~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/netdevice.h

Version: ~ [ linux-4.18-rc5 ] ~ [ linux-4.17.6 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.55 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.112 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.140 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.115 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.57 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.27.62 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/workqueue.h>
 39 #include <linux/dynamic_queue_limits.h>
 40 
 41 #include <linux/ethtool.h>
 42 #include <net/net_namespace.h>
 43 #ifdef CONFIG_DCB
 44 #include <net/dcbnl.h>
 45 #endif
 46 #include <net/netprio_cgroup.h>
 47 #include <net/xdp.h>
 48 
 49 #include <linux/netdev_features.h>
 50 #include <linux/neighbour.h>
 51 #include <uapi/linux/netdevice.h>
 52 #include <uapi/linux/if_bonding.h>
 53 #include <uapi/linux/pkt_cls.h>
 54 #include <linux/hashtable.h>
 55 
 56 struct netpoll_info;
 57 struct device;
 58 struct phy_device;
 59 struct dsa_port;
 60 
 61 struct sfp_bus;
 62 /* 802.11 specific */
 63 struct wireless_dev;
 64 /* 802.15.4 specific */
 65 struct wpan_dev;
 66 struct mpls_dev;
 67 /* UDP Tunnel offloads */
 68 struct udp_tunnel_info;
 69 struct bpf_prog;
 70 struct xdp_buff;
 71 
 72 void netdev_set_default_ethtool_ops(struct net_device *dev,
 73                                     const struct ethtool_ops *ops);
 74 
 75 /* Backlog congestion levels */
 76 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 77 #define NET_RX_DROP             1       /* packet dropped */
 78 
 79 /*
 80  * Transmit return codes: transmit return codes originate from three different
 81  * namespaces:
 82  *
 83  * - qdisc return codes
 84  * - driver transmit return codes
 85  * - errno values
 86  *
 87  * Drivers are allowed to return any one of those in their hard_start_xmit()
 88  * function. Real network devices commonly used with qdiscs should only return
 89  * the driver transmit return codes though - when qdiscs are used, the actual
 90  * transmission happens asynchronously, so the value is not propagated to
 91  * higher layers. Virtual network devices transmit synchronously; in this case
 92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 93  * others are propagated to higher layers.
 94  */
 95 
 96 /* qdisc ->enqueue() return codes. */
 97 #define NET_XMIT_SUCCESS        0x00
 98 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 99 #define NET_XMIT_CN             0x02    /* congestion notification      */
100 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK          0xf0
110 
111 enum netdev_tx {
112         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
113         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
114         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132 
133         return false;
134 }
135 
136 /*
137  *      Compute the worst-case header length according to the protocols
138  *      used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *      Old network device statistics. Fields are native words
162  *      (unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166         unsigned long   rx_packets;
167         unsigned long   tx_packets;
168         unsigned long   rx_bytes;
169         unsigned long   tx_bytes;
170         unsigned long   rx_errors;
171         unsigned long   tx_errors;
172         unsigned long   rx_dropped;
173         unsigned long   tx_dropped;
174         unsigned long   multicast;
175         unsigned long   collisions;
176         unsigned long   rx_length_errors;
177         unsigned long   rx_over_errors;
178         unsigned long   rx_crc_errors;
179         unsigned long   rx_frame_errors;
180         unsigned long   rx_fifo_errors;
181         unsigned long   rx_missed_errors;
182         unsigned long   tx_aborted_errors;
183         unsigned long   tx_carrier_errors;
184         unsigned long   tx_fifo_errors;
185         unsigned long   tx_heartbeat_errors;
186         unsigned long   tx_window_errors;
187         unsigned long   rx_compressed;
188         unsigned long   tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206         struct list_head        list;
207         unsigned char           addr[MAX_ADDR_LEN];
208         unsigned char           type;
209 #define NETDEV_HW_ADDR_T_LAN            1
210 #define NETDEV_HW_ADDR_T_SAN            2
211 #define NETDEV_HW_ADDR_T_SLAVE          3
212 #define NETDEV_HW_ADDR_T_UNICAST        4
213 #define NETDEV_HW_ADDR_T_MULTICAST      5
214         bool                    global_use;
215         int                     sync_cnt;
216         int                     refcount;
217         int                     synced;
218         struct rcu_head         rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222         struct list_head        list;
223         int                     count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229         list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242         unsigned int    hh_len;
243         seqlock_t       hh_lock;
244 
245         /* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD     16
247 #define HH_DATA_OFF(__len) \
248         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268         int     (*create) (struct sk_buff *skb, struct net_device *dev,
269                            unsigned short type, const void *daddr,
270                            const void *saddr, unsigned int len);
271         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273         void    (*cache_update)(struct hh_cache *hh,
274                                 const struct net_device *dev,
275                                 const unsigned char *haddr);
276         bool    (*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285         __LINK_STATE_START,
286         __LINK_STATE_PRESENT,
287         __LINK_STATE_NOCARRIER,
288         __LINK_STATE_LINKWATCH_PENDING,
289         __LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298         char name[IFNAMSIZ];
299         struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 /*
306  * Structure for NAPI scheduling similar to tasklet but with weighting
307  */
308 struct napi_struct {
309         /* The poll_list must only be managed by the entity which
310          * changes the state of the NAPI_STATE_SCHED bit.  This means
311          * whoever atomically sets that bit can add this napi_struct
312          * to the per-CPU poll_list, and whoever clears that bit
313          * can remove from the list right before clearing the bit.
314          */
315         struct list_head        poll_list;
316 
317         unsigned long           state;
318         int                     weight;
319         unsigned int            gro_count;
320         int                     (*poll)(struct napi_struct *, int);
321 #ifdef CONFIG_NETPOLL
322         int                     poll_owner;
323 #endif
324         struct net_device       *dev;
325         struct sk_buff          *gro_list;
326         struct sk_buff          *skb;
327         struct hrtimer          timer;
328         struct list_head        dev_list;
329         struct hlist_node       napi_hash_node;
330         unsigned int            napi_id;
331 };
332 
333 enum {
334         NAPI_STATE_SCHED,       /* Poll is scheduled */
335         NAPI_STATE_MISSED,      /* reschedule a napi */
336         NAPI_STATE_DISABLE,     /* Disable pending */
337         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
338         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
339         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
340         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
341 };
342 
343 enum {
344         NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
345         NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
346         NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
347         NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
348         NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
349         NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
350         NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
351 };
352 
353 enum gro_result {
354         GRO_MERGED,
355         GRO_MERGED_FREE,
356         GRO_HELD,
357         GRO_NORMAL,
358         GRO_DROP,
359         GRO_CONSUMED,
360 };
361 typedef enum gro_result gro_result_t;
362 
363 /*
364  * enum rx_handler_result - Possible return values for rx_handlers.
365  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
366  * further.
367  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
368  * case skb->dev was changed by rx_handler.
369  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
370  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
371  *
372  * rx_handlers are functions called from inside __netif_receive_skb(), to do
373  * special processing of the skb, prior to delivery to protocol handlers.
374  *
375  * Currently, a net_device can only have a single rx_handler registered. Trying
376  * to register a second rx_handler will return -EBUSY.
377  *
378  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
379  * To unregister a rx_handler on a net_device, use
380  * netdev_rx_handler_unregister().
381  *
382  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
383  * do with the skb.
384  *
385  * If the rx_handler consumed the skb in some way, it should return
386  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
387  * the skb to be delivered in some other way.
388  *
389  * If the rx_handler changed skb->dev, to divert the skb to another
390  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
391  * new device will be called if it exists.
392  *
393  * If the rx_handler decides the skb should be ignored, it should return
394  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
395  * are registered on exact device (ptype->dev == skb->dev).
396  *
397  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
398  * delivered, it should return RX_HANDLER_PASS.
399  *
400  * A device without a registered rx_handler will behave as if rx_handler
401  * returned RX_HANDLER_PASS.
402  */
403 
404 enum rx_handler_result {
405         RX_HANDLER_CONSUMED,
406         RX_HANDLER_ANOTHER,
407         RX_HANDLER_EXACT,
408         RX_HANDLER_PASS,
409 };
410 typedef enum rx_handler_result rx_handler_result_t;
411 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
412 
413 void __napi_schedule(struct napi_struct *n);
414 void __napi_schedule_irqoff(struct napi_struct *n);
415 
416 static inline bool napi_disable_pending(struct napi_struct *n)
417 {
418         return test_bit(NAPI_STATE_DISABLE, &n->state);
419 }
420 
421 bool napi_schedule_prep(struct napi_struct *n);
422 
423 /**
424  *      napi_schedule - schedule NAPI poll
425  *      @n: NAPI context
426  *
427  * Schedule NAPI poll routine to be called if it is not already
428  * running.
429  */
430 static inline void napi_schedule(struct napi_struct *n)
431 {
432         if (napi_schedule_prep(n))
433                 __napi_schedule(n);
434 }
435 
436 /**
437  *      napi_schedule_irqoff - schedule NAPI poll
438  *      @n: NAPI context
439  *
440  * Variant of napi_schedule(), assuming hard irqs are masked.
441  */
442 static inline void napi_schedule_irqoff(struct napi_struct *n)
443 {
444         if (napi_schedule_prep(n))
445                 __napi_schedule_irqoff(n);
446 }
447 
448 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
449 static inline bool napi_reschedule(struct napi_struct *napi)
450 {
451         if (napi_schedule_prep(napi)) {
452                 __napi_schedule(napi);
453                 return true;
454         }
455         return false;
456 }
457 
458 bool napi_complete_done(struct napi_struct *n, int work_done);
459 /**
460  *      napi_complete - NAPI processing complete
461  *      @n: NAPI context
462  *
463  * Mark NAPI processing as complete.
464  * Consider using napi_complete_done() instead.
465  * Return false if device should avoid rearming interrupts.
466  */
467 static inline bool napi_complete(struct napi_struct *n)
468 {
469         return napi_complete_done(n, 0);
470 }
471 
472 /**
473  *      napi_hash_del - remove a NAPI from global table
474  *      @napi: NAPI context
475  *
476  * Warning: caller must observe RCU grace period
477  * before freeing memory containing @napi, if
478  * this function returns true.
479  * Note: core networking stack automatically calls it
480  * from netif_napi_del().
481  * Drivers might want to call this helper to combine all
482  * the needed RCU grace periods into a single one.
483  */
484 bool napi_hash_del(struct napi_struct *napi);
485 
486 /**
487  *      napi_disable - prevent NAPI from scheduling
488  *      @n: NAPI context
489  *
490  * Stop NAPI from being scheduled on this context.
491  * Waits till any outstanding processing completes.
492  */
493 void napi_disable(struct napi_struct *n);
494 
495 /**
496  *      napi_enable - enable NAPI scheduling
497  *      @n: NAPI context
498  *
499  * Resume NAPI from being scheduled on this context.
500  * Must be paired with napi_disable.
501  */
502 static inline void napi_enable(struct napi_struct *n)
503 {
504         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
505         smp_mb__before_atomic();
506         clear_bit(NAPI_STATE_SCHED, &n->state);
507         clear_bit(NAPI_STATE_NPSVC, &n->state);
508 }
509 
510 /**
511  *      napi_synchronize - wait until NAPI is not running
512  *      @n: NAPI context
513  *
514  * Wait until NAPI is done being scheduled on this context.
515  * Waits till any outstanding processing completes but
516  * does not disable future activations.
517  */
518 static inline void napi_synchronize(const struct napi_struct *n)
519 {
520         if (IS_ENABLED(CONFIG_SMP))
521                 while (test_bit(NAPI_STATE_SCHED, &n->state))
522                         msleep(1);
523         else
524                 barrier();
525 }
526 
527 enum netdev_queue_state_t {
528         __QUEUE_STATE_DRV_XOFF,
529         __QUEUE_STATE_STACK_XOFF,
530         __QUEUE_STATE_FROZEN,
531 };
532 
533 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
534 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
535 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
536 
537 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
539                                         QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
541                                         QUEUE_STATE_FROZEN)
542 
543 /*
544  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
545  * netif_tx_* functions below are used to manipulate this flag.  The
546  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
547  * queue independently.  The netif_xmit_*stopped functions below are called
548  * to check if the queue has been stopped by the driver or stack (either
549  * of the XOFF bits are set in the state).  Drivers should not need to call
550  * netif_xmit*stopped functions, they should only be using netif_tx_*.
551  */
552 
553 struct netdev_queue {
554 /*
555  * read-mostly part
556  */
557         struct net_device       *dev;
558         struct Qdisc __rcu      *qdisc;
559         struct Qdisc            *qdisc_sleeping;
560 #ifdef CONFIG_SYSFS
561         struct kobject          kobj;
562 #endif
563 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
564         int                     numa_node;
565 #endif
566         unsigned long           tx_maxrate;
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572 /*
573  * write-mostly part
574  */
575         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
576         int                     xmit_lock_owner;
577         /*
578          * Time (in jiffies) of last Tx
579          */
580         unsigned long           trans_start;
581 
582         unsigned long           state;
583 
584 #ifdef CONFIG_BQL
585         struct dql              dql;
586 #endif
587 } ____cacheline_aligned_in_smp;
588 
589 extern int sysctl_fb_tunnels_only_for_init_net;
590 
591 static inline bool net_has_fallback_tunnels(const struct net *net)
592 {
593         return net == &init_net ||
594                !IS_ENABLED(CONFIG_SYSCTL) ||
595                !sysctl_fb_tunnels_only_for_init_net;
596 }
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601         return q->numa_node;
602 #else
603         return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610         q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620         unsigned int len;
621         struct rcu_head rcu;
622         u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632         u16 cpu;
633         u16 filter;
634         unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642         unsigned int mask;
643         struct rcu_head rcu;
644         struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660         u32     mask;
661 
662         u32     ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672                                         u32 hash)
673 {
674         if (table && hash) {
675                 unsigned int index = hash & table->mask;
676                 u32 val = hash & ~rps_cpu_mask;
677 
678                 /* We only give a hint, preemption can change CPU under us */
679                 val |= raw_smp_processor_id();
680 
681                 if (table->ents[index] != val)
682                         table->ents[index] = val;
683         }
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688                          u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695         struct rps_map __rcu            *rps_map;
696         struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698         struct kobject                  kobj;
699         struct net_device               *dev;
700         struct xdp_rxq_info             xdp_rxq;
701 } ____cacheline_aligned_in_smp;
702 
703 /*
704  * RX queue sysfs structures and functions.
705  */
706 struct rx_queue_attribute {
707         struct attribute attr;
708         ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
709         ssize_t (*store)(struct netdev_rx_queue *queue,
710                          const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719         unsigned int len;
720         unsigned int alloc_len;
721         struct rcu_head rcu;
722         u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732         struct rcu_head rcu;
733         struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
736         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE    16
740 #define TC_BITMASK      15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743         u16 count;
744         u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753         char    manufacturer[64];
754         char    serial_number[64];
755         char    hardware_version[64];
756         char    driver_version[64];
757         char    optionrom_version[64];
758         char    firmware_version[64];
759         char    model[256];
760         char    model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771         unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775                                             struct netdev_phys_item_id *b)
776 {
777         return a->id_len == b->id_len &&
778                memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782                                        struct sk_buff *skb);
783 
784 enum tc_setup_type {
785         TC_SETUP_QDISC_MQPRIO,
786         TC_SETUP_CLSU32,
787         TC_SETUP_CLSFLOWER,
788         TC_SETUP_CLSMATCHALL,
789         TC_SETUP_CLSBPF,
790         TC_SETUP_BLOCK,
791         TC_SETUP_QDISC_CBS,
792         TC_SETUP_QDISC_RED,
793         TC_SETUP_QDISC_PRIO,
794         TC_SETUP_QDISC_MQ,
795 };
796 
797 /* These structures hold the attributes of bpf state that are being passed
798  * to the netdevice through the bpf op.
799  */
800 enum bpf_netdev_command {
801         /* Set or clear a bpf program used in the earliest stages of packet
802          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
803          * is responsible for calling bpf_prog_put on any old progs that are
804          * stored. In case of error, the callee need not release the new prog
805          * reference, but on success it takes ownership and must bpf_prog_put
806          * when it is no longer used.
807          */
808         XDP_SETUP_PROG,
809         XDP_SETUP_PROG_HW,
810         /* Check if a bpf program is set on the device.  The callee should
811          * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
812          * is equivalent to XDP_ATTACHED_DRV.
813          */
814         XDP_QUERY_PROG,
815         /* BPF program for offload callbacks, invoked at program load time. */
816         BPF_OFFLOAD_VERIFIER_PREP,
817         BPF_OFFLOAD_TRANSLATE,
818         BPF_OFFLOAD_DESTROY,
819         BPF_OFFLOAD_MAP_ALLOC,
820         BPF_OFFLOAD_MAP_FREE,
821         XDP_QUERY_XSK_UMEM,
822         XDP_SETUP_XSK_UMEM,
823 };
824 
825 struct bpf_prog_offload_ops;
826 struct netlink_ext_ack;
827 struct xdp_umem;
828 
829 struct netdev_bpf {
830         enum bpf_netdev_command command;
831         union {
832                 /* XDP_SETUP_PROG */
833                 struct {
834                         u32 flags;
835                         struct bpf_prog *prog;
836                         struct netlink_ext_ack *extack;
837                 };
838                 /* XDP_QUERY_PROG */
839                 struct {
840                         u8 prog_attached;
841                         u32 prog_id;
842                         /* flags with which program was installed */
843                         u32 prog_flags;
844                 };
845                 /* BPF_OFFLOAD_VERIFIER_PREP */
846                 struct {
847                         struct bpf_prog *prog;
848                         const struct bpf_prog_offload_ops *ops; /* callee set */
849                 } verifier;
850                 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
851                 struct {
852                         struct bpf_prog *prog;
853                 } offload;
854                 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
855                 struct {
856                         struct bpf_offloaded_map *offmap;
857                 };
858                 /* XDP_SETUP_XSK_UMEM */
859                 struct {
860                         struct xdp_umem *umem;
861                         u16 queue_id;
862                 } xsk;
863         };
864 };
865 
866 #ifdef CONFIG_XFRM_OFFLOAD
867 struct xfrmdev_ops {
868         int     (*xdo_dev_state_add) (struct xfrm_state *x);
869         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
870         void    (*xdo_dev_state_free) (struct xfrm_state *x);
871         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
872                                        struct xfrm_state *x);
873         void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
874 };
875 #endif
876 
877 #if IS_ENABLED(CONFIG_TLS_DEVICE)
878 enum tls_offload_ctx_dir {
879         TLS_OFFLOAD_CTX_DIR_RX,
880         TLS_OFFLOAD_CTX_DIR_TX,
881 };
882 
883 struct tls_crypto_info;
884 struct tls_context;
885 
886 struct tlsdev_ops {
887         int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
888                            enum tls_offload_ctx_dir direction,
889                            struct tls_crypto_info *crypto_info,
890                            u32 start_offload_tcp_sn);
891         void (*tls_dev_del)(struct net_device *netdev,
892                             struct tls_context *ctx,
893                             enum tls_offload_ctx_dir direction);
894 };
895 #endif
896 
897 struct dev_ifalias {
898         struct rcu_head rcuhead;
899         char ifalias[];
900 };
901 
902 /*
903  * This structure defines the management hooks for network devices.
904  * The following hooks can be defined; unless noted otherwise, they are
905  * optional and can be filled with a null pointer.
906  *
907  * int (*ndo_init)(struct net_device *dev);
908  *     This function is called once when a network device is registered.
909  *     The network device can use this for any late stage initialization
910  *     or semantic validation. It can fail with an error code which will
911  *     be propagated back to register_netdev.
912  *
913  * void (*ndo_uninit)(struct net_device *dev);
914  *     This function is called when device is unregistered or when registration
915  *     fails. It is not called if init fails.
916  *
917  * int (*ndo_open)(struct net_device *dev);
918  *     This function is called when a network device transitions to the up
919  *     state.
920  *
921  * int (*ndo_stop)(struct net_device *dev);
922  *     This function is called when a network device transitions to the down
923  *     state.
924  *
925  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
926  *                               struct net_device *dev);
927  *      Called when a packet needs to be transmitted.
928  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
929  *      the queue before that can happen; it's for obsolete devices and weird
930  *      corner cases, but the stack really does a non-trivial amount
931  *      of useless work if you return NETDEV_TX_BUSY.
932  *      Required; cannot be NULL.
933  *
934  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
935  *                                         struct net_device *dev
936  *                                         netdev_features_t features);
937  *      Called by core transmit path to determine if device is capable of
938  *      performing offload operations on a given packet. This is to give
939  *      the device an opportunity to implement any restrictions that cannot
940  *      be otherwise expressed by feature flags. The check is called with
941  *      the set of features that the stack has calculated and it returns
942  *      those the driver believes to be appropriate.
943  *
944  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
945  *                         void *accel_priv, select_queue_fallback_t fallback);
946  *      Called to decide which queue to use when device supports multiple
947  *      transmit queues.
948  *
949  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
950  *      This function is called to allow device receiver to make
951  *      changes to configuration when multicast or promiscuous is enabled.
952  *
953  * void (*ndo_set_rx_mode)(struct net_device *dev);
954  *      This function is called device changes address list filtering.
955  *      If driver handles unicast address filtering, it should set
956  *      IFF_UNICAST_FLT in its priv_flags.
957  *
958  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
959  *      This function  is called when the Media Access Control address
960  *      needs to be changed. If this interface is not defined, the
961  *      MAC address can not be changed.
962  *
963  * int (*ndo_validate_addr)(struct net_device *dev);
964  *      Test if Media Access Control address is valid for the device.
965  *
966  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
967  *      Called when a user requests an ioctl which can't be handled by
968  *      the generic interface code. If not defined ioctls return
969  *      not supported error code.
970  *
971  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
972  *      Used to set network devices bus interface parameters. This interface
973  *      is retained for legacy reasons; new devices should use the bus
974  *      interface (PCI) for low level management.
975  *
976  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
977  *      Called when a user wants to change the Maximum Transfer Unit
978  *      of a device.
979  *
980  * void (*ndo_tx_timeout)(struct net_device *dev);
981  *      Callback used when the transmitter has not made any progress
982  *      for dev->watchdog ticks.
983  *
984  * void (*ndo_get_stats64)(struct net_device *dev,
985  *                         struct rtnl_link_stats64 *storage);
986  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
987  *      Called when a user wants to get the network device usage
988  *      statistics. Drivers must do one of the following:
989  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
990  *         rtnl_link_stats64 structure passed by the caller.
991  *      2. Define @ndo_get_stats to update a net_device_stats structure
992  *         (which should normally be dev->stats) and return a pointer to
993  *         it. The structure may be changed asynchronously only if each
994  *         field is written atomically.
995  *      3. Update dev->stats asynchronously and atomically, and define
996  *         neither operation.
997  *
998  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
999  *      Return true if this device supports offload stats of this attr_id.
1000  *
1001  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1002  *      void *attr_data)
1003  *      Get statistics for offload operations by attr_id. Write it into the
1004  *      attr_data pointer.
1005  *
1006  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1007  *      If device supports VLAN filtering this function is called when a
1008  *      VLAN id is registered.
1009  *
1010  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1011  *      If device supports VLAN filtering this function is called when a
1012  *      VLAN id is unregistered.
1013  *
1014  * void (*ndo_poll_controller)(struct net_device *dev);
1015  *
1016  *      SR-IOV management functions.
1017  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1018  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1019  *                        u8 qos, __be16 proto);
1020  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1021  *                        int max_tx_rate);
1022  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1023  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1024  * int (*ndo_get_vf_config)(struct net_device *dev,
1025  *                          int vf, struct ifla_vf_info *ivf);
1026  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1027  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1028  *                        struct nlattr *port[]);
1029  *
1030  *      Enable or disable the VF ability to query its RSS Redirection Table and
1031  *      Hash Key. This is needed since on some devices VF share this information
1032  *      with PF and querying it may introduce a theoretical security risk.
1033  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1034  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1035  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1036  *                     void *type_data);
1037  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1038  *      This is always called from the stack with the rtnl lock held and netif
1039  *      tx queues stopped. This allows the netdevice to perform queue
1040  *      management safely.
1041  *
1042  *      Fiber Channel over Ethernet (FCoE) offload functions.
1043  * int (*ndo_fcoe_enable)(struct net_device *dev);
1044  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1045  *      so the underlying device can perform whatever needed configuration or
1046  *      initialization to support acceleration of FCoE traffic.
1047  *
1048  * int (*ndo_fcoe_disable)(struct net_device *dev);
1049  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1050  *      so the underlying device can perform whatever needed clean-ups to
1051  *      stop supporting acceleration of FCoE traffic.
1052  *
1053  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1054  *                           struct scatterlist *sgl, unsigned int sgc);
1055  *      Called when the FCoE Initiator wants to initialize an I/O that
1056  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1057  *      perform necessary setup and returns 1 to indicate the device is set up
1058  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1059  *
1060  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1061  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1062  *      indicated by the FC exchange id 'xid', so the underlying device can
1063  *      clean up and reuse resources for later DDP requests.
1064  *
1065  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1066  *                            struct scatterlist *sgl, unsigned int sgc);
1067  *      Called when the FCoE Target wants to initialize an I/O that
1068  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1069  *      perform necessary setup and returns 1 to indicate the device is set up
1070  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1071  *
1072  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1073  *                             struct netdev_fcoe_hbainfo *hbainfo);
1074  *      Called when the FCoE Protocol stack wants information on the underlying
1075  *      device. This information is utilized by the FCoE protocol stack to
1076  *      register attributes with Fiber Channel management service as per the
1077  *      FC-GS Fabric Device Management Information(FDMI) specification.
1078  *
1079  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1080  *      Called when the underlying device wants to override default World Wide
1081  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1082  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1083  *      protocol stack to use.
1084  *
1085  *      RFS acceleration.
1086  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1087  *                          u16 rxq_index, u32 flow_id);
1088  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1089  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1090  *      Return the filter ID on success, or a negative error code.
1091  *
1092  *      Slave management functions (for bridge, bonding, etc).
1093  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1094  *      Called to make another netdev an underling.
1095  *
1096  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1097  *      Called to release previously enslaved netdev.
1098  *
1099  *      Feature/offload setting functions.
1100  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1101  *              netdev_features_t features);
1102  *      Adjusts the requested feature flags according to device-specific
1103  *      constraints, and returns the resulting flags. Must not modify
1104  *      the device state.
1105  *
1106  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1107  *      Called to update device configuration to new features. Passed
1108  *      feature set might be less than what was returned by ndo_fix_features()).
1109  *      Must return >0 or -errno if it changed dev->features itself.
1110  *
1111  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1112  *                    struct net_device *dev,
1113  *                    const unsigned char *addr, u16 vid, u16 flags)
1114  *      Adds an FDB entry to dev for addr.
1115  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1116  *                    struct net_device *dev,
1117  *                    const unsigned char *addr, u16 vid)
1118  *      Deletes the FDB entry from dev coresponding to addr.
1119  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1120  *                     struct net_device *dev, struct net_device *filter_dev,
1121  *                     int *idx)
1122  *      Used to add FDB entries to dump requests. Implementers should add
1123  *      entries to skb and update idx with the number of entries.
1124  *
1125  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1126  *                           u16 flags)
1127  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1128  *                           struct net_device *dev, u32 filter_mask,
1129  *                           int nlflags)
1130  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1131  *                           u16 flags);
1132  *
1133  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1134  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1135  *      which do not represent real hardware may define this to allow their
1136  *      userspace components to manage their virtual carrier state. Devices
1137  *      that determine carrier state from physical hardware properties (eg
1138  *      network cables) or protocol-dependent mechanisms (eg
1139  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1140  *
1141  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1142  *                             struct netdev_phys_item_id *ppid);
1143  *      Called to get ID of physical port of this device. If driver does
1144  *      not implement this, it is assumed that the hw is not able to have
1145  *      multiple net devices on single physical port.
1146  *
1147  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1148  *                            struct udp_tunnel_info *ti);
1149  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1150  *      address family that a UDP tunnel is listnening to. It is called only
1151  *      when a new port starts listening. The operation is protected by the
1152  *      RTNL.
1153  *
1154  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1155  *                            struct udp_tunnel_info *ti);
1156  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1157  *      address family that the UDP tunnel is not listening to anymore. The
1158  *      operation is protected by the RTNL.
1159  *
1160  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1161  *                               struct net_device *dev)
1162  *      Called by upper layer devices to accelerate switching or other
1163  *      station functionality into hardware. 'pdev is the lowerdev
1164  *      to use for the offload and 'dev' is the net device that will
1165  *      back the offload. Returns a pointer to the private structure
1166  *      the upper layer will maintain.
1167  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1168  *      Called by upper layer device to delete the station created
1169  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1170  *      the station and priv is the structure returned by the add
1171  *      operation.
1172  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1173  *                           int queue_index, u32 maxrate);
1174  *      Called when a user wants to set a max-rate limitation of specific
1175  *      TX queue.
1176  * int (*ndo_get_iflink)(const struct net_device *dev);
1177  *      Called to get the iflink value of this device.
1178  * void (*ndo_change_proto_down)(struct net_device *dev,
1179  *                               bool proto_down);
1180  *      This function is used to pass protocol port error state information
1181  *      to the switch driver. The switch driver can react to the proto_down
1182  *      by doing a phys down on the associated switch port.
1183  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1184  *      This function is used to get egress tunnel information for given skb.
1185  *      This is useful for retrieving outer tunnel header parameters while
1186  *      sampling packet.
1187  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1188  *      This function is used to specify the headroom that the skb must
1189  *      consider when allocation skb during packet reception. Setting
1190  *      appropriate rx headroom value allows avoiding skb head copy on
1191  *      forward. Setting a negative value resets the rx headroom to the
1192  *      default value.
1193  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1194  *      This function is used to set or query state related to XDP on the
1195  *      netdevice and manage BPF offload. See definition of
1196  *      enum bpf_netdev_command for details.
1197  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1198  *                      u32 flags);
1199  *      This function is used to submit @n XDP packets for transmit on a
1200  *      netdevice. Returns number of frames successfully transmitted, frames
1201  *      that got dropped are freed/returned via xdp_return_frame().
1202  *      Returns negative number, means general error invoking ndo, meaning
1203  *      no frames were xmit'ed and core-caller will free all frames.
1204  */
1205 struct net_device_ops {
1206         int                     (*ndo_init)(struct net_device *dev);
1207         void                    (*ndo_uninit)(struct net_device *dev);
1208         int                     (*ndo_open)(struct net_device *dev);
1209         int                     (*ndo_stop)(struct net_device *dev);
1210         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1211                                                   struct net_device *dev);
1212         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1213                                                       struct net_device *dev,
1214                                                       netdev_features_t features);
1215         u16                     (*ndo_select_queue)(struct net_device *dev,
1216                                                     struct sk_buff *skb,
1217                                                     void *accel_priv,
1218                                                     select_queue_fallback_t fallback);
1219         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1220                                                        int flags);
1221         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1222         int                     (*ndo_set_mac_address)(struct net_device *dev,
1223                                                        void *addr);
1224         int                     (*ndo_validate_addr)(struct net_device *dev);
1225         int                     (*ndo_do_ioctl)(struct net_device *dev,
1226                                                 struct ifreq *ifr, int cmd);
1227         int                     (*ndo_set_config)(struct net_device *dev,
1228                                                   struct ifmap *map);
1229         int                     (*ndo_change_mtu)(struct net_device *dev,
1230                                                   int new_mtu);
1231         int                     (*ndo_neigh_setup)(struct net_device *dev,
1232                                                    struct neigh_parms *);
1233         void                    (*ndo_tx_timeout) (struct net_device *dev);
1234 
1235         void                    (*ndo_get_stats64)(struct net_device *dev,
1236                                                    struct rtnl_link_stats64 *storage);
1237         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1238         int                     (*ndo_get_offload_stats)(int attr_id,
1239                                                          const struct net_device *dev,
1240                                                          void *attr_data);
1241         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1242 
1243         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1244                                                        __be16 proto, u16 vid);
1245         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1246                                                         __be16 proto, u16 vid);
1247 #ifdef CONFIG_NET_POLL_CONTROLLER
1248         void                    (*ndo_poll_controller)(struct net_device *dev);
1249         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1250                                                      struct netpoll_info *info);
1251         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1252 #endif
1253         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1254                                                   int queue, u8 *mac);
1255         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1256                                                    int queue, u16 vlan,
1257                                                    u8 qos, __be16 proto);
1258         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1259                                                    int vf, int min_tx_rate,
1260                                                    int max_tx_rate);
1261         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1262                                                        int vf, bool setting);
1263         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1264                                                     int vf, bool setting);
1265         int                     (*ndo_get_vf_config)(struct net_device *dev,
1266                                                      int vf,
1267                                                      struct ifla_vf_info *ivf);
1268         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1269                                                          int vf, int link_state);
1270         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1271                                                     int vf,
1272                                                     struct ifla_vf_stats
1273                                                     *vf_stats);
1274         int                     (*ndo_set_vf_port)(struct net_device *dev,
1275                                                    int vf,
1276                                                    struct nlattr *port[]);
1277         int                     (*ndo_get_vf_port)(struct net_device *dev,
1278                                                    int vf, struct sk_buff *skb);
1279         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1280                                                    int vf, u64 guid,
1281                                                    int guid_type);
1282         int                     (*ndo_set_vf_rss_query_en)(
1283                                                    struct net_device *dev,
1284                                                    int vf, bool setting);
1285         int                     (*ndo_setup_tc)(struct net_device *dev,
1286                                                 enum tc_setup_type type,
1287                                                 void *type_data);
1288 #if IS_ENABLED(CONFIG_FCOE)
1289         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1290         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1291         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1292                                                       u16 xid,
1293                                                       struct scatterlist *sgl,
1294                                                       unsigned int sgc);
1295         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1296                                                      u16 xid);
1297         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1298                                                        u16 xid,
1299                                                        struct scatterlist *sgl,
1300                                                        unsigned int sgc);
1301         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1302                                                         struct netdev_fcoe_hbainfo *hbainfo);
1303 #endif
1304 
1305 #if IS_ENABLED(CONFIG_LIBFCOE)
1306 #define NETDEV_FCOE_WWNN 0
1307 #define NETDEV_FCOE_WWPN 1
1308         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1309                                                     u64 *wwn, int type);
1310 #endif
1311 
1312 #ifdef CONFIG_RFS_ACCEL
1313         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1314                                                      const struct sk_buff *skb,
1315                                                      u16 rxq_index,
1316                                                      u32 flow_id);
1317 #endif
1318         int                     (*ndo_add_slave)(struct net_device *dev,
1319                                                  struct net_device *slave_dev,
1320                                                  struct netlink_ext_ack *extack);
1321         int                     (*ndo_del_slave)(struct net_device *dev,
1322                                                  struct net_device *slave_dev);
1323         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1324                                                     netdev_features_t features);
1325         int                     (*ndo_set_features)(struct net_device *dev,
1326                                                     netdev_features_t features);
1327         int                     (*ndo_neigh_construct)(struct net_device *dev,
1328                                                        struct neighbour *n);
1329         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1330                                                      struct neighbour *n);
1331 
1332         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1333                                                struct nlattr *tb[],
1334                                                struct net_device *dev,
1335                                                const unsigned char *addr,
1336                                                u16 vid,
1337                                                u16 flags);
1338         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1339                                                struct nlattr *tb[],
1340                                                struct net_device *dev,
1341                                                const unsigned char *addr,
1342                                                u16 vid);
1343         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1344                                                 struct netlink_callback *cb,
1345                                                 struct net_device *dev,
1346                                                 struct net_device *filter_dev,
1347                                                 int *idx);
1348 
1349         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1350                                                       struct nlmsghdr *nlh,
1351                                                       u16 flags);
1352         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1353                                                       u32 pid, u32 seq,
1354                                                       struct net_device *dev,
1355                                                       u32 filter_mask,
1356                                                       int nlflags);
1357         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1358                                                       struct nlmsghdr *nlh,
1359                                                       u16 flags);
1360         int                     (*ndo_change_carrier)(struct net_device *dev,
1361                                                       bool new_carrier);
1362         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1363                                                         struct netdev_phys_item_id *ppid);
1364         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1365                                                           char *name, size_t len);
1366         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1367                                                       struct udp_tunnel_info *ti);
1368         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1369                                                       struct udp_tunnel_info *ti);
1370         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1371                                                         struct net_device *dev);
1372         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1373                                                         void *priv);
1374 
1375         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1376         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1377                                                       int queue_index,
1378                                                       u32 maxrate);
1379         int                     (*ndo_get_iflink)(const struct net_device *dev);
1380         int                     (*ndo_change_proto_down)(struct net_device *dev,
1381                                                          bool proto_down);
1382         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1383                                                        struct sk_buff *skb);
1384         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1385                                                        int needed_headroom);
1386         int                     (*ndo_bpf)(struct net_device *dev,
1387                                            struct netdev_bpf *bpf);
1388         int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1389                                                 struct xdp_frame **xdp,
1390                                                 u32 flags);
1391         int                     (*ndo_xsk_async_xmit)(struct net_device *dev,
1392                                                       u32 queue_id);
1393 };
1394 
1395 /**
1396  * enum net_device_priv_flags - &struct net_device priv_flags
1397  *
1398  * These are the &struct net_device, they are only set internally
1399  * by drivers and used in the kernel. These flags are invisible to
1400  * userspace; this means that the order of these flags can change
1401  * during any kernel release.
1402  *
1403  * You should have a pretty good reason to be extending these flags.
1404  *
1405  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1406  * @IFF_EBRIDGE: Ethernet bridging device
1407  * @IFF_BONDING: bonding master or slave
1408  * @IFF_ISATAP: ISATAP interface (RFC4214)
1409  * @IFF_WAN_HDLC: WAN HDLC device
1410  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1411  *      release skb->dst
1412  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1413  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1414  * @IFF_MACVLAN_PORT: device used as macvlan port
1415  * @IFF_BRIDGE_PORT: device used as bridge port
1416  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1417  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1418  * @IFF_UNICAST_FLT: Supports unicast filtering
1419  * @IFF_TEAM_PORT: device used as team port
1420  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1421  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1422  *      change when it's running
1423  * @IFF_MACVLAN: Macvlan device
1424  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1425  *      underlying stacked devices
1426  * @IFF_L3MDEV_MASTER: device is an L3 master device
1427  * @IFF_NO_QUEUE: device can run without qdisc attached
1428  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1429  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1430  * @IFF_TEAM: device is a team device
1431  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1432  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1433  *      entity (i.e. the master device for bridged veth)
1434  * @IFF_MACSEC: device is a MACsec device
1435  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1436  * @IFF_FAILOVER: device is a failover master device
1437  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1438  */
1439 enum netdev_priv_flags {
1440         IFF_802_1Q_VLAN                 = 1<<0,
1441         IFF_EBRIDGE                     = 1<<1,
1442         IFF_BONDING                     = 1<<2,
1443         IFF_ISATAP                      = 1<<3,
1444         IFF_WAN_HDLC                    = 1<<4,
1445         IFF_XMIT_DST_RELEASE            = 1<<5,
1446         IFF_DONT_BRIDGE                 = 1<<6,
1447         IFF_DISABLE_NETPOLL             = 1<<7,
1448         IFF_MACVLAN_PORT                = 1<<8,
1449         IFF_BRIDGE_PORT                 = 1<<9,
1450         IFF_OVS_DATAPATH                = 1<<10,
1451         IFF_TX_SKB_SHARING              = 1<<11,
1452         IFF_UNICAST_FLT                 = 1<<12,
1453         IFF_TEAM_PORT                   = 1<<13,
1454         IFF_SUPP_NOFCS                  = 1<<14,
1455         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1456         IFF_MACVLAN                     = 1<<16,
1457         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1458         IFF_L3MDEV_MASTER               = 1<<18,
1459         IFF_NO_QUEUE                    = 1<<19,
1460         IFF_OPENVSWITCH                 = 1<<20,
1461         IFF_L3MDEV_SLAVE                = 1<<21,
1462         IFF_TEAM                        = 1<<22,
1463         IFF_RXFH_CONFIGURED             = 1<<23,
1464         IFF_PHONY_HEADROOM              = 1<<24,
1465         IFF_MACSEC                      = 1<<25,
1466         IFF_NO_RX_HANDLER               = 1<<26,
1467         IFF_FAILOVER                    = 1<<27,
1468         IFF_FAILOVER_SLAVE              = 1<<28,
1469 };
1470 
1471 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1472 #define IFF_EBRIDGE                     IFF_EBRIDGE
1473 #define IFF_BONDING                     IFF_BONDING
1474 #define IFF_ISATAP                      IFF_ISATAP
1475 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1476 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1477 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1478 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1479 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1480 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1481 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1482 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1483 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1484 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1485 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1486 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1487 #define IFF_MACVLAN                     IFF_MACVLAN
1488 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1489 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1490 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1491 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1492 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1493 #define IFF_TEAM                        IFF_TEAM
1494 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1495 #define IFF_MACSEC                      IFF_MACSEC
1496 #define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1497 #define IFF_FAILOVER                    IFF_FAILOVER
1498 #define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1499 
1500 /**
1501  *      struct net_device - The DEVICE structure.
1502  *
1503  *      Actually, this whole structure is a big mistake.  It mixes I/O
1504  *      data with strictly "high-level" data, and it has to know about
1505  *      almost every data structure used in the INET module.
1506  *
1507  *      @name:  This is the first field of the "visible" part of this structure
1508  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1509  *              of the interface.
1510  *
1511  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1512  *      @ifalias:       SNMP alias
1513  *      @mem_end:       Shared memory end
1514  *      @mem_start:     Shared memory start
1515  *      @base_addr:     Device I/O address
1516  *      @irq:           Device IRQ number
1517  *
1518  *      @state:         Generic network queuing layer state, see netdev_state_t
1519  *      @dev_list:      The global list of network devices
1520  *      @napi_list:     List entry used for polling NAPI devices
1521  *      @unreg_list:    List entry  when we are unregistering the
1522  *                      device; see the function unregister_netdev
1523  *      @close_list:    List entry used when we are closing the device
1524  *      @ptype_all:     Device-specific packet handlers for all protocols
1525  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1526  *
1527  *      @adj_list:      Directly linked devices, like slaves for bonding
1528  *      @features:      Currently active device features
1529  *      @hw_features:   User-changeable features
1530  *
1531  *      @wanted_features:       User-requested features
1532  *      @vlan_features:         Mask of features inheritable by VLAN devices
1533  *
1534  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1535  *                              This field indicates what encapsulation
1536  *                              offloads the hardware is capable of doing,
1537  *                              and drivers will need to set them appropriately.
1538  *
1539  *      @mpls_features: Mask of features inheritable by MPLS
1540  *
1541  *      @ifindex:       interface index
1542  *      @group:         The group the device belongs to
1543  *
1544  *      @stats:         Statistics struct, which was left as a legacy, use
1545  *                      rtnl_link_stats64 instead
1546  *
1547  *      @rx_dropped:    Dropped packets by core network,
1548  *                      do not use this in drivers
1549  *      @tx_dropped:    Dropped packets by core network,
1550  *                      do not use this in drivers
1551  *      @rx_nohandler:  nohandler dropped packets by core network on
1552  *                      inactive devices, do not use this in drivers
1553  *      @carrier_up_count:      Number of times the carrier has been up
1554  *      @carrier_down_count:    Number of times the carrier has been down
1555  *
1556  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1557  *                              instead of ioctl,
1558  *                              see <net/iw_handler.h> for details.
1559  *      @wireless_data: Instance data managed by the core of wireless extensions
1560  *
1561  *      @netdev_ops:    Includes several pointers to callbacks,
1562  *                      if one wants to override the ndo_*() functions
1563  *      @ethtool_ops:   Management operations
1564  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1565  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1566  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1567  *                      of Layer 2 headers.
1568  *
1569  *      @flags:         Interface flags (a la BSD)
1570  *      @priv_flags:    Like 'flags' but invisible to userspace,
1571  *                      see if.h for the definitions
1572  *      @gflags:        Global flags ( kept as legacy )
1573  *      @padded:        How much padding added by alloc_netdev()
1574  *      @operstate:     RFC2863 operstate
1575  *      @link_mode:     Mapping policy to operstate
1576  *      @if_port:       Selectable AUI, TP, ...
1577  *      @dma:           DMA channel
1578  *      @mtu:           Interface MTU value
1579  *      @min_mtu:       Interface Minimum MTU value
1580  *      @max_mtu:       Interface Maximum MTU value
1581  *      @type:          Interface hardware type
1582  *      @hard_header_len: Maximum hardware header length.
1583  *      @min_header_len:  Minimum hardware header length
1584  *
1585  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1586  *                        cases can this be guaranteed
1587  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1588  *                        cases can this be guaranteed. Some cases also use
1589  *                        LL_MAX_HEADER instead to allocate the skb
1590  *
1591  *      interface address info:
1592  *
1593  *      @perm_addr:             Permanent hw address
1594  *      @addr_assign_type:      Hw address assignment type
1595  *      @addr_len:              Hardware address length
1596  *      @neigh_priv_len:        Used in neigh_alloc()
1597  *      @dev_id:                Used to differentiate devices that share
1598  *                              the same link layer address
1599  *      @dev_port:              Used to differentiate devices that share
1600  *                              the same function
1601  *      @addr_list_lock:        XXX: need comments on this one
1602  *      @uc_promisc:            Counter that indicates promiscuous mode
1603  *                              has been enabled due to the need to listen to
1604  *                              additional unicast addresses in a device that
1605  *                              does not implement ndo_set_rx_mode()
1606  *      @uc:                    unicast mac addresses
1607  *      @mc:                    multicast mac addresses
1608  *      @dev_addrs:             list of device hw addresses
1609  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1610  *      @promiscuity:           Number of times the NIC is told to work in
1611  *                              promiscuous mode; if it becomes 0 the NIC will
1612  *                              exit promiscuous mode
1613  *      @allmulti:              Counter, enables or disables allmulticast mode
1614  *
1615  *      @vlan_info:     VLAN info
1616  *      @dsa_ptr:       dsa specific data
1617  *      @tipc_ptr:      TIPC specific data
1618  *      @atalk_ptr:     AppleTalk link
1619  *      @ip_ptr:        IPv4 specific data
1620  *      @dn_ptr:        DECnet specific data
1621  *      @ip6_ptr:       IPv6 specific data
1622  *      @ax25_ptr:      AX.25 specific data
1623  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1624  *
1625  *      @dev_addr:      Hw address (before bcast,
1626  *                      because most packets are unicast)
1627  *
1628  *      @_rx:                   Array of RX queues
1629  *      @num_rx_queues:         Number of RX queues
1630  *                              allocated at register_netdev() time
1631  *      @real_num_rx_queues:    Number of RX queues currently active in device
1632  *
1633  *      @rx_handler:            handler for received packets
1634  *      @rx_handler_data:       XXX: need comments on this one
1635  *      @miniq_ingress:         ingress/clsact qdisc specific data for
1636  *                              ingress processing
1637  *      @ingress_queue:         XXX: need comments on this one
1638  *      @broadcast:             hw bcast address
1639  *
1640  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1641  *                      indexed by RX queue number. Assigned by driver.
1642  *                      This must only be set if the ndo_rx_flow_steer
1643  *                      operation is defined
1644  *      @index_hlist:           Device index hash chain
1645  *
1646  *      @_tx:                   Array of TX queues
1647  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1648  *      @real_num_tx_queues:    Number of TX queues currently active in device
1649  *      @qdisc:                 Root qdisc from userspace point of view
1650  *      @tx_queue_len:          Max frames per queue allowed
1651  *      @tx_global_lock:        XXX: need comments on this one
1652  *
1653  *      @xps_maps:      XXX: need comments on this one
1654  *      @miniq_egress:          clsact qdisc specific data for
1655  *                              egress processing
1656  *      @watchdog_timeo:        Represents the timeout that is used by
1657  *                              the watchdog (see dev_watchdog())
1658  *      @watchdog_timer:        List of timers
1659  *
1660  *      @pcpu_refcnt:           Number of references to this device
1661  *      @todo_list:             Delayed register/unregister
1662  *      @link_watch_list:       XXX: need comments on this one
1663  *
1664  *      @reg_state:             Register/unregister state machine
1665  *      @dismantle:             Device is going to be freed
1666  *      @rtnl_link_state:       This enum represents the phases of creating
1667  *                              a new link
1668  *
1669  *      @needs_free_netdev:     Should unregister perform free_netdev?
1670  *      @priv_destructor:       Called from unregister
1671  *      @npinfo:                XXX: need comments on this one
1672  *      @nd_net:                Network namespace this network device is inside
1673  *
1674  *      @ml_priv:       Mid-layer private
1675  *      @lstats:        Loopback statistics
1676  *      @tstats:        Tunnel statistics
1677  *      @dstats:        Dummy statistics
1678  *      @vstats:        Virtual ethernet statistics
1679  *
1680  *      @garp_port:     GARP
1681  *      @mrp_port:      MRP
1682  *
1683  *      @dev:           Class/net/name entry
1684  *      @sysfs_groups:  Space for optional device, statistics and wireless
1685  *                      sysfs groups
1686  *
1687  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1688  *      @rtnl_link_ops: Rtnl_link_ops
1689  *
1690  *      @gso_max_size:  Maximum size of generic segmentation offload
1691  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1692  *                      NIC for GSO
1693  *
1694  *      @dcbnl_ops:     Data Center Bridging netlink ops
1695  *      @num_tc:        Number of traffic classes in the net device
1696  *      @tc_to_txq:     XXX: need comments on this one
1697  *      @prio_tc_map:   XXX: need comments on this one
1698  *
1699  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1700  *
1701  *      @priomap:       XXX: need comments on this one
1702  *      @phydev:        Physical device may attach itself
1703  *                      for hardware timestamping
1704  *      @sfp_bus:       attached &struct sfp_bus structure.
1705  *
1706  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1707  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1708  *
1709  *      @proto_down:    protocol port state information can be sent to the
1710  *                      switch driver and used to set the phys state of the
1711  *                      switch port.
1712  *
1713  *      FIXME: cleanup struct net_device such that network protocol info
1714  *      moves out.
1715  */
1716 
1717 struct net_device {
1718         char                    name[IFNAMSIZ];
1719         struct hlist_node       name_hlist;
1720         struct dev_ifalias      __rcu *ifalias;
1721         /*
1722          *      I/O specific fields
1723          *      FIXME: Merge these and struct ifmap into one
1724          */
1725         unsigned long           mem_end;
1726         unsigned long           mem_start;
1727         unsigned long           base_addr;
1728         int                     irq;
1729 
1730         /*
1731          *      Some hardware also needs these fields (state,dev_list,
1732          *      napi_list,unreg_list,close_list) but they are not
1733          *      part of the usual set specified in Space.c.
1734          */
1735 
1736         unsigned long           state;
1737 
1738         struct list_head        dev_list;
1739         struct list_head        napi_list;
1740         struct list_head        unreg_list;
1741         struct list_head        close_list;
1742         struct list_head        ptype_all;
1743         struct list_head        ptype_specific;
1744 
1745         struct {
1746                 struct list_head upper;
1747                 struct list_head lower;
1748         } adj_list;
1749 
1750         netdev_features_t       features;
1751         netdev_features_t       hw_features;
1752         netdev_features_t       wanted_features;
1753         netdev_features_t       vlan_features;
1754         netdev_features_t       hw_enc_features;
1755         netdev_features_t       mpls_features;
1756         netdev_features_t       gso_partial_features;
1757 
1758         int                     ifindex;
1759         int                     group;
1760 
1761         struct net_device_stats stats;
1762 
1763         atomic_long_t           rx_dropped;
1764         atomic_long_t           tx_dropped;
1765         atomic_long_t           rx_nohandler;
1766 
1767         /* Stats to monitor link on/off, flapping */
1768         atomic_t                carrier_up_count;
1769         atomic_t                carrier_down_count;
1770 
1771 #ifdef CONFIG_WIRELESS_EXT
1772         const struct iw_handler_def *wireless_handlers;
1773         struct iw_public_data   *wireless_data;
1774 #endif
1775         const struct net_device_ops *netdev_ops;
1776         const struct ethtool_ops *ethtool_ops;
1777 #ifdef CONFIG_NET_SWITCHDEV
1778         const struct switchdev_ops *switchdev_ops;
1779 #endif
1780 #ifdef CONFIG_NET_L3_MASTER_DEV
1781         const struct l3mdev_ops *l3mdev_ops;
1782 #endif
1783 #if IS_ENABLED(CONFIG_IPV6)
1784         const struct ndisc_ops *ndisc_ops;
1785 #endif
1786 
1787 #ifdef CONFIG_XFRM_OFFLOAD
1788         const struct xfrmdev_ops *xfrmdev_ops;
1789 #endif
1790 
1791 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1792         const struct tlsdev_ops *tlsdev_ops;
1793 #endif
1794 
1795         const struct header_ops *header_ops;
1796 
1797         unsigned int            flags;
1798         unsigned int            priv_flags;
1799 
1800         unsigned short          gflags;
1801         unsigned short          padded;
1802 
1803         unsigned char           operstate;
1804         unsigned char           link_mode;
1805 
1806         unsigned char           if_port;
1807         unsigned char           dma;
1808 
1809         unsigned int            mtu;
1810         unsigned int            min_mtu;
1811         unsigned int            max_mtu;
1812         unsigned short          type;
1813         unsigned short          hard_header_len;
1814         unsigned char           min_header_len;
1815 
1816         unsigned short          needed_headroom;
1817         unsigned short          needed_tailroom;
1818 
1819         /* Interface address info. */
1820         unsigned char           perm_addr[MAX_ADDR_LEN];
1821         unsigned char           addr_assign_type;
1822         unsigned char           addr_len;
1823         unsigned short          neigh_priv_len;
1824         unsigned short          dev_id;
1825         unsigned short          dev_port;
1826         spinlock_t              addr_list_lock;
1827         unsigned char           name_assign_type;
1828         bool                    uc_promisc;
1829         struct netdev_hw_addr_list      uc;
1830         struct netdev_hw_addr_list      mc;
1831         struct netdev_hw_addr_list      dev_addrs;
1832 
1833 #ifdef CONFIG_SYSFS
1834         struct kset             *queues_kset;
1835 #endif
1836         unsigned int            promiscuity;
1837         unsigned int            allmulti;
1838 
1839 
1840         /* Protocol-specific pointers */
1841 
1842 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1843         struct vlan_info __rcu  *vlan_info;
1844 #endif
1845 #if IS_ENABLED(CONFIG_NET_DSA)
1846         struct dsa_port         *dsa_ptr;
1847 #endif
1848 #if IS_ENABLED(CONFIG_TIPC)
1849         struct tipc_bearer __rcu *tipc_ptr;
1850 #endif
1851 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1852         void                    *atalk_ptr;
1853 #endif
1854         struct in_device __rcu  *ip_ptr;
1855 #if IS_ENABLED(CONFIG_DECNET)
1856         struct dn_dev __rcu     *dn_ptr;
1857 #endif
1858         struct inet6_dev __rcu  *ip6_ptr;
1859 #if IS_ENABLED(CONFIG_AX25)
1860         void                    *ax25_ptr;
1861 #endif
1862         struct wireless_dev     *ieee80211_ptr;
1863         struct wpan_dev         *ieee802154_ptr;
1864 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1865         struct mpls_dev __rcu   *mpls_ptr;
1866 #endif
1867 
1868 /*
1869  * Cache lines mostly used on receive path (including eth_type_trans())
1870  */
1871         /* Interface address info used in eth_type_trans() */
1872         unsigned char           *dev_addr;
1873 
1874         struct netdev_rx_queue  *_rx;
1875         unsigned int            num_rx_queues;
1876         unsigned int            real_num_rx_queues;
1877 
1878         struct bpf_prog __rcu   *xdp_prog;
1879         unsigned long           gro_flush_timeout;
1880         rx_handler_func_t __rcu *rx_handler;
1881         void __rcu              *rx_handler_data;
1882 
1883 #ifdef CONFIG_NET_CLS_ACT
1884         struct mini_Qdisc __rcu *miniq_ingress;
1885 #endif
1886         struct netdev_queue __rcu *ingress_queue;
1887 #ifdef CONFIG_NETFILTER_INGRESS
1888         struct nf_hook_entries __rcu *nf_hooks_ingress;
1889 #endif
1890 
1891         unsigned char           broadcast[MAX_ADDR_LEN];
1892 #ifdef CONFIG_RFS_ACCEL
1893         struct cpu_rmap         *rx_cpu_rmap;
1894 #endif
1895         struct hlist_node       index_hlist;
1896 
1897 /*
1898  * Cache lines mostly used on transmit path
1899  */
1900         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1901         unsigned int            num_tx_queues;
1902         unsigned int            real_num_tx_queues;
1903         struct Qdisc            *qdisc;
1904 #ifdef CONFIG_NET_SCHED
1905         DECLARE_HASHTABLE       (qdisc_hash, 4);
1906 #endif
1907         unsigned int            tx_queue_len;
1908         spinlock_t              tx_global_lock;
1909         int                     watchdog_timeo;
1910 
1911 #ifdef CONFIG_XPS
1912         struct xps_dev_maps __rcu *xps_maps;
1913 #endif
1914 #ifdef CONFIG_NET_CLS_ACT
1915         struct mini_Qdisc __rcu *miniq_egress;
1916 #endif
1917 
1918         /* These may be needed for future network-power-down code. */
1919         struct timer_list       watchdog_timer;
1920 
1921         int __percpu            *pcpu_refcnt;
1922         struct list_head        todo_list;
1923 
1924         struct list_head        link_watch_list;
1925 
1926         enum { NETREG_UNINITIALIZED=0,
1927                NETREG_REGISTERED,       /* completed register_netdevice */
1928                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1929                NETREG_UNREGISTERED,     /* completed unregister todo */
1930                NETREG_RELEASED,         /* called free_netdev */
1931                NETREG_DUMMY,            /* dummy device for NAPI poll */
1932         } reg_state:8;
1933 
1934         bool dismantle;
1935 
1936         enum {
1937                 RTNL_LINK_INITIALIZED,
1938                 RTNL_LINK_INITIALIZING,
1939         } rtnl_link_state:16;
1940 
1941         bool needs_free_netdev;
1942         void (*priv_destructor)(struct net_device *dev);
1943 
1944 #ifdef CONFIG_NETPOLL
1945         struct netpoll_info __rcu       *npinfo;
1946 #endif
1947 
1948         possible_net_t                  nd_net;
1949 
1950         /* mid-layer private */
1951         union {
1952                 void                                    *ml_priv;
1953                 struct pcpu_lstats __percpu             *lstats;
1954                 struct pcpu_sw_netstats __percpu        *tstats;
1955                 struct pcpu_dstats __percpu             *dstats;
1956                 struct pcpu_vstats __percpu             *vstats;
1957         };
1958 
1959 #if IS_ENABLED(CONFIG_GARP)
1960         struct garp_port __rcu  *garp_port;
1961 #endif
1962 #if IS_ENABLED(CONFIG_MRP)
1963         struct mrp_port __rcu   *mrp_port;
1964 #endif
1965 
1966         struct device           dev;
1967         const struct attribute_group *sysfs_groups[4];
1968         const struct attribute_group *sysfs_rx_queue_group;
1969 
1970         const struct rtnl_link_ops *rtnl_link_ops;
1971 
1972         /* for setting kernel sock attribute on TCP connection setup */
1973 #define GSO_MAX_SIZE            65536
1974         unsigned int            gso_max_size;
1975 #define GSO_MAX_SEGS            65535
1976         u16                     gso_max_segs;
1977 
1978 #ifdef CONFIG_DCB
1979         const struct dcbnl_rtnl_ops *dcbnl_ops;
1980 #endif
1981         u8                      num_tc;
1982         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1983         u8                      prio_tc_map[TC_BITMASK + 1];
1984 
1985 #if IS_ENABLED(CONFIG_FCOE)
1986         unsigned int            fcoe_ddp_xid;
1987 #endif
1988 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1989         struct netprio_map __rcu *priomap;
1990 #endif
1991         struct phy_device       *phydev;
1992         struct sfp_bus          *sfp_bus;
1993         struct lock_class_key   *qdisc_tx_busylock;
1994         struct lock_class_key   *qdisc_running_key;
1995         bool                    proto_down;
1996 };
1997 #define to_net_dev(d) container_of(d, struct net_device, dev)
1998 
1999 static inline bool netif_elide_gro(const struct net_device *dev)
2000 {
2001         if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2002                 return true;
2003         return false;
2004 }
2005 
2006 #define NETDEV_ALIGN            32
2007 
2008 static inline
2009 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2010 {
2011         return dev->prio_tc_map[prio & TC_BITMASK];
2012 }
2013 
2014 static inline
2015 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2016 {
2017         if (tc >= dev->num_tc)
2018                 return -EINVAL;
2019 
2020         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2021         return 0;
2022 }
2023 
2024 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2025 void netdev_reset_tc(struct net_device *dev);
2026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2027 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2028 
2029 static inline
2030 int netdev_get_num_tc(struct net_device *dev)
2031 {
2032         return dev->num_tc;
2033 }
2034 
2035 static inline
2036 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2037                                          unsigned int index)
2038 {
2039         return &dev->_tx[index];
2040 }
2041 
2042 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2043                                                     const struct sk_buff *skb)
2044 {
2045         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2046 }
2047 
2048 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2049                                             void (*f)(struct net_device *,
2050                                                       struct netdev_queue *,
2051                                                       void *),
2052                                             void *arg)
2053 {
2054         unsigned int i;
2055 
2056         for (i = 0; i < dev->num_tx_queues; i++)
2057                 f(dev, &dev->_tx[i], arg);
2058 }
2059 
2060 #define netdev_lockdep_set_classes(dev)                         \
2061 {                                                               \
2062         static struct lock_class_key qdisc_tx_busylock_key;     \
2063         static struct lock_class_key qdisc_running_key;         \
2064         static struct lock_class_key qdisc_xmit_lock_key;       \
2065         static struct lock_class_key dev_addr_list_lock_key;    \
2066         unsigned int i;                                         \
2067                                                                 \
2068         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2069         (dev)->qdisc_running_key = &qdisc_running_key;          \
2070         lockdep_set_class(&(dev)->addr_list_lock,               \
2071                           &dev_addr_list_lock_key);             \
2072         for (i = 0; i < (dev)->num_tx_queues; i++)              \
2073                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2074                                   &qdisc_xmit_lock_key);        \
2075 }
2076 
2077 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2078                                     struct sk_buff *skb,
2079                                     void *accel_priv);
2080 
2081 /* returns the headroom that the master device needs to take in account
2082  * when forwarding to this dev
2083  */
2084 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2085 {
2086         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2087 }
2088 
2089 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2090 {
2091         if (dev->netdev_ops->ndo_set_rx_headroom)
2092                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2093 }
2094 
2095 /* set the device rx headroom to the dev's default */
2096 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2097 {
2098         netdev_set_rx_headroom(dev, -1);
2099 }
2100 
2101 /*
2102  * Net namespace inlines
2103  */
2104 static inline
2105 struct net *dev_net(const struct net_device *dev)
2106 {
2107         return read_pnet(&dev->nd_net);
2108 }
2109 
2110 static inline
2111 void dev_net_set(struct net_device *dev, struct net *net)
2112 {
2113         write_pnet(&dev->nd_net, net);
2114 }
2115 
2116 /**
2117  *      netdev_priv - access network device private data
2118  *      @dev: network device
2119  *
2120  * Get network device private data
2121  */
2122 static inline void *netdev_priv(const struct net_device *dev)
2123 {
2124         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2125 }
2126 
2127 /* Set the sysfs physical device reference for the network logical device
2128  * if set prior to registration will cause a symlink during initialization.
2129  */
2130 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2131 
2132 /* Set the sysfs device type for the network logical device to allow
2133  * fine-grained identification of different network device types. For
2134  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2135  */
2136 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2137 
2138 /* Default NAPI poll() weight
2139  * Device drivers are strongly advised to not use bigger value
2140  */
2141 #define NAPI_POLL_WEIGHT 64
2142 
2143 /**
2144  *      netif_napi_add - initialize a NAPI context
2145  *      @dev:  network device
2146  *      @napi: NAPI context
2147  *      @poll: polling function
2148  *      @weight: default weight
2149  *
2150  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2151  * *any* of the other NAPI-related functions.
2152  */
2153 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2154                     int (*poll)(struct napi_struct *, int), int weight);
2155 
2156 /**
2157  *      netif_tx_napi_add - initialize a NAPI context
2158  *      @dev:  network device
2159  *      @napi: NAPI context
2160  *      @poll: polling function
2161  *      @weight: default weight
2162  *
2163  * This variant of netif_napi_add() should be used from drivers using NAPI
2164  * to exclusively poll a TX queue.
2165  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2166  */
2167 static inline void netif_tx_napi_add(struct net_device *dev,
2168                                      struct napi_struct *napi,
2169                                      int (*poll)(struct napi_struct *, int),
2170                                      int weight)
2171 {
2172         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2173         netif_napi_add(dev, napi, poll, weight);
2174 }
2175 
2176 /**
2177  *  netif_napi_del - remove a NAPI context
2178  *  @napi: NAPI context
2179  *
2180  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2181  */
2182 void netif_napi_del(struct napi_struct *napi);
2183 
2184 struct napi_gro_cb {
2185         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2186         void    *frag0;
2187 
2188         /* Length of frag0. */
2189         unsigned int frag0_len;
2190 
2191         /* This indicates where we are processing relative to skb->data. */
2192         int     data_offset;
2193 
2194         /* This is non-zero if the packet cannot be merged with the new skb. */
2195         u16     flush;
2196 
2197         /* Save the IP ID here and check when we get to the transport layer */
2198         u16     flush_id;
2199 
2200         /* Number of segments aggregated. */
2201         u16     count;
2202 
2203         /* Start offset for remote checksum offload */
2204         u16     gro_remcsum_start;
2205 
2206         /* jiffies when first packet was created/queued */
2207         unsigned long age;
2208 
2209         /* Used in ipv6_gro_receive() and foo-over-udp */
2210         u16     proto;
2211 
2212         /* This is non-zero if the packet may be of the same flow. */
2213         u8      same_flow:1;
2214 
2215         /* Used in tunnel GRO receive */
2216         u8      encap_mark:1;
2217 
2218         /* GRO checksum is valid */
2219         u8      csum_valid:1;
2220 
2221         /* Number of checksums via CHECKSUM_UNNECESSARY */
2222         u8      csum_cnt:3;
2223 
2224         /* Free the skb? */
2225         u8      free:2;
2226 #define NAPI_GRO_FREE             1
2227 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2228 
2229         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2230         u8      is_ipv6:1;
2231 
2232         /* Used in GRE, set in fou/gue_gro_receive */
2233         u8      is_fou:1;
2234 
2235         /* Used to determine if flush_id can be ignored */
2236         u8      is_atomic:1;
2237 
2238         /* Number of gro_receive callbacks this packet already went through */
2239         u8 recursion_counter:4;
2240 
2241         /* 1 bit hole */
2242 
2243         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2244         __wsum  csum;
2245 
2246         /* used in skb_gro_receive() slow path */
2247         struct sk_buff *last;
2248 };
2249 
2250 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2251 
2252 #define GRO_RECURSION_LIMIT 15
2253 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2254 {
2255         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2256 }
2257 
2258 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2259 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2260                                                 struct sk_buff **head,
2261                                                 struct sk_buff *skb)
2262 {
2263         if (unlikely(gro_recursion_inc_test(skb))) {
2264                 NAPI_GRO_CB(skb)->flush |= 1;
2265                 return NULL;
2266         }
2267 
2268         return cb(head, skb);
2269 }
2270 
2271 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2272                                              struct sk_buff *);
2273 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2274                                                    struct sock *sk,
2275                                                    struct sk_buff **head,
2276                                                    struct sk_buff *skb)
2277 {
2278         if (unlikely(gro_recursion_inc_test(skb))) {
2279                 NAPI_GRO_CB(skb)->flush |= 1;
2280                 return NULL;
2281         }
2282 
2283         return cb(sk, head, skb);
2284 }
2285 
2286 struct packet_type {
2287         __be16                  type;   /* This is really htons(ether_type). */
2288         struct net_device       *dev;   /* NULL is wildcarded here           */
2289         int                     (*func) (struct sk_buff *,
2290                                          struct net_device *,
2291                                          struct packet_type *,
2292                                          struct net_device *);
2293         bool                    (*id_match)(struct packet_type *ptype,
2294                                             struct sock *sk);
2295         void                    *af_packet_priv;
2296         struct list_head        list;
2297 };
2298 
2299 struct offload_callbacks {
2300         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2301                                                 netdev_features_t features);
2302         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2303                                                  struct sk_buff *skb);
2304         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2305 };
2306 
2307 struct packet_offload {
2308         __be16                   type;  /* This is really htons(ether_type). */
2309         u16                      priority;
2310         struct offload_callbacks callbacks;
2311         struct list_head         list;
2312 };
2313 
2314 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2315 struct pcpu_sw_netstats {
2316         u64     rx_packets;
2317         u64     rx_bytes;
2318         u64     tx_packets;
2319         u64     tx_bytes;
2320         struct u64_stats_sync   syncp;
2321 };
2322 
2323 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2324 ({                                                                      \
2325         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2326         if (pcpu_stats) {                                               \
2327                 int __cpu;                                              \
2328                 for_each_possible_cpu(__cpu) {                          \
2329                         typeof(type) *stat;                             \
2330                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2331                         u64_stats_init(&stat->syncp);                   \
2332                 }                                                       \
2333         }                                                               \
2334         pcpu_stats;                                                     \
2335 })
2336 
2337 #define netdev_alloc_pcpu_stats(type)                                   \
2338         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2339 
2340 enum netdev_lag_tx_type {
2341         NETDEV_LAG_TX_TYPE_UNKNOWN,
2342         NETDEV_LAG_TX_TYPE_RANDOM,
2343         NETDEV_LAG_TX_TYPE_BROADCAST,
2344         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2345         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2346         NETDEV_LAG_TX_TYPE_HASH,
2347 };
2348 
2349 enum netdev_lag_hash {
2350         NETDEV_LAG_HASH_NONE,
2351         NETDEV_LAG_HASH_L2,
2352         NETDEV_LAG_HASH_L34,
2353         NETDEV_LAG_HASH_L23,
2354         NETDEV_LAG_HASH_E23,
2355         NETDEV_LAG_HASH_E34,
2356         NETDEV_LAG_HASH_UNKNOWN,
2357 };
2358 
2359 struct netdev_lag_upper_info {
2360         enum netdev_lag_tx_type tx_type;
2361         enum netdev_lag_hash hash_type;
2362 };
2363 
2364 struct netdev_lag_lower_state_info {
2365         u8 link_up : 1,
2366            tx_enabled : 1;
2367 };
2368 
2369 #include <linux/notifier.h>
2370 
2371 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2372  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2373  * adding new types.
2374  */
2375 enum netdev_cmd {
2376         NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2377         NETDEV_DOWN,
2378         NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2379                                    detected a hardware crash and restarted
2380                                    - we can use this eg to kick tcp sessions
2381                                    once done */
2382         NETDEV_CHANGE,          /* Notify device state change */
2383         NETDEV_REGISTER,
2384         NETDEV_UNREGISTER,
2385         NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2386         NETDEV_CHANGEADDR,
2387         NETDEV_GOING_DOWN,
2388         NETDEV_CHANGENAME,
2389         NETDEV_FEAT_CHANGE,
2390         NETDEV_BONDING_FAILOVER,
2391         NETDEV_PRE_UP,
2392         NETDEV_PRE_TYPE_CHANGE,
2393         NETDEV_POST_TYPE_CHANGE,
2394         NETDEV_POST_INIT,
2395         NETDEV_RELEASE,
2396         NETDEV_NOTIFY_PEERS,
2397         NETDEV_JOIN,
2398         NETDEV_CHANGEUPPER,
2399         NETDEV_RESEND_IGMP,
2400         NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2401         NETDEV_CHANGEINFODATA,
2402         NETDEV_BONDING_INFO,
2403         NETDEV_PRECHANGEUPPER,
2404         NETDEV_CHANGELOWERSTATE,
2405         NETDEV_UDP_TUNNEL_PUSH_INFO,
2406         NETDEV_UDP_TUNNEL_DROP_INFO,
2407         NETDEV_CHANGE_TX_QUEUE_LEN,
2408         NETDEV_CVLAN_FILTER_PUSH_INFO,
2409         NETDEV_CVLAN_FILTER_DROP_INFO,
2410         NETDEV_SVLAN_FILTER_PUSH_INFO,
2411         NETDEV_SVLAN_FILTER_DROP_INFO,
2412 };
2413 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2414 
2415 int register_netdevice_notifier(struct notifier_block *nb);
2416 int unregister_netdevice_notifier(struct notifier_block *nb);
2417 
2418 struct netdev_notifier_info {
2419         struct net_device       *dev;
2420         struct netlink_ext_ack  *extack;
2421 };
2422 
2423 struct netdev_notifier_change_info {
2424         struct netdev_notifier_info info; /* must be first */
2425         unsigned int flags_changed;
2426 };
2427 
2428 struct netdev_notifier_changeupper_info {
2429         struct netdev_notifier_info info; /* must be first */
2430         struct net_device *upper_dev; /* new upper dev */
2431         bool master; /* is upper dev master */
2432         bool linking; /* is the notification for link or unlink */
2433         void *upper_info; /* upper dev info */
2434 };
2435 
2436 struct netdev_notifier_changelowerstate_info {
2437         struct netdev_notifier_info info; /* must be first */
2438         void *lower_state_info; /* is lower dev state */
2439 };
2440 
2441 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2442                                              struct net_device *dev)
2443 {
2444         info->dev = dev;
2445         info->extack = NULL;
2446 }
2447 
2448 static inline struct net_device *
2449 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2450 {
2451         return info->dev;
2452 }
2453 
2454 static inline struct netlink_ext_ack *
2455 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2456 {
2457         return info->extack;
2458 }
2459 
2460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2461 
2462 
2463 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2464 
2465 #define for_each_netdev(net, d)         \
2466                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2467 #define for_each_netdev_reverse(net, d) \
2468                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2469 #define for_each_netdev_rcu(net, d)             \
2470                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2471 #define for_each_netdev_safe(net, d, n) \
2472                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2473 #define for_each_netdev_continue(net, d)                \
2474                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2475 #define for_each_netdev_continue_rcu(net, d)            \
2476         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2477 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2478                 for_each_netdev_rcu(&init_net, slave)   \
2479                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2480 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2481 
2482 static inline struct net_device *next_net_device(struct net_device *dev)
2483 {
2484         struct list_head *lh;
2485         struct net *net;
2486 
2487         net = dev_net(dev);
2488         lh = dev->dev_list.next;
2489         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2490 }
2491 
2492 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2493 {
2494         struct list_head *lh;
2495         struct net *net;
2496 
2497         net = dev_net(dev);
2498         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2499         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2500 }
2501 
2502 static inline struct net_device *first_net_device(struct net *net)
2503 {
2504         return list_empty(&net->dev_base_head) ? NULL :
2505                 net_device_entry(net->dev_base_head.next);
2506 }
2507 
2508 static inline struct net_device *first_net_device_rcu(struct net *net)
2509 {
2510         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2511 
2512         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2513 }
2514 
2515 int netdev_boot_setup_check(struct net_device *dev);
2516 unsigned long netdev_boot_base(const char *prefix, int unit);
2517 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2518                                        const char *hwaddr);
2519 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2520 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2521 void dev_add_pack(struct packet_type *pt);
2522 void dev_remove_pack(struct packet_type *pt);
2523 void __dev_remove_pack(struct packet_type *pt);
2524 void dev_add_offload(struct packet_offload *po);
2525 void dev_remove_offload(struct packet_offload *po);
2526 
2527 int dev_get_iflink(const struct net_device *dev);
2528 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2529 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2530                                       unsigned short mask);
2531 struct net_device *dev_get_by_name(struct net *net, const char *name);
2532 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2533 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2534 int dev_alloc_name(struct net_device *dev, const char *name);
2535 int dev_open(struct net_device *dev);
2536 void dev_close(struct net_device *dev);
2537 void dev_close_many(struct list_head *head, bool unlink);
2538 void dev_disable_lro(struct net_device *dev);
2539 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2540 int dev_queue_xmit(struct sk_buff *skb);
2541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2542 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2543 int register_netdevice(struct net_device *dev);
2544 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2545 void unregister_netdevice_many(struct list_head *head);
2546 static inline void unregister_netdevice(struct net_device *dev)
2547 {
2548         unregister_netdevice_queue(dev, NULL);
2549 }
2550 
2551 int netdev_refcnt_read(const struct net_device *dev);
2552 void free_netdev(struct net_device *dev);
2553 void netdev_freemem(struct net_device *dev);
2554 void synchronize_net(void);
2555 int init_dummy_netdev(struct net_device *dev);
2556 
2557 DECLARE_PER_CPU(int, xmit_recursion);
2558 #define XMIT_RECURSION_LIMIT    10
2559 
2560 static inline int dev_recursion_level(void)
2561 {
2562         return this_cpu_read(xmit_recursion);
2563 }
2564 
2565 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2566 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2567 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2568 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2569 int netdev_get_name(struct net *net, char *name, int ifindex);
2570 int dev_restart(struct net_device *dev);
2571 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2572 
2573 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2574 {
2575         return NAPI_GRO_CB(skb)->data_offset;
2576 }
2577 
2578 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2579 {
2580         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2581 }
2582 
2583 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2584 {
2585         NAPI_GRO_CB(skb)->data_offset += len;
2586 }
2587 
2588 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2589                                         unsigned int offset)
2590 {
2591         return NAPI_GRO_CB(skb)->frag0 + offset;
2592 }
2593 
2594 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2595 {
2596         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2597 }
2598 
2599 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2600 {
2601         NAPI_GRO_CB(skb)->frag0 = NULL;
2602         NAPI_GRO_CB(skb)->frag0_len = 0;
2603 }
2604 
2605 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2606                                         unsigned int offset)
2607 {
2608         if (!pskb_may_pull(skb, hlen))
2609                 return NULL;
2610 
2611         skb_gro_frag0_invalidate(skb);
2612         return skb->data + offset;
2613 }
2614 
2615 static inline void *skb_gro_network_header(struct sk_buff *skb)
2616 {
2617         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2618                skb_network_offset(skb);
2619 }
2620 
2621 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2622                                         const void *start, unsigned int len)
2623 {
2624         if (NAPI_GRO_CB(skb)->csum_valid)
2625                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2626                                                   csum_partial(start, len, 0));
2627 }
2628 
2629 /* GRO checksum functions. These are logical equivalents of the normal
2630  * checksum functions (in skbuff.h) except that they operate on the GRO
2631  * offsets and fields in sk_buff.
2632  */
2633 
2634 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2635 
2636 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2637 {
2638         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2639 }
2640 
2641 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2642                                                       bool zero_okay,
2643                                                       __sum16 check)
2644 {
2645         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2646                 skb_checksum_start_offset(skb) <
2647                  skb_gro_offset(skb)) &&
2648                 !skb_at_gro_remcsum_start(skb) &&
2649                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2650                 (!zero_okay || check));
2651 }
2652 
2653 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2654                                                            __wsum psum)
2655 {
2656         if (NAPI_GRO_CB(skb)->csum_valid &&
2657             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2658                 return 0;
2659 
2660         NAPI_GRO_CB(skb)->csum = psum;
2661 
2662         return __skb_gro_checksum_complete(skb);
2663 }
2664 
2665 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2666 {
2667         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2668                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2669                 NAPI_GRO_CB(skb)->csum_cnt--;
2670         } else {
2671                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2672                  * verified a new top level checksum or an encapsulated one
2673                  * during GRO. This saves work if we fallback to normal path.
2674                  */
2675                 __skb_incr_checksum_unnecessary(skb);
2676         }
2677 }
2678 
2679 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2680                                     compute_pseudo)                     \
2681 ({                                                                      \
2682         __sum16 __ret = 0;                                              \
2683         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2684                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2685                                 compute_pseudo(skb, proto));            \
2686         if (!__ret)                                                     \
2687                 skb_gro_incr_csum_unnecessary(skb);                     \
2688         __ret;                                                          \
2689 })
2690 
2691 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2692         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2693 
2694 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2695                                              compute_pseudo)            \
2696         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2697 
2698 #define skb_gro_checksum_simple_validate(skb)                           \
2699         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2700 
2701 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2702 {
2703         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2704                 !NAPI_GRO_CB(skb)->csum_valid);
2705 }
2706 
2707 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2708                                               __sum16 check, __wsum pseudo)
2709 {
2710         NAPI_GRO_CB(skb)->csum = ~pseudo;
2711         NAPI_GRO_CB(skb)->csum_valid = 1;
2712 }
2713 
2714 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2715 do {                                                                    \
2716         if (__skb_gro_checksum_convert_check(skb))                      \
2717                 __skb_gro_checksum_convert(skb, check,                  \
2718                                            compute_pseudo(skb, proto)); \
2719 } while (0)
2720 
2721 struct gro_remcsum {
2722         int offset;
2723         __wsum delta;
2724 };
2725 
2726 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2727 {
2728         grc->offset = 0;
2729         grc->delta = 0;
2730 }
2731 
2732 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2733                                             unsigned int off, size_t hdrlen,
2734                                             int start, int offset,
2735                                             struct gro_remcsum *grc,
2736                                             bool nopartial)
2737 {
2738         __wsum delta;
2739         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2740 
2741         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2742 
2743         if (!nopartial) {
2744                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2745                 return ptr;
2746         }
2747 
2748         ptr = skb_gro_header_fast(skb, off);
2749         if (skb_gro_header_hard(skb, off + plen)) {
2750                 ptr = skb_gro_header_slow(skb, off + plen, off);
2751                 if (!ptr)
2752                         return NULL;
2753         }
2754 
2755         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2756                                start, offset);
2757 
2758         /* Adjust skb->csum since we changed the packet */
2759         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2760 
2761         grc->offset = off + hdrlen + offset;
2762         grc->delta = delta;
2763 
2764         return ptr;
2765 }
2766 
2767 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2768                                            struct gro_remcsum *grc)
2769 {
2770         void *ptr;
2771         size_t plen = grc->offset + sizeof(u16);
2772 
2773         if (!grc->delta)
2774                 return;
2775 
2776         ptr = skb_gro_header_fast(skb, grc->offset);
2777         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2778                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2779                 if (!ptr)
2780                         return;
2781         }
2782 
2783         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2784 }
2785 
2786 #ifdef CONFIG_XFRM_OFFLOAD
2787 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2788 {
2789         if (PTR_ERR(pp) != -EINPROGRESS)
2790                 NAPI_GRO_CB(skb)->flush |= flush;
2791 }
2792 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2793                                                struct sk_buff **pp,
2794                                                int flush,
2795                                                struct gro_remcsum *grc)
2796 {
2797         if (PTR_ERR(pp) != -EINPROGRESS) {
2798                 NAPI_GRO_CB(skb)->flush |= flush;
2799                 skb_gro_remcsum_cleanup(skb, grc);
2800                 skb->remcsum_offload = 0;
2801         }
2802 }
2803 #else
2804 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2805 {
2806         NAPI_GRO_CB(skb)->flush |= flush;
2807 }
2808 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2809                                                struct sk_buff **pp,
2810                                                int flush,
2811                                                struct gro_remcsum *grc)
2812 {
2813         NAPI_GRO_CB(skb)->flush |= flush;
2814         skb_gro_remcsum_cleanup(skb, grc);
2815         skb->remcsum_offload = 0;
2816 }
2817 #endif
2818 
2819 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2820                                   unsigned short type,
2821                                   const void *daddr, const void *saddr,
2822                                   unsigned int len)
2823 {
2824         if (!dev->header_ops || !dev->header_ops->create)
2825                 return 0;
2826 
2827         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2828 }
2829 
2830 static inline int dev_parse_header(const struct sk_buff *skb,
2831                                    unsigned char *haddr)
2832 {
2833         const struct net_device *dev = skb->dev;
2834 
2835         if (!dev->header_ops || !dev->header_ops->parse)
2836                 return 0;
2837         return dev->header_ops->parse(skb, haddr);
2838 }
2839 
2840 /* ll_header must have at least hard_header_len allocated */
2841 static inline bool dev_validate_header(const struct net_device *dev,
2842                                        char *ll_header, int len)
2843 {
2844         if (likely(len >= dev->hard_header_len))
2845                 return true;
2846         if (len < dev->min_header_len)
2847                 return false;
2848 
2849         if (capable(CAP_SYS_RAWIO)) {
2850                 memset(ll_header + len, 0, dev->hard_header_len - len);
2851                 return true;
2852         }
2853 
2854         if (dev->header_ops && dev->header_ops->validate)
2855                 return dev->header_ops->validate(ll_header, len);
2856 
2857         return false;
2858 }
2859 
2860 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2861                            int len, int size);
2862 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2863 static inline int unregister_gifconf(unsigned int family)
2864 {
2865         return register_gifconf(family, NULL);
2866 }
2867 
2868 #ifdef CONFIG_NET_FLOW_LIMIT
2869 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2870 struct sd_flow_limit {
2871         u64                     count;
2872         unsigned int            num_buckets;
2873         unsigned int            history_head;
2874         u16                     history[FLOW_LIMIT_HISTORY];
2875         u8                      buckets[];
2876 };
2877 
2878 extern int netdev_flow_limit_table_len;
2879 #endif /* CONFIG_NET_FLOW_LIMIT */
2880 
2881 /*
2882  * Incoming packets are placed on per-CPU queues
2883  */
2884 struct softnet_data {
2885         struct list_head        poll_list;
2886         struct sk_buff_head     process_queue;
2887 
2888         /* stats */
2889         unsigned int            processed;
2890         unsigned int            time_squeeze;
2891         unsigned int            received_rps;
2892 #ifdef CONFIG_RPS
2893         struct softnet_data     *rps_ipi_list;
2894 #endif
2895 #ifdef CONFIG_NET_FLOW_LIMIT
2896         struct sd_flow_limit __rcu *flow_limit;
2897 #endif
2898         struct Qdisc            *output_queue;
2899         struct Qdisc            **output_queue_tailp;
2900         struct sk_buff          *completion_queue;
2901 #ifdef CONFIG_XFRM_OFFLOAD
2902         struct sk_buff_head     xfrm_backlog;
2903 #endif
2904 #ifdef CONFIG_RPS
2905         /* input_queue_head should be written by cpu owning this struct,
2906          * and only read by other cpus. Worth using a cache line.
2907          */
2908         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2909 
2910         /* Elements below can be accessed between CPUs for RPS/RFS */
2911         call_single_data_t      csd ____cacheline_aligned_in_smp;
2912         struct softnet_data     *rps_ipi_next;
2913         unsigned int            cpu;
2914         unsigned int            input_queue_tail;
2915 #endif
2916         unsigned int            dropped;
2917         struct sk_buff_head     input_pkt_queue;
2918         struct napi_struct      backlog;
2919 
2920 };
2921 
2922 static inline void input_queue_head_incr(struct softnet_data *sd)
2923 {
2924 #ifdef CONFIG_RPS
2925         sd->input_queue_head++;
2926 #endif
2927 }
2928 
2929 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2930                                               unsigned int *qtail)
2931 {
2932 #ifdef CONFIG_RPS
2933         *qtail = ++sd->input_queue_tail;
2934 #endif
2935 }
2936 
2937 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2938 
2939 void __netif_schedule(struct Qdisc *q);
2940 void netif_schedule_queue(struct netdev_queue *txq);
2941 
2942 static inline void netif_tx_schedule_all(struct net_device *dev)
2943 {
2944         unsigned int i;
2945 
2946         for (i = 0; i < dev->num_tx_queues; i++)
2947                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2948 }
2949 
2950 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2951 {
2952         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2953 }
2954 
2955 /**
2956  *      netif_start_queue - allow transmit
2957  *      @dev: network device
2958  *
2959  *      Allow upper layers to call the device hard_start_xmit routine.
2960  */
2961 static inline void netif_start_queue(struct net_device *dev)
2962 {
2963         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2964 }
2965 
2966 static inline void netif_tx_start_all_queues(struct net_device *dev)
2967 {
2968         unsigned int i;
2969 
2970         for (i = 0; i < dev->num_tx_queues; i++) {
2971                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2972                 netif_tx_start_queue(txq);
2973         }
2974 }
2975 
2976 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2977 
2978 /**
2979  *      netif_wake_queue - restart transmit
2980  *      @dev: network device
2981  *
2982  *      Allow upper layers to call the device hard_start_xmit routine.
2983  *      Used for flow control when transmit resources are available.
2984  */
2985 static inline void netif_wake_queue(struct net_device *dev)
2986 {
2987         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2988 }
2989 
2990 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2991 {
2992         unsigned int i;
2993 
2994         for (i = 0; i < dev->num_tx_queues; i++) {
2995                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2996                 netif_tx_wake_queue(txq);
2997         }
2998 }
2999 
3000 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3001 {
3002         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3003 }
3004 
3005 /**
3006  *      netif_stop_queue - stop transmitted packets
3007  *      @dev: network device
3008  *
3009  *      Stop upper layers calling the device hard_start_xmit routine.
3010  *      Used for flow control when transmit resources are unavailable.
3011  */
3012 static inline void netif_stop_queue(struct net_device *dev)
3013 {
3014         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3015 }
3016 
3017 void netif_tx_stop_all_queues(struct net_device *dev);
3018 
3019 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3020 {
3021         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3022 }
3023 
3024 /**
3025  *      netif_queue_stopped - test if transmit queue is flowblocked
3026  *      @dev: network device
3027  *
3028  *      Test if transmit queue on device is currently unable to send.
3029  */
3030 static inline bool netif_queue_stopped(const struct net_device *dev)
3031 {
3032         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3033 }
3034 
3035 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3036 {
3037         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3038 }
3039 
3040 static inline bool
3041 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3042 {
3043         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3044 }
3045 
3046 static inline bool
3047 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3048 {
3049         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3050 }
3051 
3052 /**
3053  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3054  *      @dev_queue: pointer to transmit queue
3055  *
3056  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3057  * to give appropriate hint to the CPU.
3058  */
3059 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3060 {
3061 #ifdef CONFIG_BQL
3062         prefetchw(&dev_queue->dql.num_queued);
3063 #endif
3064 }
3065 
3066 /**
3067  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3068  *      @dev_queue: pointer to transmit queue
3069  *
3070  * BQL enabled drivers might use this helper in their TX completion path,
3071  * to give appropriate hint to the CPU.
3072  */
3073 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3074 {
3075 #ifdef CONFIG_BQL
3076         prefetchw(&dev_queue->dql.limit);
3077 #endif
3078 }
3079 
3080 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3081                                         unsigned int bytes)
3082 {
3083 #ifdef CONFIG_BQL
3084         dql_queued(&dev_queue->dql, bytes);
3085 
3086         if (likely(dql_avail(&dev_queue->dql) >= 0))
3087                 return;
3088 
3089         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3090 
3091         /*
3092          * The XOFF flag must be set before checking the dql_avail below,
3093          * because in netdev_tx_completed_queue we update the dql_completed
3094          * before checking the XOFF flag.
3095          */
3096         smp_mb();
3097 
3098         /* check again in case another CPU has just made room avail */
3099         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3100                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3101 #endif
3102 }
3103 
3104 /**
3105  *      netdev_sent_queue - report the number of bytes queued to hardware
3106  *      @dev: network device
3107  *      @bytes: number of bytes queued to the hardware device queue
3108  *
3109  *      Report the number of bytes queued for sending/completion to the network
3110  *      device hardware queue. @bytes should be a good approximation and should
3111  *      exactly match netdev_completed_queue() @bytes
3112  */
3113 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3114 {
3115         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3116 }
3117 
3118 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3119                                              unsigned int pkts, unsigned int bytes)
3120 {
3121 #ifdef CONFIG_BQL
3122         if (unlikely(!bytes))
3123                 return;
3124 
3125         dql_completed(&dev_queue->dql, bytes);
3126 
3127         /*
3128          * Without the memory barrier there is a small possiblity that
3129          * netdev_tx_sent_queue will miss the update and cause the queue to
3130          * be stopped forever
3131          */
3132         smp_mb();
3133 
3134         if (dql_avail(&dev_queue->dql) < 0)
3135                 return;
3136 
3137         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3138                 netif_schedule_queue(dev_queue);
3139 #endif
3140 }
3141 
3142 /**
3143  *      netdev_completed_queue - report bytes and packets completed by device
3144  *      @dev: network device
3145  *      @pkts: actual number of packets sent over the medium
3146  *      @bytes: actual number of bytes sent over the medium
3147  *
3148  *      Report the number of bytes and packets transmitted by the network device
3149  *      hardware queue over the physical medium, @bytes must exactly match the
3150  *      @bytes amount passed to netdev_sent_queue()
3151  */
3152 static inline void netdev_completed_queue(struct net_device *dev,
3153                                           unsigned int pkts, unsigned int bytes)
3154 {
3155         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3156 }
3157 
3158 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3159 {
3160 #ifdef CONFIG_BQL
3161         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3162         dql_reset(&q->dql);
3163 #endif
3164 }
3165 
3166 /**
3167  *      netdev_reset_queue - reset the packets and bytes count of a network device
3168  *      @dev_queue: network device
3169  *
3170  *      Reset the bytes and packet count of a network device and clear the
3171  *      software flow control OFF bit for this network device
3172  */
3173 static inline void netdev_reset_queue(struct net_device *dev_queue)
3174 {
3175         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3176 }
3177 
3178 /**
3179  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3180  *      @dev: network device
3181  *      @queue_index: given tx queue index
3182  *
3183  *      Returns 0 if given tx queue index >= number of device tx queues,
3184  *      otherwise returns the originally passed tx queue index.
3185  */
3186 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3187 {
3188         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3189                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3190                                      dev->name, queue_index,
3191                                      dev->real_num_tx_queues);
3192                 return 0;
3193         }
3194 
3195         return queue_index;
3196 }
3197 
3198 /**
3199  *      netif_running - test if up
3200  *      @dev: network device
3201  *
3202  *      Test if the device has been brought up.
3203  */
3204 static inline bool netif_running(const struct net_device *dev)
3205 {
3206         return test_bit(__LINK_STATE_START, &dev->state);
3207 }
3208 
3209 /*
3210  * Routines to manage the subqueues on a device.  We only need start,
3211  * stop, and a check if it's stopped.  All other device management is
3212  * done at the overall netdevice level.
3213  * Also test the device if we're multiqueue.
3214  */
3215 
3216 /**
3217  *      netif_start_subqueue - allow sending packets on subqueue
3218  *      @dev: network device
3219  *      @queue_index: sub queue index
3220  *
3221  * Start individual transmit queue of a device with multiple transmit queues.
3222  */
3223 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3224 {
3225         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3226 
3227         netif_tx_start_queue(txq);
3228 }
3229 
3230 /**
3231  *      netif_stop_subqueue - stop sending packets on subqueue
3232  *      @dev: network device
3233  *      @queue_index: sub queue index
3234  *
3235  * Stop individual transmit queue of a device with multiple transmit queues.
3236  */
3237 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3238 {
3239         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3240         netif_tx_stop_queue(txq);
3241 }
3242 
3243 /**
3244  *      netif_subqueue_stopped - test status of subqueue
3245  *      @dev: network device
3246  *      @queue_index: sub queue index
3247  *
3248  * Check individual transmit queue of a device with multiple transmit queues.
3249  */
3250 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3251                                             u16 queue_index)
3252 {
3253         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3254 
3255         return netif_tx_queue_stopped(txq);
3256 }
3257 
3258 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3259                                           struct sk_buff *skb)
3260 {
3261         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3262 }
3263 
3264 /**
3265  *      netif_wake_subqueue - allow sending packets on subqueue
3266  *      @dev: network device
3267  *      @queue_index: sub queue index
3268  *
3269  * Resume individual transmit queue of a device with multiple transmit queues.
3270  */
3271 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3272 {
3273         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3274 
3275         netif_tx_wake_queue(txq);
3276 }
3277 
3278 #ifdef CONFIG_XPS
3279 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3280                         u16 index);
3281 #else
3282 static inline int netif_set_xps_queue(struct net_device *dev,
3283                                       const struct cpumask *mask,
3284                                       u16 index)
3285 {
3286         return 0;
3287 }
3288 #endif
3289 
3290 /**
3291  *      netif_is_multiqueue - test if device has multiple transmit queues
3292  *      @dev: network device
3293  *
3294  * Check if device has multiple transmit queues
3295  */
3296 static inline bool netif_is_multiqueue(const struct net_device *dev)
3297 {
3298         return dev->num_tx_queues > 1;
3299 }
3300 
3301 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3302 
3303 #ifdef CONFIG_SYSFS
3304 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3305 #else
3306 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3307                                                 unsigned int rxq)
3308 {
3309         return 0;
3310 }
3311 #endif
3312 
3313 static inline struct netdev_rx_queue *
3314 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3315 {
3316         return dev->_rx + rxq;
3317 }
3318 
3319 #ifdef CONFIG_SYSFS
3320 static inline unsigned int get_netdev_rx_queue_index(
3321                 struct netdev_rx_queue *queue)
3322 {
3323         struct net_device *dev = queue->dev;
3324         int index = queue - dev->_rx;
3325 
3326         BUG_ON(index >= dev->num_rx_queues);
3327         return index;
3328 }
3329 #endif
3330 
3331 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3332 int netif_get_num_default_rss_queues(void);
3333 
3334 enum skb_free_reason {
3335         SKB_REASON_CONSUMED,
3336         SKB_REASON_DROPPED,
3337 };
3338 
3339 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3340 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3341 
3342 /*
3343  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3344  * interrupt context or with hardware interrupts being disabled.
3345  * (in_irq() || irqs_disabled())
3346  *
3347  * We provide four helpers that can be used in following contexts :
3348  *
3349  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3350  *  replacing kfree_skb(skb)
3351  *
3352  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3353  *  Typically used in place of consume_skb(skb) in TX completion path
3354  *
3355  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3356  *  replacing kfree_skb(skb)
3357  *
3358  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3359  *  and consumed a packet. Used in place of consume_skb(skb)
3360  */
3361 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3362 {
3363         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3364 }
3365 
3366 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3367 {
3368         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3369 }
3370 
3371 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3372 {
3373         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3374 }
3375 
3376 static inline void dev_consume_skb_any(struct sk_buff *skb)
3377 {
3378         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3379 }
3380 
3381 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3382 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3383 int netif_rx(struct sk_buff *skb);
3384 int netif_rx_ni(struct sk_buff *skb);
3385 int netif_receive_skb(struct sk_buff *skb);
3386 int netif_receive_skb_core(struct sk_buff *skb);
3387 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3388 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3389 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3390 gro_result_t napi_gro_frags(struct napi_struct *napi);
3391 struct packet_offload *gro_find_receive_by_type(__be16 type);
3392 struct packet_offload *gro_find_complete_by_type(__be16 type);
3393 
3394 static inline void napi_free_frags(struct napi_struct *napi)
3395 {
3396         kfree_skb(napi->skb);
3397         napi->skb = NULL;
3398 }
3399 
3400 bool netdev_is_rx_handler_busy(struct net_device *dev);
3401 int netdev_rx_handler_register(struct net_device *dev,
3402                                rx_handler_func_t *rx_handler,
3403                                void *rx_handler_data);
3404 void netdev_rx_handler_unregister(struct net_device *dev);
3405 
3406 bool dev_valid_name(const char *name);
3407 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3408                 bool *need_copyout);
3409 int dev_ifconf(struct net *net, struct ifconf *, int);
3410 int dev_ethtool(struct net *net, struct ifreq *);
3411 unsigned int dev_get_flags(const struct net_device *);
3412 int __dev_change_flags(struct net_device *, unsigned int flags);
3413 int dev_change_flags(struct net_device *, unsigned int);
3414 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3415                         unsigned int gchanges);
3416 int dev_change_name(struct net_device *, const char *);
3417 int dev_set_alias(struct net_device *, const char *, size_t);
3418 int dev_get_alias(const struct net_device *, char *, size_t);
3419 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3420 int __dev_set_mtu(struct net_device *, int);
3421 int dev_set_mtu(struct net_device *, int);
3422 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3423 void dev_set_group(struct net_device *, int);
3424 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3425 int dev_change_carrier(struct net_device *, bool new_carrier);
3426 int dev_get_phys_port_id(struct net_device *dev,
3427                          struct netdev_phys_item_id *ppid);
3428 int dev_get_phys_port_name(struct net_device *dev,
3429                            char *name, size_t len);
3430 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3431 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3432 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3433                                     struct netdev_queue *txq, int *ret);
3434 
3435 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3436 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3437                       int fd, u32 flags);
3438 void __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3439                      struct netdev_bpf *xdp);
3440 
3441 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3442 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3443 bool is_skb_forwardable(const struct net_device *dev,
3444                         const struct sk_buff *skb);
3445 
3446 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3447                                                struct sk_buff *skb)
3448 {
3449         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3450             unlikely(!is_skb_forwardable(dev, skb))) {
3451                 atomic_long_inc(&dev->rx_dropped);
3452                 kfree_skb(skb);
3453                 return NET_RX_DROP;
3454         }
3455 
3456         skb_scrub_packet(skb, true);
3457         skb->priority = 0;
3458         return 0;
3459 }
3460 
3461 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3462 
3463 extern int              netdev_budget;
3464 extern unsigned int     netdev_budget_usecs;
3465 
3466 /* Called by rtnetlink.c:rtnl_unlock() */
3467 void netdev_run_todo(void);
3468 
3469 /**
3470  *      dev_put - release reference to device
3471  *      @dev: network device
3472  *
3473  * Release reference to device to allow it to be freed.
3474  */
3475 static inline void dev_put(struct net_device *dev)
3476 {
3477         this_cpu_dec(*dev->pcpu_refcnt);
3478 }
3479 
3480 /**
3481  *      dev_hold - get reference to device
3482  *      @dev: network device
3483  *
3484  * Hold reference to device to keep it from being freed.
3485  */
3486 static inline void dev_hold(struct net_device *dev)
3487 {
3488         this_cpu_inc(*dev->pcpu_refcnt);
3489 }
3490 
3491 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3492  * and _off may be called from IRQ context, but it is caller
3493  * who is responsible for serialization of these calls.
3494  *
3495  * The name carrier is inappropriate, these functions should really be
3496  * called netif_lowerlayer_*() because they represent the state of any
3497  * kind of lower layer not just hardware media.
3498  */
3499 
3500 void linkwatch_init_dev(struct net_device *dev);
3501 void linkwatch_fire_event(struct net_device *dev);
3502 void linkwatch_forget_dev(struct net_device *dev);
3503 
3504 /**
3505  *      netif_carrier_ok - test if carrier present
3506  *      @dev: network device
3507  *
3508  * Check if carrier is present on device
3509  */
3510 static inline bool netif_carrier_ok(const struct net_device *dev)
3511 {
3512         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3513 }
3514 
3515 unsigned long dev_trans_start(struct net_device *dev);
3516 
3517 void __netdev_watchdog_up(struct net_device *dev);
3518 
3519 void netif_carrier_on(struct net_device *dev);
3520 
3521 void netif_carrier_off(struct net_device *dev);
3522 
3523 /**
3524  *      netif_dormant_on - mark device as dormant.
3525  *      @dev: network device
3526  *
3527  * Mark device as dormant (as per RFC2863).
3528  *
3529  * The dormant state indicates that the relevant interface is not
3530  * actually in a condition to pass packets (i.e., it is not 'up') but is
3531  * in a "pending" state, waiting for some external event.  For "on-
3532  * demand" interfaces, this new state identifies the situation where the
3533  * interface is waiting for events to place it in the up state.
3534  */
3535 static inline void netif_dormant_on(struct net_device *dev)
3536 {
3537         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3538                 linkwatch_fire_event(dev);
3539 }
3540 
3541 /**
3542  *      netif_dormant_off - set device as not dormant.
3543  *      @dev: network device
3544  *
3545  * Device is not in dormant state.
3546  */
3547 static inline void netif_dormant_off(struct net_device *dev)
3548 {
3549         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3550                 linkwatch_fire_event(dev);
3551 }
3552 
3553 /**
3554  *      netif_dormant - test if device is dormant
3555  *      @dev: network device
3556  *
3557  * Check if device is dormant.
3558  */
3559 static inline bool netif_dormant(const struct net_device *dev)
3560 {
3561         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3562 }
3563 
3564 
3565 /**
3566  *      netif_oper_up - test if device is operational
3567  *      @dev: network device
3568  *
3569  * Check if carrier is operational
3570  */
3571 static inline bool netif_oper_up(const struct net_device *dev)
3572 {
3573         return (dev->operstate == IF_OPER_UP ||
3574                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3575 }
3576 
3577 /**
3578  *      netif_device_present - is device available or removed
3579  *      @dev: network device
3580  *
3581  * Check if device has not been removed from system.
3582  */
3583 static inline bool netif_device_present(struct net_device *dev)
3584 {
3585         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3586 }
3587 
3588 void netif_device_detach(struct net_device *dev);
3589 
3590 void netif_device_attach(struct net_device *dev);
3591 
3592 /*
3593  * Network interface message level settings
3594  */
3595 
3596 enum {
3597         NETIF_MSG_DRV           = 0x0001,
3598         NETIF_MSG_PROBE         = 0x0002,
3599         NETIF_MSG_LINK          = 0x0004,
3600         NETIF_MSG_TIMER         = 0x0008,
3601         NETIF_MSG_IFDOWN        = 0x0010,
3602         NETIF_MSG_IFUP          = 0x0020,
3603         NETIF_MSG_RX_ERR        = 0x0040,
3604         NETIF_MSG_TX_ERR        = 0x0080,
3605         NETIF_MSG_TX_QUEUED     = 0x0100,
3606         NETIF_MSG_INTR          = 0x0200,
3607         NETIF_MSG_TX_DONE       = 0x0400,
3608         NETIF_MSG_RX_STATUS     = 0x0800,
3609         NETIF_MSG_PKTDATA       = 0x1000,
3610         NETIF_MSG_HW            = 0x2000,
3611         NETIF_MSG_WOL           = 0x4000,
3612 };
3613 
3614 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3615 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3616 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3617 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3618 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3619 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3620 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3621 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3622 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3623 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3624 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3625 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3626 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3627 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3628 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3629 
3630 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3631 {
3632         /* use default */
3633         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3634                 return default_msg_enable_bits;
3635         if (debug_value == 0)   /* no output */
3636                 return 0;
3637         /* set low N bits */
3638         return (1 << debug_value) - 1;
3639 }
3640 
3641 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3642 {
3643         spin_lock(&txq->_xmit_lock);
3644         txq->xmit_lock_owner = cpu;
3645 }
3646 
3647 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3648 {
3649         __acquire(&txq->_xmit_lock);
3650         return true;
3651 }
3652 
3653 static inline void __netif_tx_release(struct netdev_queue *txq)
3654 {
3655         __release(&txq->_xmit_lock);
3656 }
3657 
3658 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3659 {
3660         spin_lock_bh(&txq->_xmit_lock);
3661         txq->xmit_lock_owner = smp_processor_id();
3662 }
3663 
3664 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3665 {
3666         bool ok = spin_trylock(&txq->_xmit_lock);
3667         if (likely(ok))
3668                 txq->xmit_lock_owner = smp_processor_id();
3669         return ok;
3670 }
3671 
3672 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3673 {
3674         txq->xmit_lock_owner = -1;
3675         spin_unlock(&txq->_xmit_lock);
3676 }
3677 
3678 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3679 {
3680         txq->xmit_lock_owner = -1;
3681         spin_unlock_bh(&txq->_xmit_lock);
3682 }
3683 
3684 static inline void txq_trans_update(struct netdev_queue *txq)
3685 {
3686         if (txq->xmit_lock_owner != -1)
3687                 txq->trans_start = jiffies;
3688 }
3689 
3690 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3691 static inline void netif_trans_update(struct net_device *dev)
3692 {
3693         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3694 
3695         if (txq->trans_start != jiffies)
3696                 txq->trans_start = jiffies;
3697 }
3698 
3699 /**
3700  *      netif_tx_lock - grab network device transmit lock
3701  *      @dev: network device
3702  *
3703  * Get network device transmit lock
3704  */
3705 static inline void netif_tx_lock(struct net_device *dev)
3706 {
3707         unsigned int i;
3708         int cpu;
3709 
3710         spin_lock(&dev->tx_global_lock);
3711         cpu = smp_processor_id();
3712         for (i = 0; i < dev->num_tx_queues; i++) {
3713                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3714 
3715                 /* We are the only thread of execution doing a
3716                  * freeze, but we have to grab the _xmit_lock in
3717                  * order to synchronize with threads which are in
3718                  * the ->hard_start_xmit() handler and already
3719                  * checked the frozen bit.
3720                  */
3721                 __netif_tx_lock(txq, cpu);
3722                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3723                 __netif_tx_unlock(txq);
3724         }
3725 }
3726 
3727 static inline void netif_tx_lock_bh(struct net_device *dev)
3728 {
3729         local_bh_disable();
3730         netif_tx_lock(dev);
3731 }
3732 
3733 static inline void netif_tx_unlock(struct net_device *dev)
3734 {
3735         unsigned int i;
3736 
3737         for (i = 0; i < dev->num_tx_queues; i++) {
3738                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3739 
3740                 /* No need to grab the _xmit_lock here.  If the
3741                  * queue is not stopped for another reason, we
3742                  * force a schedule.
3743                  */
3744                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3745                 netif_schedule_queue(txq);
3746         }
3747         spin_unlock(&dev->tx_global_lock);
3748 }
3749 
3750 static inline void netif_tx_unlock_bh(struct net_device *dev)
3751 {
3752         netif_tx_unlock(dev);
3753         local_bh_enable();
3754 }
3755 
3756 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3757         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3758                 __netif_tx_lock(txq, cpu);              \
3759         } else {                                        \
3760                 __netif_tx_acquire(txq);                \
3761         }                                               \
3762 }
3763 
3764 #define HARD_TX_TRYLOCK(dev, txq)                       \
3765         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3766                 __netif_tx_trylock(txq) :               \
3767                 __netif_tx_acquire(txq))
3768 
3769 #define HARD_TX_UNLOCK(dev, txq) {                      \
3770         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3771                 __netif_tx_unlock(txq);                 \
3772         } else {                                        \
3773                 __netif_tx_release(txq);                \
3774         }                                               \
3775 }
3776 
3777 static inline void netif_tx_disable(struct net_device *dev)
3778 {
3779         unsigned int i;
3780         int cpu;
3781 
3782         local_bh_disable();
3783         cpu = smp_processor_id();
3784         for (i = 0; i < dev->num_tx_queues; i++) {
3785                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3786 
3787                 __netif_tx_lock(txq, cpu);
3788                 netif_tx_stop_queue(txq);
3789                 __netif_tx_unlock(txq);
3790         }
3791         local_bh_enable();
3792 }
3793 
3794 static inline void netif_addr_lock(struct net_device *dev)
3795 {
3796         spin_lock(&dev->addr_list_lock);
3797 }
3798 
3799 static inline void netif_addr_lock_nested(struct net_device *dev)
3800 {
3801         int subclass = SINGLE_DEPTH_NESTING;
3802 
3803         if (dev->netdev_ops->ndo_get_lock_subclass)
3804                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3805 
3806         spin_lock_nested(&dev->addr_list_lock, subclass);
3807 }
3808 
3809 static inline void netif_addr_lock_bh(struct net_device *dev)
3810 {
3811         spin_lock_bh(&dev->addr_list_lock);
3812 }
3813 
3814 static inline void netif_addr_unlock(struct net_device *dev)
3815 {
3816         spin_unlock(&dev->addr_list_lock);
3817 }
3818 
3819 static inline void netif_addr_unlock_bh(struct net_device *dev)
3820 {
3821         spin_unlock_bh(&dev->addr_list_lock);
3822 }
3823 
3824 /*
3825  * dev_addrs walker. Should be used only for read access. Call with
3826  * rcu_read_lock held.
3827  */
3828 #define for_each_dev_addr(dev, ha) \
3829                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3830 
3831 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3832 
3833 void ether_setup(struct net_device *dev);
3834 
3835 /* Support for loadable net-drivers */
3836 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3837                                     unsigned char name_assign_type,
3838                                     void (*setup)(struct net_device *),
3839                                     unsigned int txqs, unsigned int rxqs);
3840 int dev_get_valid_name(struct net *net, struct net_device *dev,
3841                        const char *name);
3842 
3843 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3844         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3845 
3846 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3847         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3848                          count)
3849 
3850 int register_netdev(struct net_device *dev);
3851 void unregister_netdev(struct net_device *dev);
3852 
3853 /* General hardware address lists handling functions */
3854 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3855                    struct netdev_hw_addr_list *from_list, int addr_len);
3856 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3857                       struct netdev_hw_addr_list *from_list, int addr_len);
3858 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3859                        struct net_device *dev,
3860                        int (*sync)(struct net_device *, const unsigned char *),
3861                        int (*unsync)(struct net_device *,
3862                                      const unsigned char *));
3863 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3864                           struct net_device *dev,
3865                           int (*unsync)(struct net_device *,
3866                                         const unsigned char *));
3867 void __hw_addr_init(struct netdev_hw_addr_list *list);
3868 
3869 /* Functions used for device addresses handling */
3870 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3871                  unsigned char addr_type);
3872 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3873                  unsigned char addr_type);
3874 void dev_addr_flush(struct net_device *dev);
3875 int dev_addr_init(struct net_device *dev);
3876 
3877 /* Functions used for unicast addresses handling */
3878 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3879 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3880 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3881 int dev_uc_sync(struct net_device *to, struct net_device *from);
3882 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3883 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3884 void dev_uc_flush(struct net_device *dev);
3885 void dev_uc_init(struct net_device *dev);
3886 
3887 /**
3888  *  __dev_uc_sync - Synchonize device's unicast list
3889  *  @dev:  device to sync
3890  *  @sync: function to call if address should be added
3891  *  @unsync: function to call if address should be removed
3892  *
3893  *  Add newly added addresses to the interface, and release
3894  *  addresses that have been deleted.
3895  */
3896 static inline int __dev_uc_sync(struct net_device *dev,
3897                                 int (*sync)(struct net_device *,
3898                                             const unsigned char *),
3899                                 int (*unsync)(struct net_device *,
3900                                               const unsigned char *))
3901 {
3902         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3903 }
3904 
3905 /**
3906  *  __dev_uc_unsync - Remove synchronized addresses from device
3907  *  @dev:  device to sync
3908  *  @unsync: function to call if address should be removed
3909  *
3910  *  Remove all addresses that were added to the device by dev_uc_sync().
3911  */
3912 static inline void __dev_uc_unsync(struct net_device *dev,
3913                                    int (*unsync)(struct net_device *,
3914                                                  const unsigned char *))
3915 {
3916         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3917 }
3918 
3919 /* Functions used for multicast addresses handling */
3920 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3921 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3922 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3923 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3924 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3925 int dev_mc_sync(struct net_device *to, struct net_device *from);
3926 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3927 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3928 void dev_mc_flush(struct net_device *dev);
3929 void dev_mc_init(struct net_device *dev);
3930 
3931 /**
3932  *  __dev_mc_sync - Synchonize device's multicast list
3933  *  @dev:  device to sync
3934  *  @sync: function to call if address should be added
3935  *  @unsync: function to call if address should be removed
3936  *
3937  *  Add newly added addresses to the interface, and release
3938  *  addresses that have been deleted.
3939  */
3940 static inline int __dev_mc_sync(struct net_device *dev,
3941                                 int (*sync)(struct net_device *,
3942                                             const unsigned char *),
3943                                 int (*unsync)(struct net_device *,
3944                                               const unsigned char *))
3945 {
3946         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3947 }
3948 
3949 /**
3950  *  __dev_mc_unsync - Remove synchronized addresses from device
3951  *  @dev:  device to sync
3952  *  @unsync: function to call if address should be removed
3953  *
3954  *  Remove all addresses that were added to the device by dev_mc_sync().
3955  */
3956 static inline void __dev_mc_unsync(struct net_device *dev,
3957                                    int (*unsync)(struct net_device *,
3958                                                  const unsigned char *))
3959 {
3960         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3961 }
3962 
3963 /* Functions used for secondary unicast and multicast support */
3964 void dev_set_rx_mode(struct net_device *dev);
3965 void __dev_set_rx_mode(struct net_device *dev);
3966 int dev_set_promiscuity(struct net_device *dev, int inc);
3967 int dev_set_allmulti(struct net_device *dev, int inc);
3968 void netdev_state_change(struct net_device *dev);
3969 void netdev_notify_peers(struct net_device *dev);
3970 void netdev_features_change(struct net_device *dev);
3971 /* Load a device via the kmod */
3972 void dev_load(struct net *net, const char *name);
3973 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3974                                         struct rtnl_link_stats64 *storage);
3975 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3976                              const struct net_device_stats *netdev_stats);
3977 
3978 extern int              netdev_max_backlog;
3979 extern int              netdev_tstamp_prequeue;
3980 extern int              weight_p;
3981 extern int              dev_weight_rx_bias;
3982 extern int              dev_weight_tx_bias;
3983 extern int              dev_rx_weight;
3984 extern int              dev_tx_weight;
3985 
3986 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3987 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3988                                                      struct list_head **iter);
3989 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3990                                                      struct list_head **iter);
3991 
3992 /* iterate through upper list, must be called under RCU read lock */
3993 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3994         for (iter = &(dev)->adj_list.upper, \
3995              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3996              updev; \
3997              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3998 
3999 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4000                                   int (*fn)(struct net_device *upper_dev,
4001                                             void *data),
4002                                   void *data);
4003 
4004 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4005                                   struct net_device *upper_dev);
4006 
4007 bool netdev_has_any_upper_dev(struct net_device *dev);
4008 
4009 void *netdev_lower_get_next_private(struct net_device *dev,
4010                                     struct list_head **iter);
4011 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4012                                         struct list_head **iter);
4013 
4014 #define netdev_for_each_lower_private(dev, priv, iter) \
4015         for (iter = (dev)->adj_list.lower.next, \
4016              priv = netdev_lower_get_next_private(dev, &(iter)); \
4017              priv; \
4018              priv = netdev_lower_get_next_private(dev, &(iter)))
4019 
4020 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4021         for (iter = &(dev)->adj_list.lower, \
4022              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4023              priv; \
4024              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4025 
4026 void *netdev_lower_get_next(struct net_device *dev,
4027                                 struct list_head **iter);
4028 
4029 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4030         for (iter = (dev)->adj_list.lower.next, \
4031              ldev = netdev_lower_get_next(dev, &(iter)); \
4032              ldev; \
4033              ldev = netdev_lower_get_next(dev, &(iter)))
4034 
4035 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4036                                              struct list_head **iter);
4037 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4038                                                  struct list_head **iter);
4039 
4040 int netdev_walk_all_lower_dev(struct net_device *dev,
4041                               int (*fn)(struct net_device *lower_dev,
4042                                         void *data),
4043                               void *data);
4044 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4045                                   int (*fn)(struct net_device *lower_dev,
4046                                             void *data),
4047                                   void *data);
4048 
4049 void *netdev_adjacent_get_private(struct list_head *adj_list);
4050 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4051 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4052 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4053 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4054                           struct netlink_ext_ack *extack);
4055 int netdev_master_upper_dev_link(struct net_device *dev,
4056                                  struct net_device *upper_dev,
4057                                  void *upper_priv, void *upper_info,
4058                                  struct netlink_ext_ack *extack);
4059 void netdev_upper_dev_unlink(struct net_device *dev,
4060                              struct net_device *upper_dev);
4061 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4062 void *netdev_lower_dev_get_private(struct net_device *dev,
4063                                    struct net_device *lower_dev);
4064 void netdev_lower_state_changed(struct net_device *lower_dev,
4065                                 void *lower_state_info);
4066 
4067 /* RSS keys are 40 or 52 bytes long */
4068 #define NETDEV_RSS_KEY_LEN 52
4069 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4070 void netdev_rss_key_fill(void *buffer, size_t len);
4071 
4072 int dev_get_nest_level(struct net_device *dev);
4073 int skb_checksum_help(struct sk_buff *skb);
4074 int skb_crc32c_csum_help(struct sk_buff *skb);
4075 int skb_csum_hwoffload_help(struct sk_buff *skb,
4076                             const netdev_features_t features);
4077 
4078 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4079                                   netdev_features_t features, bool tx_path);
4080 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4081                                     netdev_features_t features);
4082 
4083 struct netdev_bonding_info {
4084         ifslave slave;
4085         ifbond  master;
4086 };
4087 
4088 struct netdev_notifier_bonding_info {
4089         struct netdev_notifier_info info; /* must be first */
4090         struct netdev_bonding_info  bonding_info;
4091 };
4092 
4093 void netdev_bonding_info_change(struct net_device *dev,
4094                                 struct netdev_bonding_info *bonding_info);
4095 
4096 static inline
4097 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4098 {
4099         return __skb_gso_segment(skb, features, true);
4100 }
4101 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4102 
4103 static inline bool can_checksum_protocol(netdev_features_t features,
4104                                          __be16 protocol)
4105 {
4106         if (protocol == htons(ETH_P_FCOE))
4107                 return !!(features & NETIF_F_FCOE_CRC);
4108 
4109         /* Assume this is an IP checksum (not SCTP CRC) */
4110 
4111         if (features & NETIF_F_HW_CSUM) {
4112                 /* Can checksum everything */
4113                 return true;
4114         }
4115 
4116         switch (protocol) {
4117         case htons(ETH_P_IP):
4118                 return !!(features & NETIF_F_IP_CSUM);
4119         case htons(ETH_P_IPV6):
4120                 return !!(features & NETIF_F_IPV6_CSUM);
4121         default:
4122                 return false;
4123         }
4124 }
4125 
4126 #ifdef CONFIG_BUG
4127 void netdev_rx_csum_fault(struct net_device *dev);
4128 #else
4129 static inline void netdev_rx_csum_fault(struct net_device *dev)
4130 {
4131 }
4132 #endif
4133 /* rx skb timestamps */
4134 void net_enable_timestamp(void);
4135 void net_disable_timestamp(void);
4136 
4137 #ifdef CONFIG_PROC_FS
4138 int __init dev_proc_init(void);
4139 #else
4140 #define dev_proc_init() 0
4141 #endif
4142 
4143 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4144                                               struct sk_buff *skb, struct net_device *dev,
4145                                               bool more)
4146 {
4147         skb->xmit_more = more ? 1 : 0;
4148         return ops->ndo_start_xmit(skb, dev);
4149 }
4150 
4151 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4152                                             struct netdev_queue *txq, bool more)
4153 {
4154         const struct net_device_ops *ops = dev->netdev_ops;
4155         int rc;
4156 
4157         rc = __netdev_start_xmit(ops, skb, dev, more);
4158         if (rc == NETDEV_TX_OK)
4159                 txq_trans_update(txq);
4160 
4161         return rc;
4162 }
4163 
4164 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4165                                 const void *ns);
4166 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4167                                  const void *ns);
4168 
4169 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4170 {
4171         return netdev_class_create_file_ns(class_attr, NULL);
4172 }
4173 
4174 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4175 {
4176         netdev_class_remove_file_ns(class_attr, NULL);
4177 }
4178 
4179 extern const struct kobj_ns_type_operations net_ns_type_operations;
4180 
4181 const char *netdev_drivername(const struct net_device *dev);
4182 
4183 void linkwatch_run_queue(void);
4184 
4185 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4186                                                           netdev_features_t f2)
4187 {
4188         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4189                 if (f1 & NETIF_F_HW_CSUM)
4190                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4191                 else
4192                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4193         }
4194 
4195         return f1 & f2;
4196 }
4197 
4198 static inline netdev_features_t netdev_get_wanted_features(
4199         struct net_device *dev)
4200 {
4201         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4202 }
4203 netdev_features_t netdev_increment_features(netdev_features_t all,
4204         netdev_features_t one, netdev_features_t mask);
4205 
4206 /* Allow TSO being used on stacked device :
4207  * Performing the GSO segmentation before last device
4208  * is a performance improvement.
4209  */
4210 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4211                                                         netdev_features_t mask)
4212 {
4213         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4214 }
4215 
4216 int __netdev_update_features(struct net_device *dev);
4217 void netdev_update_features(struct net_device *dev);
4218 void netdev_change_features(struct net_device *dev);
4219 
4220 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4221                                         struct net_device *dev);
4222 
4223 netdev_features_t passthru_features_check(struct sk_buff *skb,
4224                                           struct net_device *dev,
4225                                           netdev_features_t features);
4226 netdev_features_t netif_skb_features(struct sk_buff *skb);
4227 
4228 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4229 {
4230         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4231 
4232         /* check flags correspondence */
4233         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4234         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4235         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4236         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4237         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4238         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4239         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4240         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4241         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4242         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4243         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4244         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4245         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4246         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4247         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4248         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4249         BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4250         BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4251 
4252         return (features & feature) == feature;
4253 }
4254 
4255 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4256 {
4257         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4258                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4259 }
4260 
4261 static inline bool netif_needs_gso(struct sk_buff *skb,
4262                                    netdev_features_t features)
4263 {
4264         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4265                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4266                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4267 }
4268 
4269 static inline void netif_set_gso_max_size(struct net_device *dev,
4270                                           unsigned int size)
4271 {
4272         dev->gso_max_size = size;
4273 }
4274 
4275 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4276                                         int pulled_hlen, u16 mac_offset,
4277                                         int mac_len)
4278 {
4279         skb->protocol = protocol;
4280         skb->encapsulation = 1;
4281         skb_push(skb, pulled_hlen);
4282         skb_reset_transport_header(skb);
4283         skb->mac_header = mac_offset;
4284         skb->network_header = skb->mac_header + mac_len;
4285         skb->mac_len = mac_len;
4286 }
4287 
4288 static inline bool netif_is_macsec(const struct net_device *dev)
4289 {
4290         return dev->priv_flags & IFF_MACSEC;
4291 }
4292 
4293 static inline bool netif_is_macvlan(const struct net_device *dev)
4294 {
4295         return dev->priv_flags & IFF_MACVLAN;
4296 }
4297 
4298 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4299 {
4300         return dev->priv_flags & IFF_MACVLAN_PORT;
4301 }
4302 
4303 static inline bool netif_is_bond_master(const struct net_device *dev)
4304 {
4305         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4306 }
4307 
4308 static inline bool netif_is_bond_slave(const struct net_device *dev)
4309 {
4310         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4311 }
4312 
4313 static inline bool netif_supports_nofcs(struct net_device *dev)
4314 {
4315         return dev->priv_flags & IFF_SUPP_NOFCS;
4316 }
4317 
4318 static inline bool netif_is_l3_master(const struct net_device *dev)
4319 {
4320         return dev->priv_flags & IFF_L3MDEV_MASTER;
4321 }
4322 
4323 static inline bool netif_is_l3_slave(const struct net_device *dev)
4324 {
4325         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4326 }
4327 
4328 static inline bool netif_is_bridge_master(const struct net_device *dev)
4329 {
4330         return dev->priv_flags & IFF_EBRIDGE;
4331 }
4332 
4333 static inline bool netif_is_bridge_port(const struct net_device *dev)
4334 {
4335         return dev->priv_flags & IFF_BRIDGE_PORT;
4336 }
4337 
4338 static inline bool netif_is_ovs_master(const struct net_device *dev)
4339 {
4340         return dev->priv_flags & IFF_OPENVSWITCH;
4341 }
4342 
4343 static inline bool netif_is_ovs_port(const struct net_device *dev)
4344 {
4345         return dev->priv_flags & IFF_OVS_DATAPATH;
4346 }
4347 
4348 static inline bool netif_is_team_master(const struct net_device *dev)
4349 {
4350         return dev->priv_flags & IFF_TEAM;
4351 }
4352 
4353 static inline bool netif_is_team_port(const struct net_device *dev)
4354 {
4355         return dev->priv_flags & IFF_TEAM_PORT;
4356 }
4357 
4358 static inline bool netif_is_lag_master(const struct net_device *dev)
4359 {
4360         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4361 }
4362 
4363 static inline bool netif_is_lag_port(const struct net_device *dev)
4364 {
4365         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4366 }
4367 
4368 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4369 {
4370         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4371 }
4372 
4373 static inline bool netif_is_failover(const struct net_device *dev)
4374 {
4375         return dev->priv_flags & IFF_FAILOVER;
4376 }
4377 
4378 static inline bool netif_is_failover_slave(const struct net_device *dev)
4379 {
4380         return dev->priv_flags & IFF_FAILOVER_SLAVE;
4381 }
4382 
4383 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4384 static inline void netif_keep_dst(struct net_device *dev)
4385 {
4386         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4387 }
4388 
4389 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4390 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4391 {
4392         /* TODO: reserve and use an additional IFF bit, if we get more users */
4393         return dev->priv_flags & IFF_MACSEC;
4394 }
4395 
4396 extern struct pernet_operations __net_initdata loopback_net_ops;
4397 
4398 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4399 
4400 /* netdev_printk helpers, similar to dev_printk */
4401 
4402 static inline const char *netdev_name(const struct net_device *dev)
4403 {
4404         if (!dev->name[0] || strchr(dev->name, '%'))
4405                 return "(unnamed net_device)";
4406         return dev->name;
4407 }
4408 
4409 static inline bool netdev_unregistering(const struct net_device *dev)
4410 {
4411         return dev->reg_state == NETREG_UNREGISTERING;
4412 }
4413 
4414 static inline const char *netdev_reg_state(const struct net_device *dev)
4415 {
4416         switch (dev->reg_state) {
4417         case NETREG_UNINITIALIZED: return " (uninitialized)";
4418         case NETREG_REGISTERED: return "";
4419         case NETREG_UNREGISTERING: return " (unregistering)";
4420         case NETREG_UNREGISTERED: return " (unregistered)";
4421         case NETREG_RELEASED: return " (released)";
4422         case NETREG_DUMMY: return " (dummy)";
4423         }
4424 
4425         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4426         return " (unknown)";
4427 }
4428 
4429 __printf(3, 4)
4430 void netdev_printk(const char *level, const struct net_device *dev,
4431                    const char *format, ...);
4432 __printf(2, 3)
4433 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4434 __printf(2, 3)
4435 void netdev_alert(const struct net_device *dev, const char *format, ...);
4436 __printf(2, 3)
4437 void netdev_crit(const struct net_device *dev, const char *format, ...);
4438 __printf(2, 3)
4439 void netdev_err(const struct net_device *dev, const char *format, ...);
4440 __printf(2, 3)
4441 void netdev_warn(const struct net_device *dev, const char *format, ...);
4442 __printf(2, 3)
4443 void netdev_notice(const struct net_device *dev, const char *format, ...);
4444 __printf(2, 3)
4445 void netdev_info(const struct net_device *dev, const char *format, ...);
4446 
4447 #define netdev_level_once(level, dev, fmt, ...)                 \
4448 do {                                                            \
4449         static bool __print_once __read_mostly;                 \
4450                                                                 \
4451         if (!__print_once) {                                    \
4452                 __print_once = true;                            \
4453                 netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4454         }                                                       \
4455 } while (0)
4456 
4457 #define netdev_emerg_once(dev, fmt, ...) \
4458         netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4459 #define netdev_alert_once(dev, fmt, ...) \
4460         netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4461 #define netdev_crit_once(dev, fmt, ...) \
4462         netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4463 #define netdev_err_once(dev, fmt, ...) \
4464         netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4465 #define netdev_warn_once(dev, fmt, ...) \
4466         netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4467 #define netdev_notice_once(dev, fmt, ...) \
4468         netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4469 #define netdev_info_once(dev, fmt, ...) \
4470         netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4471 
4472 #define MODULE_ALIAS_NETDEV(device) \
4473         MODULE_ALIAS("netdev-" device)
4474 
4475 #if defined(CONFIG_DYNAMIC_DEBUG)
4476 #define netdev_dbg(__dev, format, args...)                      \
4477 do {                                                            \
4478         dynamic_netdev_dbg(__dev, format, ##args);              \
4479 } while (0)
4480 #elif defined(DEBUG)
4481 #define netdev_dbg(__dev, format, args...)                      \
4482         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4483 #else
4484 #define netdev_dbg(__dev, format, args...)                      \
4485 ({                                                              \
4486         if (0)                                                  \
4487                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4488 })
4489 #endif
4490 
4491 #if defined(VERBOSE_DEBUG)
4492 #define netdev_vdbg     netdev_dbg
4493 #else
4494 
4495 #define netdev_vdbg(dev, format, args...)                       \
4496 ({                                                              \
4497         if (0)                                                  \
4498                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4499         0;                                                      \
4500 })
4501 #endif
4502 
4503 /*
4504  * netdev_WARN() acts like dev_printk(), but with the key difference
4505  * of using a WARN/WARN_ON to get the message out, including the
4506  * file/line information and a backtrace.
4507  */
4508 #define netdev_WARN(dev, format, args...)                       \
4509         WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4510              netdev_reg_state(dev), ##args)
4511 
4512 #define netdev_WARN_ONCE(dev, format, args...)                          \
4513         WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4514                   netdev_reg_state(dev), ##args)
4515 
4516 /* netif printk helpers, similar to netdev_printk */
4517 
4518 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4519 do {                                                            \
4520         if (netif_msg_##type(priv))                             \
4521                 netdev_printk(level, (dev), fmt, ##args);       \
4522 } while (0)
4523 
4524 #define netif_level(level, priv, type, dev, fmt, args...)       \
4525 do {                                                            \
4526         if (netif_msg_##type(priv))                             \
4527                 netdev_##level(dev, fmt, ##args);               \
4528 } while (0)
4529 
4530 #define netif_emerg(priv, type, dev, fmt, args...)              \
4531         netif_level(emerg, priv, type, dev, fmt, ##args)
4532 #define netif_alert(priv, type, dev, fmt, args...)              \
4533         netif_level(alert, priv, type, dev, fmt, ##args)
4534 #define netif_crit(priv, type, dev, fmt, args...)               \
4535         netif_level(crit, priv, type, dev, fmt, ##args)
4536 #define netif_err(priv, type, dev, fmt, args...)                \
4537         netif_level(err, priv, type, dev, fmt, ##args)
4538 #define netif_warn(priv, type, dev, fmt, args...)               \
4539         netif_level(warn, priv, type, dev, fmt, ##args)
4540 #define netif_notice(priv, type, dev, fmt, args...)             \
4541         netif_level(notice, priv, type, dev, fmt, ##args)
4542 #define netif_info(priv, type, dev, fmt, args...)               \
4543         netif_level(info, priv, type, dev, fmt, ##args)
4544 
4545 #if defined(CONFIG_DYNAMIC_DEBUG)
4546 #define netif_dbg(priv, type, netdev, format, args...)          \
4547 do {                                                            \
4548         if (netif_msg_##type(priv))                             \
4549                 dynamic_netdev_dbg(netdev, format, ##args);     \
4550 } while (0)
4551 #elif defined(DEBUG)
4552 #define netif_dbg(priv, type, dev, format, args...)             \
4553         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4554 #else
4555 #define netif_dbg(priv, type, dev, format, args...)                     \
4556 ({                                                                      \
4557         if (0)                                                          \
4558                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4559         0;                                                              \
4560 })
4561 #endif
4562 
4563 /* if @cond then downgrade to debug, else print at @level */
4564 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4565         do {                                                              \
4566                 if (cond)                                                 \
4567                         netif_dbg(priv, type, netdev, fmt, ##args);       \
4568                 else                                                      \
4569                         netif_ ## level(priv, type, netdev, fmt, ##args); \
4570         } while (0)
4571 
4572 #if defined(VERBOSE_DEBUG)
4573 #define netif_vdbg      netif_dbg
4574 #else
4575 #define netif_vdbg(priv, type, dev, format, args...)            \
4576 ({                                                              \
4577         if (0)                                                  \
4578                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4579         0;                                                      \
4580 })
4581 #endif
4582 
4583 /*
4584  *      The list of packet types we will receive (as opposed to discard)
4585  *      and the routines to invoke.
4586  *
4587  *      Why 16. Because with 16 the only overlap we get on a hash of the
4588  *      low nibble of the protocol value is RARP/SNAP/X.25.
4589  *
4590  *              0800    IP
4591  *              0001    802.3
4592  *              0002    AX.25
4593  *              0004    802.2
4594  *              8035    RARP
4595  *              0005    SNAP
4596  *              0805    X.25
4597  *              0806    ARP
4598  *              8137    IPX
4599  *              0009    Localtalk
4600  *              86DD    IPv6
4601  */
4602 #define PTYPE_HASH_SIZE (16)
4603 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4604 
4605 #endif  /* _LINUX_NETDEVICE_H */
4606 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp