~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/netdevice.h

Version: ~ [ linux-4.20-rc3 ] ~ [ linux-4.19.2 ] ~ [ linux-4.18.19 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.81 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.137 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.163 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.125 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.60 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.31.14 ] ~ [ linux-2.6.30.10 ] ~ [ linux-2.6.29.6 ] ~ [ linux-2.6.28.10 ] ~ [ linux-2.6.27.62 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/workqueue.h>
 39 #include <linux/dynamic_queue_limits.h>
 40 
 41 #include <linux/ethtool.h>
 42 #include <net/net_namespace.h>
 43 #ifdef CONFIG_DCB
 44 #include <net/dcbnl.h>
 45 #endif
 46 #include <net/netprio_cgroup.h>
 47 #include <net/xdp.h>
 48 
 49 #include <linux/netdev_features.h>
 50 #include <linux/neighbour.h>
 51 #include <uapi/linux/netdevice.h>
 52 #include <uapi/linux/if_bonding.h>
 53 #include <uapi/linux/pkt_cls.h>
 54 #include <linux/hashtable.h>
 55 
 56 struct netpoll_info;
 57 struct device;
 58 struct phy_device;
 59 struct dsa_port;
 60 
 61 struct sfp_bus;
 62 /* 802.11 specific */
 63 struct wireless_dev;
 64 /* 802.15.4 specific */
 65 struct wpan_dev;
 66 struct mpls_dev;
 67 /* UDP Tunnel offloads */
 68 struct udp_tunnel_info;
 69 struct bpf_prog;
 70 struct xdp_buff;
 71 
 72 void netdev_set_default_ethtool_ops(struct net_device *dev,
 73                                     const struct ethtool_ops *ops);
 74 
 75 /* Backlog congestion levels */
 76 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 77 #define NET_RX_DROP             1       /* packet dropped */
 78 
 79 /*
 80  * Transmit return codes: transmit return codes originate from three different
 81  * namespaces:
 82  *
 83  * - qdisc return codes
 84  * - driver transmit return codes
 85  * - errno values
 86  *
 87  * Drivers are allowed to return any one of those in their hard_start_xmit()
 88  * function. Real network devices commonly used with qdiscs should only return
 89  * the driver transmit return codes though - when qdiscs are used, the actual
 90  * transmission happens asynchronously, so the value is not propagated to
 91  * higher layers. Virtual network devices transmit synchronously; in this case
 92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 93  * others are propagated to higher layers.
 94  */
 95 
 96 /* qdisc ->enqueue() return codes. */
 97 #define NET_XMIT_SUCCESS        0x00
 98 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 99 #define NET_XMIT_CN             0x02    /* congestion notification      */
100 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK          0xf0
110 
111 enum netdev_tx {
112         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
113         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
114         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132 
133         return false;
134 }
135 
136 /*
137  *      Compute the worst-case header length according to the protocols
138  *      used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *      Old network device statistics. Fields are native words
162  *      (unsigned long) so they can be read and written atomically.
163  */
164 
165 struct net_device_stats {
166         unsigned long   rx_packets;
167         unsigned long   tx_packets;
168         unsigned long   rx_bytes;
169         unsigned long   tx_bytes;
170         unsigned long   rx_errors;
171         unsigned long   tx_errors;
172         unsigned long   rx_dropped;
173         unsigned long   tx_dropped;
174         unsigned long   multicast;
175         unsigned long   collisions;
176         unsigned long   rx_length_errors;
177         unsigned long   rx_over_errors;
178         unsigned long   rx_crc_errors;
179         unsigned long   rx_frame_errors;
180         unsigned long   rx_fifo_errors;
181         unsigned long   rx_missed_errors;
182         unsigned long   tx_aborted_errors;
183         unsigned long   tx_carrier_errors;
184         unsigned long   tx_fifo_errors;
185         unsigned long   tx_heartbeat_errors;
186         unsigned long   tx_window_errors;
187         unsigned long   rx_compressed;
188         unsigned long   tx_compressed;
189 };
190 
191 
192 #include <linux/cache.h>
193 #include <linux/skbuff.h>
194 
195 #ifdef CONFIG_RPS
196 #include <linux/static_key.h>
197 extern struct static_key rps_needed;
198 extern struct static_key rfs_needed;
199 #endif
200 
201 struct neighbour;
202 struct neigh_parms;
203 struct sk_buff;
204 
205 struct netdev_hw_addr {
206         struct list_head        list;
207         unsigned char           addr[MAX_ADDR_LEN];
208         unsigned char           type;
209 #define NETDEV_HW_ADDR_T_LAN            1
210 #define NETDEV_HW_ADDR_T_SAN            2
211 #define NETDEV_HW_ADDR_T_SLAVE          3
212 #define NETDEV_HW_ADDR_T_UNICAST        4
213 #define NETDEV_HW_ADDR_T_MULTICAST      5
214         bool                    global_use;
215         int                     sync_cnt;
216         int                     refcount;
217         int                     synced;
218         struct rcu_head         rcu_head;
219 };
220 
221 struct netdev_hw_addr_list {
222         struct list_head        list;
223         int                     count;
224 };
225 
226 #define netdev_hw_addr_list_count(l) ((l)->count)
227 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
228 #define netdev_hw_addr_list_for_each(ha, l) \
229         list_for_each_entry(ha, &(l)->list, list)
230 
231 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
232 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
233 #define netdev_for_each_uc_addr(ha, dev) \
234         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
235 
236 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
237 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
238 #define netdev_for_each_mc_addr(ha, dev) \
239         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
240 
241 struct hh_cache {
242         unsigned int    hh_len;
243         seqlock_t       hh_lock;
244 
245         /* cached hardware header; allow for machine alignment needs.        */
246 #define HH_DATA_MOD     16
247 #define HH_DATA_OFF(__len) \
248         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
249 #define HH_DATA_ALIGN(__len) \
250         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
251         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
252 };
253 
254 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
255  * Alternative is:
256  *   dev->hard_header_len ? (dev->hard_header_len +
257  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
258  *
259  * We could use other alignment values, but we must maintain the
260  * relationship HH alignment <= LL alignment.
261  */
262 #define LL_RESERVED_SPACE(dev) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
266 
267 struct header_ops {
268         int     (*create) (struct sk_buff *skb, struct net_device *dev,
269                            unsigned short type, const void *daddr,
270                            const void *saddr, unsigned int len);
271         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
272         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
273         void    (*cache_update)(struct hh_cache *hh,
274                                 const struct net_device *dev,
275                                 const unsigned char *haddr);
276         bool    (*validate)(const char *ll_header, unsigned int len);
277 };
278 
279 /* These flag bits are private to the generic network queueing
280  * layer; they may not be explicitly referenced by any other
281  * code.
282  */
283 
284 enum netdev_state_t {
285         __LINK_STATE_START,
286         __LINK_STATE_PRESENT,
287         __LINK_STATE_NOCARRIER,
288         __LINK_STATE_LINKWATCH_PENDING,
289         __LINK_STATE_DORMANT,
290 };
291 
292 
293 /*
294  * This structure holds boot-time configured netdevice settings. They
295  * are then used in the device probing.
296  */
297 struct netdev_boot_setup {
298         char name[IFNAMSIZ];
299         struct ifmap map;
300 };
301 #define NETDEV_BOOT_SETUP_MAX 8
302 
303 int __init netdev_boot_setup(char *str);
304 
305 struct gro_list {
306         struct list_head        list;
307         int                     count;
308 };
309 
310 /*
311  * size of gro hash buckets, must less than bit number of
312  * napi_struct::gro_bitmask
313  */
314 #define GRO_HASH_BUCKETS        8
315 
316 /*
317  * Structure for NAPI scheduling similar to tasklet but with weighting
318  */
319 struct napi_struct {
320         /* The poll_list must only be managed by the entity which
321          * changes the state of the NAPI_STATE_SCHED bit.  This means
322          * whoever atomically sets that bit can add this napi_struct
323          * to the per-CPU poll_list, and whoever clears that bit
324          * can remove from the list right before clearing the bit.
325          */
326         struct list_head        poll_list;
327 
328         unsigned long           state;
329         int                     weight;
330         unsigned long           gro_bitmask;
331         int                     (*poll)(struct napi_struct *, int);
332 #ifdef CONFIG_NETPOLL
333         int                     poll_owner;
334 #endif
335         struct net_device       *dev;
336         struct gro_list         gro_hash[GRO_HASH_BUCKETS];
337         struct sk_buff          *skb;
338         struct hrtimer          timer;
339         struct list_head        dev_list;
340         struct hlist_node       napi_hash_node;
341         unsigned int            napi_id;
342 };
343 
344 enum {
345         NAPI_STATE_SCHED,       /* Poll is scheduled */
346         NAPI_STATE_MISSED,      /* reschedule a napi */
347         NAPI_STATE_DISABLE,     /* Disable pending */
348         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
349         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
350         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
351         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
352 };
353 
354 enum {
355         NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
356         NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
357         NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
358         NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
359         NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
360         NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
361         NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
362 };
363 
364 enum gro_result {
365         GRO_MERGED,
366         GRO_MERGED_FREE,
367         GRO_HELD,
368         GRO_NORMAL,
369         GRO_DROP,
370         GRO_CONSUMED,
371 };
372 typedef enum gro_result gro_result_t;
373 
374 /*
375  * enum rx_handler_result - Possible return values for rx_handlers.
376  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
377  * further.
378  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
379  * case skb->dev was changed by rx_handler.
380  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
381  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
382  *
383  * rx_handlers are functions called from inside __netif_receive_skb(), to do
384  * special processing of the skb, prior to delivery to protocol handlers.
385  *
386  * Currently, a net_device can only have a single rx_handler registered. Trying
387  * to register a second rx_handler will return -EBUSY.
388  *
389  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
390  * To unregister a rx_handler on a net_device, use
391  * netdev_rx_handler_unregister().
392  *
393  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
394  * do with the skb.
395  *
396  * If the rx_handler consumed the skb in some way, it should return
397  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
398  * the skb to be delivered in some other way.
399  *
400  * If the rx_handler changed skb->dev, to divert the skb to another
401  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
402  * new device will be called if it exists.
403  *
404  * If the rx_handler decides the skb should be ignored, it should return
405  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
406  * are registered on exact device (ptype->dev == skb->dev).
407  *
408  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
409  * delivered, it should return RX_HANDLER_PASS.
410  *
411  * A device without a registered rx_handler will behave as if rx_handler
412  * returned RX_HANDLER_PASS.
413  */
414 
415 enum rx_handler_result {
416         RX_HANDLER_CONSUMED,
417         RX_HANDLER_ANOTHER,
418         RX_HANDLER_EXACT,
419         RX_HANDLER_PASS,
420 };
421 typedef enum rx_handler_result rx_handler_result_t;
422 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
423 
424 void __napi_schedule(struct napi_struct *n);
425 void __napi_schedule_irqoff(struct napi_struct *n);
426 
427 static inline bool napi_disable_pending(struct napi_struct *n)
428 {
429         return test_bit(NAPI_STATE_DISABLE, &n->state);
430 }
431 
432 bool napi_schedule_prep(struct napi_struct *n);
433 
434 /**
435  *      napi_schedule - schedule NAPI poll
436  *      @n: NAPI context
437  *
438  * Schedule NAPI poll routine to be called if it is not already
439  * running.
440  */
441 static inline void napi_schedule(struct napi_struct *n)
442 {
443         if (napi_schedule_prep(n))
444                 __napi_schedule(n);
445 }
446 
447 /**
448  *      napi_schedule_irqoff - schedule NAPI poll
449  *      @n: NAPI context
450  *
451  * Variant of napi_schedule(), assuming hard irqs are masked.
452  */
453 static inline void napi_schedule_irqoff(struct napi_struct *n)
454 {
455         if (napi_schedule_prep(n))
456                 __napi_schedule_irqoff(n);
457 }
458 
459 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
460 static inline bool napi_reschedule(struct napi_struct *napi)
461 {
462         if (napi_schedule_prep(napi)) {
463                 __napi_schedule(napi);
464                 return true;
465         }
466         return false;
467 }
468 
469 bool napi_complete_done(struct napi_struct *n, int work_done);
470 /**
471  *      napi_complete - NAPI processing complete
472  *      @n: NAPI context
473  *
474  * Mark NAPI processing as complete.
475  * Consider using napi_complete_done() instead.
476  * Return false if device should avoid rearming interrupts.
477  */
478 static inline bool napi_complete(struct napi_struct *n)
479 {
480         return napi_complete_done(n, 0);
481 }
482 
483 /**
484  *      napi_hash_del - remove a NAPI from global table
485  *      @napi: NAPI context
486  *
487  * Warning: caller must observe RCU grace period
488  * before freeing memory containing @napi, if
489  * this function returns true.
490  * Note: core networking stack automatically calls it
491  * from netif_napi_del().
492  * Drivers might want to call this helper to combine all
493  * the needed RCU grace periods into a single one.
494  */
495 bool napi_hash_del(struct napi_struct *napi);
496 
497 /**
498  *      napi_disable - prevent NAPI from scheduling
499  *      @n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505 
506 /**
507  *      napi_enable - enable NAPI scheduling
508  *      @n: NAPI context
509  *
510  * Resume NAPI from being scheduled on this context.
511  * Must be paired with napi_disable.
512  */
513 static inline void napi_enable(struct napi_struct *n)
514 {
515         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
516         smp_mb__before_atomic();
517         clear_bit(NAPI_STATE_SCHED, &n->state);
518         clear_bit(NAPI_STATE_NPSVC, &n->state);
519 }
520 
521 /**
522  *      napi_synchronize - wait until NAPI is not running
523  *      @n: NAPI context
524  *
525  * Wait until NAPI is done being scheduled on this context.
526  * Waits till any outstanding processing completes but
527  * does not disable future activations.
528  */
529 static inline void napi_synchronize(const struct napi_struct *n)
530 {
531         if (IS_ENABLED(CONFIG_SMP))
532                 while (test_bit(NAPI_STATE_SCHED, &n->state))
533                         msleep(1);
534         else
535                 barrier();
536 }
537 
538 /**
539  *      napi_if_scheduled_mark_missed - if napi is running, set the
540  *      NAPIF_STATE_MISSED
541  *      @n: NAPI context
542  *
543  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
544  * NAPI is scheduled.
545  **/
546 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
547 {
548         unsigned long val, new;
549 
550         do {
551                 val = READ_ONCE(n->state);
552                 if (val & NAPIF_STATE_DISABLE)
553                         return true;
554 
555                 if (!(val & NAPIF_STATE_SCHED))
556                         return false;
557 
558                 new = val | NAPIF_STATE_MISSED;
559         } while (cmpxchg(&n->state, val, new) != val);
560 
561         return true;
562 }
563 
564 enum netdev_queue_state_t {
565         __QUEUE_STATE_DRV_XOFF,
566         __QUEUE_STATE_STACK_XOFF,
567         __QUEUE_STATE_FROZEN,
568 };
569 
570 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
571 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
572 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
573 
574 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
576                                         QUEUE_STATE_FROZEN)
577 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
578                                         QUEUE_STATE_FROZEN)
579 
580 /*
581  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
582  * netif_tx_* functions below are used to manipulate this flag.  The
583  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
584  * queue independently.  The netif_xmit_*stopped functions below are called
585  * to check if the queue has been stopped by the driver or stack (either
586  * of the XOFF bits are set in the state).  Drivers should not need to call
587  * netif_xmit*stopped functions, they should only be using netif_tx_*.
588  */
589 
590 struct netdev_queue {
591 /*
592  * read-mostly part
593  */
594         struct net_device       *dev;
595         struct Qdisc __rcu      *qdisc;
596         struct Qdisc            *qdisc_sleeping;
597 #ifdef CONFIG_SYSFS
598         struct kobject          kobj;
599 #endif
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601         int                     numa_node;
602 #endif
603         unsigned long           tx_maxrate;
604         /*
605          * Number of TX timeouts for this queue
606          * (/sys/class/net/DEV/Q/trans_timeout)
607          */
608         unsigned long           trans_timeout;
609 
610         /* Subordinate device that the queue has been assigned to */
611         struct net_device       *sb_dev;
612 #ifdef CONFIG_XDP_SOCKETS
613         struct xdp_umem         *umem;
614 #endif
615 /*
616  * write-mostly part
617  */
618         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
619         int                     xmit_lock_owner;
620         /*
621          * Time (in jiffies) of last Tx
622          */
623         unsigned long           trans_start;
624 
625         unsigned long           state;
626 
627 #ifdef CONFIG_BQL
628         struct dql              dql;
629 #endif
630 } ____cacheline_aligned_in_smp;
631 
632 extern int sysctl_fb_tunnels_only_for_init_net;
633 
634 static inline bool net_has_fallback_tunnels(const struct net *net)
635 {
636         return net == &init_net ||
637                !IS_ENABLED(CONFIG_SYSCTL) ||
638                !sysctl_fb_tunnels_only_for_init_net;
639 }
640 
641 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
642 {
643 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
644         return q->numa_node;
645 #else
646         return NUMA_NO_NODE;
647 #endif
648 }
649 
650 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
651 {
652 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
653         q->numa_node = node;
654 #endif
655 }
656 
657 #ifdef CONFIG_RPS
658 /*
659  * This structure holds an RPS map which can be of variable length.  The
660  * map is an array of CPUs.
661  */
662 struct rps_map {
663         unsigned int len;
664         struct rcu_head rcu;
665         u16 cpus[0];
666 };
667 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
668 
669 /*
670  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
671  * tail pointer for that CPU's input queue at the time of last enqueue, and
672  * a hardware filter index.
673  */
674 struct rps_dev_flow {
675         u16 cpu;
676         u16 filter;
677         unsigned int last_qtail;
678 };
679 #define RPS_NO_FILTER 0xffff
680 
681 /*
682  * The rps_dev_flow_table structure contains a table of flow mappings.
683  */
684 struct rps_dev_flow_table {
685         unsigned int mask;
686         struct rcu_head rcu;
687         struct rps_dev_flow flows[0];
688 };
689 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
690     ((_num) * sizeof(struct rps_dev_flow)))
691 
692 /*
693  * The rps_sock_flow_table contains mappings of flows to the last CPU
694  * on which they were processed by the application (set in recvmsg).
695  * Each entry is a 32bit value. Upper part is the high-order bits
696  * of flow hash, lower part is CPU number.
697  * rps_cpu_mask is used to partition the space, depending on number of
698  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
699  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
700  * meaning we use 32-6=26 bits for the hash.
701  */
702 struct rps_sock_flow_table {
703         u32     mask;
704 
705         u32     ents[0] ____cacheline_aligned_in_smp;
706 };
707 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
708 
709 #define RPS_NO_CPU 0xffff
710 
711 extern u32 rps_cpu_mask;
712 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
713 
714 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
715                                         u32 hash)
716 {
717         if (table && hash) {
718                 unsigned int index = hash & table->mask;
719                 u32 val = hash & ~rps_cpu_mask;
720 
721                 /* We only give a hint, preemption can change CPU under us */
722                 val |= raw_smp_processor_id();
723 
724                 if (table->ents[index] != val)
725                         table->ents[index] = val;
726         }
727 }
728 
729 #ifdef CONFIG_RFS_ACCEL
730 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
731                          u16 filter_id);
732 #endif
733 #endif /* CONFIG_RPS */
734 
735 /* This structure contains an instance of an RX queue. */
736 struct netdev_rx_queue {
737 #ifdef CONFIG_RPS
738         struct rps_map __rcu            *rps_map;
739         struct rps_dev_flow_table __rcu *rps_flow_table;
740 #endif
741         struct kobject                  kobj;
742         struct net_device               *dev;
743         struct xdp_rxq_info             xdp_rxq;
744 #ifdef CONFIG_XDP_SOCKETS
745         struct xdp_umem                 *umem;
746 #endif
747 } ____cacheline_aligned_in_smp;
748 
749 /*
750  * RX queue sysfs structures and functions.
751  */
752 struct rx_queue_attribute {
753         struct attribute attr;
754         ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
755         ssize_t (*store)(struct netdev_rx_queue *queue,
756                          const char *buf, size_t len);
757 };
758 
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765         unsigned int len;
766         unsigned int alloc_len;
767         struct rcu_head rcu;
768         u16 queues[0];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773 
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  */
777 struct xps_dev_maps {
778         struct rcu_head rcu;
779         struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
780 };
781 
782 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +      \
783         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
784 
785 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
786         (_rxqs * (_tcs) * sizeof(struct xps_map *)))
787 
788 #endif /* CONFIG_XPS */
789 
790 #define TC_MAX_QUEUE    16
791 #define TC_BITMASK      15
792 /* HW offloaded queuing disciplines txq count and offset maps */
793 struct netdev_tc_txq {
794         u16 count;
795         u16 offset;
796 };
797 
798 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
799 /*
800  * This structure is to hold information about the device
801  * configured to run FCoE protocol stack.
802  */
803 struct netdev_fcoe_hbainfo {
804         char    manufacturer[64];
805         char    serial_number[64];
806         char    hardware_version[64];
807         char    driver_version[64];
808         char    optionrom_version[64];
809         char    firmware_version[64];
810         char    model[256];
811         char    model_description[256];
812 };
813 #endif
814 
815 #define MAX_PHYS_ITEM_ID_LEN 32
816 
817 /* This structure holds a unique identifier to identify some
818  * physical item (port for example) used by a netdevice.
819  */
820 struct netdev_phys_item_id {
821         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
822         unsigned char id_len;
823 };
824 
825 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
826                                             struct netdev_phys_item_id *b)
827 {
828         return a->id_len == b->id_len &&
829                memcmp(a->id, b->id, a->id_len) == 0;
830 }
831 
832 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
833                                        struct sk_buff *skb,
834                                        struct net_device *sb_dev);
835 
836 enum tc_setup_type {
837         TC_SETUP_QDISC_MQPRIO,
838         TC_SETUP_CLSU32,
839         TC_SETUP_CLSFLOWER,
840         TC_SETUP_CLSMATCHALL,
841         TC_SETUP_CLSBPF,
842         TC_SETUP_BLOCK,
843         TC_SETUP_QDISC_CBS,
844         TC_SETUP_QDISC_RED,
845         TC_SETUP_QDISC_PRIO,
846         TC_SETUP_QDISC_MQ,
847         TC_SETUP_QDISC_ETF,
848 };
849 
850 /* These structures hold the attributes of bpf state that are being passed
851  * to the netdevice through the bpf op.
852  */
853 enum bpf_netdev_command {
854         /* Set or clear a bpf program used in the earliest stages of packet
855          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
856          * is responsible for calling bpf_prog_put on any old progs that are
857          * stored. In case of error, the callee need not release the new prog
858          * reference, but on success it takes ownership and must bpf_prog_put
859          * when it is no longer used.
860          */
861         XDP_SETUP_PROG,
862         XDP_SETUP_PROG_HW,
863         XDP_QUERY_PROG,
864         XDP_QUERY_PROG_HW,
865         /* BPF program for offload callbacks, invoked at program load time. */
866         BPF_OFFLOAD_VERIFIER_PREP,
867         BPF_OFFLOAD_TRANSLATE,
868         BPF_OFFLOAD_DESTROY,
869         BPF_OFFLOAD_MAP_ALLOC,
870         BPF_OFFLOAD_MAP_FREE,
871         XDP_QUERY_XSK_UMEM,
872         XDP_SETUP_XSK_UMEM,
873 };
874 
875 struct bpf_prog_offload_ops;
876 struct netlink_ext_ack;
877 struct xdp_umem;
878 
879 struct netdev_bpf {
880         enum bpf_netdev_command command;
881         union {
882                 /* XDP_SETUP_PROG */
883                 struct {
884                         u32 flags;
885                         struct bpf_prog *prog;
886                         struct netlink_ext_ack *extack;
887                 };
888                 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
889                 struct {
890                         u32 prog_id;
891                         /* flags with which program was installed */
892                         u32 prog_flags;
893                 };
894                 /* BPF_OFFLOAD_VERIFIER_PREP */
895                 struct {
896                         struct bpf_prog *prog;
897                         const struct bpf_prog_offload_ops *ops; /* callee set */
898                 } verifier;
899                 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
900                 struct {
901                         struct bpf_prog *prog;
902                 } offload;
903                 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
904                 struct {
905                         struct bpf_offloaded_map *offmap;
906                 };
907                 /* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
908                 struct {
909                         struct xdp_umem *umem; /* out for query*/
910                         u16 queue_id; /* in for query */
911                 } xsk;
912         };
913 };
914 
915 #ifdef CONFIG_XFRM_OFFLOAD
916 struct xfrmdev_ops {
917         int     (*xdo_dev_state_add) (struct xfrm_state *x);
918         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
919         void    (*xdo_dev_state_free) (struct xfrm_state *x);
920         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
921                                        struct xfrm_state *x);
922         void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
923 };
924 #endif
925 
926 #if IS_ENABLED(CONFIG_TLS_DEVICE)
927 enum tls_offload_ctx_dir {
928         TLS_OFFLOAD_CTX_DIR_RX,
929         TLS_OFFLOAD_CTX_DIR_TX,
930 };
931 
932 struct tls_crypto_info;
933 struct tls_context;
934 
935 struct tlsdev_ops {
936         int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
937                            enum tls_offload_ctx_dir direction,
938                            struct tls_crypto_info *crypto_info,
939                            u32 start_offload_tcp_sn);
940         void (*tls_dev_del)(struct net_device *netdev,
941                             struct tls_context *ctx,
942                             enum tls_offload_ctx_dir direction);
943         void (*tls_dev_resync_rx)(struct net_device *netdev,
944                                   struct sock *sk, u32 seq, u64 rcd_sn);
945 };
946 #endif
947 
948 struct dev_ifalias {
949         struct rcu_head rcuhead;
950         char ifalias[];
951 };
952 
953 /*
954  * This structure defines the management hooks for network devices.
955  * The following hooks can be defined; unless noted otherwise, they are
956  * optional and can be filled with a null pointer.
957  *
958  * int (*ndo_init)(struct net_device *dev);
959  *     This function is called once when a network device is registered.
960  *     The network device can use this for any late stage initialization
961  *     or semantic validation. It can fail with an error code which will
962  *     be propagated back to register_netdev.
963  *
964  * void (*ndo_uninit)(struct net_device *dev);
965  *     This function is called when device is unregistered or when registration
966  *     fails. It is not called if init fails.
967  *
968  * int (*ndo_open)(struct net_device *dev);
969  *     This function is called when a network device transitions to the up
970  *     state.
971  *
972  * int (*ndo_stop)(struct net_device *dev);
973  *     This function is called when a network device transitions to the down
974  *     state.
975  *
976  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
977  *                               struct net_device *dev);
978  *      Called when a packet needs to be transmitted.
979  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
980  *      the queue before that can happen; it's for obsolete devices and weird
981  *      corner cases, but the stack really does a non-trivial amount
982  *      of useless work if you return NETDEV_TX_BUSY.
983  *      Required; cannot be NULL.
984  *
985  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
986  *                                         struct net_device *dev
987  *                                         netdev_features_t features);
988  *      Called by core transmit path to determine if device is capable of
989  *      performing offload operations on a given packet. This is to give
990  *      the device an opportunity to implement any restrictions that cannot
991  *      be otherwise expressed by feature flags. The check is called with
992  *      the set of features that the stack has calculated and it returns
993  *      those the driver believes to be appropriate.
994  *
995  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
996  *                         struct net_device *sb_dev,
997  *                         select_queue_fallback_t fallback);
998  *      Called to decide which queue to use when device supports multiple
999  *      transmit queues.
1000  *
1001  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1002  *      This function is called to allow device receiver to make
1003  *      changes to configuration when multicast or promiscuous is enabled.
1004  *
1005  * void (*ndo_set_rx_mode)(struct net_device *dev);
1006  *      This function is called device changes address list filtering.
1007  *      If driver handles unicast address filtering, it should set
1008  *      IFF_UNICAST_FLT in its priv_flags.
1009  *
1010  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1011  *      This function  is called when the Media Access Control address
1012  *      needs to be changed. If this interface is not defined, the
1013  *      MAC address can not be changed.
1014  *
1015  * int (*ndo_validate_addr)(struct net_device *dev);
1016  *      Test if Media Access Control address is valid for the device.
1017  *
1018  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1019  *      Called when a user requests an ioctl which can't be handled by
1020  *      the generic interface code. If not defined ioctls return
1021  *      not supported error code.
1022  *
1023  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1024  *      Used to set network devices bus interface parameters. This interface
1025  *      is retained for legacy reasons; new devices should use the bus
1026  *      interface (PCI) for low level management.
1027  *
1028  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1029  *      Called when a user wants to change the Maximum Transfer Unit
1030  *      of a device.
1031  *
1032  * void (*ndo_tx_timeout)(struct net_device *dev);
1033  *      Callback used when the transmitter has not made any progress
1034  *      for dev->watchdog ticks.
1035  *
1036  * void (*ndo_get_stats64)(struct net_device *dev,
1037  *                         struct rtnl_link_stats64 *storage);
1038  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1039  *      Called when a user wants to get the network device usage
1040  *      statistics. Drivers must do one of the following:
1041  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
1042  *         rtnl_link_stats64 structure passed by the caller.
1043  *      2. Define @ndo_get_stats to update a net_device_stats structure
1044  *         (which should normally be dev->stats) and return a pointer to
1045  *         it. The structure may be changed asynchronously only if each
1046  *         field is written atomically.
1047  *      3. Update dev->stats asynchronously and atomically, and define
1048  *         neither operation.
1049  *
1050  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1051  *      Return true if this device supports offload stats of this attr_id.
1052  *
1053  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1054  *      void *attr_data)
1055  *      Get statistics for offload operations by attr_id. Write it into the
1056  *      attr_data pointer.
1057  *
1058  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1059  *      If device supports VLAN filtering this function is called when a
1060  *      VLAN id is registered.
1061  *
1062  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1063  *      If device supports VLAN filtering this function is called when a
1064  *      VLAN id is unregistered.
1065  *
1066  * void (*ndo_poll_controller)(struct net_device *dev);
1067  *
1068  *      SR-IOV management functions.
1069  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1070  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1071  *                        u8 qos, __be16 proto);
1072  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1073  *                        int max_tx_rate);
1074  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1075  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1076  * int (*ndo_get_vf_config)(struct net_device *dev,
1077  *                          int vf, struct ifla_vf_info *ivf);
1078  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1079  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1080  *                        struct nlattr *port[]);
1081  *
1082  *      Enable or disable the VF ability to query its RSS Redirection Table and
1083  *      Hash Key. This is needed since on some devices VF share this information
1084  *      with PF and querying it may introduce a theoretical security risk.
1085  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1086  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1087  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1088  *                     void *type_data);
1089  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1090  *      This is always called from the stack with the rtnl lock held and netif
1091  *      tx queues stopped. This allows the netdevice to perform queue
1092  *      management safely.
1093  *
1094  *      Fiber Channel over Ethernet (FCoE) offload functions.
1095  * int (*ndo_fcoe_enable)(struct net_device *dev);
1096  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1097  *      so the underlying device can perform whatever needed configuration or
1098  *      initialization to support acceleration of FCoE traffic.
1099  *
1100  * int (*ndo_fcoe_disable)(struct net_device *dev);
1101  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1102  *      so the underlying device can perform whatever needed clean-ups to
1103  *      stop supporting acceleration of FCoE traffic.
1104  *
1105  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1106  *                           struct scatterlist *sgl, unsigned int sgc);
1107  *      Called when the FCoE Initiator wants to initialize an I/O that
1108  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1109  *      perform necessary setup and returns 1 to indicate the device is set up
1110  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1111  *
1112  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1113  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1114  *      indicated by the FC exchange id 'xid', so the underlying device can
1115  *      clean up and reuse resources for later DDP requests.
1116  *
1117  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1118  *                            struct scatterlist *sgl, unsigned int sgc);
1119  *      Called when the FCoE Target wants to initialize an I/O that
1120  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1121  *      perform necessary setup and returns 1 to indicate the device is set up
1122  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1123  *
1124  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1125  *                             struct netdev_fcoe_hbainfo *hbainfo);
1126  *      Called when the FCoE Protocol stack wants information on the underlying
1127  *      device. This information is utilized by the FCoE protocol stack to
1128  *      register attributes with Fiber Channel management service as per the
1129  *      FC-GS Fabric Device Management Information(FDMI) specification.
1130  *
1131  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1132  *      Called when the underlying device wants to override default World Wide
1133  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1134  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1135  *      protocol stack to use.
1136  *
1137  *      RFS acceleration.
1138  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1139  *                          u16 rxq_index, u32 flow_id);
1140  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1141  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1142  *      Return the filter ID on success, or a negative error code.
1143  *
1144  *      Slave management functions (for bridge, bonding, etc).
1145  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1146  *      Called to make another netdev an underling.
1147  *
1148  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1149  *      Called to release previously enslaved netdev.
1150  *
1151  *      Feature/offload setting functions.
1152  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1153  *              netdev_features_t features);
1154  *      Adjusts the requested feature flags according to device-specific
1155  *      constraints, and returns the resulting flags. Must not modify
1156  *      the device state.
1157  *
1158  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1159  *      Called to update device configuration to new features. Passed
1160  *      feature set might be less than what was returned by ndo_fix_features()).
1161  *      Must return >0 or -errno if it changed dev->features itself.
1162  *
1163  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1164  *                    struct net_device *dev,
1165  *                    const unsigned char *addr, u16 vid, u16 flags)
1166  *      Adds an FDB entry to dev for addr.
1167  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1168  *                    struct net_device *dev,
1169  *                    const unsigned char *addr, u16 vid)
1170  *      Deletes the FDB entry from dev coresponding to addr.
1171  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1172  *                     struct net_device *dev, struct net_device *filter_dev,
1173  *                     int *idx)
1174  *      Used to add FDB entries to dump requests. Implementers should add
1175  *      entries to skb and update idx with the number of entries.
1176  *
1177  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1178  *                           u16 flags)
1179  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1180  *                           struct net_device *dev, u32 filter_mask,
1181  *                           int nlflags)
1182  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1183  *                           u16 flags);
1184  *
1185  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1186  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1187  *      which do not represent real hardware may define this to allow their
1188  *      userspace components to manage their virtual carrier state. Devices
1189  *      that determine carrier state from physical hardware properties (eg
1190  *      network cables) or protocol-dependent mechanisms (eg
1191  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1192  *
1193  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1194  *                             struct netdev_phys_item_id *ppid);
1195  *      Called to get ID of physical port of this device. If driver does
1196  *      not implement this, it is assumed that the hw is not able to have
1197  *      multiple net devices on single physical port.
1198  *
1199  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1200  *                            struct udp_tunnel_info *ti);
1201  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1202  *      address family that a UDP tunnel is listnening to. It is called only
1203  *      when a new port starts listening. The operation is protected by the
1204  *      RTNL.
1205  *
1206  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1207  *                            struct udp_tunnel_info *ti);
1208  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1209  *      address family that the UDP tunnel is not listening to anymore. The
1210  *      operation is protected by the RTNL.
1211  *
1212  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213  *                               struct net_device *dev)
1214  *      Called by upper layer devices to accelerate switching or other
1215  *      station functionality into hardware. 'pdev is the lowerdev
1216  *      to use for the offload and 'dev' is the net device that will
1217  *      back the offload. Returns a pointer to the private structure
1218  *      the upper layer will maintain.
1219  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1220  *      Called by upper layer device to delete the station created
1221  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1222  *      the station and priv is the structure returned by the add
1223  *      operation.
1224  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225  *                           int queue_index, u32 maxrate);
1226  *      Called when a user wants to set a max-rate limitation of specific
1227  *      TX queue.
1228  * int (*ndo_get_iflink)(const struct net_device *dev);
1229  *      Called to get the iflink value of this device.
1230  * void (*ndo_change_proto_down)(struct net_device *dev,
1231  *                               bool proto_down);
1232  *      This function is used to pass protocol port error state information
1233  *      to the switch driver. The switch driver can react to the proto_down
1234  *      by doing a phys down on the associated switch port.
1235  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1236  *      This function is used to get egress tunnel information for given skb.
1237  *      This is useful for retrieving outer tunnel header parameters while
1238  *      sampling packet.
1239  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1240  *      This function is used to specify the headroom that the skb must
1241  *      consider when allocation skb during packet reception. Setting
1242  *      appropriate rx headroom value allows avoiding skb head copy on
1243  *      forward. Setting a negative value resets the rx headroom to the
1244  *      default value.
1245  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1246  *      This function is used to set or query state related to XDP on the
1247  *      netdevice and manage BPF offload. See definition of
1248  *      enum bpf_netdev_command for details.
1249  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1250  *                      u32 flags);
1251  *      This function is used to submit @n XDP packets for transmit on a
1252  *      netdevice. Returns number of frames successfully transmitted, frames
1253  *      that got dropped are freed/returned via xdp_return_frame().
1254  *      Returns negative number, means general error invoking ndo, meaning
1255  *      no frames were xmit'ed and core-caller will free all frames.
1256  */
1257 struct net_device_ops {
1258         int                     (*ndo_init)(struct net_device *dev);
1259         void                    (*ndo_uninit)(struct net_device *dev);
1260         int                     (*ndo_open)(struct net_device *dev);
1261         int                     (*ndo_stop)(struct net_device *dev);
1262         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1263                                                   struct net_device *dev);
1264         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1265                                                       struct net_device *dev,
1266                                                       netdev_features_t features);
1267         u16                     (*ndo_select_queue)(struct net_device *dev,
1268                                                     struct sk_buff *skb,
1269                                                     struct net_device *sb_dev,
1270                                                     select_queue_fallback_t fallback);
1271         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1272                                                        int flags);
1273         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1274         int                     (*ndo_set_mac_address)(struct net_device *dev,
1275                                                        void *addr);
1276         int                     (*ndo_validate_addr)(struct net_device *dev);
1277         int                     (*ndo_do_ioctl)(struct net_device *dev,
1278                                                 struct ifreq *ifr, int cmd);
1279         int                     (*ndo_set_config)(struct net_device *dev,
1280                                                   struct ifmap *map);
1281         int                     (*ndo_change_mtu)(struct net_device *dev,
1282                                                   int new_mtu);
1283         int                     (*ndo_neigh_setup)(struct net_device *dev,
1284                                                    struct neigh_parms *);
1285         void                    (*ndo_tx_timeout) (struct net_device *dev);
1286 
1287         void                    (*ndo_get_stats64)(struct net_device *dev,
1288                                                    struct rtnl_link_stats64 *storage);
1289         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1290         int                     (*ndo_get_offload_stats)(int attr_id,
1291                                                          const struct net_device *dev,
1292                                                          void *attr_data);
1293         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1294 
1295         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1296                                                        __be16 proto, u16 vid);
1297         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1298                                                         __be16 proto, u16 vid);
1299 #ifdef CONFIG_NET_POLL_CONTROLLER
1300         void                    (*ndo_poll_controller)(struct net_device *dev);
1301         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1302                                                      struct netpoll_info *info);
1303         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1304 #endif
1305         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1306                                                   int queue, u8 *mac);
1307         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1308                                                    int queue, u16 vlan,
1309                                                    u8 qos, __be16 proto);
1310         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1311                                                    int vf, int min_tx_rate,
1312                                                    int max_tx_rate);
1313         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1314                                                        int vf, bool setting);
1315         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1316                                                     int vf, bool setting);
1317         int                     (*ndo_get_vf_config)(struct net_device *dev,
1318                                                      int vf,
1319                                                      struct ifla_vf_info *ivf);
1320         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1321                                                          int vf, int link_state);
1322         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1323                                                     int vf,
1324                                                     struct ifla_vf_stats
1325                                                     *vf_stats);
1326         int                     (*ndo_set_vf_port)(struct net_device *dev,
1327                                                    int vf,
1328                                                    struct nlattr *port[]);
1329         int                     (*ndo_get_vf_port)(struct net_device *dev,
1330                                                    int vf, struct sk_buff *skb);
1331         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1332                                                    int vf, u64 guid,
1333                                                    int guid_type);
1334         int                     (*ndo_set_vf_rss_query_en)(
1335                                                    struct net_device *dev,
1336                                                    int vf, bool setting);
1337         int                     (*ndo_setup_tc)(struct net_device *dev,
1338                                                 enum tc_setup_type type,
1339                                                 void *type_data);
1340 #if IS_ENABLED(CONFIG_FCOE)
1341         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1342         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1343         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1344                                                       u16 xid,
1345                                                       struct scatterlist *sgl,
1346                                                       unsigned int sgc);
1347         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1348                                                      u16 xid);
1349         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1350                                                        u16 xid,
1351                                                        struct scatterlist *sgl,
1352                                                        unsigned int sgc);
1353         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1354                                                         struct netdev_fcoe_hbainfo *hbainfo);
1355 #endif
1356 
1357 #if IS_ENABLED(CONFIG_LIBFCOE)
1358 #define NETDEV_FCOE_WWNN 0
1359 #define NETDEV_FCOE_WWPN 1
1360         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1361                                                     u64 *wwn, int type);
1362 #endif
1363 
1364 #ifdef CONFIG_RFS_ACCEL
1365         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1366                                                      const struct sk_buff *skb,
1367                                                      u16 rxq_index,
1368                                                      u32 flow_id);
1369 #endif
1370         int                     (*ndo_add_slave)(struct net_device *dev,
1371                                                  struct net_device *slave_dev,
1372                                                  struct netlink_ext_ack *extack);
1373         int                     (*ndo_del_slave)(struct net_device *dev,
1374                                                  struct net_device *slave_dev);
1375         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1376                                                     netdev_features_t features);
1377         int                     (*ndo_set_features)(struct net_device *dev,
1378                                                     netdev_features_t features);
1379         int                     (*ndo_neigh_construct)(struct net_device *dev,
1380                                                        struct neighbour *n);
1381         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1382                                                      struct neighbour *n);
1383 
1384         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1385                                                struct nlattr *tb[],
1386                                                struct net_device *dev,
1387                                                const unsigned char *addr,
1388                                                u16 vid,
1389                                                u16 flags);
1390         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1391                                                struct nlattr *tb[],
1392                                                struct net_device *dev,
1393                                                const unsigned char *addr,
1394                                                u16 vid);
1395         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1396                                                 struct netlink_callback *cb,
1397                                                 struct net_device *dev,
1398                                                 struct net_device *filter_dev,
1399                                                 int *idx);
1400 
1401         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1402                                                       struct nlmsghdr *nlh,
1403                                                       u16 flags);
1404         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1405                                                       u32 pid, u32 seq,
1406                                                       struct net_device *dev,
1407                                                       u32 filter_mask,
1408                                                       int nlflags);
1409         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1410                                                       struct nlmsghdr *nlh,
1411                                                       u16 flags);
1412         int                     (*ndo_change_carrier)(struct net_device *dev,
1413                                                       bool new_carrier);
1414         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1415                                                         struct netdev_phys_item_id *ppid);
1416         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1417                                                           char *name, size_t len);
1418         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1419                                                       struct udp_tunnel_info *ti);
1420         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1421                                                       struct udp_tunnel_info *ti);
1422         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1423                                                         struct net_device *dev);
1424         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1425                                                         void *priv);
1426 
1427         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1428         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1429                                                       int queue_index,
1430                                                       u32 maxrate);
1431         int                     (*ndo_get_iflink)(const struct net_device *dev);
1432         int                     (*ndo_change_proto_down)(struct net_device *dev,
1433                                                          bool proto_down);
1434         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1435                                                        struct sk_buff *skb);
1436         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1437                                                        int needed_headroom);
1438         int                     (*ndo_bpf)(struct net_device *dev,
1439                                            struct netdev_bpf *bpf);
1440         int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1441                                                 struct xdp_frame **xdp,
1442                                                 u32 flags);
1443         int                     (*ndo_xsk_async_xmit)(struct net_device *dev,
1444                                                       u32 queue_id);
1445 };
1446 
1447 /**
1448  * enum net_device_priv_flags - &struct net_device priv_flags
1449  *
1450  * These are the &struct net_device, they are only set internally
1451  * by drivers and used in the kernel. These flags are invisible to
1452  * userspace; this means that the order of these flags can change
1453  * during any kernel release.
1454  *
1455  * You should have a pretty good reason to be extending these flags.
1456  *
1457  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1458  * @IFF_EBRIDGE: Ethernet bridging device
1459  * @IFF_BONDING: bonding master or slave
1460  * @IFF_ISATAP: ISATAP interface (RFC4214)
1461  * @IFF_WAN_HDLC: WAN HDLC device
1462  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1463  *      release skb->dst
1464  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1465  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1466  * @IFF_MACVLAN_PORT: device used as macvlan port
1467  * @IFF_BRIDGE_PORT: device used as bridge port
1468  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1469  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1470  * @IFF_UNICAST_FLT: Supports unicast filtering
1471  * @IFF_TEAM_PORT: device used as team port
1472  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1473  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1474  *      change when it's running
1475  * @IFF_MACVLAN: Macvlan device
1476  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1477  *      underlying stacked devices
1478  * @IFF_L3MDEV_MASTER: device is an L3 master device
1479  * @IFF_NO_QUEUE: device can run without qdisc attached
1480  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1481  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1482  * @IFF_TEAM: device is a team device
1483  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1484  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1485  *      entity (i.e. the master device for bridged veth)
1486  * @IFF_MACSEC: device is a MACsec device
1487  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1488  * @IFF_FAILOVER: device is a failover master device
1489  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1490  */
1491 enum netdev_priv_flags {
1492         IFF_802_1Q_VLAN                 = 1<<0,
1493         IFF_EBRIDGE                     = 1<<1,
1494         IFF_BONDING                     = 1<<2,
1495         IFF_ISATAP                      = 1<<3,
1496         IFF_WAN_HDLC                    = 1<<4,
1497         IFF_XMIT_DST_RELEASE            = 1<<5,
1498         IFF_DONT_BRIDGE                 = 1<<6,
1499         IFF_DISABLE_NETPOLL             = 1<<7,
1500         IFF_MACVLAN_PORT                = 1<<8,
1501         IFF_BRIDGE_PORT                 = 1<<9,
1502         IFF_OVS_DATAPATH                = 1<<10,
1503         IFF_TX_SKB_SHARING              = 1<<11,
1504         IFF_UNICAST_FLT                 = 1<<12,
1505         IFF_TEAM_PORT                   = 1<<13,
1506         IFF_SUPP_NOFCS                  = 1<<14,
1507         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1508         IFF_MACVLAN                     = 1<<16,
1509         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1510         IFF_L3MDEV_MASTER               = 1<<18,
1511         IFF_NO_QUEUE                    = 1<<19,
1512         IFF_OPENVSWITCH                 = 1<<20,
1513         IFF_L3MDEV_SLAVE                = 1<<21,
1514         IFF_TEAM                        = 1<<22,
1515         IFF_RXFH_CONFIGURED             = 1<<23,
1516         IFF_PHONY_HEADROOM              = 1<<24,
1517         IFF_MACSEC                      = 1<<25,
1518         IFF_NO_RX_HANDLER               = 1<<26,
1519         IFF_FAILOVER                    = 1<<27,
1520         IFF_FAILOVER_SLAVE              = 1<<28,
1521 };
1522 
1523 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1524 #define IFF_EBRIDGE                     IFF_EBRIDGE
1525 #define IFF_BONDING                     IFF_BONDING
1526 #define IFF_ISATAP                      IFF_ISATAP
1527 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1528 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1529 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1530 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1531 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1532 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1533 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1534 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1535 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1536 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1537 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1538 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1539 #define IFF_MACVLAN                     IFF_MACVLAN
1540 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1541 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1542 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1543 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1544 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1545 #define IFF_TEAM                        IFF_TEAM
1546 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1547 #define IFF_MACSEC                      IFF_MACSEC
1548 #define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1549 #define IFF_FAILOVER                    IFF_FAILOVER
1550 #define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1551 
1552 /**
1553  *      struct net_device - The DEVICE structure.
1554  *
1555  *      Actually, this whole structure is a big mistake.  It mixes I/O
1556  *      data with strictly "high-level" data, and it has to know about
1557  *      almost every data structure used in the INET module.
1558  *
1559  *      @name:  This is the first field of the "visible" part of this structure
1560  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1561  *              of the interface.
1562  *
1563  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1564  *      @ifalias:       SNMP alias
1565  *      @mem_end:       Shared memory end
1566  *      @mem_start:     Shared memory start
1567  *      @base_addr:     Device I/O address
1568  *      @irq:           Device IRQ number
1569  *
1570  *      @state:         Generic network queuing layer state, see netdev_state_t
1571  *      @dev_list:      The global list of network devices
1572  *      @napi_list:     List entry used for polling NAPI devices
1573  *      @unreg_list:    List entry  when we are unregistering the
1574  *                      device; see the function unregister_netdev
1575  *      @close_list:    List entry used when we are closing the device
1576  *      @ptype_all:     Device-specific packet handlers for all protocols
1577  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1578  *
1579  *      @adj_list:      Directly linked devices, like slaves for bonding
1580  *      @features:      Currently active device features
1581  *      @hw_features:   User-changeable features
1582  *
1583  *      @wanted_features:       User-requested features
1584  *      @vlan_features:         Mask of features inheritable by VLAN devices
1585  *
1586  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1587  *                              This field indicates what encapsulation
1588  *                              offloads the hardware is capable of doing,
1589  *                              and drivers will need to set them appropriately.
1590  *
1591  *      @mpls_features: Mask of features inheritable by MPLS
1592  *
1593  *      @ifindex:       interface index
1594  *      @group:         The group the device belongs to
1595  *
1596  *      @stats:         Statistics struct, which was left as a legacy, use
1597  *                      rtnl_link_stats64 instead
1598  *
1599  *      @rx_dropped:    Dropped packets by core network,
1600  *                      do not use this in drivers
1601  *      @tx_dropped:    Dropped packets by core network,
1602  *                      do not use this in drivers
1603  *      @rx_nohandler:  nohandler dropped packets by core network on
1604  *                      inactive devices, do not use this in drivers
1605  *      @carrier_up_count:      Number of times the carrier has been up
1606  *      @carrier_down_count:    Number of times the carrier has been down
1607  *
1608  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1609  *                              instead of ioctl,
1610  *                              see <net/iw_handler.h> for details.
1611  *      @wireless_data: Instance data managed by the core of wireless extensions
1612  *
1613  *      @netdev_ops:    Includes several pointers to callbacks,
1614  *                      if one wants to override the ndo_*() functions
1615  *      @ethtool_ops:   Management operations
1616  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1617  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1618  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1619  *                      of Layer 2 headers.
1620  *
1621  *      @flags:         Interface flags (a la BSD)
1622  *      @priv_flags:    Like 'flags' but invisible to userspace,
1623  *                      see if.h for the definitions
1624  *      @gflags:        Global flags ( kept as legacy )
1625  *      @padded:        How much padding added by alloc_netdev()
1626  *      @operstate:     RFC2863 operstate
1627  *      @link_mode:     Mapping policy to operstate
1628  *      @if_port:       Selectable AUI, TP, ...
1629  *      @dma:           DMA channel
1630  *      @mtu:           Interface MTU value
1631  *      @min_mtu:       Interface Minimum MTU value
1632  *      @max_mtu:       Interface Maximum MTU value
1633  *      @type:          Interface hardware type
1634  *      @hard_header_len: Maximum hardware header length.
1635  *      @min_header_len:  Minimum hardware header length
1636  *
1637  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1638  *                        cases can this be guaranteed
1639  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1640  *                        cases can this be guaranteed. Some cases also use
1641  *                        LL_MAX_HEADER instead to allocate the skb
1642  *
1643  *      interface address info:
1644  *
1645  *      @perm_addr:             Permanent hw address
1646  *      @addr_assign_type:      Hw address assignment type
1647  *      @addr_len:              Hardware address length
1648  *      @neigh_priv_len:        Used in neigh_alloc()
1649  *      @dev_id:                Used to differentiate devices that share
1650  *                              the same link layer address
1651  *      @dev_port:              Used to differentiate devices that share
1652  *                              the same function
1653  *      @addr_list_lock:        XXX: need comments on this one
1654  *      @uc_promisc:            Counter that indicates promiscuous mode
1655  *                              has been enabled due to the need to listen to
1656  *                              additional unicast addresses in a device that
1657  *                              does not implement ndo_set_rx_mode()
1658  *      @uc:                    unicast mac addresses
1659  *      @mc:                    multicast mac addresses
1660  *      @dev_addrs:             list of device hw addresses
1661  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1662  *      @promiscuity:           Number of times the NIC is told to work in
1663  *                              promiscuous mode; if it becomes 0 the NIC will
1664  *                              exit promiscuous mode
1665  *      @allmulti:              Counter, enables or disables allmulticast mode
1666  *
1667  *      @vlan_info:     VLAN info
1668  *      @dsa_ptr:       dsa specific data
1669  *      @tipc_ptr:      TIPC specific data
1670  *      @atalk_ptr:     AppleTalk link
1671  *      @ip_ptr:        IPv4 specific data
1672  *      @dn_ptr:        DECnet specific data
1673  *      @ip6_ptr:       IPv6 specific data
1674  *      @ax25_ptr:      AX.25 specific data
1675  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1676  *
1677  *      @dev_addr:      Hw address (before bcast,
1678  *                      because most packets are unicast)
1679  *
1680  *      @_rx:                   Array of RX queues
1681  *      @num_rx_queues:         Number of RX queues
1682  *                              allocated at register_netdev() time
1683  *      @real_num_rx_queues:    Number of RX queues currently active in device
1684  *
1685  *      @rx_handler:            handler for received packets
1686  *      @rx_handler_data:       XXX: need comments on this one
1687  *      @miniq_ingress:         ingress/clsact qdisc specific data for
1688  *                              ingress processing
1689  *      @ingress_queue:         XXX: need comments on this one
1690  *      @broadcast:             hw bcast address
1691  *
1692  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1693  *                      indexed by RX queue number. Assigned by driver.
1694  *                      This must only be set if the ndo_rx_flow_steer
1695  *                      operation is defined
1696  *      @index_hlist:           Device index hash chain
1697  *
1698  *      @_tx:                   Array of TX queues
1699  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1700  *      @real_num_tx_queues:    Number of TX queues currently active in device
1701  *      @qdisc:                 Root qdisc from userspace point of view
1702  *      @tx_queue_len:          Max frames per queue allowed
1703  *      @tx_global_lock:        XXX: need comments on this one
1704  *
1705  *      @xps_maps:      XXX: need comments on this one
1706  *      @miniq_egress:          clsact qdisc specific data for
1707  *                              egress processing
1708  *      @watchdog_timeo:        Represents the timeout that is used by
1709  *                              the watchdog (see dev_watchdog())
1710  *      @watchdog_timer:        List of timers
1711  *
1712  *      @pcpu_refcnt:           Number of references to this device
1713  *      @todo_list:             Delayed register/unregister
1714  *      @link_watch_list:       XXX: need comments on this one
1715  *
1716  *      @reg_state:             Register/unregister state machine
1717  *      @dismantle:             Device is going to be freed
1718  *      @rtnl_link_state:       This enum represents the phases of creating
1719  *                              a new link
1720  *
1721  *      @needs_free_netdev:     Should unregister perform free_netdev?
1722  *      @priv_destructor:       Called from unregister
1723  *      @npinfo:                XXX: need comments on this one
1724  *      @nd_net:                Network namespace this network device is inside
1725  *
1726  *      @ml_priv:       Mid-layer private
1727  *      @lstats:        Loopback statistics
1728  *      @tstats:        Tunnel statistics
1729  *      @dstats:        Dummy statistics
1730  *      @vstats:        Virtual ethernet statistics
1731  *
1732  *      @garp_port:     GARP
1733  *      @mrp_port:      MRP
1734  *
1735  *      @dev:           Class/net/name entry
1736  *      @sysfs_groups:  Space for optional device, statistics and wireless
1737  *                      sysfs groups
1738  *
1739  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1740  *      @rtnl_link_ops: Rtnl_link_ops
1741  *
1742  *      @gso_max_size:  Maximum size of generic segmentation offload
1743  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1744  *                      NIC for GSO
1745  *
1746  *      @dcbnl_ops:     Data Center Bridging netlink ops
1747  *      @num_tc:        Number of traffic classes in the net device
1748  *      @tc_to_txq:     XXX: need comments on this one
1749  *      @prio_tc_map:   XXX: need comments on this one
1750  *
1751  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1752  *
1753  *      @priomap:       XXX: need comments on this one
1754  *      @phydev:        Physical device may attach itself
1755  *                      for hardware timestamping
1756  *      @sfp_bus:       attached &struct sfp_bus structure.
1757  *
1758  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1759  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1760  *
1761  *      @proto_down:    protocol port state information can be sent to the
1762  *                      switch driver and used to set the phys state of the
1763  *                      switch port.
1764  *
1765  *      @wol_enabled:   Wake-on-LAN is enabled
1766  *
1767  *      FIXME: cleanup struct net_device such that network protocol info
1768  *      moves out.
1769  */
1770 
1771 struct net_device {
1772         char                    name[IFNAMSIZ];
1773         struct hlist_node       name_hlist;
1774         struct dev_ifalias      __rcu *ifalias;
1775         /*
1776          *      I/O specific fields
1777          *      FIXME: Merge these and struct ifmap into one
1778          */
1779         unsigned long           mem_end;
1780         unsigned long           mem_start;
1781         unsigned long           base_addr;
1782         int                     irq;
1783 
1784         /*
1785          *      Some hardware also needs these fields (state,dev_list,
1786          *      napi_list,unreg_list,close_list) but they are not
1787          *      part of the usual set specified in Space.c.
1788          */
1789 
1790         unsigned long           state;
1791 
1792         struct list_head        dev_list;
1793         struct list_head        napi_list;
1794         struct list_head        unreg_list;
1795         struct list_head        close_list;
1796         struct list_head        ptype_all;
1797         struct list_head        ptype_specific;
1798 
1799         struct {
1800                 struct list_head upper;
1801                 struct list_head lower;
1802         } adj_list;
1803 
1804         netdev_features_t       features;
1805         netdev_features_t       hw_features;
1806         netdev_features_t       wanted_features;
1807         netdev_features_t       vlan_features;
1808         netdev_features_t       hw_enc_features;
1809         netdev_features_t       mpls_features;
1810         netdev_features_t       gso_partial_features;
1811 
1812         int                     ifindex;
1813         int                     group;
1814 
1815         struct net_device_stats stats;
1816 
1817         atomic_long_t           rx_dropped;
1818         atomic_long_t           tx_dropped;
1819         atomic_long_t           rx_nohandler;
1820 
1821         /* Stats to monitor link on/off, flapping */
1822         atomic_t                carrier_up_count;
1823         atomic_t                carrier_down_count;
1824 
1825 #ifdef CONFIG_WIRELESS_EXT
1826         const struct iw_handler_def *wireless_handlers;
1827         struct iw_public_data   *wireless_data;
1828 #endif
1829         const struct net_device_ops *netdev_ops;
1830         const struct ethtool_ops *ethtool_ops;
1831 #ifdef CONFIG_NET_SWITCHDEV
1832         const struct switchdev_ops *switchdev_ops;
1833 #endif
1834 #ifdef CONFIG_NET_L3_MASTER_DEV
1835         const struct l3mdev_ops *l3mdev_ops;
1836 #endif
1837 #if IS_ENABLED(CONFIG_IPV6)
1838         const struct ndisc_ops *ndisc_ops;
1839 #endif
1840 
1841 #ifdef CONFIG_XFRM_OFFLOAD
1842         const struct xfrmdev_ops *xfrmdev_ops;
1843 #endif
1844 
1845 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1846         const struct tlsdev_ops *tlsdev_ops;
1847 #endif
1848 
1849         const struct header_ops *header_ops;
1850 
1851         unsigned int            flags;
1852         unsigned int            priv_flags;
1853 
1854         unsigned short          gflags;
1855         unsigned short          padded;
1856 
1857         unsigned char           operstate;
1858         unsigned char           link_mode;
1859 
1860         unsigned char           if_port;
1861         unsigned char           dma;
1862 
1863         unsigned int            mtu;
1864         unsigned int            min_mtu;
1865         unsigned int            max_mtu;
1866         unsigned short          type;
1867         unsigned short          hard_header_len;
1868         unsigned char           min_header_len;
1869 
1870         unsigned short          needed_headroom;
1871         unsigned short          needed_tailroom;
1872 
1873         /* Interface address info. */
1874         unsigned char           perm_addr[MAX_ADDR_LEN];
1875         unsigned char           addr_assign_type;
1876         unsigned char           addr_len;
1877         unsigned short          neigh_priv_len;
1878         unsigned short          dev_id;
1879         unsigned short          dev_port;
1880         spinlock_t              addr_list_lock;
1881         unsigned char           name_assign_type;
1882         bool                    uc_promisc;
1883         struct netdev_hw_addr_list      uc;
1884         struct netdev_hw_addr_list      mc;
1885         struct netdev_hw_addr_list      dev_addrs;
1886 
1887 #ifdef CONFIG_SYSFS
1888         struct kset             *queues_kset;
1889 #endif
1890         unsigned int            promiscuity;
1891         unsigned int            allmulti;
1892 
1893 
1894         /* Protocol-specific pointers */
1895 
1896 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1897         struct vlan_info __rcu  *vlan_info;
1898 #endif
1899 #if IS_ENABLED(CONFIG_NET_DSA)
1900         struct dsa_port         *dsa_ptr;
1901 #endif
1902 #if IS_ENABLED(CONFIG_TIPC)
1903         struct tipc_bearer __rcu *tipc_ptr;
1904 #endif
1905 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1906         void                    *atalk_ptr;
1907 #endif
1908         struct in_device __rcu  *ip_ptr;
1909 #if IS_ENABLED(CONFIG_DECNET)
1910         struct dn_dev __rcu     *dn_ptr;
1911 #endif
1912         struct inet6_dev __rcu  *ip6_ptr;
1913 #if IS_ENABLED(CONFIG_AX25)
1914         void                    *ax25_ptr;
1915 #endif
1916         struct wireless_dev     *ieee80211_ptr;
1917         struct wpan_dev         *ieee802154_ptr;
1918 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1919         struct mpls_dev __rcu   *mpls_ptr;
1920 #endif
1921 
1922 /*
1923  * Cache lines mostly used on receive path (including eth_type_trans())
1924  */
1925         /* Interface address info used in eth_type_trans() */
1926         unsigned char           *dev_addr;
1927 
1928         struct netdev_rx_queue  *_rx;
1929         unsigned int            num_rx_queues;
1930         unsigned int            real_num_rx_queues;
1931 
1932         struct bpf_prog __rcu   *xdp_prog;
1933         unsigned long           gro_flush_timeout;
1934         rx_handler_func_t __rcu *rx_handler;
1935         void __rcu              *rx_handler_data;
1936 
1937 #ifdef CONFIG_NET_CLS_ACT
1938         struct mini_Qdisc __rcu *miniq_ingress;
1939 #endif
1940         struct netdev_queue __rcu *ingress_queue;
1941 #ifdef CONFIG_NETFILTER_INGRESS
1942         struct nf_hook_entries __rcu *nf_hooks_ingress;
1943 #endif
1944 
1945         unsigned char           broadcast[MAX_ADDR_LEN];
1946 #ifdef CONFIG_RFS_ACCEL
1947         struct cpu_rmap         *rx_cpu_rmap;
1948 #endif
1949         struct hlist_node       index_hlist;
1950 
1951 /*
1952  * Cache lines mostly used on transmit path
1953  */
1954         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1955         unsigned int            num_tx_queues;
1956         unsigned int            real_num_tx_queues;
1957         struct Qdisc            *qdisc;
1958 #ifdef CONFIG_NET_SCHED
1959         DECLARE_HASHTABLE       (qdisc_hash, 4);
1960 #endif
1961         unsigned int            tx_queue_len;
1962         spinlock_t              tx_global_lock;
1963         int                     watchdog_timeo;
1964 
1965 #ifdef CONFIG_XPS
1966         struct xps_dev_maps __rcu *xps_cpus_map;
1967         struct xps_dev_maps __rcu *xps_rxqs_map;
1968 #endif
1969 #ifdef CONFIG_NET_CLS_ACT
1970         struct mini_Qdisc __rcu *miniq_egress;
1971 #endif
1972 
1973         /* These may be needed for future network-power-down code. */
1974         struct timer_list       watchdog_timer;
1975 
1976         int __percpu            *pcpu_refcnt;
1977         struct list_head        todo_list;
1978 
1979         struct list_head        link_watch_list;
1980 
1981         enum { NETREG_UNINITIALIZED=0,
1982                NETREG_REGISTERED,       /* completed register_netdevice */
1983                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1984                NETREG_UNREGISTERED,     /* completed unregister todo */
1985                NETREG_RELEASED,         /* called free_netdev */
1986                NETREG_DUMMY,            /* dummy device for NAPI poll */
1987         } reg_state:8;
1988 
1989         bool dismantle;
1990 
1991         enum {
1992                 RTNL_LINK_INITIALIZED,
1993                 RTNL_LINK_INITIALIZING,
1994         } rtnl_link_state:16;
1995 
1996         bool needs_free_netdev;
1997         void (*priv_destructor)(struct net_device *dev);
1998 
1999 #ifdef CONFIG_NETPOLL
2000         struct netpoll_info __rcu       *npinfo;
2001 #endif
2002 
2003         possible_net_t                  nd_net;
2004 
2005         /* mid-layer private */
2006         union {
2007                 void                                    *ml_priv;
2008                 struct pcpu_lstats __percpu             *lstats;
2009                 struct pcpu_sw_netstats __percpu        *tstats;
2010                 struct pcpu_dstats __percpu             *dstats;
2011         };
2012 
2013 #if IS_ENABLED(CONFIG_GARP)
2014         struct garp_port __rcu  *garp_port;
2015 #endif
2016 #if IS_ENABLED(CONFIG_MRP)
2017         struct mrp_port __rcu   *mrp_port;
2018 #endif
2019 
2020         struct device           dev;
2021         const struct attribute_group *sysfs_groups[4];
2022         const struct attribute_group *sysfs_rx_queue_group;
2023 
2024         const struct rtnl_link_ops *rtnl_link_ops;
2025 
2026         /* for setting kernel sock attribute on TCP connection setup */
2027 #define GSO_MAX_SIZE            65536
2028         unsigned int            gso_max_size;
2029 #define GSO_MAX_SEGS            65535
2030         u16                     gso_max_segs;
2031 
2032 #ifdef CONFIG_DCB
2033         const struct dcbnl_rtnl_ops *dcbnl_ops;
2034 #endif
2035         s16                     num_tc;
2036         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
2037         u8                      prio_tc_map[TC_BITMASK + 1];
2038 
2039 #if IS_ENABLED(CONFIG_FCOE)
2040         unsigned int            fcoe_ddp_xid;
2041 #endif
2042 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2043         struct netprio_map __rcu *priomap;
2044 #endif
2045         struct phy_device       *phydev;
2046         struct sfp_bus          *sfp_bus;
2047         struct lock_class_key   *qdisc_tx_busylock;
2048         struct lock_class_key   *qdisc_running_key;
2049         bool                    proto_down;
2050         unsigned                wol_enabled:1;
2051 };
2052 #define to_net_dev(d) container_of(d, struct net_device, dev)
2053 
2054 static inline bool netif_elide_gro(const struct net_device *dev)
2055 {
2056         if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2057                 return true;
2058         return false;
2059 }
2060 
2061 #define NETDEV_ALIGN            32
2062 
2063 static inline
2064 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2065 {
2066         return dev->prio_tc_map[prio & TC_BITMASK];
2067 }
2068 
2069 static inline
2070 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2071 {
2072         if (tc >= dev->num_tc)
2073                 return -EINVAL;
2074 
2075         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2076         return 0;
2077 }
2078 
2079 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2080 void netdev_reset_tc(struct net_device *dev);
2081 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2082 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2083 
2084 static inline
2085 int netdev_get_num_tc(struct net_device *dev)
2086 {
2087         return dev->num_tc;
2088 }
2089 
2090 void netdev_unbind_sb_channel(struct net_device *dev,
2091                               struct net_device *sb_dev);
2092 int netdev_bind_sb_channel_queue(struct net_device *dev,
2093                                  struct net_device *sb_dev,
2094                                  u8 tc, u16 count, u16 offset);
2095 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2096 static inline int netdev_get_sb_channel(struct net_device *dev)
2097 {
2098         return max_t(int, -dev->num_tc, 0);
2099 }
2100 
2101 static inline
2102 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2103                                          unsigned int index)
2104 {
2105         return &dev->_tx[index];
2106 }
2107 
2108 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2109                                                     const struct sk_buff *skb)
2110 {
2111         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2112 }
2113 
2114 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2115                                             void (*f)(struct net_device *,
2116                                                       struct netdev_queue *,
2117                                                       void *),
2118                                             void *arg)
2119 {
2120         unsigned int i;
2121 
2122         for (i = 0; i < dev->num_tx_queues; i++)
2123                 f(dev, &dev->_tx[i], arg);
2124 }
2125 
2126 #define netdev_lockdep_set_classes(dev)                         \
2127 {                                                               \
2128         static struct lock_class_key qdisc_tx_busylock_key;     \
2129         static struct lock_class_key qdisc_running_key;         \
2130         static struct lock_class_key qdisc_xmit_lock_key;       \
2131         static struct lock_class_key dev_addr_list_lock_key;    \
2132         unsigned int i;                                         \
2133                                                                 \
2134         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2135         (dev)->qdisc_running_key = &qdisc_running_key;          \
2136         lockdep_set_class(&(dev)->addr_list_lock,               \
2137                           &dev_addr_list_lock_key);             \
2138         for (i = 0; i < (dev)->num_tx_queues; i++)              \
2139                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2140                                   &qdisc_xmit_lock_key);        \
2141 }
2142 
2143 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2144                                     struct sk_buff *skb,
2145                                     struct net_device *sb_dev);
2146 
2147 /* returns the headroom that the master device needs to take in account
2148  * when forwarding to this dev
2149  */
2150 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2151 {
2152         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2153 }
2154 
2155 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2156 {
2157         if (dev->netdev_ops->ndo_set_rx_headroom)
2158                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2159 }
2160 
2161 /* set the device rx headroom to the dev's default */
2162 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2163 {
2164         netdev_set_rx_headroom(dev, -1);
2165 }
2166 
2167 /*
2168  * Net namespace inlines
2169  */
2170 static inline
2171 struct net *dev_net(const struct net_device *dev)
2172 {
2173         return read_pnet(&dev->nd_net);
2174 }
2175 
2176 static inline
2177 void dev_net_set(struct net_device *dev, struct net *net)
2178 {
2179         write_pnet(&dev->nd_net, net);
2180 }
2181 
2182 /**
2183  *      netdev_priv - access network device private data
2184  *      @dev: network device
2185  *
2186  * Get network device private data
2187  */
2188 static inline void *netdev_priv(const struct net_device *dev)
2189 {
2190         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2191 }
2192 
2193 /* Set the sysfs physical device reference for the network logical device
2194  * if set prior to registration will cause a symlink during initialization.
2195  */
2196 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2197 
2198 /* Set the sysfs device type for the network logical device to allow
2199  * fine-grained identification of different network device types. For
2200  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2201  */
2202 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2203 
2204 /* Default NAPI poll() weight
2205  * Device drivers are strongly advised to not use bigger value
2206  */
2207 #define NAPI_POLL_WEIGHT 64
2208 
2209 /**
2210  *      netif_napi_add - initialize a NAPI context
2211  *      @dev:  network device
2212  *      @napi: NAPI context
2213  *      @poll: polling function
2214  *      @weight: default weight
2215  *
2216  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2217  * *any* of the other NAPI-related functions.
2218  */
2219 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2220                     int (*poll)(struct napi_struct *, int), int weight);
2221 
2222 /**
2223  *      netif_tx_napi_add - initialize a NAPI context
2224  *      @dev:  network device
2225  *      @napi: NAPI context
2226  *      @poll: polling function
2227  *      @weight: default weight
2228  *
2229  * This variant of netif_napi_add() should be used from drivers using NAPI
2230  * to exclusively poll a TX queue.
2231  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2232  */
2233 static inline void netif_tx_napi_add(struct net_device *dev,
2234                                      struct napi_struct *napi,
2235                                      int (*poll)(struct napi_struct *, int),
2236                                      int weight)
2237 {
2238         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2239         netif_napi_add(dev, napi, poll, weight);
2240 }
2241 
2242 /**
2243  *  netif_napi_del - remove a NAPI context
2244  *  @napi: NAPI context
2245  *
2246  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2247  */
2248 void netif_napi_del(struct napi_struct *napi);
2249 
2250 struct napi_gro_cb {
2251         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2252         void    *frag0;
2253 
2254         /* Length of frag0. */
2255         unsigned int frag0_len;
2256 
2257         /* This indicates where we are processing relative to skb->data. */
2258         int     data_offset;
2259 
2260         /* This is non-zero if the packet cannot be merged with the new skb. */
2261         u16     flush;
2262 
2263         /* Save the IP ID here and check when we get to the transport layer */
2264         u16     flush_id;
2265 
2266         /* Number of segments aggregated. */
2267         u16     count;
2268 
2269         /* Start offset for remote checksum offload */
2270         u16     gro_remcsum_start;
2271 
2272         /* jiffies when first packet was created/queued */
2273         unsigned long age;
2274 
2275         /* Used in ipv6_gro_receive() and foo-over-udp */
2276         u16     proto;
2277 
2278         /* This is non-zero if the packet may be of the same flow. */
2279         u8      same_flow:1;
2280 
2281         /* Used in tunnel GRO receive */
2282         u8      encap_mark:1;
2283 
2284         /* GRO checksum is valid */
2285         u8      csum_valid:1;
2286 
2287         /* Number of checksums via CHECKSUM_UNNECESSARY */
2288         u8      csum_cnt:3;
2289 
2290         /* Free the skb? */
2291         u8      free:2;
2292 #define NAPI_GRO_FREE             1
2293 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2294 
2295         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2296         u8      is_ipv6:1;
2297 
2298         /* Used in GRE, set in fou/gue_gro_receive */
2299         u8      is_fou:1;
2300 
2301         /* Used to determine if flush_id can be ignored */
2302         u8      is_atomic:1;
2303 
2304         /* Number of gro_receive callbacks this packet already went through */
2305         u8 recursion_counter:4;
2306 
2307         /* 1 bit hole */
2308 
2309         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2310         __wsum  csum;
2311 
2312         /* used in skb_gro_receive() slow path */
2313         struct sk_buff *last;
2314 };
2315 
2316 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2317 
2318 #define GRO_RECURSION_LIMIT 15
2319 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2320 {
2321         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2322 }
2323 
2324 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2325 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2326                                                struct list_head *head,
2327                                                struct sk_buff *skb)
2328 {
2329         if (unlikely(gro_recursion_inc_test(skb))) {
2330                 NAPI_GRO_CB(skb)->flush |= 1;
2331                 return NULL;
2332         }
2333 
2334         return cb(head, skb);
2335 }
2336 
2337 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2338                                             struct sk_buff *);
2339 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2340                                                   struct sock *sk,
2341                                                   struct list_head *head,
2342                                                   struct sk_buff *skb)
2343 {
2344         if (unlikely(gro_recursion_inc_test(skb))) {
2345                 NAPI_GRO_CB(skb)->flush |= 1;
2346                 return NULL;
2347         }
2348 
2349         return cb(sk, head, skb);
2350 }
2351 
2352 struct packet_type {
2353         __be16                  type;   /* This is really htons(ether_type). */
2354         bool                    ignore_outgoing;
2355         struct net_device       *dev;   /* NULL is wildcarded here           */
2356         int                     (*func) (struct sk_buff *,
2357                                          struct net_device *,
2358                                          struct packet_type *,
2359                                          struct net_device *);
2360         void                    (*list_func) (struct list_head *,
2361                                               struct packet_type *,
2362                                               struct net_device *);
2363         bool                    (*id_match)(struct packet_type *ptype,
2364                                             struct sock *sk);
2365         void                    *af_packet_priv;
2366         struct list_head        list;
2367 };
2368 
2369 struct offload_callbacks {
2370         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2371                                                 netdev_features_t features);
2372         struct sk_buff          *(*gro_receive)(struct list_head *head,
2373                                                 struct sk_buff *skb);
2374         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2375 };
2376 
2377 struct packet_offload {
2378         __be16                   type;  /* This is really htons(ether_type). */
2379         u16                      priority;
2380         struct offload_callbacks callbacks;
2381         struct list_head         list;
2382 };
2383 
2384 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2385 struct pcpu_sw_netstats {
2386         u64     rx_packets;
2387         u64     rx_bytes;
2388         u64     tx_packets;
2389         u64     tx_bytes;
2390         struct u64_stats_sync   syncp;
2391 };
2392 
2393 struct pcpu_lstats {
2394         u64 packets;
2395         u64 bytes;
2396         struct u64_stats_sync syncp;
2397 };
2398 
2399 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2400 ({                                                                      \
2401         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2402         if (pcpu_stats) {                                               \
2403                 int __cpu;                                              \
2404                 for_each_possible_cpu(__cpu) {                          \
2405                         typeof(type) *stat;                             \
2406                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2407                         u64_stats_init(&stat->syncp);                   \
2408                 }                                                       \
2409         }                                                               \
2410         pcpu_stats;                                                     \
2411 })
2412 
2413 #define netdev_alloc_pcpu_stats(type)                                   \
2414         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2415 
2416 enum netdev_lag_tx_type {
2417         NETDEV_LAG_TX_TYPE_UNKNOWN,
2418         NETDEV_LAG_TX_TYPE_RANDOM,
2419         NETDEV_LAG_TX_TYPE_BROADCAST,
2420         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2421         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2422         NETDEV_LAG_TX_TYPE_HASH,
2423 };
2424 
2425 enum netdev_lag_hash {
2426         NETDEV_LAG_HASH_NONE,
2427         NETDEV_LAG_HASH_L2,
2428         NETDEV_LAG_HASH_L34,
2429         NETDEV_LAG_HASH_L23,
2430         NETDEV_LAG_HASH_E23,
2431         NETDEV_LAG_HASH_E34,
2432         NETDEV_LAG_HASH_UNKNOWN,
2433 };
2434 
2435 struct netdev_lag_upper_info {
2436         enum netdev_lag_tx_type tx_type;
2437         enum netdev_lag_hash hash_type;
2438 };
2439 
2440 struct netdev_lag_lower_state_info {
2441         u8 link_up : 1,
2442            tx_enabled : 1;
2443 };
2444 
2445 #include <linux/notifier.h>
2446 
2447 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2448  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2449  * adding new types.
2450  */
2451 enum netdev_cmd {
2452         NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2453         NETDEV_DOWN,
2454         NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2455                                    detected a hardware crash and restarted
2456                                    - we can use this eg to kick tcp sessions
2457                                    once done */
2458         NETDEV_CHANGE,          /* Notify device state change */
2459         NETDEV_REGISTER,
2460         NETDEV_UNREGISTER,
2461         NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2462         NETDEV_CHANGEADDR,
2463         NETDEV_GOING_DOWN,
2464         NETDEV_CHANGENAME,
2465         NETDEV_FEAT_CHANGE,
2466         NETDEV_BONDING_FAILOVER,
2467         NETDEV_PRE_UP,
2468         NETDEV_PRE_TYPE_CHANGE,
2469         NETDEV_POST_TYPE_CHANGE,
2470         NETDEV_POST_INIT,
2471         NETDEV_RELEASE,
2472         NETDEV_NOTIFY_PEERS,
2473         NETDEV_JOIN,
2474         NETDEV_CHANGEUPPER,
2475         NETDEV_RESEND_IGMP,
2476         NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2477         NETDEV_CHANGEINFODATA,
2478         NETDEV_BONDING_INFO,
2479         NETDEV_PRECHANGEUPPER,
2480         NETDEV_CHANGELOWERSTATE,
2481         NETDEV_UDP_TUNNEL_PUSH_INFO,
2482         NETDEV_UDP_TUNNEL_DROP_INFO,
2483         NETDEV_CHANGE_TX_QUEUE_LEN,
2484         NETDEV_CVLAN_FILTER_PUSH_INFO,
2485         NETDEV_CVLAN_FILTER_DROP_INFO,
2486         NETDEV_SVLAN_FILTER_PUSH_INFO,
2487         NETDEV_SVLAN_FILTER_DROP_INFO,
2488 };
2489 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2490 
2491 int register_netdevice_notifier(struct notifier_block *nb);
2492 int unregister_netdevice_notifier(struct notifier_block *nb);
2493 
2494 struct netdev_notifier_info {
2495         struct net_device       *dev;
2496         struct netlink_ext_ack  *extack;
2497 };
2498 
2499 struct netdev_notifier_info_ext {
2500         struct netdev_notifier_info info; /* must be first */
2501         union {
2502                 u32 mtu;
2503         } ext;
2504 };
2505 
2506 struct netdev_notifier_change_info {
2507         struct netdev_notifier_info info; /* must be first */
2508         unsigned int flags_changed;
2509 };
2510 
2511 struct netdev_notifier_changeupper_info {
2512         struct netdev_notifier_info info; /* must be first */
2513         struct net_device *upper_dev; /* new upper dev */
2514         bool master; /* is upper dev master */
2515         bool linking; /* is the notification for link or unlink */
2516         void *upper_info; /* upper dev info */
2517 };
2518 
2519 struct netdev_notifier_changelowerstate_info {
2520         struct netdev_notifier_info info; /* must be first */
2521         void *lower_state_info; /* is lower dev state */
2522 };
2523 
2524 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2525                                              struct net_device *dev)
2526 {
2527         info->dev = dev;
2528         info->extack = NULL;
2529 }
2530 
2531 static inline struct net_device *
2532 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2533 {
2534         return info->dev;
2535 }
2536 
2537 static inline struct netlink_ext_ack *
2538 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2539 {
2540         return info->extack;
2541 }
2542 
2543 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2544 
2545 
2546 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2547 
2548 #define for_each_netdev(net, d)         \
2549                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2550 #define for_each_netdev_reverse(net, d) \
2551                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2552 #define for_each_netdev_rcu(net, d)             \
2553                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2554 #define for_each_netdev_safe(net, d, n) \
2555                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2556 #define for_each_netdev_continue(net, d)                \
2557                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2558 #define for_each_netdev_continue_rcu(net, d)            \
2559         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2560 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2561                 for_each_netdev_rcu(&init_net, slave)   \
2562                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2563 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2564 
2565 static inline struct net_device *next_net_device(struct net_device *dev)
2566 {
2567         struct list_head *lh;
2568         struct net *net;
2569 
2570         net = dev_net(dev);
2571         lh = dev->dev_list.next;
2572         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2573 }
2574 
2575 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2576 {
2577         struct list_head *lh;
2578         struct net *net;
2579 
2580         net = dev_net(dev);
2581         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2582         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2583 }
2584 
2585 static inline struct net_device *first_net_device(struct net *net)
2586 {
2587         return list_empty(&net->dev_base_head) ? NULL :
2588                 net_device_entry(net->dev_base_head.next);
2589 }
2590 
2591 static inline struct net_device *first_net_device_rcu(struct net *net)
2592 {
2593         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2594 
2595         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2596 }
2597 
2598 int netdev_boot_setup_check(struct net_device *dev);
2599 unsigned long netdev_boot_base(const char *prefix, int unit);
2600 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2601                                        const char *hwaddr);
2602 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2603 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2604 void dev_add_pack(struct packet_type *pt);
2605 void dev_remove_pack(struct packet_type *pt);
2606 void __dev_remove_pack(struct packet_type *pt);
2607 void dev_add_offload(struct packet_offload *po);
2608 void dev_remove_offload(struct packet_offload *po);
2609 
2610 int dev_get_iflink(const struct net_device *dev);
2611 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2612 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2613                                       unsigned short mask);
2614 struct net_device *dev_get_by_name(struct net *net, const char *name);
2615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2616 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2617 int dev_alloc_name(struct net_device *dev, const char *name);
2618 int dev_open(struct net_device *dev);
2619 void dev_close(struct net_device *dev);
2620 void dev_close_many(struct list_head *head, bool unlink);
2621 void dev_disable_lro(struct net_device *dev);
2622 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2623 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2624                      struct net_device *sb_dev,
2625                      select_queue_fallback_t fallback);
2626 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2627                        struct net_device *sb_dev,
2628                        select_queue_fallback_t fallback);
2629 int dev_queue_xmit(struct sk_buff *skb);
2630 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2631 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2632 int register_netdevice(struct net_device *dev);
2633 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2634 void unregister_netdevice_many(struct list_head *head);
2635 static inline void unregister_netdevice(struct net_device *dev)
2636 {
2637         unregister_netdevice_queue(dev, NULL);
2638 }
2639 
2640 int netdev_refcnt_read(const struct net_device *dev);
2641 void free_netdev(struct net_device *dev);
2642 void netdev_freemem(struct net_device *dev);
2643 void synchronize_net(void);
2644 int init_dummy_netdev(struct net_device *dev);
2645 
2646 DECLARE_PER_CPU(int, xmit_recursion);
2647 #define XMIT_RECURSION_LIMIT    10
2648 
2649 static inline int dev_recursion_level(void)
2650 {
2651         return this_cpu_read(xmit_recursion);
2652 }
2653 
2654 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2655 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2656 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2657 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2658 int netdev_get_name(struct net *net, char *name, int ifindex);
2659 int dev_restart(struct net_device *dev);
2660 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2661 
2662 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2663 {
2664         return NAPI_GRO_CB(skb)->data_offset;
2665 }
2666 
2667 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2668 {
2669         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2670 }
2671 
2672 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2673 {
2674         NAPI_GRO_CB(skb)->data_offset += len;
2675 }
2676 
2677 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2678                                         unsigned int offset)
2679 {
2680         return NAPI_GRO_CB(skb)->frag0 + offset;
2681 }
2682 
2683 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2684 {
2685         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2686 }
2687 
2688 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2689 {
2690         NAPI_GRO_CB(skb)->frag0 = NULL;
2691         NAPI_GRO_CB(skb)->frag0_len = 0;
2692 }
2693 
2694 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2695                                         unsigned int offset)
2696 {
2697         if (!pskb_may_pull(skb, hlen))
2698                 return NULL;
2699 
2700         skb_gro_frag0_invalidate(skb);
2701         return skb->data + offset;
2702 }
2703 
2704 static inline void *skb_gro_network_header(struct sk_buff *skb)
2705 {
2706         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2707                skb_network_offset(skb);
2708 }
2709 
2710 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2711                                         const void *start, unsigned int len)
2712 {
2713         if (NAPI_GRO_CB(skb)->csum_valid)
2714                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2715                                                   csum_partial(start, len, 0));
2716 }
2717 
2718 /* GRO checksum functions. These are logical equivalents of the normal
2719  * checksum functions (in skbuff.h) except that they operate on the GRO
2720  * offsets and fields in sk_buff.
2721  */
2722 
2723 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2724 
2725 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2726 {
2727         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2728 }
2729 
2730 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2731                                                       bool zero_okay,
2732                                                       __sum16 check)
2733 {
2734         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2735                 skb_checksum_start_offset(skb) <
2736                  skb_gro_offset(skb)) &&
2737                 !skb_at_gro_remcsum_start(skb) &&
2738                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2739                 (!zero_okay || check));
2740 }
2741 
2742 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2743                                                            __wsum psum)
2744 {
2745         if (NAPI_GRO_CB(skb)->csum_valid &&
2746             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2747                 return 0;
2748 
2749         NAPI_GRO_CB(skb)->csum = psum;
2750 
2751         return __skb_gro_checksum_complete(skb);
2752 }
2753 
2754 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2755 {
2756         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2757                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2758                 NAPI_GRO_CB(skb)->csum_cnt--;
2759         } else {
2760                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2761                  * verified a new top level checksum or an encapsulated one
2762                  * during GRO. This saves work if we fallback to normal path.
2763                  */
2764                 __skb_incr_checksum_unnecessary(skb);
2765         }
2766 }
2767 
2768 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2769                                     compute_pseudo)                     \
2770 ({                                                                      \
2771         __sum16 __ret = 0;                                              \
2772         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2773                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2774                                 compute_pseudo(skb, proto));            \
2775         if (!__ret)                                                     \
2776                 skb_gro_incr_csum_unnecessary(skb);                     \
2777         __ret;                                                          \
2778 })
2779 
2780 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2781         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2782 
2783 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2784                                              compute_pseudo)            \
2785         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2786 
2787 #define skb_gro_checksum_simple_validate(skb)                           \
2788         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2789 
2790 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2791 {
2792         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2793                 !NAPI_GRO_CB(skb)->csum_valid);
2794 }
2795 
2796 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2797                                               __sum16 check, __wsum pseudo)
2798 {
2799         NAPI_GRO_CB(skb)->csum = ~pseudo;
2800         NAPI_GRO_CB(skb)->csum_valid = 1;
2801 }
2802 
2803 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2804 do {                                                                    \
2805         if (__skb_gro_checksum_convert_check(skb))                      \
2806                 __skb_gro_checksum_convert(skb, check,                  \
2807                                            compute_pseudo(skb, proto)); \
2808 } while (0)
2809 
2810 struct gro_remcsum {
2811         int offset;
2812         __wsum delta;
2813 };
2814 
2815 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2816 {
2817         grc->offset = 0;
2818         grc->delta = 0;
2819 }
2820 
2821 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2822                                             unsigned int off, size_t hdrlen,
2823                                             int start, int offset,
2824                                             struct gro_remcsum *grc,
2825                                             bool nopartial)
2826 {
2827         __wsum delta;
2828         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2829 
2830         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2831 
2832         if (!nopartial) {
2833                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2834                 return ptr;
2835         }
2836 
2837         ptr = skb_gro_header_fast(skb, off);
2838         if (skb_gro_header_hard(skb, off + plen)) {
2839                 ptr = skb_gro_header_slow(skb, off + plen, off);
2840                 if (!ptr)
2841                         return NULL;
2842         }
2843 
2844         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2845                                start, offset);
2846 
2847         /* Adjust skb->csum since we changed the packet */
2848         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2849 
2850         grc->offset = off + hdrlen + offset;
2851         grc->delta = delta;
2852 
2853         return ptr;
2854 }
2855 
2856 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2857                                            struct gro_remcsum *grc)
2858 {
2859         void *ptr;
2860         size_t plen = grc->offset + sizeof(u16);
2861 
2862         if (!grc->delta)
2863                 return;
2864 
2865         ptr = skb_gro_header_fast(skb, grc->offset);
2866         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2867                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2868                 if (!ptr)
2869                         return;
2870         }
2871 
2872         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2873 }
2874 
2875 #ifdef CONFIG_XFRM_OFFLOAD
2876 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2877 {
2878         if (PTR_ERR(pp) != -EINPROGRESS)
2879                 NAPI_GRO_CB(skb)->flush |= flush;
2880 }
2881 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2882                                                struct sk_buff *pp,
2883                                                int flush,
2884                                                struct gro_remcsum *grc)
2885 {
2886         if (PTR_ERR(pp) != -EINPROGRESS) {
2887                 NAPI_GRO_CB(skb)->flush |= flush;
2888                 skb_gro_remcsum_cleanup(skb, grc);
2889                 skb->remcsum_offload = 0;
2890         }
2891 }
2892 #else
2893 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2894 {
2895         NAPI_GRO_CB(skb)->flush |= flush;
2896 }
2897 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2898                                                struct sk_buff *pp,
2899                                                int flush,
2900                                                struct gro_remcsum *grc)
2901 {
2902         NAPI_GRO_CB(skb)->flush |= flush;
2903         skb_gro_remcsum_cleanup(skb, grc);
2904         skb->remcsum_offload = 0;
2905 }
2906 #endif
2907 
2908 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2909                                   unsigned short type,
2910                                   const void *daddr, const void *saddr,
2911                                   unsigned int len)
2912 {
2913         if (!dev->header_ops || !dev->header_ops->create)
2914                 return 0;
2915 
2916         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2917 }
2918 
2919 static inline int dev_parse_header(const struct sk_buff *skb,
2920                                    unsigned char *haddr)
2921 {
2922         const struct net_device *dev = skb->dev;
2923 
2924         if (!dev->header_ops || !dev->header_ops->parse)
2925                 return 0;
2926         return dev->header_ops->parse(skb, haddr);
2927 }
2928 
2929 /* ll_header must have at least hard_header_len allocated */
2930 static inline bool dev_validate_header(const struct net_device *dev,
2931                                        char *ll_header, int len)
2932 {
2933         if (likely(len >= dev->hard_header_len))
2934                 return true;
2935         if (len < dev->min_header_len)
2936                 return false;
2937 
2938         if (capable(CAP_SYS_RAWIO)) {
2939                 memset(ll_header + len, 0, dev->hard_header_len - len);
2940                 return true;
2941         }
2942 
2943         if (dev->header_ops && dev->header_ops->validate)
2944                 return dev->header_ops->validate(ll_header, len);
2945 
2946         return false;
2947 }
2948 
2949 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2950                            int len, int size);
2951 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2952 static inline int unregister_gifconf(unsigned int family)
2953 {
2954         return register_gifconf(family, NULL);
2955 }
2956 
2957 #ifdef CONFIG_NET_FLOW_LIMIT
2958 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2959 struct sd_flow_limit {
2960         u64                     count;
2961         unsigned int            num_buckets;
2962         unsigned int            history_head;
2963         u16                     history[FLOW_LIMIT_HISTORY];
2964         u8                      buckets[];
2965 };
2966 
2967 extern int netdev_flow_limit_table_len;
2968 #endif /* CONFIG_NET_FLOW_LIMIT */
2969 
2970 /*
2971  * Incoming packets are placed on per-CPU queues
2972  */
2973 struct softnet_data {
2974         struct list_head        poll_list;
2975         struct sk_buff_head     process_queue;
2976 
2977         /* stats */
2978         unsigned int            processed;
2979         unsigned int            time_squeeze;
2980         unsigned int            received_rps;
2981 #ifdef CONFIG_RPS
2982         struct softnet_data     *rps_ipi_list;
2983 #endif
2984 #ifdef CONFIG_NET_FLOW_LIMIT
2985         struct sd_flow_limit __rcu *flow_limit;
2986 #endif
2987         struct Qdisc            *output_queue;
2988         struct Qdisc            **output_queue_tailp;
2989         struct sk_buff          *completion_queue;
2990 #ifdef CONFIG_XFRM_OFFLOAD
2991         struct sk_buff_head     xfrm_backlog;
2992 #endif
2993 #ifdef CONFIG_RPS
2994         /* input_queue_head should be written by cpu owning this struct,
2995          * and only read by other cpus. Worth using a cache line.
2996          */
2997         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2998 
2999         /* Elements below can be accessed between CPUs for RPS/RFS */
3000         call_single_data_t      csd ____cacheline_aligned_in_smp;
3001         struct softnet_data     *rps_ipi_next;
3002         unsigned int            cpu;
3003         unsigned int            input_queue_tail;
3004 #endif
3005         unsigned int            dropped;
3006         struct sk_buff_head     input_pkt_queue;
3007         struct napi_struct      backlog;
3008 
3009 };
3010 
3011 static inline void input_queue_head_incr(struct softnet_data *sd)
3012 {
3013 #ifdef CONFIG_RPS
3014         sd->input_queue_head++;
3015 #endif
3016 }
3017 
3018 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3019                                               unsigned int *qtail)
3020 {
3021 #ifdef CONFIG_RPS
3022         *qtail = ++sd->input_queue_tail;
3023 #endif
3024 }
3025 
3026 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3027 
3028 void __netif_schedule(struct Qdisc *q);
3029 void netif_schedule_queue(struct netdev_queue *txq);
3030 
3031 static inline void netif_tx_schedule_all(struct net_device *dev)
3032 {
3033         unsigned int i;
3034 
3035         for (i = 0; i < dev->num_tx_queues; i++)
3036                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3037 }
3038 
3039 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3040 {
3041         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3042 }
3043 
3044 /**
3045  *      netif_start_queue - allow transmit
3046  *      @dev: network device
3047  *
3048  *      Allow upper layers to call the device hard_start_xmit routine.
3049  */
3050 static inline void netif_start_queue(struct net_device *dev)
3051 {
3052         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3053 }
3054 
3055 static inline void netif_tx_start_all_queues(struct net_device *dev)
3056 {
3057         unsigned int i;
3058 
3059         for (i = 0; i < dev->num_tx_queues; i++) {
3060                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3061                 netif_tx_start_queue(txq);
3062         }
3063 }
3064 
3065 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3066 
3067 /**
3068  *      netif_wake_queue - restart transmit
3069  *      @dev: network device
3070  *
3071  *      Allow upper layers to call the device hard_start_xmit routine.
3072  *      Used for flow control when transmit resources are available.
3073  */
3074 static inline void netif_wake_queue(struct net_device *dev)
3075 {
3076         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3077 }
3078 
3079 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3080 {
3081         unsigned int i;
3082 
3083         for (i = 0; i < dev->num_tx_queues; i++) {
3084                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3085                 netif_tx_wake_queue(txq);
3086         }
3087 }
3088 
3089 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3090 {
3091         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3092 }
3093 
3094 /**
3095  *      netif_stop_queue - stop transmitted packets
3096  *      @dev: network device
3097  *
3098  *      Stop upper layers calling the device hard_start_xmit routine.
3099  *      Used for flow control when transmit resources are unavailable.
3100  */
3101 static inline void netif_stop_queue(struct net_device *dev)
3102 {
3103         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3104 }
3105 
3106 void netif_tx_stop_all_queues(struct net_device *dev);
3107 
3108 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3109 {
3110         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3111 }
3112 
3113 /**
3114  *      netif_queue_stopped - test if transmit queue is flowblocked
3115  *      @dev: network device
3116  *
3117  *      Test if transmit queue on device is currently unable to send.
3118  */
3119 static inline bool netif_queue_stopped(const struct net_device *dev)
3120 {
3121         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3122 }
3123 
3124 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3125 {
3126         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3127 }
3128 
3129 static inline bool
3130 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3131 {
3132         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3133 }
3134 
3135 static inline bool
3136 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3137 {
3138         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3139 }
3140 
3141 /**
3142  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3143  *      @dev_queue: pointer to transmit queue
3144  *
3145  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3146  * to give appropriate hint to the CPU.
3147  */
3148 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3149 {
3150 #ifdef CONFIG_BQL
3151         prefetchw(&dev_queue->dql.num_queued);
3152 #endif
3153 }
3154 
3155 /**
3156  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3157  *      @dev_queue: pointer to transmit queue
3158  *
3159  * BQL enabled drivers might use this helper in their TX completion path,
3160  * to give appropriate hint to the CPU.
3161  */
3162 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3163 {
3164 #ifdef CONFIG_BQL
3165         prefetchw(&dev_queue->dql.limit);
3166 #endif
3167 }
3168 
3169 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3170                                         unsigned int bytes)
3171 {
3172 #ifdef CONFIG_BQL
3173         dql_queued(&dev_queue->dql, bytes);
3174 
3175         if (likely(dql_avail(&dev_queue->dql) >= 0))
3176                 return;
3177 
3178         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3179 
3180         /*
3181          * The XOFF flag must be set before checking the dql_avail below,
3182          * because in netdev_tx_completed_queue we update the dql_completed
3183          * before checking the XOFF flag.
3184          */
3185         smp_mb();
3186 
3187         /* check again in case another CPU has just made room avail */
3188         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3189                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3190 #endif
3191 }
3192 
3193 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3194  * that they should not test BQL status themselves.
3195  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3196  * skb of a batch.
3197  * Returns true if the doorbell must be used to kick the NIC.
3198  */
3199 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3200                                           unsigned int bytes,
3201                                           bool xmit_more)
3202 {
3203         if (xmit_more) {
3204 #ifdef CONFIG_BQL
3205                 dql_queued(&dev_queue->dql, bytes);
3206 #endif
3207                 return netif_tx_queue_stopped(dev_queue);
3208         }
3209         netdev_tx_sent_queue(dev_queue, bytes);
3210         return true;
3211 }
3212 
3213 /**
3214  *      netdev_sent_queue - report the number of bytes queued to hardware
3215  *      @dev: network device
3216  *      @bytes: number of bytes queued to the hardware device queue
3217  *
3218  *      Report the number of bytes queued for sending/completion to the network
3219  *      device hardware queue. @bytes should be a good approximation and should
3220  *      exactly match netdev_completed_queue() @bytes
3221  */
3222 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3223 {
3224         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3225 }
3226 
3227 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3228                                              unsigned int pkts, unsigned int bytes)
3229 {
3230 #ifdef CONFIG_BQL
3231         if (unlikely(!bytes))
3232                 return;
3233 
3234         dql_completed(&dev_queue->dql, bytes);
3235 
3236         /*
3237          * Without the memory barrier there is a small possiblity that
3238          * netdev_tx_sent_queue will miss the update and cause the queue to
3239          * be stopped forever
3240          */
3241         smp_mb();
3242 
3243         if (dql_avail(&dev_queue->dql) < 0)
3244                 return;
3245 
3246         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3247                 netif_schedule_queue(dev_queue);
3248 #endif
3249 }
3250 
3251 /**
3252  *      netdev_completed_queue - report bytes and packets completed by device
3253  *      @dev: network device
3254  *      @pkts: actual number of packets sent over the medium
3255  *      @bytes: actual number of bytes sent over the medium
3256  *
3257  *      Report the number of bytes and packets transmitted by the network device
3258  *      hardware queue over the physical medium, @bytes must exactly match the
3259  *      @bytes amount passed to netdev_sent_queue()
3260  */
3261 static inline void netdev_completed_queue(struct net_device *dev,
3262                                           unsigned int pkts, unsigned int bytes)
3263 {
3264         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3265 }
3266 
3267 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3268 {
3269 #ifdef CONFIG_BQL
3270         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3271         dql_reset(&q->dql);
3272 #endif
3273 }
3274 
3275 /**
3276  *      netdev_reset_queue - reset the packets and bytes count of a network device
3277  *      @dev_queue: network device
3278  *
3279  *      Reset the bytes and packet count of a network device and clear the
3280  *      software flow control OFF bit for this network device
3281  */
3282 static inline void netdev_reset_queue(struct net_device *dev_queue)
3283 {
3284         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3285 }
3286 
3287 /**
3288  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3289  *      @dev: network device
3290  *      @queue_index: given tx queue index
3291  *
3292  *      Returns 0 if given tx queue index >= number of device tx queues,
3293  *      otherwise returns the originally passed tx queue index.
3294  */
3295 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3296 {
3297         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3298                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3299                                      dev->name, queue_index,
3300                                      dev->real_num_tx_queues);
3301                 return 0;
3302         }
3303 
3304         return queue_index;
3305 }
3306 
3307 /**
3308  *      netif_running - test if up
3309  *      @dev: network device
3310  *
3311  *      Test if the device has been brought up.
3312  */
3313 static inline bool netif_running(const struct net_device *dev)
3314 {
3315         return test_bit(__LINK_STATE_START, &dev->state);
3316 }
3317 
3318 /*
3319  * Routines to manage the subqueues on a device.  We only need start,
3320  * stop, and a check if it's stopped.  All other device management is
3321  * done at the overall netdevice level.
3322  * Also test the device if we're multiqueue.
3323  */
3324 
3325 /**
3326  *      netif_start_subqueue - allow sending packets on subqueue
3327  *      @dev: network device
3328  *      @queue_index: sub queue index
3329  *
3330  * Start individual transmit queue of a device with multiple transmit queues.
3331  */
3332 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3333 {
3334         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3335 
3336         netif_tx_start_queue(txq);
3337 }
3338 
3339 /**
3340  *      netif_stop_subqueue - stop sending packets on subqueue
3341  *      @dev: network device
3342  *      @queue_index: sub queue index
3343  *
3344  * Stop individual transmit queue of a device with multiple transmit queues.
3345  */
3346 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3347 {
3348         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3349         netif_tx_stop_queue(txq);
3350 }
3351 
3352 /**
3353  *      netif_subqueue_stopped - test status of subqueue
3354  *      @dev: network device
3355  *      @queue_index: sub queue index
3356  *
3357  * Check individual transmit queue of a device with multiple transmit queues.
3358  */
3359 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3360                                             u16 queue_index)
3361 {
3362         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3363 
3364         return netif_tx_queue_stopped(txq);
3365 }
3366 
3367 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3368                                           struct sk_buff *skb)
3369 {
3370         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3371 }
3372 
3373 /**
3374  *      netif_wake_subqueue - allow sending packets on subqueue
3375  *      @dev: network device
3376  *      @queue_index: sub queue index
3377  *
3378  * Resume individual transmit queue of a device with multiple transmit queues.
3379  */
3380 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3381 {
3382         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3383 
3384         netif_tx_wake_queue(txq);
3385 }
3386 
3387 #ifdef CONFIG_XPS
3388 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3389                         u16 index);
3390 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3391                           u16 index, bool is_rxqs_map);
3392 
3393 /**
3394  *      netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3395  *      @j: CPU/Rx queue index
3396  *      @mask: bitmask of all cpus/rx queues
3397  *      @nr_bits: number of bits in the bitmask
3398  *
3399  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3400  */
3401 static inline bool netif_attr_test_mask(unsigned long j,
3402                                         const unsigned long *mask,
3403                                         unsigned int nr_bits)
3404 {
3405         cpu_max_bits_warn(j, nr_bits);
3406         return test_bit(j, mask);
3407 }
3408 
3409 /**
3410  *      netif_attr_test_online - Test for online CPU/Rx queue
3411  *      @j: CPU/Rx queue index
3412  *      @online_mask: bitmask for CPUs/Rx queues that are online
3413  *      @nr_bits: number of bits in the bitmask
3414  *
3415  * Returns true if a CPU/Rx queue is online.
3416  */
3417 static inline bool netif_attr_test_online(unsigned long j,
3418                                           const unsigned long *online_mask,
3419                                           unsigned int nr_bits)
3420 {
3421         cpu_max_bits_warn(j, nr_bits);
3422 
3423         if (online_mask)
3424                 return test_bit(j, online_mask);
3425 
3426         return (j < nr_bits);
3427 }
3428 
3429 /**
3430  *      netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3431  *      @n: CPU/Rx queue index
3432  *      @srcp: the cpumask/Rx queue mask pointer
3433  *      @nr_bits: number of bits in the bitmask
3434  *
3435  * Returns >= nr_bits if no further CPUs/Rx queues set.
3436  */
3437 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3438                                                unsigned int nr_bits)
3439 {
3440         /* -1 is a legal arg here. */
3441         if (n != -1)
3442                 cpu_max_bits_warn(n, nr_bits);
3443 
3444         if (srcp)
3445                 return find_next_bit(srcp, nr_bits, n + 1);
3446 
3447         return n + 1;
3448 }
3449 
3450 /**
3451  *      netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3452  *      @n: CPU/Rx queue index
3453  *      @src1p: the first CPUs/Rx queues mask pointer
3454  *      @src2p: the second CPUs/Rx queues mask pointer
3455  *      @nr_bits: number of bits in the bitmask
3456  *
3457  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3458  */
3459 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3460                                           const unsigned long *src2p,
3461                                           unsigned int nr_bits)
3462 {
3463         /* -1 is a legal arg here. */
3464         if (n != -1)
3465                 cpu_max_bits_warn(n, nr_bits);
3466 
3467         if (src1p && src2p)
3468                 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3469         else if (src1p)
3470                 return find_next_bit(src1p, nr_bits, n + 1);
3471         else if (src2p)
3472                 return find_next_bit(src2p, nr_bits, n + 1);
3473 
3474         return n + 1;
3475 }
3476 #else
3477 static inline int netif_set_xps_queue(struct net_device *dev,
3478                                       const struct cpumask *mask,
3479                                       u16 index)
3480 {
3481         return 0;
3482 }
3483 
3484 static inline int __netif_set_xps_queue(struct net_device *dev,
3485                                         const unsigned long *mask,
3486                                         u16 index, bool is_rxqs_map)
3487 {
3488         return 0;
3489 }
3490 #endif
3491 
3492 /**
3493  *      netif_is_multiqueue - test if device has multiple transmit queues
3494  *      @dev: network device
3495  *
3496  * Check if device has multiple transmit queues
3497  */
3498 static inline bool netif_is_multiqueue(const struct net_device *dev)
3499 {
3500         return dev->num_tx_queues > 1;
3501 }
3502 
3503 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3504 
3505 #ifdef CONFIG_SYSFS
3506 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3507 #else
3508 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3509                                                 unsigned int rxqs)
3510 {
3511         dev->real_num_rx_queues = rxqs;
3512         return 0;
3513 }
3514 #endif
3515 
3516 static inline struct netdev_rx_queue *
3517 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3518 {
3519         return dev->_rx + rxq;
3520 }
3521 
3522 #ifdef CONFIG_SYSFS
3523 static inline unsigned int get_netdev_rx_queue_index(
3524                 struct netdev_rx_queue *queue)
3525 {
3526         struct net_device *dev = queue->dev;
3527         int index = queue - dev->_rx;
3528 
3529         BUG_ON(index >= dev->num_rx_queues);
3530         return index;
3531 }
3532 #endif
3533 
3534 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3535 int netif_get_num_default_rss_queues(void);
3536 
3537 enum skb_free_reason {
3538         SKB_REASON_CONSUMED,
3539         SKB_REASON_DROPPED,
3540 };
3541 
3542 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3543 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3544 
3545 /*
3546  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3547  * interrupt context or with hardware interrupts being disabled.
3548  * (in_irq() || irqs_disabled())
3549  *
3550  * We provide four helpers that can be used in following contexts :
3551  *
3552  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3553  *  replacing kfree_skb(skb)
3554  *
3555  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3556  *  Typically used in place of consume_skb(skb) in TX completion path
3557  *
3558  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3559  *  replacing kfree_skb(skb)
3560  *
3561  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3562  *  and consumed a packet. Used in place of consume_skb(skb)
3563  */
3564 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3565 {
3566         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3567 }
3568 
3569 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3570 {
3571         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3572 }
3573 
3574 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3575 {
3576         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3577 }
3578 
3579 static inline void dev_consume_skb_any(struct sk_buff *skb)
3580 {
3581         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3582 }
3583 
3584 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3585 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3586 int netif_rx(struct sk_buff *skb);
3587 int netif_rx_ni(struct sk_buff *skb);
3588 int netif_receive_skb(struct sk_buff *skb);
3589 int netif_receive_skb_core(struct sk_buff *skb);
3590 void netif_receive_skb_list(struct list_head *head);
3591 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3592 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3593 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3594 gro_result_t napi_gro_frags(struct napi_struct *napi);
3595 struct packet_offload *gro_find_receive_by_type(__be16 type);
3596 struct packet_offload *gro_find_complete_by_type(__be16 type);
3597 
3598 static inline void napi_free_frags(struct napi_struct *napi)
3599 {
3600         kfree_skb(napi->skb);
3601         napi->skb = NULL;
3602 }
3603 
3604 bool netdev_is_rx_handler_busy(struct net_device *dev);
3605 int netdev_rx_handler_register(struct net_device *dev,
3606                                rx_handler_func_t *rx_handler,
3607                                void *rx_handler_data);
3608 void netdev_rx_handler_unregister(struct net_device *dev);
3609 
3610 bool dev_valid_name(const char *name);
3611 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3612                 bool *need_copyout);
3613 int dev_ifconf(struct net *net, struct ifconf *, int);
3614 int dev_ethtool(struct net *net, struct ifreq *);
3615 unsigned int dev_get_flags(const struct net_device *);
3616 int __dev_change_flags(struct net_device *, unsigned int flags);
3617 int dev_change_flags(struct net_device *, unsigned int);
3618 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3619                         unsigned int gchanges);
3620 int dev_change_name(struct net_device *, const char *);
3621 int dev_set_alias(struct net_device *, const char *, size_t);
3622 int dev_get_alias(const struct net_device *, char *, size_t);
3623 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3624 int __dev_set_mtu(struct net_device *, int);
3625 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3626                     struct netlink_ext_ack *extack);
3627 int dev_set_mtu(struct net_device *, int);
3628 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3629 void dev_set_group(struct net_device *, int);
3630 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3631 int dev_change_carrier(struct net_device *, bool new_carrier);
3632 int dev_get_phys_port_id(struct net_device *dev,
3633                          struct netdev_phys_item_id *ppid);
3634 int dev_get_phys_port_name(struct net_device *dev,
3635                            char *name, size_t len);
3636 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3637 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3638 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3639                                     struct netdev_queue *txq, int *ret);
3640 
3641 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3642 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3643                       int fd, u32 flags);
3644 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3645                     enum bpf_netdev_command cmd);
3646 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3647 
3648 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3649 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3650 bool is_skb_forwardable(const struct net_device *dev,
3651                         const struct sk_buff *skb);
3652 
3653 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3654                                                struct sk_buff *skb)
3655 {
3656         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3657             unlikely(!is_skb_forwardable(dev, skb))) {
3658                 atomic_long_inc(&dev->rx_dropped);
3659                 kfree_skb(skb);
3660                 return NET_RX_DROP;
3661         }
3662 
3663         skb_scrub_packet(skb, true);
3664         skb->priority = 0;
3665         return 0;
3666 }
3667 
3668 bool dev_nit_active(struct net_device *dev);
3669 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3670 
3671 extern int              netdev_budget;
3672 extern unsigned int     netdev_budget_usecs;
3673 
3674 /* Called by rtnetlink.c:rtnl_unlock() */
3675 void netdev_run_todo(void);
3676 
3677 /**
3678  *      dev_put - release reference to device
3679  *      @dev: network device
3680  *
3681  * Release reference to device to allow it to be freed.
3682  */
3683 static inline void dev_put(struct net_device *dev)
3684 {
3685         this_cpu_dec(*dev->pcpu_refcnt);
3686 }
3687 
3688 /**
3689  *      dev_hold - get reference to device
3690  *      @dev: network device
3691  *
3692  * Hold reference to device to keep it from being freed.
3693  */
3694 static inline void dev_hold(struct net_device *dev)
3695 {
3696         this_cpu_inc(*dev->pcpu_refcnt);
3697 }
3698 
3699 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3700  * and _off may be called from IRQ context, but it is caller
3701  * who is responsible for serialization of these calls.
3702  *
3703  * The name carrier is inappropriate, these functions should really be
3704  * called netif_lowerlayer_*() because they represent the state of any
3705  * kind of lower layer not just hardware media.
3706  */
3707 
3708 void linkwatch_init_dev(struct net_device *dev);
3709 void linkwatch_fire_event(struct net_device *dev);
3710 void linkwatch_forget_dev(struct net_device *dev);
3711 
3712 /**
3713  *      netif_carrier_ok - test if carrier present
3714  *      @dev: network device
3715  *
3716  * Check if carrier is present on device
3717  */
3718 static inline bool netif_carrier_ok(const struct net_device *dev)
3719 {
3720         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3721 }
3722 
3723 unsigned long dev_trans_start(struct net_device *dev);
3724 
3725 void __netdev_watchdog_up(struct net_device *dev);
3726 
3727 void netif_carrier_on(struct net_device *dev);
3728 
3729 void netif_carrier_off(struct net_device *dev);
3730 
3731 /**
3732  *      netif_dormant_on - mark device as dormant.
3733  *      @dev: network device
3734  *
3735  * Mark device as dormant (as per RFC2863).
3736  *
3737  * The dormant state indicates that the relevant interface is not
3738  * actually in a condition to pass packets (i.e., it is not 'up') but is
3739  * in a "pending" state, waiting for some external event.  For "on-
3740  * demand" interfaces, this new state identifies the situation where the
3741  * interface is waiting for events to place it in the up state.
3742  */
3743 static inline void netif_dormant_on(struct net_device *dev)
3744 {
3745         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3746                 linkwatch_fire_event(dev);
3747 }
3748 
3749 /**
3750  *      netif_dormant_off - set device as not dormant.
3751  *      @dev: network device
3752  *
3753  * Device is not in dormant state.
3754  */
3755 static inline void netif_dormant_off(struct net_device *dev)
3756 {
3757         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3758                 linkwatch_fire_event(dev);
3759 }
3760 
3761 /**
3762  *      netif_dormant - test if device is dormant
3763  *      @dev: network device
3764  *
3765  * Check if device is dormant.
3766  */
3767 static inline bool netif_dormant(const struct net_device *dev)
3768 {
3769         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3770 }
3771 
3772 
3773 /**
3774  *      netif_oper_up - test if device is operational
3775  *      @dev: network device
3776  *
3777  * Check if carrier is operational
3778  */
3779 static inline bool netif_oper_up(const struct net_device *dev)
3780 {
3781         return (dev->operstate == IF_OPER_UP ||
3782                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3783 }
3784 
3785 /**
3786  *      netif_device_present - is device available or removed
3787  *      @dev: network device
3788  *
3789  * Check if device has not been removed from system.
3790  */
3791 static inline bool netif_device_present(struct net_device *dev)
3792 {
3793         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3794 }
3795 
3796 void netif_device_detach(struct net_device *dev);
3797 
3798 void netif_device_attach(struct net_device *dev);
3799 
3800 /*
3801  * Network interface message level settings
3802  */
3803 
3804 enum {
3805         NETIF_MSG_DRV           = 0x0001,
3806         NETIF_MSG_PROBE         = 0x0002,
3807         NETIF_MSG_LINK          = 0x0004,
3808         NETIF_MSG_TIMER         = 0x0008,
3809         NETIF_MSG_IFDOWN        = 0x0010,
3810         NETIF_MSG_IFUP          = 0x0020,
3811         NETIF_MSG_RX_ERR        = 0x0040,
3812         NETIF_MSG_TX_ERR        = 0x0080,
3813         NETIF_MSG_TX_QUEUED     = 0x0100,
3814         NETIF_MSG_INTR          = 0x0200,
3815         NETIF_MSG_TX_DONE       = 0x0400,
3816         NETIF_MSG_RX_STATUS     = 0x0800,
3817         NETIF_MSG_PKTDATA       = 0x1000,
3818         NETIF_MSG_HW            = 0x2000,
3819         NETIF_MSG_WOL           = 0x4000,
3820 };
3821 
3822 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3823 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3824 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3825 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3826 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3827 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3828 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3829 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3830 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3831 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3832 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3833 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3834 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3835 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3836 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3837 
3838 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3839 {
3840         /* use default */
3841         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3842                 return default_msg_enable_bits;
3843         if (debug_value == 0)   /* no output */
3844                 return 0;
3845         /* set low N bits */
3846         return (1 << debug_value) - 1;
3847 }
3848 
3849 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3850 {
3851         spin_lock(&txq->_xmit_lock);
3852         txq->xmit_lock_owner = cpu;
3853 }
3854 
3855 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3856 {
3857         __acquire(&txq->_xmit_lock);
3858         return true;
3859 }
3860 
3861 static inline void __netif_tx_release(struct netdev_queue *txq)
3862 {
3863         __release(&txq->_xmit_lock);
3864 }
3865 
3866 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3867 {
3868         spin_lock_bh(&txq->_xmit_lock);
3869         txq->xmit_lock_owner = smp_processor_id();
3870 }
3871 
3872 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3873 {
3874         bool ok = spin_trylock(&txq->_xmit_lock);
3875         if (likely(ok))
3876                 txq->xmit_lock_owner = smp_processor_id();
3877         return ok;
3878 }
3879 
3880 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3881 {
3882         txq->xmit_lock_owner = -1;
3883         spin_unlock(&txq->_xmit_lock);
3884 }
3885 
3886 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3887 {
3888         txq->xmit_lock_owner = -1;
3889         spin_unlock_bh(&txq->_xmit_lock);
3890 }
3891 
3892 static inline void txq_trans_update(struct netdev_queue *txq)
3893 {
3894         if (txq->xmit_lock_owner != -1)
3895                 txq->trans_start = jiffies;
3896 }
3897 
3898 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3899 static inline void netif_trans_update(struct net_device *dev)
3900 {
3901         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3902 
3903         if (txq->trans_start != jiffies)
3904                 txq->trans_start = jiffies;
3905 }
3906 
3907 /**
3908  *      netif_tx_lock - grab network device transmit lock
3909  *      @dev: network device
3910  *
3911  * Get network device transmit lock
3912  */
3913 static inline void netif_tx_lock(struct net_device *dev)
3914 {
3915         unsigned int i;
3916         int cpu;
3917 
3918         spin_lock(&dev->tx_global_lock);
3919         cpu = smp_processor_id();
3920         for (i = 0; i < dev->num_tx_queues; i++) {
3921                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3922 
3923                 /* We are the only thread of execution doing a
3924                  * freeze, but we have to grab the _xmit_lock in
3925                  * order to synchronize with threads which are in
3926                  * the ->hard_start_xmit() handler and already
3927                  * checked the frozen bit.
3928                  */
3929                 __netif_tx_lock(txq, cpu);
3930                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3931                 __netif_tx_unlock(txq);
3932         }
3933 }
3934 
3935 static inline void netif_tx_lock_bh(struct net_device *dev)
3936 {
3937         local_bh_disable();
3938         netif_tx_lock(dev);
3939 }
3940 
3941 static inline void netif_tx_unlock(struct net_device *dev)
3942 {
3943         unsigned int i;
3944 
3945         for (i = 0; i < dev->num_tx_queues; i++) {
3946                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3947 
3948                 /* No need to grab the _xmit_lock here.  If the
3949                  * queue is not stopped for another reason, we
3950                  * force a schedule.
3951                  */
3952                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3953                 netif_schedule_queue(txq);
3954         }
3955         spin_unlock(&dev->tx_global_lock);
3956 }
3957 
3958 static inline void netif_tx_unlock_bh(struct net_device *dev)
3959 {
3960         netif_tx_unlock(dev);
3961         local_bh_enable();
3962 }
3963 
3964 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3965         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3966                 __netif_tx_lock(txq, cpu);              \
3967         } else {                                        \
3968                 __netif_tx_acquire(txq);                \
3969         }                                               \
3970 }
3971 
3972 #define HARD_TX_TRYLOCK(dev, txq)                       \
3973         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3974                 __netif_tx_trylock(txq) :               \
3975                 __netif_tx_acquire(txq))
3976 
3977 #define HARD_TX_UNLOCK(dev, txq) {                      \
3978         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3979                 __netif_tx_unlock(txq);                 \
3980         } else {                                        \
3981                 __netif_tx_release(txq);                \
3982         }                                               \
3983 }
3984 
3985 static inline void netif_tx_disable(struct net_device *dev)
3986 {
3987         unsigned int i;
3988         int cpu;
3989 
3990         local_bh_disable();
3991         cpu = smp_processor_id();
3992         for (i = 0; i < dev->num_tx_queues; i++) {
3993                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3994 
3995                 __netif_tx_lock(txq, cpu);
3996                 netif_tx_stop_queue(txq);
3997                 __netif_tx_unlock(txq);
3998         }
3999         local_bh_enable();
4000 }
4001 
4002 static inline void netif_addr_lock(struct net_device *dev)
4003 {
4004         spin_lock(&dev->addr_list_lock);
4005 }
4006 
4007 static inline void netif_addr_lock_nested(struct net_device *dev)
4008 {
4009         int subclass = SINGLE_DEPTH_NESTING;
4010 
4011         if (dev->netdev_ops->ndo_get_lock_subclass)
4012                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4013 
4014         spin_lock_nested(&dev->addr_list_lock, subclass);
4015 }
4016 
4017 static inline void netif_addr_lock_bh(struct net_device *dev)
4018 {
4019         spin_lock_bh(&dev->addr_list_lock);
4020 }
4021 
4022 static inline void netif_addr_unlock(struct net_device *dev)
4023 {
4024         spin_unlock(&dev->addr_list_lock);
4025 }
4026 
4027 static inline void netif_addr_unlock_bh(struct net_device *dev)
4028 {
4029         spin_unlock_bh(&dev->addr_list_lock);
4030 }
4031 
4032 /*
4033  * dev_addrs walker. Should be used only for read access. Call with
4034  * rcu_read_lock held.
4035  */
4036 #define for_each_dev_addr(dev, ha) \
4037                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4038 
4039 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4040 
4041 void ether_setup(struct net_device *dev);
4042 
4043 /* Support for loadable net-drivers */
4044 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4045                                     unsigned char name_assign_type,
4046                                     void (*setup)(struct net_device *),
4047                                     unsigned int txqs, unsigned int rxqs);
4048 int dev_get_valid_name(struct net *net, struct net_device *dev,
4049                        const char *name);
4050 
4051 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4052         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4053 
4054 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4055         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4056                          count)
4057 
4058 int register_netdev(struct net_device *dev);
4059 void unregister_netdev(struct net_device *dev);
4060 
4061 /* General hardware address lists handling functions */
4062 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4063                    struct netdev_hw_addr_list *from_list, int addr_len);
4064 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4065                       struct netdev_hw_addr_list *from_list, int addr_len);
4066 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4067                        struct net_device *dev,
4068                        int (*sync)(struct net_device *, const unsigned char *),
4069                        int (*unsync)(struct net_device *,
4070                                      const unsigned char *));
4071 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4072                           struct net_device *dev,
4073                           int (*unsync)(struct net_device *,
4074                                         const unsigned char *));
4075 void __hw_addr_init(struct netdev_hw_addr_list *list);
4076 
4077 /* Functions used for device addresses handling */
4078 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4079                  unsigned char addr_type);
4080 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4081                  unsigned char addr_type);
4082 void dev_addr_flush(struct net_device *dev);
4083 int dev_addr_init(struct net_device *dev);
4084 
4085 /* Functions used for unicast addresses handling */
4086 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4087 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4088 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4089 int dev_uc_sync(struct net_device *to, struct net_device *from);
4090 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4091 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4092 void dev_uc_flush(struct net_device *dev);
4093 void dev_uc_init(struct net_device *dev);
4094 
4095 /**
4096  *  __dev_uc_sync - Synchonize device's unicast list
4097  *  @dev:  device to sync
4098  *  @sync: function to call if address should be added
4099  *  @unsync: function to call if address should be removed
4100  *
4101  *  Add newly added addresses to the interface, and release
4102  *  addresses that have been deleted.
4103  */
4104 static inline int __dev_uc_sync(struct net_device *dev,
4105                                 int (*sync)(struct net_device *,
4106                                             const unsigned char *),
4107                                 int (*unsync)(struct net_device *,
4108                                               const unsigned char *))
4109 {
4110         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4111 }
4112 
4113 /**
4114  *  __dev_uc_unsync - Remove synchronized addresses from device
4115  *  @dev:  device to sync
4116  *  @unsync: function to call if address should be removed
4117  *
4118  *  Remove all addresses that were added to the device by dev_uc_sync().
4119  */
4120 static inline void __dev_uc_unsync(struct net_device *dev,
4121                                    int (*unsync)(struct net_device *,
4122                                                  const unsigned char *))
4123 {
4124         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4125 }
4126 
4127 /* Functions used for multicast addresses handling */
4128 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4129 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4130 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4131 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4132 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4133 int dev_mc_sync(struct net_device *to, struct net_device *from);
4134 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4135 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4136 void dev_mc_flush(struct net_device *dev);
4137 void dev_mc_init(struct net_device *dev);
4138 
4139 /**
4140  *  __dev_mc_sync - Synchonize device's multicast list
4141  *  @dev:  device to sync
4142  *  @sync: function to call if address should be added
4143  *  @unsync: function to call if address should be removed
4144  *
4145  *  Add newly added addresses to the interface, and release
4146  *  addresses that have been deleted.
4147  */
4148 static inline int __dev_mc_sync(struct net_device *dev,
4149                                 int (*sync)(struct net_device *,
4150                                             const unsigned char *),
4151                                 int (*unsync)(struct net_device *,
4152                                               const unsigned char *))
4153 {
4154         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4155 }
4156 
4157 /**
4158  *  __dev_mc_unsync - Remove synchronized addresses from device
4159  *  @dev:  device to sync
4160  *  @unsync: function to call if address should be removed
4161  *
4162  *  Remove all addresses that were added to the device by dev_mc_sync().
4163  */
4164 static inline void __dev_mc_unsync(struct net_device *dev,
4165                                    int (*unsync)(struct net_device *,
4166                                                  const unsigned char *))
4167 {
4168         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4169 }
4170 
4171 /* Functions used for secondary unicast and multicast support */
4172 void dev_set_rx_mode(struct net_device *dev);
4173 void __dev_set_rx_mode(struct net_device *dev);
4174 int dev_set_promiscuity(struct net_device *dev, int inc);
4175 int dev_set_allmulti(struct net_device *dev, int inc);
4176 void netdev_state_change(struct net_device *dev);
4177 void netdev_notify_peers(struct net_device *dev);
4178 void netdev_features_change(struct net_device *dev);
4179 /* Load a device via the kmod */
4180 void dev_load(struct net *net, const char *name);
4181 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4182                                         struct rtnl_link_stats64 *storage);
4183 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4184                              const struct net_device_stats *netdev_stats);
4185 
4186 extern int              netdev_max_backlog;
4187 extern int              netdev_tstamp_prequeue;
4188 extern int              weight_p;
4189 extern int              dev_weight_rx_bias;
4190 extern int              dev_weight_tx_bias;
4191 extern int              dev_rx_weight;
4192 extern int              dev_tx_weight;
4193 
4194 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4195 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4196                                                      struct list_head **iter);
4197 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4198                                                      struct list_head **iter);
4199 
4200 /* iterate through upper list, must be called under RCU read lock */
4201 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4202         for (iter = &(dev)->adj_list.upper, \
4203              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4204              updev; \
4205              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4206 
4207 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4208                                   int (*fn)(struct net_device *upper_dev,
4209                                             void *data),
4210                                   void *data);
4211 
4212 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4213                                   struct net_device *upper_dev);
4214 
4215 bool netdev_has_any_upper_dev(struct net_device *dev);
4216 
4217 void *netdev_lower_get_next_private(struct net_device *dev,
4218                                     struct list_head **iter);
4219 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4220                                         struct list_head **iter);
4221 
4222 #define netdev_for_each_lower_private(dev, priv, iter) \
4223         for (iter = (dev)->adj_list.lower.next, \
4224              priv = netdev_lower_get_next_private(dev, &(iter)); \
4225              priv; \
4226              priv = netdev_lower_get_next_private(dev, &(iter)))
4227 
4228 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4229         for (iter = &(dev)->adj_list.lower, \
4230              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4231              priv; \
4232              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4233 
4234 void *netdev_lower_get_next(struct net_device *dev,
4235                                 struct list_head **iter);
4236 
4237 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4238         for (iter = (dev)->adj_list.lower.next, \
4239              ldev = netdev_lower_get_next(dev, &(iter)); \
4240              ldev; \
4241              ldev = netdev_lower_get_next(dev, &(iter)))
4242 
4243 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4244                                              struct list_head **iter);
4245 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4246                                                  struct list_head **iter);
4247 
4248 int netdev_walk_all_lower_dev(struct net_device *dev,
4249                               int (*fn)(struct net_device *lower_dev,
4250                                         void *data),
4251                               void *data);
4252 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4253                                   int (*fn)(struct net_device *lower_dev,
4254                                             void *data),
4255                                   void *data);
4256 
4257 void *netdev_adjacent_get_private(struct list_head *adj_list);
4258 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4259 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4260 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4261 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4262                           struct netlink_ext_ack *extack);
4263 int netdev_master_upper_dev_link(struct net_device *dev,
4264                                  struct net_device *upper_dev,
4265                                  void *upper_priv, void *upper_info,
4266                                  struct netlink_ext_ack *extack);
4267 void netdev_upper_dev_unlink(struct net_device *dev,
4268                              struct net_device *upper_dev);
4269 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4270 void *netdev_lower_dev_get_private(struct net_device *dev,
4271                                    struct net_device *lower_dev);
4272 void netdev_lower_state_changed(struct net_device *lower_dev,
4273                                 void *lower_state_info);
4274 
4275 /* RSS keys are 40 or 52 bytes long */
4276 #define NETDEV_RSS_KEY_LEN 52
4277 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4278 void netdev_rss_key_fill(void *buffer, size_t len);
4279 
4280 int dev_get_nest_level(struct net_device *dev);
4281 int skb_checksum_help(struct sk_buff *skb);
4282 int skb_crc32c_csum_help(struct sk_buff *skb);
4283 int skb_csum_hwoffload_help(struct sk_buff *skb,
4284                             const netdev_features_t features);
4285 
4286 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4287                                   netdev_features_t features, bool tx_path);
4288 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4289                                     netdev_features_t features);
4290 
4291 struct netdev_bonding_info {
4292         ifslave slave;
4293         ifbond  master;
4294 };
4295 
4296 struct netdev_notifier_bonding_info {
4297         struct netdev_notifier_info info; /* must be first */
4298         struct netdev_bonding_info  bonding_info;
4299 };
4300 
4301 void netdev_bonding_info_change(struct net_device *dev,
4302                                 struct netdev_bonding_info *bonding_info);
4303 
4304 static inline
4305 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4306 {
4307         return __skb_gso_segment(skb, features, true);
4308 }
4309 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4310 
4311 static inline bool can_checksum_protocol(netdev_features_t features,
4312                                          __be16 protocol)
4313 {
4314         if (protocol == htons(ETH_P_FCOE))
4315                 return !!(features & NETIF_F_FCOE_CRC);
4316 
4317         /* Assume this is an IP checksum (not SCTP CRC) */
4318 
4319         if (features & NETIF_F_HW_CSUM) {
4320                 /* Can checksum everything */
4321                 return true;
4322         }
4323 
4324         switch (protocol) {
4325         case htons(ETH_P_IP):
4326                 return !!(features & NETIF_F_IP_CSUM);
4327         case htons(ETH_P_IPV6):
4328                 return !!(features & NETIF_F_IPV6_CSUM);
4329         default:
4330                 return false;
4331         }
4332 }
4333 
4334 #ifdef CONFIG_BUG
4335 void netdev_rx_csum_fault(struct net_device *dev);
4336 #else
4337 static inline void netdev_rx_csum_fault(struct net_device *dev)
4338 {
4339 }
4340 #endif
4341 /* rx skb timestamps */
4342 void net_enable_timestamp(void);
4343 void net_disable_timestamp(void);
4344 
4345 #ifdef CONFIG_PROC_FS
4346 int __init dev_proc_init(void);
4347 #else
4348 #define dev_proc_init() 0
4349 #endif
4350 
4351 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4352                                               struct sk_buff *skb, struct net_device *dev,
4353                                               bool more)
4354 {
4355         skb->xmit_more = more ? 1 : 0;
4356         return ops->ndo_start_xmit(skb, dev);
4357 }
4358 
4359 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4360                                             struct netdev_queue *txq, bool more)
4361 {
4362         const struct net_device_ops *ops = dev->netdev_ops;
4363         int rc;
4364 
4365         rc = __netdev_start_xmit(ops, skb, dev, more);
4366         if (rc == NETDEV_TX_OK)
4367                 txq_trans_update(txq);
4368 
4369         return rc;
4370 }
4371 
4372 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4373                                 const void *ns);
4374 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4375                                  const void *ns);
4376 
4377 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4378 {
4379         return netdev_class_create_file_ns(class_attr, NULL);
4380 }
4381 
4382 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4383 {
4384         netdev_class_remove_file_ns(class_attr, NULL);
4385 }
4386 
4387 extern const struct kobj_ns_type_operations net_ns_type_operations;
4388 
4389 const char *netdev_drivername(const struct net_device *dev);
4390 
4391 void linkwatch_run_queue(void);
4392 
4393 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4394                                                           netdev_features_t f2)
4395 {
4396         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4397                 if (f1 & NETIF_F_HW_CSUM)
4398                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4399                 else
4400                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4401         }
4402 
4403         return f1 & f2;
4404 }
4405 
4406 static inline netdev_features_t netdev_get_wanted_features(
4407         struct net_device *dev)
4408 {
4409         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4410 }
4411 netdev_features_t netdev_increment_features(netdev_features_t all,
4412         netdev_features_t one, netdev_features_t mask);
4413 
4414 /* Allow TSO being used on stacked device :
4415  * Performing the GSO segmentation before last device
4416  * is a performance improvement.
4417  */
4418 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4419                                                         netdev_features_t mask)
4420 {
4421         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4422 }
4423 
4424 int __netdev_update_features(struct net_device *dev);
4425 void netdev_update_features(struct net_device *dev);
4426 void netdev_change_features(struct net_device *dev);
4427 
4428 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4429                                         struct net_device *dev);
4430 
4431 netdev_features_t passthru_features_check(struct sk_buff *skb,
4432                                           struct net_device *dev,
4433                                           netdev_features_t features);
4434 netdev_features_t netif_skb_features(struct sk_buff *skb);
4435 
4436 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4437 {
4438         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4439 
4440         /* check flags correspondence */
4441         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4442         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4443         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4444         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4445         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4446         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4447         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4448         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4449         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4450         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4451         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4452         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4453         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4454         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4455         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4456         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4457         BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4458         BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4459 
4460         return (features & feature) == feature;
4461 }
4462 
4463 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4464 {
4465         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4466                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4467 }
4468 
4469 static inline bool netif_needs_gso(struct sk_buff *skb,
4470                                    netdev_features_t features)
4471 {
4472         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4473                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4474                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4475 }
4476 
4477 static inline void netif_set_gso_max_size(struct net_device *dev,
4478                                           unsigned int size)
4479 {
4480         dev->gso_max_size = size;
4481 }
4482 
4483 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4484                                         int pulled_hlen, u16 mac_offset,
4485                                         int mac_len)
4486 {
4487         skb->protocol = protocol;
4488         skb->encapsulation = 1;
4489         skb_push(skb, pulled_hlen);
4490         skb_reset_transport_header(skb);
4491         skb->mac_header = mac_offset;
4492         skb->network_header = skb->mac_header + mac_len;
4493         skb->mac_len = mac_len;
4494 }
4495 
4496 static inline bool netif_is_macsec(const struct net_device *dev)
4497 {
4498         return dev->priv_flags & IFF_MACSEC;
4499 }
4500 
4501 static inline bool netif_is_macvlan(const struct net_device *dev)
4502 {
4503         return dev->priv_flags & IFF_MACVLAN;
4504 }
4505 
4506 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4507 {
4508         return dev->priv_flags & IFF_MACVLAN_PORT;
4509 }
4510 
4511 static inline bool netif_is_bond_master(const struct net_device *dev)
4512 {
4513         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4514 }
4515 
4516 static inline bool netif_is_bond_slave(const struct net_device *dev)
4517 {
4518         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4519 }
4520 
4521 static inline bool netif_supports_nofcs(struct net_device *dev)
4522 {
4523         return dev->priv_flags & IFF_SUPP_NOFCS;
4524 }
4525 
4526 static inline bool netif_is_l3_master(const struct net_device *dev)
4527 {
4528         return dev->priv_flags & IFF_L3MDEV_MASTER;
4529 }
4530 
4531 static inline bool netif_is_l3_slave(const struct net_device *dev)
4532 {
4533         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4534 }
4535 
4536 static inline bool netif_is_bridge_master(const struct net_device *dev)
4537 {
4538         return dev->priv_flags & IFF_EBRIDGE;
4539 }
4540 
4541 static inline bool netif_is_bridge_port(const struct net_device *dev)
4542 {
4543         return dev->priv_flags & IFF_BRIDGE_PORT;
4544 }
4545 
4546 static inline bool netif_is_ovs_master(const struct net_device *dev)
4547 {
4548         return dev->priv_flags & IFF_OPENVSWITCH;
4549 }
4550 
4551 static inline bool netif_is_ovs_port(const struct net_device *dev)
4552 {
4553         return dev->priv_flags & IFF_OVS_DATAPATH;
4554 }
4555 
4556 static inline bool netif_is_team_master(const struct net_device *dev)
4557 {
4558         return dev->priv_flags & IFF_TEAM;
4559 }
4560 
4561 static inline bool netif_is_team_port(const struct net_device *dev)
4562 {
4563         return dev->priv_flags & IFF_TEAM_PORT;
4564 }
4565 
4566 static inline bool netif_is_lag_master(const struct net_device *dev)
4567 {
4568         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4569 }
4570 
4571 static inline bool netif_is_lag_port(const struct net_device *dev)
4572 {
4573         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4574 }
4575 
4576 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4577 {
4578         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4579 }
4580 
4581 static inline bool netif_is_failover(const struct net_device *dev)
4582 {
4583         return dev->priv_flags & IFF_FAILOVER;
4584 }
4585 
4586 static inline bool netif_is_failover_slave(const struct net_device *dev)
4587 {
4588         return dev->priv_flags & IFF_FAILOVER_SLAVE;
4589 }
4590 
4591 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4592 static inline void netif_keep_dst(struct net_device *dev)
4593 {
4594         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4595 }
4596 
4597 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4598 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4599 {
4600         /* TODO: reserve and use an additional IFF bit, if we get more users */
4601         return dev->priv_flags & IFF_MACSEC;
4602 }
4603 
4604 extern struct pernet_operations __net_initdata loopback_net_ops;
4605 
4606 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4607 
4608 /* netdev_printk helpers, similar to dev_printk */
4609 
4610 static inline const char *netdev_name(const struct net_device *dev)
4611 {
4612         if (!dev->name[0] || strchr(dev->name, '%'))
4613                 return "(unnamed net_device)";
4614         return dev->name;
4615 }
4616 
4617 static inline bool netdev_unregistering(const struct net_device *dev)
4618 {
4619         return dev->reg_state == NETREG_UNREGISTERING;
4620 }
4621 
4622 static inline const char *netdev_reg_state(const struct net_device *dev)
4623 {
4624         switch (dev->reg_state) {
4625         case NETREG_UNINITIALIZED: return " (uninitialized)";
4626         case NETREG_REGISTERED: return "";
4627         case NETREG_UNREGISTERING: return " (unregistering)";
4628         case NETREG_UNREGISTERED: return " (unregistered)";
4629         case NETREG_RELEASED: return " (released)";
4630         case NETREG_DUMMY: return " (dummy)";
4631         }
4632 
4633         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4634         return " (unknown)";
4635 }
4636 
4637 __printf(3, 4)
4638 void netdev_printk(const char *level, const struct net_device *dev,
4639                    const char *format, ...);
4640 __printf(2, 3)
4641 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4642 __printf(2, 3)
4643 void netdev_alert(const struct net_device *dev, const char *format, ...);
4644 __printf(2, 3)
4645 void netdev_crit(const struct net_device *dev, const char *format, ...);
4646 __printf(2, 3)
4647 void netdev_err(const struct net_device *dev, const char *format, ...);
4648 __printf(2, 3)
4649 void netdev_warn(const struct net_device *dev, const char *format, ...);
4650 __printf(2, 3)
4651 void netdev_notice(const struct net_device *dev, const char *format, ...);
4652 __printf(2, 3)
4653 void netdev_info(const struct net_device *dev, const char *format, ...);
4654 
4655 #define netdev_level_once(level, dev, fmt, ...)                 \
4656 do {                                                            \
4657         static bool __print_once __read_mostly;                 \
4658                                                                 \
4659         if (!__print_once) {                                    \
4660                 __print_once = true;                            \
4661                 netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
4662         }                                                       \
4663 } while (0)
4664 
4665 #define netdev_emerg_once(dev, fmt, ...) \
4666         netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4667 #define netdev_alert_once(dev, fmt, ...) \
4668         netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4669 #define netdev_crit_once(dev, fmt, ...) \
4670         netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4671 #define netdev_err_once(dev, fmt, ...) \
4672         netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4673 #define netdev_warn_once(dev, fmt, ...) \
4674         netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4675 #define netdev_notice_once(dev, fmt, ...) \
4676         netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4677 #define netdev_info_once(dev, fmt, ...) \
4678         netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4679 
4680 #define MODULE_ALIAS_NETDEV(device) \
4681         MODULE_ALIAS("netdev-" device)
4682 
4683 #if defined(CONFIG_DYNAMIC_DEBUG)
4684 #define netdev_dbg(__dev, format, args...)                      \
4685 do {                                                            \
4686         dynamic_netdev_dbg(__dev, format, ##args);              \
4687 } while (0)
4688 #elif defined(DEBUG)
4689 #define netdev_dbg(__dev, format, args...)                      \
4690         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4691 #else
4692 #define netdev_dbg(__dev, format, args...)                      \
4693 ({                                                              \
4694         if (0)                                                  \
4695                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4696 })
4697 #endif
4698 
4699 #if defined(VERBOSE_DEBUG)
4700 #define netdev_vdbg     netdev_dbg
4701 #else
4702 
4703 #define netdev_vdbg(dev, format, args...)                       \
4704 ({                                                              \
4705         if (0)                                                  \
4706                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4707         0;                                                      \
4708 })
4709 #endif
4710 
4711 /*
4712  * netdev_WARN() acts like dev_printk(), but with the key difference
4713  * of using a WARN/WARN_ON to get the message out, including the
4714  * file/line information and a backtrace.
4715  */
4716 #define netdev_WARN(dev, format, args...)                       \
4717         WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
4718              netdev_reg_state(dev), ##args)
4719 
4720 #define netdev_WARN_ONCE(dev, format, args...)                          \
4721         WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
4722                   netdev_reg_state(dev), ##args)
4723 
4724 /* netif printk helpers, similar to netdev_printk */
4725 
4726 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4727 do {                                                            \
4728         if (netif_msg_##type(priv))                             \
4729                 netdev_printk(level, (dev), fmt, ##args);       \
4730 } while (0)
4731 
4732 #define netif_level(level, priv, type, dev, fmt, args...)       \
4733 do {                                                            \
4734         if (netif_msg_##type(priv))                             \
4735                 netdev_##level(dev, fmt, ##args);               \
4736 } while (0)
4737 
4738 #define netif_emerg(priv, type, dev, fmt, args...)              \
4739         netif_level(emerg, priv, type, dev, fmt, ##args)
4740 #define netif_alert(priv, type, dev, fmt, args...)              \
4741         netif_level(alert, priv, type, dev, fmt, ##args)
4742 #define netif_crit(priv, type, dev, fmt, args...)               \
4743         netif_level(crit, priv, type, dev, fmt, ##args)
4744 #define netif_err(priv, type, dev, fmt, args...)                \
4745         netif_level(err, priv, type, dev, fmt, ##args)
4746 #define netif_warn(priv, type, dev, fmt, args...)               \
4747         netif_level(warn, priv, type, dev, fmt, ##args)
4748 #define netif_notice(priv, type, dev, fmt, args...)             \
4749         netif_level(notice, priv, type, dev, fmt, ##args)
4750 #define netif_info(priv, type, dev, fmt, args...)               \
4751         netif_level(info, priv, type, dev, fmt, ##args)
4752 
4753 #if defined(CONFIG_DYNAMIC_DEBUG)
4754 #define netif_dbg(priv, type, netdev, format, args...)          \
4755 do {                                                            \
4756         if (netif_msg_##type(priv))                             \
4757                 dynamic_netdev_dbg(netdev, format, ##args);     \
4758 } while (0)
4759 #elif defined(DEBUG)
4760 #define netif_dbg(priv, type, dev, format, args...)             \
4761         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4762 #else
4763 #define netif_dbg(priv, type, dev, format, args...)                     \
4764 ({                                                                      \
4765         if (0)                                                          \
4766                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4767         0;                                                              \
4768 })
4769 #endif
4770 
4771 /* if @cond then downgrade to debug, else print at @level */
4772 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4773         do {                                                              \
4774                 if (cond)                                                 \
4775                         netif_dbg(priv, type, netdev, fmt, ##args);       \
4776                 else                                                      \
4777                         netif_ ## level(priv, type, netdev, fmt, ##args); \
4778         } while (0)
4779 
4780 #if defined(VERBOSE_DEBUG)
4781 #define netif_vdbg      netif_dbg
4782 #else
4783 #define netif_vdbg(priv, type, dev, format, args...)            \
4784 ({                                                              \
4785         if (0)                                                  \
4786                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4787         0;                                                      \
4788 })
4789 #endif
4790 
4791 /*
4792  *      The list of packet types we will receive (as opposed to discard)
4793  *      and the routines to invoke.
4794  *
4795  *      Why 16. Because with 16 the only overlap we get on a hash of the
4796  *      low nibble of the protocol value is RARP/SNAP/X.25.
4797  *
4798  *              0800    IP
4799  *              0001    802.3
4800  *              0002    AX.25
4801  *              0004    802.2
4802  *              8035    RARP
4803  *              0005    SNAP
4804  *              0805    X.25
4805  *              0806    ARP
4806  *              8137    IPX
4807  *              0009    Localtalk
4808  *              86DD    IPv6
4809  */
4810 #define PTYPE_HASH_SIZE (16)
4811 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4812 
4813 #endif  /* _LINUX_NETDEVICE_H */
4814 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp