 569 EC_IMAGE_UNKNOWN = 0, 570 EC_IMAGE_RO, 571 EC_IMAGE_RW 572 }; 573 574 /** 575 * struct ec_response_get_version - Response to the get version command. 576 * @version_string_ro: Null-terminated RO firmware version string. 577 * @version_string_rw: Null-terminated RW firmware version string. 578 * @reserved: Unused bytes; was previously RW-B firmware version string. 579 * @current_image: One of ec_current_image. 580 */ 581 struct ec_response_get_version { 582 char version_string_ro[32]; 583 char version_string_rw[32]; 584 char reserved[32]; 585 uint32_t current_image; 586 } __packed; 587 588 /* Read test */ 589 #define EC_CMD_READ_TEST 0x03 590 591 /** 592 * struct ec_params_read_test - Parameters for the read test command. 593 * @offset: Starting value for read buffer. 594 * @size: Size to read in bytes. 595 */ 596 struct ec_params_read_test { 597 uint32_t offset; 598 uint32_t size; 599 } __packed; 600 601 /** 602 * struct ec_response_read_test - Response to the read test command. 603 * @data: Data returned by the read test command. 604 */ 605 struct ec_response_read_test { 606 uint32_t data[32]; 607 } __packed; 608 609 /* 610 * Get build information 611 * 612 * Response is null-terminated string. 613 */ 614 #define EC_CMD_GET_BUILD_INFO 0x04 615 616 /* Get chip info */ 617 #define EC_CMD_GET_CHIP_INFO 0x05 618 619 /** 620 * struct ec_response_get_chip_info - Response to the get chip info command. 621 * @vendor: Null-terminated string for chip vendor. 622 * @name: Null-terminated string for chip name. 623 * @revision: Null-terminated string for chip mask version. 624 */ 625 struct ec_response_get_chip_info { 626 char vendor[32]; 627 char name[32]; 628 char revision[32]; 629 } __packed; 630 631 /* Get board HW version */ 632 #define EC_CMD_GET_BOARD_VERSION 0x06 633 634 /** 635 * struct ec_response_board_version - Response to the board version command. 636 * @board_version: A monotonously incrementing number. 637 */ 638 struct ec_response_board_version { 639 uint16_t board_version; 640 } __packed; 641 642 /* 643 * Read memory-mapped data. 644 * 645 * This is an alternate interface to memory-mapped data for bus protocols 646 * which don't support direct-mapped memory - I2C, SPI, etc. 647 * 648 * Response is params.size bytes of data. 649 */ 650 #define EC_CMD_READ_MEMMAP 0x07 651 652 /** 653 * struct ec_params_read_memmap - Parameters for the read memory map command. 654 * @offset: Offset in memmap (EC_MEMMAP_*). 655 * @size: Size to read in bytes. 656 */ 657 struct ec_params_read_memmap { 658 uint8_t offset; 659 uint8_t size; 660 } __packed; 661 662 /* Read versions supported for a command */ 663 #define EC_CMD_GET_CMD_VERSIONS 0x08 664 665 /** 666 * struct ec_params_get_cmd_versions - Parameters for the get command versions. 667 * @cmd: Command to check. 668 */ 669 struct ec_params_get_cmd_versions { 670 uint8_t cmd; 671 } __packed; 672 673 /** 674 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command 675 * versions (v1) 676 * @cmd: Command to check. 677 */ 678 struct ec_params_get_cmd_versions_v1 { 679 uint16_t cmd; 680 } __packed; 681 682 /** 683 * struct ec_response_get_cmd_version - Response to the get command versions. 684 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with 685 * a desired version. 686 */ 687 struct ec_response_get_cmd_versions { 688 uint32_t version_mask; 689 } __packed; 690 691 /* 692 * Check EC communcations status (busy). This is needed on i2c/spi but not 693 * on lpc since it has its own out-of-band busy indicator. 694 * 695 * lpc must read the status from the command register. Attempting this on 696 * lpc will overwrite the args/parameter space and corrupt its data. 697 */ 698 #define EC_CMD_GET_COMMS_STATUS 0x09 699 700 /* Avoid using ec_status which is for return values */ 701 enum ec_comms_status { 702 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */ 703 }; 704 705 /** 706 * struct ec_response_get_comms_status - Response to the get comms status 707 * command. 708 * @flags: Mask of enum ec_comms_status. 709 */ 710 struct ec_response_get_comms_status { 711 uint32_t flags; /* Mask of enum ec_comms_status */ 712 } __packed; 713 714 /* Fake a variety of responses, purely for testing purposes. */ 715 #define EC_CMD_TEST_PROTOCOL 0x0a 716 717 /* Tell the EC what to send back to us. */ 718 struct ec_params_test_protocol { 719 uint32_t ec_result; 720 uint32_t ret_len; 721 uint8_t buf[32]; 722 } __packed; 723 724 /* Here it comes... */ 725 struct ec_response_test_protocol { 726 uint8_t buf[32]; 727 } __packed; 728 729 /* Get prococol information */ 730 #define EC_CMD_GET_PROTOCOL_INFO 0x0b 731 732 /* Flags for ec_response_get_protocol_info.flags */ 733 /* EC_RES_IN_PROGRESS may be returned if a command is slow */ 734 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0) 735 736 /** 737 * struct ec_response_get_protocol_info - Response to the get protocol info. 738 * @protocol_versions: Bitmask of protocol versions supported (1 << n means 739 * version n). 740 * @max_request_packet_size: Maximum request packet size in bytes. 741 * @max_response_packet_size: Maximum response packet size in bytes. 742 * @flags: see EC_PROTOCOL_INFO_* 743 */ 744 struct ec_response_get_protocol_info { 745 /* Fields which exist if at least protocol version 3 supported */ 746 uint32_t protocol_versions; 747 uint16_t max_request_packet_size; 748 uint16_t max_response_packet_size; 749 uint32_t flags; 750 } __packed; 751 752 753 /*****************************************************************************/ 754 /* Get/Set miscellaneous values */ 755 756 /* The upper byte of .flags tells what to do (nothing means "get") */ 757 #define EC_GSV_SET 0x80000000 758 759 /* 760 * The lower three bytes of .flags identifies the parameter, if that has 761 * meaning for an individual command. 762 */ 763 #define EC_GSV_PARAM_MASK 0x00ffffff 764 765 struct ec_params_get_set_value { 766 uint32_t flags; 767 uint32_t value; 768 } __packed; 769 770 struct ec_response_get_set_value { 771 uint32_t flags; 772 uint32_t value; 773 } __packed; 774 775 /* More than one command can use these structs to get/set paramters. */ 776 #define EC_CMD_GSV_PAUSE_IN_S5 0x0c 777 778 /*****************************************************************************/ 779 /* List the features supported by the firmware */ 780 #define EC_CMD_GET_FEATURES 0x0d 781 782 /* Supported features */ 783 enum ec_feature_code { 784 /* 785 * This image contains a limited set of features. Another image 786 * in RW partition may support more features. 787 */ 788 EC_FEATURE_LIMITED = 0, 789 /* 790 * Commands for probing/reading/writing/erasing the flash in the 791 * EC are present. 792 */ 793 EC_FEATURE_FLASH = 1, 794 /* 795 * Can control the fan speed directly. 796 */ 797 EC_FEATURE_PWM_FAN = 2, 798 /* 799 * Can control the intensity of the keyboard backlight. 800 */ 801 EC_FEATURE_PWM_KEYB = 3, 802 /* 803 * Support Google lightbar, introduced on Pixel. 804 */ 805 EC_FEATURE_LIGHTBAR = 4, 806 /* Control of LEDs */ 807 EC_FEATURE_LED = 5, 808 /* Exposes an interface to control gyro and sensors. 809 * The host goes through the EC to access these sensors. 810 * In addition, the EC may provide composite sensors, like lid angle. 811 */ 812 EC_FEATURE_MOTION_SENSE = 6, 813 /* The keyboard is controlled by the EC */ 814 EC_FEATURE_KEYB = 7, 815 /* The AP can use part of the EC flash as persistent storage. */ 816 EC_FEATURE_PSTORE = 8, 817 /* The EC monitors BIOS port 80h, and can return POST codes. */ 818 EC_FEATURE_PORT80 = 9, 819 /* 820 * Thermal management: include TMP specific commands. 821 * Higher level than direct fan control. 822 */ 823 EC_FEATURE_THERMAL = 10, 824 /* Can switch the screen backlight on/off */ 825 EC_FEATURE_BKLIGHT_SWITCH = 11, 826 /* Can switch the wifi module on/off */ 827 EC_FEATURE_WIFI_SWITCH = 12, 828 /* Monitor host events, through for example SMI or SCI */ 829 EC_FEATURE_HOST_EVENTS = 13, 830 /* The EC exposes GPIO commands to control/monitor connected devices. */ 831 EC_FEATURE_GPIO = 14, 832 /* The EC can send i2c messages to downstream devices. */ 833 EC_FEATURE_I2C = 15, 834 /* Command to control charger are included */ 835 EC_FEATURE_CHARGER = 16, 836 /* Simple battery support. */ 837 EC_FEATURE_BATTERY = 17, 838 /* 839 * Support Smart battery protocol 840 * (Common Smart Battery System Interface Specification) 841 */ 842 EC_FEATURE_SMART_BATTERY = 18, 843 /* EC can dectect when the host hangs. */ 844 EC_FEATURE_HANG_DETECT = 19, 845 /* Report power information, for pit only */ 846 EC_FEATURE_PMU = 20, 847 /* Another Cros EC device is present downstream of this one */ 848 EC_FEATURE_SUB_MCU = 21, 849 /* Support USB Power delivery (PD) commands */ 850 EC_FEATURE_USB_PD = 22, 851 /* Control USB multiplexer, for audio through USB port for instance. */ 852 EC_FEATURE_USB_MUX = 23, 853 /* Motion Sensor code has an internal software FIFO */ 854 EC_FEATURE_MOTION_SENSE_FIFO = 24, 855 /* EC has RTC feature that can be controlled by host commands */ 856 EC_FEATURE_RTC = 27, 857 /* EC supports CEC commands */ 858 EC_FEATURE_CEC = 35, 859 }; 860 861 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32)) 862 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32)) 863 864 struct ec_response_get_features { 865 uint32_t flags[2]; 866 } __packed; 867 868 /*****************************************************************************/ 869 /* Flash commands */ 870 871 /* Get flash info */ 872 #define EC_CMD_FLASH_INFO 0x10 873 874 /** 875 * struct ec_response_flash_info - Response to the flash info command. 876 * @flash_size: Usable flash size in bytes. 877 * @write_block_size: Write block size. Write offset and size must be a 878 * multiple of this. 879 * @erase_block_size: Erase block size. Erase offset and size must be a 880 * multiple of this. 881 * @protect_block_size: Protection block size. Protection offset and size 882 * must be a multiple of this. 883 * 884 * Version 0 returns these fields. 885 */ 886 struct ec_response_flash_info { 887 uint32_t flash_size; 888 uint32_t write_block_size; 889 uint32_t erase_block_size; 890 uint32_t protect_block_size; 891 } __packed; 892 893 /* Flags for version 1+ flash info command */ 894 /* EC flash erases bits to 0 instead of 1 */ 895 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0) 896 897 /** 898 * struct ec_response_flash_info_1 - Response to the flash info v1 command. 899 * @flash_size: Usable flash size in bytes. 900 * @write_block_size: Write block size. Write offset and size must be a 901 * multiple of this. 902 * @erase_block_size: Erase block size. Erase offset and size must be a 903 * multiple of this. 904 * @protect_block_size: Protection block size. Protection offset and size 905 * must be a multiple of this. 906 * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if 907 * size is exactly this and offset is a multiple of this. 908 * For example, an EC may have a write buffer which can do 909 * half-page operations if data is aligned, and a slower 910 * word-at-a-time write mode. 911 * @flags: Flags; see EC_FLASH_INFO_* 912 * 913 * Version 1 returns the same initial fields as version 0, with additional 914 * fields following. 915 * 916 * gcc anonymous structs don't seem to get along with the __packed directive; 917 * if they did we'd define the version 0 struct as a sub-struct of this one. 918 */ 919 struct ec_response_flash_info_1 { 920 /* Version 0 fields; see above for description */ 921 uint32_t flash_size; 922 uint32_t write_block_size; 923 uint32_t erase_block_size; 924 uint32_t protect_block_size; 925 926 /* Version 1 adds these fields: */ 927 uint32_t write_ideal_size; 928 uint32_t flags; 929 } __packed; 930 931 /* 932 * Read flash 933 * 934 * Response is params.size bytes of data. 935 */ 936 #define EC_CMD_FLASH_READ 0x11 937 938 /** 939 * struct ec_params_flash_read - Parameters for the flash read command. 940 * @offset: Byte offset to read. 941 * @size: Size to read in bytes. 942 */ 943 struct ec_params_flash_read { 944 uint32_t offset; 945 uint32_t size; 946 } __packed; 947 948 /* Write flash */ 949 #define EC_CMD_FLASH_WRITE 0x12 950 #define EC_VER_FLASH_WRITE 1 951 952 /* Version 0 of the flash command supported only 64 bytes of data */ 953 #define EC_FLASH_WRITE_VER0_SIZE 64 954 955 /** 956 * struct ec_params_flash_write - Parameters for the flash write command. 957 * @offset: Byte offset to write. 958 * @size: Size to write in bytes. 959 */ 960 struct ec_params_flash_write { 961 uint32_t offset; 962 uint32_t size; 963 /* Followed by data to write */ 964 } __packed; 965 966 /* Erase flash */ 967 #define EC_CMD_FLASH_ERASE 0x13 968 969 /** 970 * struct ec_params_flash_erase - Parameters for the flash erase command. 971 * @offset: Byte offset to erase. 972 * @size: Size to erase in bytes. 973 */ 974 struct ec_params_flash_erase { 975 uint32_t offset; 976 uint32_t size; 977 } __packed; 978 979 /* 980 * Get/set flash protection. 981 * 982 * If mask!=0, sets/clear the requested bits of flags. Depending on the 983 * firmware write protect GPIO, not all flags will take effect immediately; 984 * some flags require a subsequent hard reset to take effect. Check the 985 * returned flags bits to see what actually happened. 986 * 987 * If mask=0, simply returns the current flags state. 988 */ 989 #define EC_CMD_FLASH_PROTECT 0x15 990 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */ 991 992 /* Flags for flash protection */ 993 /* RO flash code protected when the EC boots */ 994 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0) 995 /* 996 * RO flash code protected now. If this bit is set, at-boot status cannot 997 * be changed. 998 */ 999 #define EC_FLASH_PROTECT_RO_NOW (1 << 1) 1000 /* Entire flash code protected now, until reboot. */ 1001 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2) 1002 /* Flash write protect GPIO is asserted now */ 1003 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3) 1004 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */ 1005 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4) 1006 /* 1007 * Error - flash protection is in inconsistent state. At least one bank of 1008 * flash which should be protected is not protected. Usually fixed by 1009 * re-requesting the desired flags, or by a hard reset if that fails. 1010 */ 1011 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5) 1012 /* Entile flash code protected when the EC boots */ 1013 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6) 1014 1015 /** 1016 * struct ec_params_flash_protect - Parameters for the flash protect command. 1017 * @mask: Bits in flags to apply. 1018 * @flags: New flags to apply. 1019 */ 1020 struct ec_params_flash_protect { 1021 uint32_t mask; 1022 uint32_t flags; 1023 } __packed; 1024 1025 /** 1026 * struct ec_response_flash_protect - Response to the flash protect command. 1027 * @flags: Current value of flash protect flags. 1028 * @valid_flags: Flags which are valid on this platform. This allows the 1029 * caller to distinguish between flags which aren't set vs. flags 1030 * which can't be set on this platform. 1031 * @writable_flags: Flags which can be changed given the current protection 1032 * state. 1033 */ 1034 struct ec_response_flash_protect { 1035 uint32_t flags; 1036 uint32_t valid_flags; 1037 uint32_t writable_flags; 1038 } __packed; 1039 1040 /* 1041 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash 1042 * write protect. These commands may be reused with version > 0. 1043 */ 1044 1045 /* Get the region offset/size */ 1046 #define EC_CMD_FLASH_REGION_INFO 0x16 1047 #define EC_VER_FLASH_REGION_INFO 1 1048 1049 enum ec_flash_region { 1050 /* Region which holds read-only EC image */ 1051 EC_FLASH_REGION_RO = 0, 1052 /* Region which holds rewritable EC image */ 1053 EC_FLASH_REGION_RW, 1054 /* 1055 * Region which should be write-protected in the factory (a superset of 1056 * EC_FLASH_REGION_RO) 1057 */ 1058 EC_FLASH_REGION_WP_RO, 1059 /* Number of regions */ 1060 EC_FLASH_REGION_COUNT, 1061 }; 1062 1063 /** 1064 * struct ec_params_flash_region_info - Parameters for the flash region info 1065 * command. 1066 * @region: Flash region; see EC_FLASH_REGION_* 1067 */ 1068 struct ec_params_flash_region_info { 1069 uint32_t region; 1070 } __packed; 1071 1072 struct ec_response_flash_region_info { 1073 uint32_t offset; 1074 uint32_t size; 1075 } __packed; 1076 1077 /* Read/write VbNvContext */ 1078 #define EC_CMD_VBNV_CONTEXT 0x17 1079 #define EC_VER_VBNV_CONTEXT 1 1080 #define EC_VBNV_BLOCK_SIZE 16 1081 1082 enum ec_vbnvcontext_op { 1083 EC_VBNV_CONTEXT_OP_READ, 1084 EC_VBNV_CONTEXT_OP_WRITE, 1085 }; 1086 1087 struct ec_params_vbnvcontext { 1088 uint32_t op; 1089 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1090 } __packed; 1091 1092 struct ec_response_vbnvcontext { 1093 uint8_t block[EC_VBNV_BLOCK_SIZE]; 1094 } __packed; 1095 1096 /*****************************************************************************/ 1097 /* PWM commands */ 1098 1099 /* Get fan target RPM */ 1100 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20 1101 1102 struct ec_response_pwm_get_fan_rpm { 1103 uint32_t rpm; 1104 } __packed; 1105 1106 /* Set target fan RPM */ 1107 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21 1108 1109 struct ec_params_pwm_set_fan_target_rpm { 1110 uint32_t rpm; 1111 } __packed; 1112 1113 /* Get keyboard backlight */ 1114 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22 1115 1116 struct ec_response_pwm_get_keyboard_backlight { 1117 uint8_t percent; 1118 uint8_t enabled; 1119 } __packed; 1120 1121 /* Set keyboard backlight */ 1122 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23 1123 1124 struct ec_params_pwm_set_keyboard_backlight { 1125 uint8_t percent; 1126 } __packed; 1127 1128 /* Set target fan PWM duty cycle */ 1129 #define EC_CMD_PWM_SET_FAN_DUTY 0x24 1130 1131 struct ec_params_pwm_set_fan_duty { 1132 uint32_t percent; 1133 } __packed; 1134 1135 #define EC_CMD_PWM_SET_DUTY 0x25 1136 /* 16 bit duty cycle, 0xffff = 100% */ 1137 #define EC_PWM_MAX_DUTY 0xffff 1138 1139 enum ec_pwm_type { 1140 /* All types, indexed by board-specific enum pwm_channel */ 1141 EC_PWM_TYPE_GENERIC = 0, 1142 /* Keyboard backlight */ 1143 EC_PWM_TYPE_KB_LIGHT, 1144 /* Display backlight */ 1145 EC_PWM_TYPE_DISPLAY_LIGHT, 1146 EC_PWM_TYPE_COUNT, 1147 }; 1148 1149 struct ec_params_pwm_set_duty { 1150 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1151 uint8_t pwm_type; /* ec_pwm_type */ 1152 uint8_t index; /* Type-specific index, or 0 if unique */ 1153 } __packed; 1154 1155 #define EC_CMD_PWM_GET_DUTY 0x26 1156 1157 struct ec_params_pwm_get_duty { 1158 uint8_t pwm_type; /* ec_pwm_type */ 1159 uint8_t index; /* Type-specific index, or 0 if unique */ 1160 } __packed; 1161 1162 struct ec_response_pwm_get_duty { 1163 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */ 1164 } __packed; 1165 1166 /*****************************************************************************/ 1167 /* 1168 * Lightbar commands. This looks worse than it is. Since we only use one HOST 1169 * command to say "talk to the lightbar", we put the "and tell it to do X" part 1170 * into a subcommand. We'll make separate structs for subcommands with 1171 * different input args, so that we know how much to expect. 1172 */ 1173 #define EC_CMD_LIGHTBAR_CMD 0x28 1174 1175 struct rgb_s { 1176 uint8_t r, g, b; 1177 }; 1178 1179 #define LB_BATTERY_LEVELS 4 1180 1181 /* 1182 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a 1183 * host command, but the alignment is the same regardless. Keep it that way. 1184 */ 1185 struct lightbar_params_v0 { 1186 /* Timing */ 1187 int32_t google_ramp_up; 1188 int32_t google_ramp_down; 1189 int32_t s3s0_ramp_up; 1190 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1191 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1192 int32_t s0s3_ramp_down; 1193 int32_t s3_sleep_for; 1194 int32_t s3_ramp_up; 1195 int32_t s3_ramp_down; 1196 1197 /* Oscillation */ 1198 uint8_t new_s0; 1199 uint8_t osc_min[2]; /* AC=0/1 */ 1200 uint8_t osc_max[2]; /* AC=0/1 */ 1201 uint8_t w_ofs[2]; /* AC=0/1 */ 1202 1203 /* Brightness limits based on the backlight and AC. */ 1204 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1205 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1206 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1207 1208 /* Battery level thresholds */ 1209 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1210 1211 /* Map [AC][battery_level] to color index */ 1212 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1213 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1214 1215 /* Color palette */ 1216 struct rgb_s color[8]; /* 0-3 are Google colors */ 1217 } __packed; 1218 1219 struct lightbar_params_v1 { 1220 /* Timing */ 1221 int32_t google_ramp_up; 1222 int32_t google_ramp_down; 1223 int32_t s3s0_ramp_up; 1224 int32_t s0_tick_delay[2]; /* AC=0/1 */ 1225 int32_t s0a_tick_delay[2]; /* AC=0/1 */ 1226 int32_t s0s3_ramp_down; 1227 int32_t s3_sleep_for; 1228 int32_t s3_ramp_up; 1229 int32_t s3_ramp_down; 1230 int32_t tap_tick_delay; 1231 int32_t tap_display_time; 1232 1233 /* Tap-for-battery params */ 1234 uint8_t tap_pct_red; 1235 uint8_t tap_pct_green; 1236 uint8_t tap_seg_min_on; 1237 uint8_t tap_seg_max_on; 1238 uint8_t tap_seg_osc; 1239 uint8_t tap_idx[3]; 1240 1241 /* Oscillation */ 1242 uint8_t osc_min[2]; /* AC=0/1 */ 1243 uint8_t osc_max[2]; /* AC=0/1 */ 1244 uint8_t w_ofs[2]; /* AC=0/1 */ 1245 1246 /* Brightness limits based on the backlight and AC. */ 1247 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */ 1248 uint8_t bright_bl_on_min[2]; /* AC=0/1 */ 1249 uint8_t bright_bl_on_max[2]; /* AC=0/1 */ 1250 1251 /* Battery level thresholds */ 1252 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1]; 1253 1254 /* Map [AC][battery_level] to color index */ 1255 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */ 1256 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */ 1257 1258 /* Color palette */ 1259 struct rgb_s color[8]; /* 0-3 are Google colors */ 1260 } __packed; 1261 1262 /* Lightbar program */ 1263 #define EC_LB_PROG_LEN 192 1264 struct lightbar_program { 1265 uint8_t size; 1266 uint8_t data[EC_LB_PROG_LEN]; 1267 }; 1268 1269 struct ec_params_lightbar { 1270 uint8_t cmd; /* Command (see enum lightbar_command) */ 1271 union { 1272 struct { 1273 /* no args */ 1274 } dump, off, on, init, get_seq, get_params_v0, get_params_v1, 1275 version, get_brightness, get_demo, suspend, resume; 1276 1277 struct { 1278 uint8_t num; 1279 } set_brightness, seq, demo; 1280 1281 struct { 1282 uint8_t ctrl, reg, value; 1283 } reg; 1284 1285 struct { 1286 uint8_t led, red, green, blue; 1287 } set_rgb; 1288 1289 struct { 1290 uint8_t led; 1291 } get_rgb; 1292 1293 struct { 1294 uint8_t enable; 1295 } manual_suspend_ctrl; 1296 1297 struct lightbar_params_v0 set_params_v0; 1298 struct lightbar_params_v1 set_params_v1; 1299 struct lightbar_program set_program; 1300 }; 1301 } __packed; 1302 1303 struct ec_response_lightbar { 1304 union { 1305 struct { 1306 struct { 1307 uint8_t reg; 1308 uint8_t ic0; 1309 uint8_t ic1; 1310 } vals[23]; 1311 } dump; 1312 1313 struct { 1314 uint8_t num; 1315 } get_seq, get_brightness, get_demo; 1316 1317 struct lightbar_params_v0 get_params_v0; 1318 struct lightbar_params_v1 get_params_v1; 1319 1320 struct { 1321 uint32_t num; 1322 uint32_t flags; 1323 } version; 1324 1325 struct { 1326 uint8_t red, green, blue; 1327 } get_rgb; 1328 1329 struct { 1330 /* no return params */ 1331 } off, on, init, set_brightness, seq, reg, set_rgb, 1332 demo, set_params_v0, set_params_v1, 1333 set_program, manual_suspend_ctrl, suspend, resume; 1334 }; 1335 } __packed; 1336 1337 /* Lightbar commands */ 1338 enum lightbar_command { 1339 LIGHTBAR_CMD_DUMP = 0, 1340 LIGHTBAR_CMD_OFF = 1, 1341 LIGHTBAR_CMD_ON = 2, 1342 LIGHTBAR_CMD_INIT = 3, 1343 LIGHTBAR_CMD_SET_BRIGHTNESS = 4, 1344 LIGHTBAR_CMD_SEQ = 5, 1345 LIGHTBAR_CMD_REG = 6, 1346 LIGHTBAR_CMD_SET_RGB = 7, 1347 LIGHTBAR_CMD_GET_SEQ = 8, 1348 LIGHTBAR_CMD_DEMO = 9, 1349 LIGHTBAR_CMD_GET_PARAMS_V0 = 10, 1350 LIGHTBAR_CMD_SET_PARAMS_V0 = 11, 1351 LIGHTBAR_CMD_VERSION = 12, 1352 LIGHTBAR_CMD_GET_BRIGHTNESS = 13, 1353 LIGHTBAR_CMD_GET_RGB = 14, 1354 LIGHTBAR_CMD_GET_DEMO = 15, 1355 LIGHTBAR_CMD_GET_PARAMS_V1 = 16, 1356 LIGHTBAR_CMD_SET_PARAMS_V1 = 17, 1357 LIGHTBAR_CMD_SET_PROGRAM = 18, 1358 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19, 1359 LIGHTBAR_CMD_SUSPEND = 20, 1360 LIGHTBAR_CMD_RESUME = 21, 1361 LIGHTBAR_NUM_CMDS 1362 }; 1363 1364 /*****************************************************************************/ 1365 /* LED control commands */ 1366 1367 #define EC_CMD_LED_CONTROL 0x29 1368 1369 enum ec_led_id { 1370 /* LED to indicate battery state of charge */ 1371 EC_LED_ID_BATTERY_LED = 0, 1372 /* 1373 * LED to indicate system power state (on or in suspend). 1374 * May be on power button or on C-panel. 1375 */ 1376 EC_LED_ID_POWER_LED, 1377 /* LED on power adapter or its plug */ 1378 EC_LED_ID_ADAPTER_LED, 1379 1380 EC_LED_ID_COUNT 1381 }; 1382 1383 /* LED control flags */ 1384 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */ 1385 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */ 1386 1387 enum ec_led_colors { 1388 EC_LED_COLOR_RED = 0, 1389 EC_LED_COLOR_GREEN, 1390 EC_LED_COLOR_BLUE, 1391 EC_LED_COLOR_YELLOW, 1392 EC_LED_COLOR_WHITE, 1393 1394 EC_LED_COLOR_COUNT 1395 }; 1396 1397 struct ec_params_led_control { 1398 uint8_t led_id; /* Which LED to control */ 1399 uint8_t flags; /* Control flags */ 1400 1401 uint8_t brightness[EC_LED_COLOR_COUNT]; 1402 } __packed; 1403 1404 struct ec_response_led_control { 1405 /* 1406 * Available brightness value range. 1407 * 1408 * Range 0 means color channel not present. 1409 * Range 1 means on/off control. 1410 * Other values means the LED is control by PWM. 1411 */ 1412 uint8_t brightness_range[EC_LED_COLOR_COUNT]; 1413 } __packed; 1414 1415 /*****************************************************************************/ 1416 /* Verified boot commands */ 1417 1418 /* 1419 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be 1420 * reused for other purposes with version > 0. 1421 */ 1422 1423 /* Verified boot hash command */ 1424 #define EC_CMD_VBOOT_HASH 0x2A 1425 1426 struct ec_params_vboot_hash { 1427 uint8_t cmd; /* enum ec_vboot_hash_cmd */ 1428 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1429 uint8_t nonce_size; /* Nonce size; may be 0 */ 1430 uint8_t reserved0; /* Reserved; set 0 */ 1431 uint32_t offset; /* Offset in flash to hash */ 1432 uint32_t size; /* Number of bytes to hash */ 1433 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */ 1434 } __packed; 1435 1436 struct ec_response_vboot_hash { 1437 uint8_t status; /* enum ec_vboot_hash_status */ 1438 uint8_t hash_type; /* enum ec_vboot_hash_type */ 1439 uint8_t digest_size; /* Size of hash digest in bytes */ 1440 uint8_t reserved0; /* Ignore; will be 0 */ 1441 uint32_t offset; /* Offset in flash which was hashed */ 1442 uint32_t size; /* Number of bytes hashed */ 1443 uint8_t hash_digest[64]; /* Hash digest data */ 1444 } __packed; 1445 1446 enum ec_vboot_hash_cmd { 1447 EC_VBOOT_HASH_GET = 0, /* Get current hash status */ 1448 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */ 1449 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */ 1450 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */ 1451 }; 1452 1453 enum ec_vboot_hash_type { 1454 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */ 1455 }; 1456 1457 enum ec_vboot_hash_status { 1458 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */ 1459 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */ 1460 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */ 1461 }; 1462 1463 /* 1464 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC. 1465 * If one of these is specified, the EC will automatically update offset and 1466 * size to the correct values for the specified image (RO or RW). 1467 */ 1468 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe 1469 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd 1470 1471 /*****************************************************************************/ 1472 /* 1473 * Motion sense commands. We'll make separate structs for sub-commands with 1474 * different input args, so that we know how much to expect. 1475 */ 1476 #define EC_CMD_MOTION_SENSE_CMD 0x2B 1477 1478 /* Motion sense commands */ 1479 enum motionsense_command { 1480 /* 1481 * Dump command returns all motion sensor data including motion sense 1482 * module flags and individual sensor flags. 1483 */ 1484 MOTIONSENSE_CMD_DUMP = 0, 1485 1486 /* 1487 * Info command returns data describing the details of a given sensor, 1488 * including enum motionsensor_type, enum motionsensor_location, and 1489 * enum motionsensor_chip. 1490 */ 1491 MOTIONSENSE_CMD_INFO = 1, 1492 1493 /* 1494 * EC Rate command is a setter/getter command for the EC sampling rate 1495 * of all motion sensors in milliseconds. 1496 */ 1497 MOTIONSENSE_CMD_EC_RATE = 2, 1498 1499 /* 1500 * Sensor ODR command is a setter/getter command for the output data 1501 * rate of a specific motion sensor in millihertz. 1502 */ 1503 MOTIONSENSE_CMD_SENSOR_ODR = 3, 1504 1505 /* 1506 * Sensor range command is a setter/getter command for the range of 1507 * a specified motion sensor in +/-G's or +/- deg/s. 1508 */ 1509 MOTIONSENSE_CMD_SENSOR_RANGE = 4, 1510 1511 /* 1512 * Setter/getter command for the keyboard wake angle. When the lid 1513 * angle is greater than this value, keyboard wake is disabled in S3, 1514 * and when the lid angle goes less than this value, keyboard wake is 1515 * enabled. Note, the lid angle measurement is an approximate, 1516 * un-calibrated value, hence the wake angle isn't exact. 1517 */ 1518 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5, 1519 1520 /* 1521 * Returns a single sensor data. 1522 */ 1523 MOTIONSENSE_CMD_DATA = 6, 1524 1525 /* 1526 * Perform low level calibration.. On sensors that support it, ask to 1527 * do offset calibration. 1528 */ 1529 MOTIONSENSE_CMD_PERFORM_CALIB = 10, 1530 1531 /* 1532 * Sensor Offset command is a setter/getter command for the offset used 1533 * for calibration. The offsets can be calculated by the host, or via 1534 * PERFORM_CALIB command. 1535 */ 1536 MOTIONSENSE_CMD_SENSOR_OFFSET = 11, 1537 1538 /* Number of motionsense sub-commands. */ 1539 MOTIONSENSE_NUM_CMDS 1540 }; 1541 1542 enum motionsensor_id { 1543 EC_MOTION_SENSOR_ACCEL_BASE = 0, 1544 EC_MOTION_SENSOR_ACCEL_LID = 1, 1545 EC_MOTION_SENSOR_GYRO = 2, 1546 1547 /* 1548 * Note, if more sensors are added and this count changes, the padding 1549 * in ec_response_motion_sense dump command must be modified. 1550 */ 1551 EC_MOTION_SENSOR_COUNT = 3 1552 }; 1553 1554 /* List of motion sensor types. */ 1555 enum motionsensor_type { 1556 MOTIONSENSE_TYPE_ACCEL = 0, 1557 MOTIONSENSE_TYPE_GYRO = 1, 1558 MOTIONSENSE_TYPE_MAG = 2, 1559 MOTIONSENSE_TYPE_PROX = 3, 1560 MOTIONSENSE_TYPE_LIGHT = 4, 1561 MOTIONSENSE_TYPE_ACTIVITY = 5, 1562 MOTIONSENSE_TYPE_BARO = 6, 1563 MOTIONSENSE_TYPE_MAX, 1564 }; 1565 1566 /* List of motion sensor locations. */ 1567 enum motionsensor_location { 1568 MOTIONSENSE_LOC_BASE = 0, 1569 MOTIONSENSE_LOC_LID = 1, 1570 MOTIONSENSE_LOC_MAX, 1571 }; 1572 1573 /* List of motion sensor chips. */ 1574 enum motionsensor_chip { 1575 MOTIONSENSE_CHIP_KXCJ9 = 0, 1576 }; 1577 1578 /* Module flag masks used for the dump sub-command. */ 1579 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0) 1580 1581 /* Sensor flag masks used for the dump sub-command. */ 1582 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0) 1583 1584 /* 1585 * Send this value for the data element to only perform a read. If you 1586 * send any other value, the EC will interpret it as data to set and will 1587 * return the actual value set. 1588 */ 1589 #define EC_MOTION_SENSE_NO_VALUE -1 1590 1591 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000 1592 1593 /* Set Calibration information */ 1594 #define MOTION_SENSE_SET_OFFSET 1 1595 1596 struct ec_response_motion_sensor_data { 1597 /* Flags for each sensor. */ 1598 uint8_t flags; 1599 /* Sensor number the data comes from */ 1600 uint8_t sensor_num; 1601 /* Each sensor is up to 3-axis. */ 1602 union { 1603 int16_t data[3]; 1604 struct { 1605 uint16_t rsvd; 1606 uint32_t timestamp; 1607 } __packed; 1608 struct { 1609 uint8_t activity; /* motionsensor_activity */ 1610 uint8_t state; 1611 int16_t add_info[2]; 1612 }; 1613 }; 1614 } __packed; 1615 1616 struct ec_params_motion_sense { 1617 uint8_t cmd; 1618 union { 1619 /* Used for MOTIONSENSE_CMD_DUMP. */ 1620 struct { 1621 /* no args */ 1622 } dump; 1623 1624 /* 1625 * Used for MOTIONSENSE_CMD_EC_RATE and 1626 * MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1627 */ 1628 struct { 1629 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 1630 int16_t data; 1631 } ec_rate, kb_wake_angle; 1632 1633 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1634 struct { 1635 uint8_t sensor_num; 1636 1637 /* 1638 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set 1639 * the calibration information in the EC. 1640 * If unset, just retrieve calibration information. 1641 */ 1642 uint16_t flags; 1643 1644 /* 1645 * Temperature at calibration, in units of 0.01 C 1646 * 0x8000: invalid / unknown. 1647 * 0x0: 0C 1648 * 0x7fff: +327.67C 1649 */ 1650 int16_t temp; 1651 1652 /* 1653 * Offset for calibration. 1654 * Unit: 1655 * Accelerometer: 1/1024 g 1656 * Gyro: 1/1024 deg/s 1657 * Compass: 1/16 uT 1658 */ 1659 int16_t offset[3]; 1660 } __packed sensor_offset; 1661 1662 /* Used for MOTIONSENSE_CMD_INFO. */ 1663 struct { 1664 uint8_t sensor_num; 1665 } info; 1666 1667 /* 1668 * Used for MOTIONSENSE_CMD_SENSOR_ODR and 1669 * MOTIONSENSE_CMD_SENSOR_RANGE. 1670 */ 1671 struct { 1672 /* Should be element of enum motionsensor_id. */ 1673 uint8_t sensor_num; 1674 1675 /* Rounding flag, true for round-up, false for down. */ 1676 uint8_t roundup; 1677 1678 uint16_t reserved; 1679 1680 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */ 1681 int32_t data; 1682 } sensor_odr, sensor_range; 1683 }; 1684 } __packed; 1685 1686 struct ec_response_motion_sense { 1687 union { 1688 /* Used for MOTIONSENSE_CMD_DUMP. */ 1689 struct { 1690 /* Flags representing the motion sensor module. */ 1691 uint8_t module_flags; 1692 1693 /* Number of sensors managed directly by the EC. */ 1694 uint8_t sensor_count; 1695 1696 /* 1697 * Sensor data is truncated if response_max is too small 1698 * for holding all the data. 1699 */ 1700 struct ec_response_motion_sensor_data sensor[0]; 1701 } dump; 1702 1703 /* Used for MOTIONSENSE_CMD_INFO. */ 1704 struct { 1705 /* Should be element of enum motionsensor_type. */ 1706 uint8_t type; 1707 1708 /* Should be element of enum motionsensor_location. */ 1709 uint8_t location; 1710 1711 /* Should be element of enum motionsensor_chip. */ 1712 uint8_t chip; 1713 } info; 1714 1715 /* Used for MOTIONSENSE_CMD_DATA */ 1716 struct ec_response_motion_sensor_data data; 1717 1718 /* 1719 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR, 1720 * MOTIONSENSE_CMD_SENSOR_RANGE, and 1721 * MOTIONSENSE_CMD_KB_WAKE_ANGLE. 1722 */ 1723 struct { 1724 /* Current value of the parameter queried. */ 1725 int32_t ret; 1726 } ec_rate, sensor_odr, sensor_range, kb_wake_angle; 1727 1728 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */ 1729 struct { 1730 int16_t temp; 1731 int16_t offset[3]; 1732 } sensor_offset, perform_calib; 1733 }; 1734 } __packed; 1735 1736 /*****************************************************************************/ 1737 /* USB charging control commands */ 1738 1739 /* Set USB port charging mode */ 1740 #define EC_CMD_USB_CHARGE_SET_MODE 0x30 1741 1742 struct ec_params_usb_charge_set_mode { 1743 uint8_t usb_port_id; 1744 uint8_t mode; 1745 } __packed; 1746 1747 /*****************************************************************************/ 1748 /* Persistent storage for host */ 1749 1750 /* Maximum bytes that can be read/written in a single command */ 1751 #define EC_PSTORE_SIZE_MAX 64 1752 1753 /* Get persistent storage info */ 1754 #define EC_CMD_PSTORE_INFO 0x40 1755 1756 struct ec_response_pstore_info { 1757 /* Persistent storage size, in bytes */ 1758 uint32_t pstore_size; 1759 /* Access size; read/write offset and size must be a multiple of this */ 1760 uint32_t access_size; 1761 } __packed; 1762 1763 /* 1764 * Read persistent storage 1765 * 1766 * Response is params.size bytes of data. 1767 */ 1768 #define EC_CMD_PSTORE_READ 0x41 1769 1770 struct ec_params_pstore_read { 1771 uint32_t offset; /* Byte offset to read */ 1772 uint32_t size; /* Size to read in bytes */ 1773 } __packed; 1774 1775 /* Write persistent storage */ 1776 #define EC_CMD_PSTORE_WRITE 0x42 1777 1778 struct ec_params_pstore_write { 1779 uint32_t offset; /* Byte offset to write */ 1780 uint32_t size; /* Size to write in bytes */ 1781 uint8_t data[EC_PSTORE_SIZE_MAX]; 1782 } __packed; 1783 1784 /*****************************************************************************/ 1785 /* Real-time clock */ 1786 1787 /* RTC params and response structures */ 1788 struct ec_params_rtc { 1789 uint32_t time; 1790 } __packed; 1791 1792 struct ec_response_rtc { 1793 uint32_t time; 1794 } __packed; 1795 1796 /* These use ec_response_rtc */ 1797 #define EC_CMD_RTC_GET_VALUE 0x44 1798 #define EC_CMD_RTC_GET_ALARM 0x45 1799 1800 /* These all use ec_params_rtc */ 1801 #define EC_CMD_RTC_SET_VALUE 0x46 1802 #define EC_CMD_RTC_SET_ALARM 0x47 1803 1804 /* Pass as param to SET_ALARM to clear the current alarm */ 1805 #define EC_RTC_ALARM_CLEAR 0 1806 1807 /*****************************************************************************/ 1808 /* Port80 log access */ 1809 1810 /* Maximum entries that can be read/written in a single command */ 1811 #define EC_PORT80_SIZE_MAX 32 1812 1813 /* Get last port80 code from previous boot */ 1814 #define EC_CMD_PORT80_LAST_BOOT 0x48 1815 #define EC_CMD_PORT80_READ 0x48 1816 1817 enum ec_port80_subcmd { 1818 EC_PORT80_GET_INFO = 0, 1819 EC_PORT80_READ_BUFFER, 1820 }; 1821 1822 struct ec_params_port80_read { 1823 uint16_t subcmd; 1824 union { 1825 struct { 1826 uint32_t offset; 1827 uint32_t num_entries; 1828 } read_buffer; 1829 }; 1830 } __packed; 1831 1832 struct ec_response_port80_read { 1833 union { 1834 struct { 1835 uint32_t writes; 1836 uint32_t history_size; 1837 uint32_t last_boot; 1838 } get_info; 1839 struct { 1840 uint16_t codes[EC_PORT80_SIZE_MAX]; 1841 } data; 1842 }; 1843 } __packed; 1844 1845 struct ec_response_port80_last_boot { 1846 uint16_t code; 1847 } __packed; 1848 1849 /*****************************************************************************/ 1850 /* Thermal engine commands. Note that there are two implementations. We'll 1851 * reuse the command number, but the data and behavior is incompatible. 1852 * Version 0 is what originally shipped on Link. 1853 * Version 1 separates the CPU thermal limits from the fan control. 1854 */ 1855 1856 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50 1857 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51 1858 1859 /* The version 0 structs are opaque. You have to know what they are for 1860 * the get/set commands to make any sense. 1861 */ 1862 1863 /* Version 0 - set */ 1864 struct ec_params_thermal_set_threshold { 1865 uint8_t sensor_type; 1866 uint8_t threshold_id; 1867 uint16_t value; 1868 } __packed; 1869 1870 /* Version 0 - get */ 1871 struct ec_params_thermal_get_threshold { 1872 uint8_t sensor_type; 1873 uint8_t threshold_id; 1874 } __packed; 1875 1876 struct ec_response_thermal_get_threshold { 1877 uint16_t value; 1878 } __packed; 1879 1880 1881 /* The version 1 structs are visible. */ 1882 enum ec_temp_thresholds { 1883 EC_TEMP_THRESH_WARN = 0, 1884 EC_TEMP_THRESH_HIGH, 1885 EC_TEMP_THRESH_HALT, 1886 1887 EC_TEMP_THRESH_COUNT 1888 }; 1889 1890 /* Thermal configuration for one temperature sensor. Temps are in degrees K. 1891 * Zero values will be silently ignored by the thermal task. 1892 */ 1893 struct ec_thermal_config { 1894 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */ 1895 uint32_t temp_fan_off; /* no active cooling needed */ 1896 uint32_t temp_fan_max; /* max active cooling needed */ 1897 } __packed; 1898 1899 /* Version 1 - get config for one sensor. */ 1900 struct ec_params_thermal_get_threshold_v1 { 1901 uint32_t sensor_num; 1902 } __packed; 1903 /* This returns a struct ec_thermal_config */ 1904 1905 /* Version 1 - set config for one sensor. 1906 * Use read-modify-write for best results! */ 1907 struct ec_params_thermal_set_threshold_v1 { 1908 uint32_t sensor_num; 1909 struct ec_thermal_config cfg; 1910 } __packed; 1911 /* This returns no data */ 1912 1913 /****************************************************************************/ 1914 1915 /* Toggle automatic fan control */ 1916 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52 1917 1918 /* Get TMP006 calibration data */ 1919 #define EC_CMD_TMP006_GET_CALIBRATION 0x53 1920 1921 struct ec_params_tmp006_get_calibration { 1922 uint8_t index; 1923 } __packed; 1924 1925 struct ec_response_tmp006_get_calibration { 1926 float s0; 1927 float b0; 1928 float b1; 1929 float b2; 1930 } __packed; 1931 1932 /* Set TMP006 calibration data */ 1933 #define EC_CMD_TMP006_SET_CALIBRATION 0x54 1934 1935 struct ec_params_tmp006_set_calibration { 1936 uint8_t index; 1937 uint8_t reserved[3]; /* Reserved; set 0 */ 1938 float s0; 1939 float b0; 1940 float b1; 1941 float b2; 1942 } __packed; 1943 1944 /* Read raw TMP006 data */ 1945 #define EC_CMD_TMP006_GET_RAW 0x55 1946 1947 struct ec_params_tmp006_get_raw { 1948 uint8_t index; 1949 } __packed; 1950 1951 struct ec_response_tmp006_get_raw { 1952 int32_t t; /* In 1/100 K */ 1953 int32_t v; /* In nV */ 1954 }; 1955 1956 /*****************************************************************************/ 1957 /* MKBP - Matrix KeyBoard Protocol */ 1958 1959 /* 1960 * Read key state 1961 * 1962 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for 1963 * expected response size. 1964 * 1965 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish 1966 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type 1967 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX. 1968 */ 1969 #define EC_CMD_MKBP_STATE 0x60 1970 1971 /* 1972 * Provide information about various MKBP things. See enum ec_mkbp_info_type. 1973 */ 1974 #define EC_CMD_MKBP_INFO 0x61 1975 1976 struct ec_response_mkbp_info { 1977 uint32_t rows; 1978 uint32_t cols; 1979 /* Formerly "switches", which was 0. */ 1980 uint8_t reserved; 1981 } __packed; 1982 1983 struct ec_params_mkbp_info { 1984 uint8_t info_type; 1985 uint8_t event_type; 1986 } __packed; 1987 1988 enum ec_mkbp_info_type { 1989 /* 1990 * Info about the keyboard matrix: number of rows and columns. 1991 * 1992 * Returns struct ec_response_mkbp_info. 1993 */ 1994 EC_MKBP_INFO_KBD = 0, 1995 1996 /* 1997 * For buttons and switches, info about which specifically are 1998 * supported. event_type must be set to one of the values in enum 1999 * ec_mkbp_event. 2000 * 2001 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte 2002 * bitmask indicating which buttons or switches are present. See the 2003 * bit inidices below. 2004 */ 2005 EC_MKBP_INFO_SUPPORTED = 1, 2006 2007 /* 2008 * Instantaneous state of buttons and switches. 2009 * 2010 * event_type must be set to one of the values in enum ec_mkbp_event. 2011 * 2012 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13] 2013 * indicating the current state of the keyboard matrix. 2014 * 2015 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw 2016 * event state. 2017 * 2018 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the 2019 * state of supported buttons. 2020 * 2021 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the 2022 * state of supported switches. 2023 */ 2024 EC_MKBP_INFO_CURRENT = 2, 2025 }; 2026 2027 /* Simulate key press */ 2028 #define EC_CMD_MKBP_SIMULATE_KEY 0x62 2029 2030 struct ec_params_mkbp_simulate_key { 2031 uint8_t col; 2032 uint8_t row; 2033 uint8_t pressed; 2034 } __packed; 2035 2036 /* Configure keyboard scanning */ 2037 #define EC_CMD_MKBP_SET_CONFIG 0x64 2038 #define EC_CMD_MKBP_GET_CONFIG 0x65 2039 2040 /* flags */ 2041 enum mkbp_config_flags { 2042 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */ 2043 }; 2044 2045 enum mkbp_config_valid { 2046 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0, 2047 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1, 2048 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3, 2049 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4, 2050 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5, 2051 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6, 2052 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7, 2053 }; 2054 2055 /* Configuration for our key scanning algorithm */ 2056 struct ec_mkbp_config { 2057 uint32_t valid_mask; /* valid fields */ 2058 uint8_t flags; /* some flags (enum mkbp_config_flags) */ 2059 uint8_t valid_flags; /* which flags are valid */ 2060 uint16_t scan_period_us; /* period between start of scans */ 2061 /* revert to interrupt mode after no activity for this long */ 2062 uint32_t poll_timeout_us; 2063 /* 2064 * minimum post-scan relax time. Once we finish a scan we check 2065 * the time until we are due to start the next one. If this time is 2066 * shorter this field, we use this instead. 2067 */ 2068 uint16_t min_post_scan_delay_us; 2069 /* delay between setting up output and waiting for it to settle */ 2070 uint16_t output_settle_us; 2071 uint16_t debounce_down_us; /* time for debounce on key down */ 2072 uint16_t debounce_up_us; /* time for debounce on key up */ 2073 /* maximum depth to allow for fifo (0 = no keyscan output) */ 2074 uint8_t fifo_max_depth; 2075 } __packed; 2076 2077 struct ec_params_mkbp_set_config { 2078 struct ec_mkbp_config config; 2079 } __packed; 2080 2081 struct ec_response_mkbp_get_config { 2082 struct ec_mkbp_config config; 2083 } __packed; 2084 2085 /* Run the key scan emulation */ 2086 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66 2087 2088 enum ec_keyscan_seq_cmd { 2089 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */ 2090 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */ 2091 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */ 2092 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */ 2093 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */ 2094 }; 2095 2096 enum ec_collect_flags { 2097 /* 2098 * Indicates this scan was processed by the EC. Due to timing, some 2099 * scans may be skipped. 2100 */ 2101 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0, 2102 }; 2103 2104 struct ec_collect_item { 2105 uint8_t flags; /* some flags (enum ec_collect_flags) */ 2106 }; 2107 2108 struct ec_params_keyscan_seq_ctrl { 2109 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */ 2110 union { 2111 struct { 2112 uint8_t active; /* still active */ 2113 uint8_t num_items; /* number of items */ 2114 /* Current item being presented */ 2115 uint8_t cur_item; 2116 } status; 2117 struct { 2118 /* 2119 * Absolute time for this scan, measured from the 2120 * start of the sequence. 2121 */ 2122 uint32_t time_us; 2123 uint8_t scan[0]; /* keyscan data */ 2124 } add; 2125 struct { 2126 uint8_t start_item; /* First item to return */ 2127 uint8_t num_items; /* Number of items to return */ 2128 } collect; 2129 }; 2130 } __packed; 2131 2132 struct ec_result_keyscan_seq_ctrl { 2133 union { 2134 struct { 2135 uint8_t num_items; /* Number of items */ 2136 /* Data for each item */ 2137 struct ec_collect_item item[0]; 2138 } collect; 2139 }; 2140 } __packed; 2141 2142 /* 2143 * Command for retrieving the next pending MKBP event from the EC device 2144 * 2145 * The device replies with UNAVAILABLE if there aren't any pending events. 2146 */ 2147 #define EC_CMD_GET_NEXT_EVENT 0x67 2148 2149 enum ec_mkbp_event { 2150 /* Keyboard matrix changed. The event data is the new matrix state. */ 2151 EC_MKBP_EVENT_KEY_MATRIX = 0, 2152 2153 /* New host event. The event data is 4 bytes of host event flags. */ 2154 EC_MKBP_EVENT_HOST_EVENT = 1, 2155 2156 /* New Sensor FIFO data. The event data is fifo_info structure. */ 2157 EC_MKBP_EVENT_SENSOR_FIFO = 2, 2158 2159 /* The state of the non-matrixed buttons have changed. */ 2160 EC_MKBP_EVENT_BUTTON = 3, 2161 2162 /* The state of the switches have changed. */ 2163 EC_MKBP_EVENT_SWITCH = 4, 2164 2165 /* EC sent a sysrq command */ 2166 EC_MKBP_EVENT_SYSRQ = 6, 2167 2168 /* Notify the AP that something happened on CEC */ 2169 EC_MKBP_EVENT_CEC_EVENT = 8, 2170 2171 /* Send an incoming CEC message to the AP */ 2172 EC_MKBP_EVENT_CEC_MESSAGE = 9, 2173 2174 /* Number of MKBP events */ 2175 EC_MKBP_EVENT_COUNT, 2176 }; 2177 2178 union ec_response_get_next_data { 2179 uint8_t key_matrix[13]; 2180 2181 /* Unaligned */ 2182 uint32_t host_event; 2183 2184 uint32_t buttons; 2185 uint32_t switches; 2186 uint32_t sysrq; 2187 } __packed; 2188 2189 union ec_response_get_next_data_v1 { 2190 uint8_t key_matrix[16]; 2191 uint32_t host_event; 2192 uint32_t buttons; 2193 uint32_t switches; 2194 uint32_t sysrq; 2195 uint32_t cec_events; 2196 uint8_t cec_message[16]; 2197 } __packed; 2198 2199 struct ec_response_get_next_event { 2200 uint8_t event_type; 2201 /* Followed by event data if any */ 2202 union ec_response_get_next_data data; 2203 } __packed; 2204 2205 struct ec_response_get_next_event_v1 { 2206 uint8_t event_type; 2207 /* Followed by event data if any */ 2208 union ec_response_get_next_data_v1 data; 2209 } __packed; 2210 2211 /* Bit indices for buttons and switches.*/ 2212 /* Buttons */ 2213 #define EC_MKBP_POWER_BUTTON 0 2214 #define EC_MKBP_VOL_UP 1 2215 #define EC_MKBP_VOL_DOWN 2 2216 2217 /* Switches */ 2218 #define EC_MKBP_LID_OPEN 0 2219 #define EC_MKBP_TABLET_MODE 1 2220 #define EC_MKBP_BASE_ATTACHED 2 2221 2222 /*****************************************************************************/ 2223 /* Temperature sensor commands */ 2224 2225 /* Read temperature sensor info */ 2226 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70 2227 2228 struct ec_params_temp_sensor_get_info { 2229 uint8_t id; 2230 } __packed; 2231 2232 struct ec_response_temp_sensor_get_info { 2233 char sensor_name[32]; 2234 uint8_t sensor_type; 2235 } __packed; 2236 2237 /*****************************************************************************/ 2238 2239 /* 2240 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI 2241 * commands accidentally sent to the wrong interface. See the ACPI section 2242 * below. 2243 */ 2244 2245 /*****************************************************************************/ 2246 /* Host event commands */ 2247 2248 /* 2249 * Host event mask params and response structures, shared by all of the host 2250 * event commands below. 2251 */ 2252 struct ec_params_host_event_mask { 2253 uint32_t mask; 2254 } __packed; 2255 2256 struct ec_response_host_event_mask { 2257 uint32_t mask; 2258 } __packed; 2259 2260 /* These all use ec_response_host_event_mask */ 2261 #define EC_CMD_HOST_EVENT_GET_B 0x87 2262 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88 2263 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89 2264 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d 2265 2266 /* These all use ec_params_host_event_mask */ 2267 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a 2268 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b 2269 #define EC_CMD_HOST_EVENT_CLEAR 0x8c 2270 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e 2271 #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f 2272 2273 /*****************************************************************************/ 2274 /* Switch commands */ 2275 2276 /* Enable/disable LCD backlight */ 2277 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90 2278 2279 struct ec_params_switch_enable_backlight { 2280 uint8_t enabled; 2281 } __packed; 2282 2283 /* Enable/disable WLAN/Bluetooth */ 2284 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91 2285 #define EC_VER_SWITCH_ENABLE_WIRELESS 1 2286 2287 /* Version 0 params; no response */ 2288 struct ec_params_switch_enable_wireless_v0 { 2289 uint8_t enabled; 2290 } __packed; 2291 2292 /* Version 1 params */ 2293 struct ec_params_switch_enable_wireless_v1 { 2294 /* Flags to enable now */ 2295 uint8_t now_flags; 2296 2297 /* Which flags to copy from now_flags */ 2298 uint8_t now_mask; 2299 2300 /* 2301 * Flags to leave enabled in S3, if they're on at the S0->S3 2302 * transition. (Other flags will be disabled by the S0->S3 2303 * transition.) 2304 */ 2305 uint8_t suspend_flags; 2306 2307 /* Which flags to copy from suspend_flags */ 2308 uint8_t suspend_mask; 2309 } __packed; 2310 2311 /* Version 1 response */ 2312 struct ec_response_switch_enable_wireless_v1 { 2313 /* Flags to enable now */ 2314 uint8_t now_flags; 2315 2316 /* Flags to leave enabled in S3 */ 2317 uint8_t suspend_flags; 2318 } __packed; 2319 2320 /*****************************************************************************/ 2321 /* GPIO commands. Only available on EC if write protect has been disabled. */ 2322 2323 /* Set GPIO output value */ 2324 #define EC_CMD_GPIO_SET 0x92 2325 2326 struct ec_params_gpio_set { 2327 char name[32]; 2328 uint8_t val; 2329 } __packed; 2330 2331 /* Get GPIO value */ 2332 #define EC_CMD_GPIO_GET 0x93 2333 2334 /* Version 0 of input params and response */ 2335 struct ec_params_gpio_get { 2336 char name[32]; 2337 } __packed; 2338 struct ec_response_gpio_get { 2339 uint8_t val; 2340 } __packed; 2341 2342 /* Version 1 of input params and response */ 2343 struct ec_params_gpio_get_v1 { 2344 uint8_t subcmd; 2345 union { 2346 struct { 2347 char name[32]; 2348 } get_value_by_name; 2349 struct { 2350 uint8_t index; 2351 } get_info; 2352 }; 2353 } __packed; 2354 2355 struct ec_response_gpio_get_v1 { 2356 union { 2357 struct { 2358 uint8_t val; 2359 } get_value_by_name, get_count; 2360 struct { 2361 uint8_t val; 2362 char name[32]; 2363 uint32_t flags; 2364 } get_info; 2365 }; 2366 } __packed; 2367 2368 enum gpio_get_subcmd { 2369 EC_GPIO_GET_BY_NAME = 0, 2370 EC_GPIO_GET_COUNT = 1, 2371 EC_GPIO_GET_INFO = 2, 2372 }; 2373 2374 /*****************************************************************************/ 2375 /* I2C commands. Only available when flash write protect is unlocked. */ 2376 2377 /* 2378 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be 2379 * removed soon. Use EC_CMD_I2C_XFER instead. 2380 */ 2381 2382 /* Read I2C bus */ 2383 #define EC_CMD_I2C_READ 0x94 2384 2385 struct ec_params_i2c_read { 2386 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2387 uint8_t read_size; /* Either 8 or 16. */ 2388 uint8_t port; 2389 uint8_t offset; 2390 } __packed; 2391 struct ec_response_i2c_read { 2392 uint16_t data; 2393 } __packed; 2394 2395 /* Write I2C bus */ 2396 #define EC_CMD_I2C_WRITE 0x95 2397 2398 struct ec_params_i2c_write { 2399 uint16_t data; 2400 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */ 2401 uint8_t write_size; /* Either 8 or 16. */ 2402 uint8_t port; 2403 uint8_t offset; 2404 } __packed; 2405 2406 /*****************************************************************************/ 2407 /* Charge state commands. Only available when flash write protect unlocked. */ 2408 2409 /* Force charge state machine to stop charging the battery or force it to 2410 * discharge the battery. 2411 */ 2412 #define EC_CMD_CHARGE_CONTROL 0x96 2413 #define EC_VER_CHARGE_CONTROL 1 2414 2415 enum ec_charge_control_mode { 2416 CHARGE_CONTROL_NORMAL = 0, 2417 CHARGE_CONTROL_IDLE, 2418 CHARGE_CONTROL_DISCHARGE, 2419 }; 2420 2421 struct ec_params_charge_control { 2422 uint32_t mode; /* enum charge_control_mode */ 2423 } __packed; 2424 2425 /*****************************************************************************/ 2426 /* Console commands. Only available when flash write protect is unlocked. */ 2427 2428 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */ 2429 #define EC_CMD_CONSOLE_SNAPSHOT 0x97 2430 2431 /* 2432 * Read data from the saved snapshot. If the subcmd parameter is 2433 * CONSOLE_READ_NEXT, this will return data starting from the beginning of 2434 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the 2435 * end of the previous snapshot. 2436 * 2437 * The params are only looked at in version >= 1 of this command. Prior 2438 * versions will just default to CONSOLE_READ_NEXT behavior. 2439 * 2440 * Response is null-terminated string. Empty string, if there is no more 2441 * remaining output. 2442 */ 2443 #define EC_CMD_CONSOLE_READ 0x98 2444 2445 enum ec_console_read_subcmd { 2446 CONSOLE_READ_NEXT = 0, 2447 CONSOLE_READ_RECENT 2448 }; 2449 2450 struct ec_params_console_read_v1 { 2451 uint8_t subcmd; /* enum ec_console_read_subcmd */ 2452 } __packed; 2453 2454 /*****************************************************************************/ 2455 2456 /* 2457 * Cut off battery power immediately or after the host has shut down. 2458 * 2459 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery. 2460 * EC_RES_SUCCESS if the command was successful. 2461 * EC_RES_ERROR if the cut off command failed. 2462 */ 2463 2464 #define EC_CMD_BATTERY_CUT_OFF 0x99 2465 2466 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0) 2467 2468 struct ec_params_battery_cutoff { 2469 uint8_t flags; 2470 } __packed; 2471 2472 /*****************************************************************************/ 2473 /* USB port mux control. */ 2474 2475 /* 2476 * Switch USB mux or return to automatic switching. 2477 */ 2478 #define EC_CMD_USB_MUX 0x9a 2479 2480 struct ec_params_usb_mux { 2481 uint8_t mux; 2482 } __packed; 2483 2484 /*****************************************************************************/ 2485 /* LDOs / FETs control. */ 2486 2487 enum ec_ldo_state { 2488 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */ 2489 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */ 2490 }; 2491 2492 /* 2493 * Switch on/off a LDO. 2494 */ 2495 #define EC_CMD_LDO_SET 0x9b 2496 2497 struct ec_params_ldo_set { 2498 uint8_t index; 2499 uint8_t state; 2500 } __packed; 2501 2502 /* 2503 * Get LDO state. 2504 */ 2505 #define EC_CMD_LDO_GET 0x9c 2506 2507 struct ec_params_ldo_get { 2508 uint8_t index; 2509 } __packed; 2510 2511 struct ec_response_ldo_get { 2512 uint8_t state; 2513 } __packed; 2514 2515 /*****************************************************************************/ 2516 /* Power info. */ 2517 2518 /* 2519 * Get power info. 2520 */ 2521 #define EC_CMD_POWER_INFO 0x9d 2522 2523 struct ec_response_power_info { 2524 uint32_t usb_dev_type; 2525 uint16_t voltage_ac; 2526 uint16_t voltage_system; 2527 uint16_t current_system; 2528 uint16_t usb_current_limit; 2529 } __packed; 2530 2531 /*****************************************************************************/ 2532 /* I2C passthru command */ 2533 2534 #define EC_CMD_I2C_PASSTHRU 0x9e 2535 2536 /* Read data; if not present, message is a write */ 2537 #define EC_I2C_FLAG_READ (1 << 15) 2538 2539 /* Mask for address */ 2540 #define EC_I2C_ADDR_MASK 0x3ff 2541 2542 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */ 2543 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */ 2544 2545 /* Any error */ 2546 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT) 2547 2548 struct ec_params_i2c_passthru_msg { 2549 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */ 2550 uint16_t len; /* Number of bytes to read or write */ 2551 } __packed; 2552 2553 struct ec_params_i2c_passthru { 2554 uint8_t port; /* I2C port number */ 2555 uint8_t num_msgs; /* Number of messages */ 2556 struct ec_params_i2c_passthru_msg msg[]; 2557 /* Data to write for all messages is concatenated here */ 2558 } __packed; 2559 2560 struct ec_response_i2c_passthru { 2561 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */ 2562 uint8_t num_msgs; /* Number of messages processed */ 2563 uint8_t data[]; /* Data read by messages concatenated here */ 2564 } __packed; 2565 2566 /*****************************************************************************/ 2567 /* Power button hang detect */ 2568 2569 #define EC_CMD_HANG_DETECT 0x9f 2570 2571 /* Reasons to start hang detection timer */ 2572 /* Power button pressed */ 2573 #define EC_HANG_START_ON_POWER_PRESS (1 << 0) 2574 2575 /* Lid closed */ 2576 #define EC_HANG_START_ON_LID_CLOSE (1 << 1) 2577 2578 /* Lid opened */ 2579 #define EC_HANG_START_ON_LID_OPEN (1 << 2) 2580 2581 /* Start of AP S3->S0 transition (booting or resuming from suspend) */ 2582 #define EC_HANG_START_ON_RESUME (1 << 3) 2583 2584 /* Reasons to cancel hang detection */ 2585 2586 /* Power button released */ 2587 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8) 2588 2589 /* Any host command from AP received */ 2590 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9) 2591 2592 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */ 2593 #define EC_HANG_STOP_ON_SUSPEND (1 << 10) 2594 2595 /* 2596 * If this flag is set, all the other fields are ignored, and the hang detect 2597 * timer is started. This provides the AP a way to start the hang timer 2598 * without reconfiguring any of the other hang detect settings. Note that 2599 * you must previously have configured the timeouts. 2600 */ 2601 #define EC_HANG_START_NOW (1 << 30) 2602 2603 /* 2604 * If this flag is set, all the other fields are ignored (including 2605 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer 2606 * without reconfiguring any of the other hang detect settings. 2607 */ 2608 #define EC_HANG_STOP_NOW (1 << 31) 2609 2610 struct ec_params_hang_detect { 2611 /* Flags; see EC_HANG_* */ 2612 uint32_t flags; 2613 2614 /* Timeout in msec before generating host event, if enabled */ 2615 uint16_t host_event_timeout_msec; 2616 2617 /* Timeout in msec before generating warm reboot, if enabled */ 2618 uint16_t warm_reboot_timeout_msec; 2619 } __packed; 2620 2621 /*****************************************************************************/ 2622 /* Commands for battery charging */ 2623 2624 /* 2625 * This is the single catch-all host command to exchange data regarding the 2626 * charge state machine (v2 and up). 2627 */ 2628 #define EC_CMD_CHARGE_STATE 0xa0 2629 2630 /* Subcommands for this host command */ 2631 enum charge_state_command { 2632 CHARGE_STATE_CMD_GET_STATE, 2633 CHARGE_STATE_CMD_GET_PARAM, 2634 CHARGE_STATE_CMD_SET_PARAM, 2635 CHARGE_STATE_NUM_CMDS 2636 }; 2637 2638 /* 2639 * Known param numbers are defined here. Ranges are reserved for board-specific 2640 * params, which are handled by the particular implementations. 2641 */ 2642 enum charge_state_params { 2643 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */ 2644 CS_PARAM_CHG_CURRENT, /* charger current limit */ 2645 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */ 2646 CS_PARAM_CHG_STATUS, /* charger-specific status */ 2647 CS_PARAM_CHG_OPTION, /* charger-specific options */ 2648 /* How many so far? */ 2649 CS_NUM_BASE_PARAMS, 2650 2651 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */ 2652 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000, 2653 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff, 2654 2655 /* Other custom param ranges go here... */ 2656 }; 2657 2658 struct ec_params_charge_state { 2659 uint8_t cmd; /* enum charge_state_command */ 2660 union { 2661 struct { 2662 /* no args */ 2663 } get_state; 2664 2665 struct { 2666 uint32_t param; /* enum charge_state_param */ 2667 } get_param; 2668 2669 struct { 2670 uint32_t param; /* param to set */ 2671 uint32_t value; /* value to set */ 2672 } set_param; 2673 }; 2674 } __packed; 2675 2676 struct ec_response_charge_state { 2677 union { 2678 struct { 2679 int ac; 2680 int chg_voltage; 2681 int chg_current; 2682 int chg_input_current; 2683 int batt_state_of_charge; 2684 } get_state; 2685 2686 struct { 2687 uint32_t value; 2688 } get_param; 2689 struct { 2690 /* no return values */ 2691 } set_param; 2692 }; 2693 } __packed; 2694 2695 2696 /* 2697 * Set maximum battery charging current. 2698 */ 2699 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1 2700 2701 struct ec_params_current_limit { 2702 uint32_t limit; /* in mA */ 2703 } __packed; 2704 2705 /* 2706 * Set maximum external voltage / current. 2707 */ 2708 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2 2709 2710 /* Command v0 is used only on Spring and is obsolete + unsupported */ 2711 struct ec_params_external_power_limit_v1 { 2712 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */ 2713 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */ 2714 } __packed; 2715 2716 #define EC_POWER_LIMIT_NONE 0xffff 2717 2718 /* Inform the EC when entering a sleep state */ 2719 #define EC_CMD_HOST_SLEEP_EVENT 0xa9 2720 2721 enum host_sleep_event { 2722 HOST_SLEEP_EVENT_S3_SUSPEND = 1, 2723 HOST_SLEEP_EVENT_S3_RESUME = 2, 2724 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3, 2725 HOST_SLEEP_EVENT_S0IX_RESUME = 4 2726 }; 2727 2728 struct ec_params_host_sleep_event { 2729 uint8_t sleep_event; 2730 } __packed; 2731 2732 /*****************************************************************************/ 2733 /* Smart battery pass-through */ 2734 2735 /* Get / Set 16-bit smart battery registers */ 2736 #define EC_CMD_SB_READ_WORD 0xb0 2737 #define EC_CMD_SB_WRITE_WORD 0xb1 2738 2739 /* Get / Set string smart battery parameters 2740 * formatted as SMBUS "block". 2741 */ 2742 #define EC_CMD_SB_READ_BLOCK 0xb2 2743 #define EC_CMD_SB_WRITE_BLOCK 0xb3 2744 2745 struct ec_params_sb_rd { 2746 uint8_t reg; 2747 } __packed; 2748 2749 struct ec_response_sb_rd_word { 2750 uint16_t value; 2751 } __packed; 2752 2753 struct ec_params_sb_wr_word { 2754 uint8_t reg; 2755 uint16_t value; 2756 } __packed; 2757 2758 struct ec_response_sb_rd_block { 2759 uint8_t data[32]; 2760 } __packed; 2761 2762 struct ec_params_sb_wr_block { 2763 uint8_t reg; 2764 uint16_t data[32]; 2765 } __packed; 2766 2767 /*****************************************************************************/ 2768 /* Battery vendor parameters 2769 * 2770 * Get or set vendor-specific parameters in the battery. Implementations may 2771 * differ between boards or batteries. On a set operation, the response 2772 * contains the actual value set, which may be rounded or clipped from the 2773 * requested value. 2774 */ 2775 2776 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4 2777 2778 enum ec_battery_vendor_param_mode { 2779 BATTERY_VENDOR_PARAM_MODE_GET = 0, 2780 BATTERY_VENDOR_PARAM_MODE_SET, 2781 }; 2782 2783 struct ec_params_battery_vendor_param { 2784 uint32_t param; 2785 uint32_t value; 2786 uint8_t mode; 2787 } __packed; 2788 2789 struct ec_response_battery_vendor_param { 2790 uint32_t value; 2791 } __packed; 2792 2793 /*****************************************************************************/ 2794 /* Commands for I2S recording on audio codec. */ 2795 2796 #define EC_CMD_CODEC_I2S 0x00BC 2797 2798 enum ec_codec_i2s_subcmd { 2799 EC_CODEC_SET_SAMPLE_DEPTH = 0x0, 2800 EC_CODEC_SET_GAIN = 0x1, 2801 EC_CODEC_GET_GAIN = 0x2, 2802 EC_CODEC_I2S_ENABLE = 0x3, 2803 EC_CODEC_I2S_SET_CONFIG = 0x4, 2804 EC_CODEC_I2S_SET_TDM_CONFIG = 0x5, 2805 EC_CODEC_I2S_SET_BCLK = 0x6, 2806 }; 2807 2808 enum ec_sample_depth_value { 2809 EC_CODEC_SAMPLE_DEPTH_16 = 0, 2810 EC_CODEC_SAMPLE_DEPTH_24 = 1, 2811 }; 2812 2813 enum ec_i2s_config { 2814 EC_DAI_FMT_I2S = 0, 2815 EC_DAI_FMT_RIGHT_J = 1, 2816 EC_DAI_FMT_LEFT_J = 2, 2817 EC_DAI_FMT_PCM_A = 3, 2818 EC_DAI_FMT_PCM_B = 4, 2819 EC_DAI_FMT_PCM_TDM = 5, 2820 }; 2821 2822 struct ec_param_codec_i2s { 2823 /* 2824 * enum ec_codec_i2s_subcmd 2825 */ 2826 uint8_t cmd; 2827 union { 2828 /* 2829 * EC_CODEC_SET_SAMPLE_DEPTH 2830 * Value should be one of ec_sample_depth_value. 2831 */ 2832 uint8_t depth; 2833 2834 /* 2835 * EC_CODEC_SET_GAIN 2836 * Value should be 0~43 for both channels. 2837 */ 2838 struct ec_param_codec_i2s_set_gain { 2839 uint8_t left; 2840 uint8_t right; 2841 } __packed gain; 2842 2843 /* 2844 * EC_CODEC_I2S_ENABLE 2845 * 1 to enable, 0 to disable. 2846 */ 2847 uint8_t i2s_enable; 2848 2849 /* 2850 * EC_CODEC_I2S_SET_COFNIG 2851 * Value should be one of ec_i2s_config. 2852 */ 2853 uint8_t i2s_config; 2854 2855 /* 2856 * EC_CODEC_I2S_SET_TDM_CONFIG 2857 * Value should be one of ec_i2s_config. 2858 */ 2859 struct ec_param_codec_i2s_tdm { 2860 /* 2861 * 0 to 496 2862 */ 2863 int16_t ch0_delay; 2864 /* 2865 * -1 to 496 2866 */ 2867 int16_t ch1_delay; 2868 uint8_t adjacent_to_ch0; 2869 uint8_t adjacent_to_ch1; 2870 } __packed tdm_param; 2871 2872 /* 2873 * EC_CODEC_I2S_SET_BCLK 2874 */ 2875 uint32_t bclk; 2876 }; 2877 } __packed; 2878 2879 /* 2880 * For subcommand EC_CODEC_GET_GAIN. 2881 */ 2882 struct ec_response_codec_gain { 2883 uint8_t left; 2884 uint8_t right; 2885 } __packed; 2886 2887 /*****************************************************************************/ 2888 /* System commands */ 2889 2890 /* 2891 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't 2892 * necessarily reboot the EC. Rename to "image" or something similar? 2893 */ 2894 #define EC_CMD_REBOOT_EC 0xd2 2895 2896 /* Command */ 2897 enum ec_reboot_cmd { 2898 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */ 2899 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */ 2900 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */ 2901 /* (command 3 was jump to RW-B) */ 2902 EC_REBOOT_COLD = 4, /* Cold-reboot */ 2903 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */ 2904 EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */ 2905 }; 2906 2907 /* Flags for ec_params_reboot_ec.reboot_flags */ 2908 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */ 2909 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */ 2910 2911 struct ec_params_reboot_ec { 2912 uint8_t cmd; /* enum ec_reboot_cmd */ 2913 uint8_t flags; /* See EC_REBOOT_FLAG_* */ 2914 } __packed; 2915 2916 /* 2917 * Get information on last EC panic. 2918 * 2919 * Returns variable-length platform-dependent panic information. See panic.h 2920 * for details. 2921 */ 2922 #define EC_CMD_GET_PANIC_INFO 0xd3 2923 2924 /*****************************************************************************/ 2925 /* 2926 * ACPI commands 2927 * 2928 * These are valid ONLY on the ACPI command/data port. 2929 */ 2930 2931 /* 2932 * ACPI Read Embedded Controller 2933 * 2934 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 2935 * 2936 * Use the following sequence: 2937 * 2938 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD 2939 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2940 * - Write address to EC_LPC_ADDR_ACPI_DATA 2941 * - Wait for EC_LPC_CMDR_DATA bit to set 2942 * - Read value from EC_LPC_ADDR_ACPI_DATA 2943 */ 2944 #define EC_CMD_ACPI_READ 0x80 2945 2946 /* 2947 * ACPI Write Embedded Controller 2948 * 2949 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*). 2950 * 2951 * Use the following sequence: 2952 * 2953 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD 2954 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2955 * - Write address to EC_LPC_ADDR_ACPI_DATA 2956 * - Wait for EC_LPC_CMDR_PENDING bit to clear 2957 * - Write value to EC_LPC_ADDR_ACPI_DATA 2958 */ 2959 #define EC_CMD_ACPI_WRITE 0x81 2960 2961 /* 2962 * ACPI Query Embedded Controller 2963 * 2964 * This clears the lowest-order bit in the currently pending host events, and 2965 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1, 2966 * event 0x80000000 = 32), or 0 if no event was pending. 2967 */ 2968 #define EC_CMD_ACPI_QUERY_EVENT 0x84 2969 2970 /* Valid addresses in ACPI memory space, for read/write commands */ 2971 2972 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */ 2973 #define EC_ACPI_MEM_VERSION 0x00 2974 /* 2975 * Test location; writing value here updates test compliment byte to (0xff - 2976 * value). 2977 */ 2978 #define EC_ACPI_MEM_TEST 0x01 2979 /* Test compliment; writes here are ignored. */ 2980 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02 2981 2982 /* Keyboard backlight brightness percent (0 - 100) */ 2983 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03 2984 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */ 2985 #define EC_ACPI_MEM_FAN_DUTY 0x04 2986 2987 /* 2988 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two 2989 * independent thresholds attached to them. The current value of the ID 2990 * register determines which sensor is affected by the THRESHOLD and COMMIT 2991 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme 2992 * as the memory-mapped sensors. The COMMIT register applies those settings. 2993 * 2994 * The spec does not mandate any way to read back the threshold settings 2995 * themselves, but when a threshold is crossed the AP needs a way to determine 2996 * which sensor(s) are responsible. Each reading of the ID register clears and 2997 * returns one sensor ID that has crossed one of its threshold (in either 2998 * direction) since the last read. A value of 0xFF means "no new thresholds 2999 * have tripped". Setting or enabling the thresholds for a sensor will clear 3000 * the unread event count for that sensor. 3001 */ 3002 #define EC_ACPI_MEM_TEMP_ID 0x05 3003 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06 3004 #define EC_ACPI_MEM_TEMP_COMMIT 0x07 3005 /* 3006 * Here are the bits for the COMMIT register: 3007 * bit 0 selects the threshold index for the chosen sensor (0/1) 3008 * bit 1 enables/disables the selected threshold (0 = off, 1 = on) 3009 * Each write to the commit register affects one threshold. 3010 */ 3011 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0) 3012 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1) 3013 /* 3014 * Example: 3015 * 3016 * Set the thresholds for sensor 2 to 50 C and 60 C: 3017 * write 2 to [0x05] -- select temp sensor 2 3018 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET 3019 * write 0x2 to [0x07] -- enable threshold 0 with this value 3020 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET 3021 * write 0x3 to [0x07] -- enable threshold 1 with this value 3022 * 3023 * Disable the 60 C threshold, leaving the 50 C threshold unchanged: 3024 * write 2 to [0x05] -- select temp sensor 2 3025 * write 0x1 to [0x07] -- disable threshold 1 3026 */ 3027 3028 /* DPTF battery charging current limit */ 3029 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08 3030 3031 /* Charging limit is specified in 64 mA steps */ 3032 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64 3033 /* Value to disable DPTF battery charging limit */ 3034 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff 3035 3036 /* Current version of ACPI memory address space */ 3037 #define EC_ACPI_MEM_VERSION_CURRENT 1 3038 3039 3040 /*****************************************************************************/ 3041 /* 3042 * HDMI CEC commands 3043 * 3044 * These commands are for sending and receiving message via HDMI CEC 3045 */ 3046 #define EC_MAX_CEC_MSG_LEN 16 3047 3048 /* CEC message from the AP to be written on the CEC bus */ 3049 #define EC_CMD_CEC_WRITE_MSG 0x00B8 3050 3051 /** 3052 * struct ec_params_cec_write - Message to write to the CEC bus 3053 * @msg: message content to write to the CEC bus 3054 */ 3055 struct ec_params_cec_write { 3056 uint8_t msg[EC_MAX_CEC_MSG_LEN]; 3057 } __packed; 3058 3059 /* Set various CEC parameters */ 3060 #define EC_CMD_CEC_SET 0x00BA 3061 3062 /** 3063 * struct ec_params_cec_set - CEC parameters set 3064 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 3065 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC 3066 * or 1 to enable CEC functionality, in case cmd is CEC_CMD_LOGICAL_ADDRESS, 3067 * this field encodes the requested logical address between 0 and 15 3068 * or 0xff to unregister 3069 */ 3070 struct ec_params_cec_set { 3071 uint8_t cmd; /* enum cec_command */ 3072 uint8_t val; 3073 } __packed; 3074 3075 /* Read various CEC parameters */ 3076 #define EC_CMD_CEC_GET 0x00BB 3077 3078 /** 3079 * struct ec_params_cec_get - CEC parameters get 3080 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS 3081 */ 3082 struct ec_params_cec_get { 3083 uint8_t cmd; /* enum cec_command */ 3084 } __packed; 3085 3086 /** 3087 * struct ec_response_cec_get - CEC parameters get response 3088 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is 3089 * disabled or 1 if CEC functionality is enabled, 3090 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the 3091 * configured logical address between 0 and 15 or 0xff if unregistered 3092 */ 3093 struct ec_response_cec_get { 3094 uint8_t val; 3095 } __packed; 3096 3097 /* CEC parameters command */ 3098 enum ec_cec_command { 3099 /* CEC reading, writing and events enable */ 3100 CEC_CMD_ENABLE, 3101 /* CEC logical address */ 3102 CEC_CMD_LOGICAL_ADDRESS, 3103 }; 3104 3105 /* Events from CEC to AP */ 3106 enum mkbp_cec_event { 3107 /* Outgoing message was acknowledged by a follower */ 3108 EC_MKBP_CEC_SEND_OK = BIT(0), 3109 /* Outgoing message was not acknowledged */ 3110 EC_MKBP_CEC_SEND_FAILED = BIT(1), 3111 }; 3112 3113 /*****************************************************************************/ 3114 /* 3115 * Special commands 3116 * 3117 * These do not follow the normal rules for commands. See each command for 3118 * details. 3119 */ 3120 3121 /* 3122 * Reboot NOW 3123 * 3124 * This command will work even when the EC LPC interface is busy, because the 3125 * reboot command is processed at interrupt level. Note that when the EC 3126 * reboots, the host will reboot too, so there is no response to this command. 3127 * 3128 * Use EC_CMD_REBOOT_EC to reboot the EC more politely. 3129 */ 3130 #define EC_CMD_REBOOT 0xd1 /* Think "die" */ 3131 3132 /* 3133 * Resend last response (not supported on LPC). 3134 * 3135 * Returns EC_RES_UNAVAILABLE if there is no response available - for example, 3136 * there was no previous command, or the previous command's response was too 3137 * big to save. 3138 */ 3139 #define EC_CMD_RESEND_RESPONSE 0xdb 3140 3141 /* 3142 * This header byte on a command indicate version 0. Any header byte less 3143 * than this means that we are talking to an old EC which doesn't support 3144 * versioning. In that case, we assume version 0. 3145 * 3146 * Header bytes greater than this indicate a later version. For example, 3147 * EC_CMD_VERSION0 + 1 means we are using version 1. 3148 * 3149 * The old EC interface must not use commands 0xdc or higher. 3150 */ 3151 #define EC_CMD_VERSION0 0xdc 3152 3153 #endif /* !__ACPI__ */ 3154 3155 /*****************************************************************************/ 3156 /* 3157 * PD commands 3158 * 3159 * These commands are for PD MCU communication. 3160 */ 3161 3162 /* EC to PD MCU exchange status command */ 3163 #define EC_CMD_PD_EXCHANGE_STATUS 0x100 3164 3165 /* Status of EC being sent to PD */ 3166 struct ec_params_pd_status { 3167 int8_t batt_soc; /* battery state of charge */ 3168 } __packed; 3169 3170 /* Status of PD being sent back to EC */ 3171 struct ec_response_pd_status { 3172 int8_t status; /* PD MCU status */ 3173 uint32_t curr_lim_ma; /* input current limit */ 3174 } __packed; 3175 3176 /* Set USB type-C port role and muxes */ 3177 #define EC_CMD_USB_PD_CONTROL 0x101 3178 3179 enum usb_pd_control_role { 3180 USB_PD_CTRL_ROLE_NO_CHANGE = 0, 3181 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */ 3182 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2, 3183 USB_PD_CTRL_ROLE_FORCE_SINK = 3, 3184 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4, 3185 }; 3186 3187 enum usb_pd_control_mux { 3188 USB_PD_CTRL_MUX_NO_CHANGE = 0, 3189 USB_PD_CTRL_MUX_NONE = 1, 3190 USB_PD_CTRL_MUX_USB = 2, 3191 USB_PD_CTRL_MUX_DP = 3, 3192 USB_PD_CTRL_MUX_DOCK = 4, 3193 USB_PD_CTRL_MUX_AUTO = 5, 3194 }; 3195 3196 enum usb_pd_control_swap { 3197 USB_PD_CTRL_SWAP_NONE = 0, 3198 USB_PD_CTRL_SWAP_DATA = 1, 3199 USB_PD_CTRL_SWAP_POWER = 2, 3200 USB_PD_CTRL_SWAP_VCONN = 3, 3201 USB_PD_CTRL_SWAP_COUNT 3202 }; 3203 3204 struct ec_params_usb_pd_control { 3205 uint8_t port; 3206 uint8_t role; 3207 uint8_t mux; 3208 uint8_t swap; 3209 } __packed; 3210 3211 #define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */ 3212 #define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */ 3213 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */ 3214 3215 #define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */ 3216 #define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */ 3217 #define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */ 3218 #define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */ 3219 #define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */ 3220 #define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */ 3221 #define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */ 3222 3223 struct ec_response_usb_pd_control_v1 { 3224 uint8_t enabled; 3225 uint8_t role; 3226 uint8_t polarity; 3227 char state[32]; 3228 } __packed; 3229 3230 #define EC_CMD_USB_PD_PORTS 0x102 3231 3232 /* Maximum number of PD ports on a device, num_ports will be <= this */ 3233 #define EC_USB_PD_MAX_PORTS 8 3234 3235 struct ec_response_usb_pd_ports { 3236 uint8_t num_ports; 3237 } __packed; 3238 3239 #define EC_CMD_USB_PD_POWER_INFO 0x103 3240 3241 #define PD_POWER_CHARGING_PORT 0xff 3242 struct ec_params_usb_pd_power_info { 3243 uint8_t port; 3244 } __packed; 3245 3246 enum usb_chg_type { 3247 USB_CHG_TYPE_NONE, 3248 USB_CHG_TYPE_PD, 3249 USB_CHG_TYPE_C, 3250 USB_CHG_TYPE_PROPRIETARY, 3251 USB_CHG_TYPE_BC12_DCP, 3252 USB_CHG_TYPE_BC12_CDP, 3253 USB_CHG_TYPE_BC12_SDP, 3254 USB_CHG_TYPE_OTHER, 3255 USB_CHG_TYPE_VBUS, 3256 USB_CHG_TYPE_UNKNOWN, 3257 }; 3258 enum usb_power_roles { 3259 USB_PD_PORT_POWER_DISCONNECTED, 3260 USB_PD_PORT_POWER_SOURCE, 3261 USB_PD_PORT_POWER_SINK, 3262 USB_PD_PORT_POWER_SINK_NOT_CHARGING, 3263 }; 3264 3265 struct usb_chg_measures { 3266 uint16_t voltage_max; 3267 uint16_t voltage_now; 3268 uint16_t current_max; 3269 uint16_t current_lim; 3270 } __packed; 3271 3272 struct ec_response_usb_pd_power_info { 3273 uint8_t role; 3274 uint8_t type; 3275 uint8_t dualrole; 3276 uint8_t reserved1; 3277 struct usb_chg_measures meas; 3278 uint32_t max_power; 3279 } __packed; 3280 3281 struct ec_params_usb_pd_info_request { 3282 uint8_t port; 3283 } __packed; 3284 3285 /* 3286 * This command will return the number of USB PD charge port + the number 3287 * of dedicated port present. 3288 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports 3289 */ 3290 #define EC_CMD_CHARGE_PORT_COUNT 0x0105 3291 struct ec_response_charge_port_count { 3292 uint8_t port_count; 3293 } __packed; 3294 3295 /* Read USB-PD Device discovery info */ 3296 #define EC_CMD_USB_PD_DISCOVERY 0x0113 3297 struct ec_params_usb_pd_discovery_entry { 3298 uint16_t vid; /* USB-IF VID */ 3299 uint16_t pid; /* USB-IF PID */ 3300 uint8_t ptype; /* product type (hub,periph,cable,ama) */ 3301 } __packed; 3302 3303 /* Override default charge behavior */ 3304 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114 3305 3306 /* Negative port parameters have special meaning */ 3307 enum usb_pd_override_ports { 3308 OVERRIDE_DONT_CHARGE = -2, 3309 OVERRIDE_OFF = -1, 3310 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */ 3311 }; 3312 3313 struct ec_params_charge_port_override { 3314 int16_t override_port; /* Override port# */ 3315 } __packed; 3316 3317 /* Read (and delete) one entry of PD event log */ 3318 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115 3319 3320 struct ec_response_pd_log { 3321 uint32_t timestamp; /* relative timestamp in milliseconds */ 3322 uint8_t type; /* event type : see PD_EVENT_xx below */ 3323 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */ 3324 uint16_t data; /* type-defined data payload */ 3325 uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */ 3326 } __packed; 3327 3328 /* The timestamp is the microsecond counter shifted to get about a ms. */ 3329 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */ 3330 3331 #define PD_LOG_SIZE_MASK 0x1f 3332 #define PD_LOG_PORT_MASK 0xe0 3333 #define PD_LOG_PORT_SHIFT 5 3334 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \ 3335 ((size) & PD_LOG_SIZE_MASK)) 3336 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT) 3337 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK) 3338 3339 /* PD event log : entry types */ 3340 /* PD MCU events */ 3341 #define PD_EVENT_MCU_BASE 0x00 3342 #define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0) 3343 #define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1) 3344 /* Reserved for custom board event */ 3345 #define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2) 3346 /* PD generic accessory events */ 3347 #define PD_EVENT_ACC_BASE 0x20 3348 #define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0) 3349 #define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1) 3350 /* PD power supply events */ 3351 #define PD_EVENT_PS_BASE 0x40 3352 #define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0) 3353 /* PD video dongles events */ 3354 #define PD_EVENT_VIDEO_BASE 0x60 3355 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0) 3356 #define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1) 3357 /* Returned in the "type" field, when there is no entry available */ 3358 #define PD_EVENT_NO_ENTRY 0xff 3359 3360 /* 3361 * PD_EVENT_MCU_CHARGE event definition : 3362 * the payload is "struct usb_chg_measures" 3363 * the data field contains the port state flags as defined below : 3364 */ 3365 /* Port partner is a dual role device */ 3366 #define CHARGE_FLAGS_DUAL_ROLE BIT(15) 3367 /* Port is the pending override port */ 3368 #define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14) 3369 /* Port is the override port */ 3370 #define CHARGE_FLAGS_OVERRIDE BIT(13) 3371 /* Charger type */ 3372 #define CHARGE_FLAGS_TYPE_SHIFT 3 3373 #define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT) 3374 /* Power delivery role */ 3375 #define CHARGE_FLAGS_ROLE_MASK (7 << 0) 3376 3377 /* 3378 * PD_EVENT_PS_FAULT data field flags definition : 3379 */ 3380 #define PS_FAULT_OCP 1 3381 #define PS_FAULT_FAST_OCP 2 3382 #define PS_FAULT_OVP 3 3383 #define PS_FAULT_DISCH 4 3384 3385 /* 3386 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info". 3387 */ 3388 struct mcdp_version { 3389 uint8_t major; 3390 uint8_t minor; 3391 uint16_t build; 3392 } __packed; 3393 3394 struct mcdp_info { 3395 uint8_t family[2]; 3396 uint8_t chipid[2]; 3397 struct mcdp_version irom; 3398 struct mcdp_version fw; 3399 } __packed; 3400 3401 /* struct mcdp_info field decoding */ 3402 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1]) 3403 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1]) 3404 3405 /* Get info about USB-C SS muxes */ 3406 #define EC_CMD_USB_PD_MUX_INFO 0x11a 3407 3408 struct ec_params_usb_pd_mux_info { 3409 uint8_t port; /* USB-C port number */ 3410 } __packed; 3411 3412 /* Flags representing mux state */ 3413 #define USB_PD_MUX_USB_ENABLED (1 << 0) 3414 #define USB_PD_MUX_DP_ENABLED (1 << 1) 3415 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2) 3416 #define USB_PD_MUX_HPD_IRQ (1 << 3) 3417 3418 struct ec_response_usb_pd_mux_info { 3419 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */ 3420 } __packed; 3421 3422 /*****************************************************************************/ 3423 /* 3424 * Passthru commands 3425 * 3426 * Some platforms have sub-processors chained to each other. For example. 3427 * 3428 * AP <--> EC <--> PD MCU 3429 * 3430 * The top 2 bits of the command number are used to indicate which device the 3431 * command is intended for. Device 0 is always the device receiving the 3432 * command; other device mapping is board-specific. 3433 * 3434 * When a device receives a command to be passed to a sub-processor, it passes 3435 * it on with the device number set back to 0. This allows the sub-processor 3436 * to remain blissfully unaware of whether the command originated on the next 3437 * device up the chain, or was passed through from the AP. 3438 * 3439 * In the above example, if the AP wants to send command 0x0002 to the PD MCU, 3440 * AP sends command 0x4002 to the EC 3441 * EC sends command 0x0002 to the PD MCU 3442 * EC forwards PD MCU response back to the AP 3443 */ 3444 3445 /* Offset and max command number for sub-device n */ 3446 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n)) 3447 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff) 3448 3449 /*****************************************************************************/ 3450 /* 3451 * Deprecated constants. These constants have been renamed for clarity. The 3452 * meaning and size has not changed. Programs that use the old names should 3453 * switch to the new names soon, as the old names may not be carried forward 3454 * forever. 3455 */ 3456 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE 3457 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1 3458 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE 3459 3460 #endif /* __CROS_EC_COMMANDS_H */ 3461
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.