1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 #ifdef CONFIG_CMA 67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68 #else 69 # define is_migrate_cma(migratetype) false 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 static inline int get_pageblock_migratetype(struct page *page) 79 { 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81 } 82 83 struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86 }; 87 88 struct pglist_data; 89 90 /* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96 #if defined(CONFIG_SMP) 97 struct zone_padding { 98 char x[0]; 99 } ____cacheline_internodealigned_in_smp; 100 #define ZONE_PADDING(name) struct zone_padding name; 101 #else 102 #define ZONE_PADDING(name) 103 #endif 104 105 enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_LRU_BASE, 109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 110 NR_ACTIVE_ANON, /* " " " " " */ 111 NR_INACTIVE_FILE, /* " " " " " */ 112 NR_ACTIVE_FILE, /* " " " " " */ 113 NR_UNEVICTABLE, /* " " " " " */ 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 115 NR_ANON_PAGES, /* Mapped anonymous pages */ 116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 117 only modified from process context */ 118 NR_FILE_PAGES, 119 NR_FILE_DIRTY, 120 NR_WRITEBACK, 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK, 125 /* Second 128 byte cacheline */ 126 NR_UNSTABLE_NFS, /* NFS unstable pages */ 127 NR_BOUNCE, 128 NR_VMSCAN_WRITE, 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 134 NR_DIRTIED, /* page dirtyings since bootup */ 135 NR_WRITTEN, /* page writings since bootup */ 136 #ifdef CONFIG_NUMA 137 NUMA_HIT, /* allocated in intended node */ 138 NUMA_MISS, /* allocated in non intended node */ 139 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 141 NUMA_LOCAL, /* allocation from local node */ 142 NUMA_OTHER, /* allocation from other node */ 143 #endif 144 NR_ANON_TRANSPARENT_HUGEPAGES, 145 NR_FREE_CMA_PAGES, 146 NR_VM_ZONE_STAT_ITEMS }; 147 148 /* 149 * We do arithmetic on the LRU lists in various places in the code, 150 * so it is important to keep the active lists LRU_ACTIVE higher in 151 * the array than the corresponding inactive lists, and to keep 152 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 153 * 154 * This has to be kept in sync with the statistics in zone_stat_item 155 * above and the descriptions in vmstat_text in mm/vmstat.c 156 */ 157 #define LRU_BASE 0 158 #define LRU_ACTIVE 1 159 #define LRU_FILE 2 160 161 enum lru_list { 162 LRU_INACTIVE_ANON = LRU_BASE, 163 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 164 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 165 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 166 LRU_UNEVICTABLE, 167 NR_LRU_LISTS 168 }; 169 170 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 171 172 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 173 174 static inline int is_file_lru(enum lru_list lru) 175 { 176 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 177 } 178 179 static inline int is_active_lru(enum lru_list lru) 180 { 181 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 182 } 183 184 static inline int is_unevictable_lru(enum lru_list lru) 185 { 186 return (lru == LRU_UNEVICTABLE); 187 } 188 189 struct zone_reclaim_stat { 190 /* 191 * The pageout code in vmscan.c keeps track of how many of the 192 * mem/swap backed and file backed pages are referenced. 193 * The higher the rotated/scanned ratio, the more valuable 194 * that cache is. 195 * 196 * The anon LRU stats live in [0], file LRU stats in [1] 197 */ 198 unsigned long recent_rotated[2]; 199 unsigned long recent_scanned[2]; 200 }; 201 202 struct lruvec { 203 struct list_head lists[NR_LRU_LISTS]; 204 struct zone_reclaim_stat reclaim_stat; 205 #ifdef CONFIG_MEMCG 206 struct zone *zone; 207 #endif 208 }; 209 210 /* Mask used at gathering information at once (see memcontrol.c) */ 211 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 212 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 213 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 214 215 /* Isolate clean file */ 216 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 217 /* Isolate unmapped file */ 218 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 219 /* Isolate for asynchronous migration */ 220 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 221 /* Isolate unevictable pages */ 222 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 223 224 /* LRU Isolation modes. */ 225 typedef unsigned __bitwise__ isolate_mode_t; 226 227 enum zone_watermarks { 228 WMARK_MIN, 229 WMARK_LOW, 230 WMARK_HIGH, 231 NR_WMARK 232 }; 233 234 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 235 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 236 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 237 238 struct per_cpu_pages { 239 int count; /* number of pages in the list */ 240 int high; /* high watermark, emptying needed */ 241 int batch; /* chunk size for buddy add/remove */ 242 243 /* Lists of pages, one per migrate type stored on the pcp-lists */ 244 struct list_head lists[MIGRATE_PCPTYPES]; 245 }; 246 247 struct per_cpu_pageset { 248 struct per_cpu_pages pcp; 249 #ifdef CONFIG_NUMA 250 s8 expire; 251 #endif 252 #ifdef CONFIG_SMP 253 s8 stat_threshold; 254 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 255 #endif 256 }; 257 258 #endif /* !__GENERATING_BOUNDS.H */ 259 260 enum zone_type { 261 #ifdef CONFIG_ZONE_DMA 262 /* 263 * ZONE_DMA is used when there are devices that are not able 264 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 265 * carve out the portion of memory that is needed for these devices. 266 * The range is arch specific. 267 * 268 * Some examples 269 * 270 * Architecture Limit 271 * --------------------------- 272 * parisc, ia64, sparc <4G 273 * s390 <2G 274 * arm Various 275 * alpha Unlimited or 0-16MB. 276 * 277 * i386, x86_64 and multiple other arches 278 * <16M. 279 */ 280 ZONE_DMA, 281 #endif 282 #ifdef CONFIG_ZONE_DMA32 283 /* 284 * x86_64 needs two ZONE_DMAs because it supports devices that are 285 * only able to do DMA to the lower 16M but also 32 bit devices that 286 * can only do DMA areas below 4G. 287 */ 288 ZONE_DMA32, 289 #endif 290 /* 291 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 292 * performed on pages in ZONE_NORMAL if the DMA devices support 293 * transfers to all addressable memory. 294 */ 295 ZONE_NORMAL, 296 #ifdef CONFIG_HIGHMEM 297 /* 298 * A memory area that is only addressable by the kernel through 299 * mapping portions into its own address space. This is for example 300 * used by i386 to allow the kernel to address the memory beyond 301 * 900MB. The kernel will set up special mappings (page 302 * table entries on i386) for each page that the kernel needs to 303 * access. 304 */ 305 ZONE_HIGHMEM, 306 #endif 307 ZONE_MOVABLE, 308 __MAX_NR_ZONES 309 }; 310 311 #ifndef __GENERATING_BOUNDS_H 312 313 struct zone { 314 /* Fields commonly accessed by the page allocator */ 315 316 /* zone watermarks, access with *_wmark_pages(zone) macros */ 317 unsigned long watermark[NR_WMARK]; 318 319 /* 320 * When free pages are below this point, additional steps are taken 321 * when reading the number of free pages to avoid per-cpu counter 322 * drift allowing watermarks to be breached 323 */ 324 unsigned long percpu_drift_mark; 325 326 /* 327 * We don't know if the memory that we're going to allocate will be freeable 328 * or/and it will be released eventually, so to avoid totally wasting several 329 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 330 * to run OOM on the lower zones despite there's tons of freeable ram 331 * on the higher zones). This array is recalculated at runtime if the 332 * sysctl_lowmem_reserve_ratio sysctl changes. 333 */ 334 unsigned long lowmem_reserve[MAX_NR_ZONES]; 335 336 /* 337 * This is a per-zone reserve of pages that should not be 338 * considered dirtyable memory. 339 */ 340 unsigned long dirty_balance_reserve; 341 342 #ifdef CONFIG_NUMA 343 int node; 344 /* 345 * zone reclaim becomes active if more unmapped pages exist. 346 */ 347 unsigned long min_unmapped_pages; 348 unsigned long min_slab_pages; 349 #endif 350 struct per_cpu_pageset __percpu *pageset; 351 /* 352 * free areas of different sizes 353 */ 354 spinlock_t lock; 355 int all_unreclaimable; /* All pages pinned */ 356 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 357 /* Set to true when the PG_migrate_skip bits should be cleared */ 358 bool compact_blockskip_flush; 359 360 /* pfns where compaction scanners should start */ 361 unsigned long compact_cached_free_pfn; 362 unsigned long compact_cached_migrate_pfn; 363 #endif 364 #ifdef CONFIG_MEMORY_HOTPLUG 365 /* see spanned/present_pages for more description */ 366 seqlock_t span_seqlock; 367 #endif 368 struct free_area free_area[MAX_ORDER]; 369 370 #ifndef CONFIG_SPARSEMEM 371 /* 372 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 373 * In SPARSEMEM, this map is stored in struct mem_section 374 */ 375 unsigned long *pageblock_flags; 376 #endif /* CONFIG_SPARSEMEM */ 377 378 #ifdef CONFIG_COMPACTION 379 /* 380 * On compaction failure, 1<<compact_defer_shift compactions 381 * are skipped before trying again. The number attempted since 382 * last failure is tracked with compact_considered. 383 */ 384 unsigned int compact_considered; 385 unsigned int compact_defer_shift; 386 int compact_order_failed; 387 #endif 388 389 ZONE_PADDING(_pad1_) 390 391 /* Fields commonly accessed by the page reclaim scanner */ 392 spinlock_t lru_lock; 393 struct lruvec lruvec; 394 395 unsigned long pages_scanned; /* since last reclaim */ 396 unsigned long flags; /* zone flags, see below */ 397 398 /* Zone statistics */ 399 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 400 401 /* 402 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 403 * this zone's LRU. Maintained by the pageout code. 404 */ 405 unsigned int inactive_ratio; 406 407 408 ZONE_PADDING(_pad2_) 409 /* Rarely used or read-mostly fields */ 410 411 /* 412 * wait_table -- the array holding the hash table 413 * wait_table_hash_nr_entries -- the size of the hash table array 414 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 415 * 416 * The purpose of all these is to keep track of the people 417 * waiting for a page to become available and make them 418 * runnable again when possible. The trouble is that this 419 * consumes a lot of space, especially when so few things 420 * wait on pages at a given time. So instead of using 421 * per-page waitqueues, we use a waitqueue hash table. 422 * 423 * The bucket discipline is to sleep on the same queue when 424 * colliding and wake all in that wait queue when removing. 425 * When something wakes, it must check to be sure its page is 426 * truly available, a la thundering herd. The cost of a 427 * collision is great, but given the expected load of the 428 * table, they should be so rare as to be outweighed by the 429 * benefits from the saved space. 430 * 431 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 432 * primary users of these fields, and in mm/page_alloc.c 433 * free_area_init_core() performs the initialization of them. 434 */ 435 wait_queue_head_t * wait_table; 436 unsigned long wait_table_hash_nr_entries; 437 unsigned long wait_table_bits; 438 439 /* 440 * Discontig memory support fields. 441 */ 442 struct pglist_data *zone_pgdat; 443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 444 unsigned long zone_start_pfn; 445 446 /* 447 * spanned_pages is the total pages spanned by the zone, including 448 * holes, which is calculated as: 449 * spanned_pages = zone_end_pfn - zone_start_pfn; 450 * 451 * present_pages is physical pages existing within the zone, which 452 * is calculated as: 453 * present_pages = spanned_pages - absent_pages(pages in holes); 454 * 455 * managed_pages is present pages managed by the buddy system, which 456 * is calculated as (reserved_pages includes pages allocated by the 457 * bootmem allocator): 458 * managed_pages = present_pages - reserved_pages; 459 * 460 * So present_pages may be used by memory hotplug or memory power 461 * management logic to figure out unmanaged pages by checking 462 * (present_pages - managed_pages). And managed_pages should be used 463 * by page allocator and vm scanner to calculate all kinds of watermarks 464 * and thresholds. 465 * 466 * Locking rules: 467 * 468 * zone_start_pfn and spanned_pages are protected by span_seqlock. 469 * It is a seqlock because it has to be read outside of zone->lock, 470 * and it is done in the main allocator path. But, it is written 471 * quite infrequently. 472 * 473 * The span_seq lock is declared along with zone->lock because it is 474 * frequently read in proximity to zone->lock. It's good to 475 * give them a chance of being in the same cacheline. 476 * 477 * Write access to present_pages and managed_pages at runtime should 478 * be protected by lock_memory_hotplug()/unlock_memory_hotplug(). 479 * Any reader who can't tolerant drift of present_pages and 480 * managed_pages should hold memory hotplug lock to get a stable value. 481 */ 482 unsigned long spanned_pages; 483 unsigned long present_pages; 484 unsigned long managed_pages; 485 486 /* 487 * rarely used fields: 488 */ 489 const char *name; 490 } ____cacheline_internodealigned_in_smp; 491 492 typedef enum { 493 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 494 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 495 ZONE_CONGESTED, /* zone has many dirty pages backed by 496 * a congested BDI 497 */ 498 } zone_flags_t; 499 500 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 501 { 502 set_bit(flag, &zone->flags); 503 } 504 505 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 506 { 507 return test_and_set_bit(flag, &zone->flags); 508 } 509 510 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 511 { 512 clear_bit(flag, &zone->flags); 513 } 514 515 static inline int zone_is_reclaim_congested(const struct zone *zone) 516 { 517 return test_bit(ZONE_CONGESTED, &zone->flags); 518 } 519 520 static inline int zone_is_reclaim_locked(const struct zone *zone) 521 { 522 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 523 } 524 525 static inline int zone_is_oom_locked(const struct zone *zone) 526 { 527 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 528 } 529 530 static inline unsigned long zone_end_pfn(const struct zone *zone) 531 { 532 return zone->zone_start_pfn + zone->spanned_pages; 533 } 534 535 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 536 { 537 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 538 } 539 540 static inline bool zone_is_initialized(struct zone *zone) 541 { 542 return !!zone->wait_table; 543 } 544 545 static inline bool zone_is_empty(struct zone *zone) 546 { 547 return zone->spanned_pages == 0; 548 } 549 550 /* 551 * The "priority" of VM scanning is how much of the queues we will scan in one 552 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 553 * queues ("queue_length >> 12") during an aging round. 554 */ 555 #define DEF_PRIORITY 12 556 557 /* Maximum number of zones on a zonelist */ 558 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 559 560 #ifdef CONFIG_NUMA 561 562 /* 563 * The NUMA zonelists are doubled because we need zonelists that restrict the 564 * allocations to a single node for GFP_THISNODE. 565 * 566 * [0] : Zonelist with fallback 567 * [1] : No fallback (GFP_THISNODE) 568 */ 569 #define MAX_ZONELISTS 2 570 571 572 /* 573 * We cache key information from each zonelist for smaller cache 574 * footprint when scanning for free pages in get_page_from_freelist(). 575 * 576 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 577 * up short of free memory since the last time (last_fullzone_zap) 578 * we zero'd fullzones. 579 * 2) The array z_to_n[] maps each zone in the zonelist to its node 580 * id, so that we can efficiently evaluate whether that node is 581 * set in the current tasks mems_allowed. 582 * 583 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 584 * indexed by a zones offset in the zonelist zones[] array. 585 * 586 * The get_page_from_freelist() routine does two scans. During the 587 * first scan, we skip zones whose corresponding bit in 'fullzones' 588 * is set or whose corresponding node in current->mems_allowed (which 589 * comes from cpusets) is not set. During the second scan, we bypass 590 * this zonelist_cache, to ensure we look methodically at each zone. 591 * 592 * Once per second, we zero out (zap) fullzones, forcing us to 593 * reconsider nodes that might have regained more free memory. 594 * The field last_full_zap is the time we last zapped fullzones. 595 * 596 * This mechanism reduces the amount of time we waste repeatedly 597 * reexaming zones for free memory when they just came up low on 598 * memory momentarilly ago. 599 * 600 * The zonelist_cache struct members logically belong in struct 601 * zonelist. However, the mempolicy zonelists constructed for 602 * MPOL_BIND are intentionally variable length (and usually much 603 * shorter). A general purpose mechanism for handling structs with 604 * multiple variable length members is more mechanism than we want 605 * here. We resort to some special case hackery instead. 606 * 607 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 608 * part because they are shorter), so we put the fixed length stuff 609 * at the front of the zonelist struct, ending in a variable length 610 * zones[], as is needed by MPOL_BIND. 611 * 612 * Then we put the optional zonelist cache on the end of the zonelist 613 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 614 * the fixed length portion at the front of the struct. This pointer 615 * both enables us to find the zonelist cache, and in the case of 616 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 617 * to know that the zonelist cache is not there. 618 * 619 * The end result is that struct zonelists come in two flavors: 620 * 1) The full, fixed length version, shown below, and 621 * 2) The custom zonelists for MPOL_BIND. 622 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 623 * 624 * Even though there may be multiple CPU cores on a node modifying 625 * fullzones or last_full_zap in the same zonelist_cache at the same 626 * time, we don't lock it. This is just hint data - if it is wrong now 627 * and then, the allocator will still function, perhaps a bit slower. 628 */ 629 630 631 struct zonelist_cache { 632 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 633 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 634 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 635 }; 636 #else 637 #define MAX_ZONELISTS 1 638 struct zonelist_cache; 639 #endif 640 641 /* 642 * This struct contains information about a zone in a zonelist. It is stored 643 * here to avoid dereferences into large structures and lookups of tables 644 */ 645 struct zoneref { 646 struct zone *zone; /* Pointer to actual zone */ 647 int zone_idx; /* zone_idx(zoneref->zone) */ 648 }; 649 650 /* 651 * One allocation request operates on a zonelist. A zonelist 652 * is a list of zones, the first one is the 'goal' of the 653 * allocation, the other zones are fallback zones, in decreasing 654 * priority. 655 * 656 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 657 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 658 * * 659 * To speed the reading of the zonelist, the zonerefs contain the zone index 660 * of the entry being read. Helper functions to access information given 661 * a struct zoneref are 662 * 663 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 664 * zonelist_zone_idx() - Return the index of the zone for an entry 665 * zonelist_node_idx() - Return the index of the node for an entry 666 */ 667 struct zonelist { 668 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 669 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 670 #ifdef CONFIG_NUMA 671 struct zonelist_cache zlcache; // optional ... 672 #endif 673 }; 674 675 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 676 struct node_active_region { 677 unsigned long start_pfn; 678 unsigned long end_pfn; 679 int nid; 680 }; 681 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 682 683 #ifndef CONFIG_DISCONTIGMEM 684 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 685 extern struct page *mem_map; 686 #endif 687 688 /* 689 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 690 * (mostly NUMA machines?) to denote a higher-level memory zone than the 691 * zone denotes. 692 * 693 * On NUMA machines, each NUMA node would have a pg_data_t to describe 694 * it's memory layout. 695 * 696 * Memory statistics and page replacement data structures are maintained on a 697 * per-zone basis. 698 */ 699 struct bootmem_data; 700 typedef struct pglist_data { 701 struct zone node_zones[MAX_NR_ZONES]; 702 struct zonelist node_zonelists[MAX_ZONELISTS]; 703 int nr_zones; 704 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 705 struct page *node_mem_map; 706 #ifdef CONFIG_MEMCG 707 struct page_cgroup *node_page_cgroup; 708 #endif 709 #endif 710 #ifndef CONFIG_NO_BOOTMEM 711 struct bootmem_data *bdata; 712 #endif 713 #ifdef CONFIG_MEMORY_HOTPLUG 714 /* 715 * Must be held any time you expect node_start_pfn, node_present_pages 716 * or node_spanned_pages stay constant. Holding this will also 717 * guarantee that any pfn_valid() stays that way. 718 * 719 * Nests above zone->lock and zone->size_seqlock. 720 */ 721 spinlock_t node_size_lock; 722 #endif 723 unsigned long node_start_pfn; 724 unsigned long node_present_pages; /* total number of physical pages */ 725 unsigned long node_spanned_pages; /* total size of physical page 726 range, including holes */ 727 int node_id; 728 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */ 729 wait_queue_head_t kswapd_wait; 730 wait_queue_head_t pfmemalloc_wait; 731 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */ 732 int kswapd_max_order; 733 enum zone_type classzone_idx; 734 #ifdef CONFIG_NUMA_BALANCING 735 /* 736 * Lock serializing the per destination node AutoNUMA memory 737 * migration rate limiting data. 738 */ 739 spinlock_t numabalancing_migrate_lock; 740 741 /* Rate limiting time interval */ 742 unsigned long numabalancing_migrate_next_window; 743 744 /* Number of pages migrated during the rate limiting time interval */ 745 unsigned long numabalancing_migrate_nr_pages; 746 #endif 747 } pg_data_t; 748 749 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 750 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 751 #ifdef CONFIG_FLAT_NODE_MEM_MAP 752 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 753 #else 754 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 755 #endif 756 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 757 758 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 759 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 760 761 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 762 { 763 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 764 } 765 766 static inline bool pgdat_is_empty(pg_data_t *pgdat) 767 { 768 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 769 } 770 771 #include <linux/memory_hotplug.h> 772 773 extern struct mutex zonelists_mutex; 774 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 775 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 776 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 777 int classzone_idx, int alloc_flags); 778 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 779 int classzone_idx, int alloc_flags); 780 enum memmap_context { 781 MEMMAP_EARLY, 782 MEMMAP_HOTPLUG, 783 }; 784 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 785 unsigned long size, 786 enum memmap_context context); 787 788 extern void lruvec_init(struct lruvec *lruvec); 789 790 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 791 { 792 #ifdef CONFIG_MEMCG 793 return lruvec->zone; 794 #else 795 return container_of(lruvec, struct zone, lruvec); 796 #endif 797 } 798 799 #ifdef CONFIG_HAVE_MEMORY_PRESENT 800 void memory_present(int nid, unsigned long start, unsigned long end); 801 #else 802 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 803 #endif 804 805 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 806 int local_memory_node(int node_id); 807 #else 808 static inline int local_memory_node(int node_id) { return node_id; }; 809 #endif 810 811 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 812 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 813 #endif 814 815 /* 816 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 817 */ 818 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 819 820 static inline int populated_zone(struct zone *zone) 821 { 822 return (!!zone->present_pages); 823 } 824 825 extern int movable_zone; 826 827 static inline int zone_movable_is_highmem(void) 828 { 829 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 830 return movable_zone == ZONE_HIGHMEM; 831 #else 832 return 0; 833 #endif 834 } 835 836 static inline int is_highmem_idx(enum zone_type idx) 837 { 838 #ifdef CONFIG_HIGHMEM 839 return (idx == ZONE_HIGHMEM || 840 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 841 #else 842 return 0; 843 #endif 844 } 845 846 static inline int is_normal_idx(enum zone_type idx) 847 { 848 return (idx == ZONE_NORMAL); 849 } 850 851 /** 852 * is_highmem - helper function to quickly check if a struct zone is a 853 * highmem zone or not. This is an attempt to keep references 854 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 855 * @zone - pointer to struct zone variable 856 */ 857 static inline int is_highmem(struct zone *zone) 858 { 859 #ifdef CONFIG_HIGHMEM 860 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 861 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 862 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 863 zone_movable_is_highmem()); 864 #else 865 return 0; 866 #endif 867 } 868 869 static inline int is_normal(struct zone *zone) 870 { 871 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 872 } 873 874 static inline int is_dma32(struct zone *zone) 875 { 876 #ifdef CONFIG_ZONE_DMA32 877 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 878 #else 879 return 0; 880 #endif 881 } 882 883 static inline int is_dma(struct zone *zone) 884 { 885 #ifdef CONFIG_ZONE_DMA 886 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 887 #else 888 return 0; 889 #endif 890 } 891 892 /* These two functions are used to setup the per zone pages min values */ 893 struct ctl_table; 894 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 895 void __user *, size_t *, loff_t *); 896 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 897 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 898 void __user *, size_t *, loff_t *); 899 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 900 void __user *, size_t *, loff_t *); 901 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 902 void __user *, size_t *, loff_t *); 903 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 904 void __user *, size_t *, loff_t *); 905 906 extern int numa_zonelist_order_handler(struct ctl_table *, int, 907 void __user *, size_t *, loff_t *); 908 extern char numa_zonelist_order[]; 909 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 910 911 #ifndef CONFIG_NEED_MULTIPLE_NODES 912 913 extern struct pglist_data contig_page_data; 914 #define NODE_DATA(nid) (&contig_page_data) 915 #define NODE_MEM_MAP(nid) mem_map 916 917 #else /* CONFIG_NEED_MULTIPLE_NODES */ 918 919 #include <asm/mmzone.h> 920 921 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 922 923 extern struct pglist_data *first_online_pgdat(void); 924 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 925 extern struct zone *next_zone(struct zone *zone); 926 927 /** 928 * for_each_online_pgdat - helper macro to iterate over all online nodes 929 * @pgdat - pointer to a pg_data_t variable 930 */ 931 #define for_each_online_pgdat(pgdat) \ 932 for (pgdat = first_online_pgdat(); \ 933 pgdat; \ 934 pgdat = next_online_pgdat(pgdat)) 935 /** 936 * for_each_zone - helper macro to iterate over all memory zones 937 * @zone - pointer to struct zone variable 938 * 939 * The user only needs to declare the zone variable, for_each_zone 940 * fills it in. 941 */ 942 #define for_each_zone(zone) \ 943 for (zone = (first_online_pgdat())->node_zones; \ 944 zone; \ 945 zone = next_zone(zone)) 946 947 #define for_each_populated_zone(zone) \ 948 for (zone = (first_online_pgdat())->node_zones; \ 949 zone; \ 950 zone = next_zone(zone)) \ 951 if (!populated_zone(zone)) \ 952 ; /* do nothing */ \ 953 else 954 955 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 956 { 957 return zoneref->zone; 958 } 959 960 static inline int zonelist_zone_idx(struct zoneref *zoneref) 961 { 962 return zoneref->zone_idx; 963 } 964 965 static inline int zonelist_node_idx(struct zoneref *zoneref) 966 { 967 #ifdef CONFIG_NUMA 968 /* zone_to_nid not available in this context */ 969 return zoneref->zone->node; 970 #else 971 return 0; 972 #endif /* CONFIG_NUMA */ 973 } 974 975 /** 976 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 977 * @z - The cursor used as a starting point for the search 978 * @highest_zoneidx - The zone index of the highest zone to return 979 * @nodes - An optional nodemask to filter the zonelist with 980 * @zone - The first suitable zone found is returned via this parameter 981 * 982 * This function returns the next zone at or below a given zone index that is 983 * within the allowed nodemask using a cursor as the starting point for the 984 * search. The zoneref returned is a cursor that represents the current zone 985 * being examined. It should be advanced by one before calling 986 * next_zones_zonelist again. 987 */ 988 struct zoneref *next_zones_zonelist(struct zoneref *z, 989 enum zone_type highest_zoneidx, 990 nodemask_t *nodes, 991 struct zone **zone); 992 993 /** 994 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 995 * @zonelist - The zonelist to search for a suitable zone 996 * @highest_zoneidx - The zone index of the highest zone to return 997 * @nodes - An optional nodemask to filter the zonelist with 998 * @zone - The first suitable zone found is returned via this parameter 999 * 1000 * This function returns the first zone at or below a given zone index that is 1001 * within the allowed nodemask. The zoneref returned is a cursor that can be 1002 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1003 * one before calling. 1004 */ 1005 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1006 enum zone_type highest_zoneidx, 1007 nodemask_t *nodes, 1008 struct zone **zone) 1009 { 1010 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1011 zone); 1012 } 1013 1014 /** 1015 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1016 * @zone - The current zone in the iterator 1017 * @z - The current pointer within zonelist->zones being iterated 1018 * @zlist - The zonelist being iterated 1019 * @highidx - The zone index of the highest zone to return 1020 * @nodemask - Nodemask allowed by the allocator 1021 * 1022 * This iterator iterates though all zones at or below a given zone index and 1023 * within a given nodemask 1024 */ 1025 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1026 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1027 zone; \ 1028 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1029 1030 /** 1031 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1032 * @zone - The current zone in the iterator 1033 * @z - The current pointer within zonelist->zones being iterated 1034 * @zlist - The zonelist being iterated 1035 * @highidx - The zone index of the highest zone to return 1036 * 1037 * This iterator iterates though all zones at or below a given zone index. 1038 */ 1039 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1040 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1041 1042 #ifdef CONFIG_SPARSEMEM 1043 #include <asm/sparsemem.h> 1044 #endif 1045 1046 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1047 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1048 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1049 { 1050 return 0; 1051 } 1052 #endif 1053 1054 #ifdef CONFIG_FLATMEM 1055 #define pfn_to_nid(pfn) (0) 1056 #endif 1057 1058 #ifdef CONFIG_SPARSEMEM 1059 1060 /* 1061 * SECTION_SHIFT #bits space required to store a section # 1062 * 1063 * PA_SECTION_SHIFT physical address to/from section number 1064 * PFN_SECTION_SHIFT pfn to/from section number 1065 */ 1066 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1067 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1068 1069 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1070 1071 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1072 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1073 1074 #define SECTION_BLOCKFLAGS_BITS \ 1075 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1076 1077 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1078 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1079 #endif 1080 1081 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1082 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1083 1084 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1085 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1086 1087 struct page; 1088 struct page_cgroup; 1089 struct mem_section { 1090 /* 1091 * This is, logically, a pointer to an array of struct 1092 * pages. However, it is stored with some other magic. 1093 * (see sparse.c::sparse_init_one_section()) 1094 * 1095 * Additionally during early boot we encode node id of 1096 * the location of the section here to guide allocation. 1097 * (see sparse.c::memory_present()) 1098 * 1099 * Making it a UL at least makes someone do a cast 1100 * before using it wrong. 1101 */ 1102 unsigned long section_mem_map; 1103 1104 /* See declaration of similar field in struct zone */ 1105 unsigned long *pageblock_flags; 1106 #ifdef CONFIG_MEMCG 1107 /* 1108 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1109 * section. (see memcontrol.h/page_cgroup.h about this.) 1110 */ 1111 struct page_cgroup *page_cgroup; 1112 unsigned long pad; 1113 #endif 1114 }; 1115 1116 #ifdef CONFIG_SPARSEMEM_EXTREME 1117 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1118 #else 1119 #define SECTIONS_PER_ROOT 1 1120 #endif 1121 1122 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1123 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1124 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1125 1126 #ifdef CONFIG_SPARSEMEM_EXTREME 1127 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1128 #else 1129 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1130 #endif 1131 1132 static inline struct mem_section *__nr_to_section(unsigned long nr) 1133 { 1134 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1135 return NULL; 1136 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1137 } 1138 extern int __section_nr(struct mem_section* ms); 1139 extern unsigned long usemap_size(void); 1140 1141 /* 1142 * We use the lower bits of the mem_map pointer to store 1143 * a little bit of information. There should be at least 1144 * 3 bits here due to 32-bit alignment. 1145 */ 1146 #define SECTION_MARKED_PRESENT (1UL<<0) 1147 #define SECTION_HAS_MEM_MAP (1UL<<1) 1148 #define SECTION_MAP_LAST_BIT (1UL<<2) 1149 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1150 #define SECTION_NID_SHIFT 2 1151 1152 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1153 { 1154 unsigned long map = section->section_mem_map; 1155 map &= SECTION_MAP_MASK; 1156 return (struct page *)map; 1157 } 1158 1159 static inline int present_section(struct mem_section *section) 1160 { 1161 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1162 } 1163 1164 static inline int present_section_nr(unsigned long nr) 1165 { 1166 return present_section(__nr_to_section(nr)); 1167 } 1168 1169 static inline int valid_section(struct mem_section *section) 1170 { 1171 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1172 } 1173 1174 static inline int valid_section_nr(unsigned long nr) 1175 { 1176 return valid_section(__nr_to_section(nr)); 1177 } 1178 1179 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1180 { 1181 return __nr_to_section(pfn_to_section_nr(pfn)); 1182 } 1183 1184 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1185 static inline int pfn_valid(unsigned long pfn) 1186 { 1187 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1188 return 0; 1189 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1190 } 1191 #endif 1192 1193 static inline int pfn_present(unsigned long pfn) 1194 { 1195 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1196 return 0; 1197 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1198 } 1199 1200 /* 1201 * These are _only_ used during initialisation, therefore they 1202 * can use __initdata ... They could have names to indicate 1203 * this restriction. 1204 */ 1205 #ifdef CONFIG_NUMA 1206 #define pfn_to_nid(pfn) \ 1207 ({ \ 1208 unsigned long __pfn_to_nid_pfn = (pfn); \ 1209 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1210 }) 1211 #else 1212 #define pfn_to_nid(pfn) (0) 1213 #endif 1214 1215 #define early_pfn_valid(pfn) pfn_valid(pfn) 1216 void sparse_init(void); 1217 #else 1218 #define sparse_init() do {} while (0) 1219 #define sparse_index_init(_sec, _nid) do {} while (0) 1220 #endif /* CONFIG_SPARSEMEM */ 1221 1222 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1223 bool early_pfn_in_nid(unsigned long pfn, int nid); 1224 #else 1225 #define early_pfn_in_nid(pfn, nid) (1) 1226 #endif 1227 1228 #ifndef early_pfn_valid 1229 #define early_pfn_valid(pfn) (1) 1230 #endif 1231 1232 void memory_present(int nid, unsigned long start, unsigned long end); 1233 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1234 1235 /* 1236 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1237 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1238 * pfn_valid_within() should be used in this case; we optimise this away 1239 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1240 */ 1241 #ifdef CONFIG_HOLES_IN_ZONE 1242 #define pfn_valid_within(pfn) pfn_valid(pfn) 1243 #else 1244 #define pfn_valid_within(pfn) (1) 1245 #endif 1246 1247 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1248 /* 1249 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1250 * associated with it or not. In FLATMEM, it is expected that holes always 1251 * have valid memmap as long as there is valid PFNs either side of the hole. 1252 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1253 * entire section. 1254 * 1255 * However, an ARM, and maybe other embedded architectures in the future 1256 * free memmap backing holes to save memory on the assumption the memmap is 1257 * never used. The page_zone linkages are then broken even though pfn_valid() 1258 * returns true. A walker of the full memmap must then do this additional 1259 * check to ensure the memmap they are looking at is sane by making sure 1260 * the zone and PFN linkages are still valid. This is expensive, but walkers 1261 * of the full memmap are extremely rare. 1262 */ 1263 int memmap_valid_within(unsigned long pfn, 1264 struct page *page, struct zone *zone); 1265 #else 1266 static inline int memmap_valid_within(unsigned long pfn, 1267 struct page *page, struct zone *zone) 1268 { 1269 return 1; 1270 } 1271 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1272 1273 #endif /* !__GENERATING_BOUNDS.H */ 1274 #endif /* !__ASSEMBLY__ */ 1275 #endif /* _LINUX_MMZONE_H */ 1276
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.