~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/netdevice.h

Version: ~ [ linux-5.6 ] ~ [ linux-5.5.13 ] ~ [ linux-5.4.28 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.113 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.174 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.217 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.217 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/pm_qos.h>
 29 #include <linux/timer.h>
 30 #include <linux/bug.h>
 31 #include <linux/delay.h>
 32 #include <linux/atomic.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 
 54 struct netpoll_info;
 55 struct device;
 56 struct phy_device;
 57 /* 802.11 specific */
 58 struct wireless_dev;
 59                                         /* source back-compat hooks */
 60 #define SET_ETHTOOL_OPS(netdev,ops) \
 61         ( (netdev)->ethtool_ops = (ops) )
 62 
 63 void netdev_set_default_ethtool_ops(struct net_device *dev,
 64                                     const struct ethtool_ops *ops);
 65 
 66 /* hardware address assignment types */
 67 #define NET_ADDR_PERM           0       /* address is permanent (default) */
 68 #define NET_ADDR_RANDOM         1       /* address is generated randomly */
 69 #define NET_ADDR_STOLEN         2       /* address is stolen from other device */
 70 #define NET_ADDR_SET            3       /* address is set using
 71                                          * dev_set_mac_address() */
 72 
 73 /* Backlog congestion levels */
 74 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 75 #define NET_RX_DROP             1       /* packet dropped */
 76 
 77 /*
 78  * Transmit return codes: transmit return codes originate from three different
 79  * namespaces:
 80  *
 81  * - qdisc return codes
 82  * - driver transmit return codes
 83  * - errno values
 84  *
 85  * Drivers are allowed to return any one of those in their hard_start_xmit()
 86  * function. Real network devices commonly used with qdiscs should only return
 87  * the driver transmit return codes though - when qdiscs are used, the actual
 88  * transmission happens asynchronously, so the value is not propagated to
 89  * higher layers. Virtual network devices transmit synchronously, in this case
 90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 91  * others are propagated to higher layers.
 92  */
 93 
 94 /* qdisc ->enqueue() return codes. */
 95 #define NET_XMIT_SUCCESS        0x00
 96 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 97 #define NET_XMIT_CN             0x02    /* congestion notification      */
 98 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 99 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK          0xf0
109 
110 enum netdev_tx {
111         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
112         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
113         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
114         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132 
133         return false;
134 }
135 
136 /*
137  *      Compute the worst case header length according to the protocols
138  *      used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *      Old network device statistics. Fields are native words
160  *      (unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164         unsigned long   rx_packets;
165         unsigned long   tx_packets;
166         unsigned long   rx_bytes;
167         unsigned long   tx_bytes;
168         unsigned long   rx_errors;
169         unsigned long   tx_errors;
170         unsigned long   rx_dropped;
171         unsigned long   tx_dropped;
172         unsigned long   multicast;
173         unsigned long   collisions;
174         unsigned long   rx_length_errors;
175         unsigned long   rx_over_errors;
176         unsigned long   rx_crc_errors;
177         unsigned long   rx_frame_errors;
178         unsigned long   rx_fifo_errors;
179         unsigned long   rx_missed_errors;
180         unsigned long   tx_aborted_errors;
181         unsigned long   tx_carrier_errors;
182         unsigned long   tx_fifo_errors;
183         unsigned long   tx_heartbeat_errors;
184         unsigned long   tx_window_errors;
185         unsigned long   rx_compressed;
186         unsigned long   tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203         struct list_head        list;
204         unsigned char           addr[MAX_ADDR_LEN];
205         unsigned char           type;
206 #define NETDEV_HW_ADDR_T_LAN            1
207 #define NETDEV_HW_ADDR_T_SAN            2
208 #define NETDEV_HW_ADDR_T_SLAVE          3
209 #define NETDEV_HW_ADDR_T_UNICAST        4
210 #define NETDEV_HW_ADDR_T_MULTICAST      5
211         bool                    global_use;
212         int                     sync_cnt;
213         int                     refcount;
214         int                     synced;
215         struct rcu_head         rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219         struct list_head        list;
220         int                     count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226         list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239         u16             hh_len;
240         u16             __pad;
241         seqlock_t       hh_lock;
242 
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*rebuild)(struct sk_buff *skb);
271         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272         void    (*cache_update)(struct hh_cache *hh,
273                                 const struct net_device *dev,
274                                 const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-cpu poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314 
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         spinlock_t              poll_lock;
321         int                     poll_owner;
322 #endif
323         struct net_device       *dev;
324         struct sk_buff          *gro_list;
325         struct sk_buff          *skb;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330 
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_DISABLE,     /* Disable pending */
334         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
335         NAPI_STATE_HASHED,      /* In NAPI hash */
336 };
337 
338 enum gro_result {
339         GRO_MERGED,
340         GRO_MERGED_FREE,
341         GRO_HELD,
342         GRO_NORMAL,
343         GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389         RX_HANDLER_CONSUMED,
390         RX_HANDLER_ANOTHER,
391         RX_HANDLER_EXACT,
392         RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 void __napi_schedule(struct napi_struct *n);
398 
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401         return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403 
404 /**
405  *      napi_schedule_prep - check if napi can be scheduled
406  *      @n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415         return !napi_disable_pending(n) &&
416                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418 
419 /**
420  *      napi_schedule - schedule NAPI poll
421  *      @n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428         if (napi_schedule_prep(n))
429                 __napi_schedule(n);
430 }
431 
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435         if (napi_schedule_prep(napi)) {
436                 __napi_schedule(napi);
437                 return true;
438         }
439         return false;
440 }
441 
442 /**
443  *      napi_complete - NAPI processing complete
444  *      @n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450 
451 /**
452  *      napi_by_id - lookup a NAPI by napi_id
453  *      @napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459 
460 /**
461  *      napi_hash_add - add a NAPI to global hashtable
462  *      @napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 void napi_hash_add(struct napi_struct *napi);
467 
468 /**
469  *      napi_hash_del - remove a NAPI from global table
470  *      @napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 void napi_hash_del(struct napi_struct *napi);
476 
477 /**
478  *      napi_disable - prevent NAPI from scheduling
479  *      @n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486         might_sleep();
487         set_bit(NAPI_STATE_DISABLE, &n->state);
488         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489                 msleep(1);
490         clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492 
493 /**
494  *      napi_enable - enable NAPI scheduling
495  *      @n: napi context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503         smp_mb__before_clear_bit();
504         clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506 
507 #ifdef CONFIG_SMP
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: napi context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         while (test_bit(NAPI_STATE_SCHED, &n->state))
519                 msleep(1);
520 }
521 #else
522 # define napi_synchronize(n)    barrier()
523 #endif
524 
525 enum netdev_queue_state_t {
526         __QUEUE_STATE_DRV_XOFF,
527         __QUEUE_STATE_STACK_XOFF,
528         __QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)             | \
530                               (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF            | \
532                                         (1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543 
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548         struct net_device       *dev;
549         struct Qdisc            *qdisc;
550         struct Qdisc            *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552         struct kobject          kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555         int                     numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
561         int                     xmit_lock_owner;
562         /*
563          * please use this field instead of dev->trans_start
564          */
565         unsigned long           trans_start;
566 
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572 
573         unsigned long           state;
574 
575 #ifdef CONFIG_BQL
576         struct dql              dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579 
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583         return q->numa_node;
584 #else
585         return NUMA_NO_NODE;
586 #endif
587 }
588 
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592         q->numa_node = node;
593 #endif
594 }
595 
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602         unsigned int len;
603         struct rcu_head rcu;
604         u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607 
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614         u16 cpu;
615         u16 filter;
616         unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619 
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624         unsigned int mask;
625         struct rcu_head rcu;
626         struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630 
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636         unsigned int mask;
637         u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641 
642 #define RPS_NO_CPU 0xffff
643 
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645                                         u32 hash)
646 {
647         if (table && hash) {
648                 unsigned int cpu, index = hash & table->mask;
649 
650                 /* We only give a hint, preemption can change cpu under us */
651                 cpu = raw_smp_processor_id();
652 
653                 if (table->ents[index] != cpu)
654                         table->ents[index] = cpu;
655         }
656 }
657 
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659                                        u32 hash)
660 {
661         if (table && hash)
662                 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664 
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669                          u16 filter_id);
670 #endif
671 
672 /* This structure contains an instance of an RX queue. */
673 struct netdev_rx_queue {
674         struct rps_map __rcu            *rps_map;
675         struct rps_dev_flow_table __rcu *rps_flow_table;
676         struct kobject                  kobj;
677         struct net_device               *dev;
678 } ____cacheline_aligned_in_smp;
679 #endif /* CONFIG_RPS */
680 
681 #ifdef CONFIG_XPS
682 /*
683  * This structure holds an XPS map which can be of variable length.  The
684  * map is an array of queues.
685  */
686 struct xps_map {
687         unsigned int len;
688         unsigned int alloc_len;
689         struct rcu_head rcu;
690         u16 queues[0];
691 };
692 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
693 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
694     / sizeof(u16))
695 
696 /*
697  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
698  */
699 struct xps_dev_maps {
700         struct rcu_head rcu;
701         struct xps_map __rcu *cpu_map[0];
702 };
703 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
704     (nr_cpu_ids * sizeof(struct xps_map *)))
705 #endif /* CONFIG_XPS */
706 
707 #define TC_MAX_QUEUE    16
708 #define TC_BITMASK      15
709 /* HW offloaded queuing disciplines txq count and offset maps */
710 struct netdev_tc_txq {
711         u16 count;
712         u16 offset;
713 };
714 
715 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
716 /*
717  * This structure is to hold information about the device
718  * configured to run FCoE protocol stack.
719  */
720 struct netdev_fcoe_hbainfo {
721         char    manufacturer[64];
722         char    serial_number[64];
723         char    hardware_version[64];
724         char    driver_version[64];
725         char    optionrom_version[64];
726         char    firmware_version[64];
727         char    model[256];
728         char    model_description[256];
729 };
730 #endif
731 
732 #define MAX_PHYS_PORT_ID_LEN 32
733 
734 /* This structure holds a unique identifier to identify the
735  * physical port used by a netdevice.
736  */
737 struct netdev_phys_port_id {
738         unsigned char id[MAX_PHYS_PORT_ID_LEN];
739         unsigned char id_len;
740 };
741 
742 /*
743  * This structure defines the management hooks for network devices.
744  * The following hooks can be defined; unless noted otherwise, they are
745  * optional and can be filled with a null pointer.
746  *
747  * int (*ndo_init)(struct net_device *dev);
748  *     This function is called once when network device is registered.
749  *     The network device can use this to any late stage initializaton
750  *     or semantic validattion. It can fail with an error code which will
751  *     be propogated back to register_netdev
752  *
753  * void (*ndo_uninit)(struct net_device *dev);
754  *     This function is called when device is unregistered or when registration
755  *     fails. It is not called if init fails.
756  *
757  * int (*ndo_open)(struct net_device *dev);
758  *     This function is called when network device transistions to the up
759  *     state.
760  *
761  * int (*ndo_stop)(struct net_device *dev);
762  *     This function is called when network device transistions to the down
763  *     state.
764  *
765  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
766  *                               struct net_device *dev);
767  *      Called when a packet needs to be transmitted.
768  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
769  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
770  *      Required can not be NULL.
771  *
772  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
773  *                         void *accel_priv);
774  *      Called to decide which queue to when device supports multiple
775  *      transmit queues.
776  *
777  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
778  *      This function is called to allow device receiver to make
779  *      changes to configuration when multicast or promiscious is enabled.
780  *
781  * void (*ndo_set_rx_mode)(struct net_device *dev);
782  *      This function is called device changes address list filtering.
783  *      If driver handles unicast address filtering, it should set
784  *      IFF_UNICAST_FLT to its priv_flags.
785  *
786  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
787  *      This function  is called when the Media Access Control address
788  *      needs to be changed. If this interface is not defined, the
789  *      mac address can not be changed.
790  *
791  * int (*ndo_validate_addr)(struct net_device *dev);
792  *      Test if Media Access Control address is valid for the device.
793  *
794  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
795  *      Called when a user request an ioctl which can't be handled by
796  *      the generic interface code. If not defined ioctl's return
797  *      not supported error code.
798  *
799  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
800  *      Used to set network devices bus interface parameters. This interface
801  *      is retained for legacy reason, new devices should use the bus
802  *      interface (PCI) for low level management.
803  *
804  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
805  *      Called when a user wants to change the Maximum Transfer Unit
806  *      of a device. If not defined, any request to change MTU will
807  *      will return an error.
808  *
809  * void (*ndo_tx_timeout)(struct net_device *dev);
810  *      Callback uses when the transmitter has not made any progress
811  *      for dev->watchdog ticks.
812  *
813  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
814  *                      struct rtnl_link_stats64 *storage);
815  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
816  *      Called when a user wants to get the network device usage
817  *      statistics. Drivers must do one of the following:
818  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
819  *         rtnl_link_stats64 structure passed by the caller.
820  *      2. Define @ndo_get_stats to update a net_device_stats structure
821  *         (which should normally be dev->stats) and return a pointer to
822  *         it. The structure may be changed asynchronously only if each
823  *         field is written atomically.
824  *      3. Update dev->stats asynchronously and atomically, and define
825  *         neither operation.
826  *
827  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
828  *      If device support VLAN filtering this function is called when a
829  *      VLAN id is registered.
830  *
831  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
832  *      If device support VLAN filtering this function is called when a
833  *      VLAN id is unregistered.
834  *
835  * void (*ndo_poll_controller)(struct net_device *dev);
836  *
837  *      SR-IOV management functions.
838  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
839  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
840  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
841  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
842  * int (*ndo_get_vf_config)(struct net_device *dev,
843  *                          int vf, struct ifla_vf_info *ivf);
844  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
845  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
846  *                        struct nlattr *port[]);
847  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
848  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
849  *      Called to setup 'tc' number of traffic classes in the net device. This
850  *      is always called from the stack with the rtnl lock held and netif tx
851  *      queues stopped. This allows the netdevice to perform queue management
852  *      safely.
853  *
854  *      Fiber Channel over Ethernet (FCoE) offload functions.
855  * int (*ndo_fcoe_enable)(struct net_device *dev);
856  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
857  *      so the underlying device can perform whatever needed configuration or
858  *      initialization to support acceleration of FCoE traffic.
859  *
860  * int (*ndo_fcoe_disable)(struct net_device *dev);
861  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
862  *      so the underlying device can perform whatever needed clean-ups to
863  *      stop supporting acceleration of FCoE traffic.
864  *
865  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
866  *                           struct scatterlist *sgl, unsigned int sgc);
867  *      Called when the FCoE Initiator wants to initialize an I/O that
868  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
869  *      perform necessary setup and returns 1 to indicate the device is set up
870  *      successfully to perform DDP on this I/O, otherwise this returns 0.
871  *
872  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
873  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
874  *      indicated by the FC exchange id 'xid', so the underlying device can
875  *      clean up and reuse resources for later DDP requests.
876  *
877  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
878  *                            struct scatterlist *sgl, unsigned int sgc);
879  *      Called when the FCoE Target wants to initialize an I/O that
880  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
881  *      perform necessary setup and returns 1 to indicate the device is set up
882  *      successfully to perform DDP on this I/O, otherwise this returns 0.
883  *
884  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
885  *                             struct netdev_fcoe_hbainfo *hbainfo);
886  *      Called when the FCoE Protocol stack wants information on the underlying
887  *      device. This information is utilized by the FCoE protocol stack to
888  *      register attributes with Fiber Channel management service as per the
889  *      FC-GS Fabric Device Management Information(FDMI) specification.
890  *
891  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
892  *      Called when the underlying device wants to override default World Wide
893  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
894  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
895  *      protocol stack to use.
896  *
897  *      RFS acceleration.
898  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
899  *                          u16 rxq_index, u32 flow_id);
900  *      Set hardware filter for RFS.  rxq_index is the target queue index;
901  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
902  *      Return the filter ID on success, or a negative error code.
903  *
904  *      Slave management functions (for bridge, bonding, etc).
905  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
906  *      Called to make another netdev an underling.
907  *
908  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
909  *      Called to release previously enslaved netdev.
910  *
911  *      Feature/offload setting functions.
912  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
913  *              netdev_features_t features);
914  *      Adjusts the requested feature flags according to device-specific
915  *      constraints, and returns the resulting flags. Must not modify
916  *      the device state.
917  *
918  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
919  *      Called to update device configuration to new features. Passed
920  *      feature set might be less than what was returned by ndo_fix_features()).
921  *      Must return >0 or -errno if it changed dev->features itself.
922  *
923  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
924  *                    struct net_device *dev,
925  *                    const unsigned char *addr, u16 flags)
926  *      Adds an FDB entry to dev for addr.
927  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
928  *                    struct net_device *dev,
929  *                    const unsigned char *addr)
930  *      Deletes the FDB entry from dev coresponding to addr.
931  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
932  *                     struct net_device *dev, int idx)
933  *      Used to add FDB entries to dump requests. Implementers should add
934  *      entries to skb and update idx with the number of entries.
935  *
936  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
937  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
938  *                           struct net_device *dev, u32 filter_mask)
939  *
940  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
941  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
942  *      which do not represent real hardware may define this to allow their
943  *      userspace components to manage their virtual carrier state. Devices
944  *      that determine carrier state from physical hardware properties (eg
945  *      network cables) or protocol-dependent mechanisms (eg
946  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
947  *
948  * int (*ndo_get_phys_port_id)(struct net_device *dev,
949  *                             struct netdev_phys_port_id *ppid);
950  *      Called to get ID of physical port of this device. If driver does
951  *      not implement this, it is assumed that the hw is not able to have
952  *      multiple net devices on single physical port.
953  *
954  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
955  *                            sa_family_t sa_family, __be16 port);
956  *      Called by vxlan to notiy a driver about the UDP port and socket
957  *      address family that vxlan is listnening to. It is called only when
958  *      a new port starts listening. The operation is protected by the
959  *      vxlan_net->sock_lock.
960  *
961  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
962  *                            sa_family_t sa_family, __be16 port);
963  *      Called by vxlan to notify the driver about a UDP port and socket
964  *      address family that vxlan is not listening to anymore. The operation
965  *      is protected by the vxlan_net->sock_lock.
966  *
967  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
968  *                               struct net_device *dev)
969  *      Called by upper layer devices to accelerate switching or other
970  *      station functionality into hardware. 'pdev is the lowerdev
971  *      to use for the offload and 'dev' is the net device that will
972  *      back the offload. Returns a pointer to the private structure
973  *      the upper layer will maintain.
974  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
975  *      Called by upper layer device to delete the station created
976  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
977  *      the station and priv is the structure returned by the add
978  *      operation.
979  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
980  *                                    struct net_device *dev,
981  *                                    void *priv);
982  *      Callback to use for xmit over the accelerated station. This
983  *      is used in place of ndo_start_xmit on accelerated net
984  *      devices.
985  */
986 struct net_device_ops {
987         int                     (*ndo_init)(struct net_device *dev);
988         void                    (*ndo_uninit)(struct net_device *dev);
989         int                     (*ndo_open)(struct net_device *dev);
990         int                     (*ndo_stop)(struct net_device *dev);
991         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
992                                                    struct net_device *dev);
993         u16                     (*ndo_select_queue)(struct net_device *dev,
994                                                     struct sk_buff *skb,
995                                                     void *accel_priv);
996         void                    (*ndo_change_rx_flags)(struct net_device *dev,
997                                                        int flags);
998         void                    (*ndo_set_rx_mode)(struct net_device *dev);
999         int                     (*ndo_set_mac_address)(struct net_device *dev,
1000                                                        void *addr);
1001         int                     (*ndo_validate_addr)(struct net_device *dev);
1002         int                     (*ndo_do_ioctl)(struct net_device *dev,
1003                                                 struct ifreq *ifr, int cmd);
1004         int                     (*ndo_set_config)(struct net_device *dev,
1005                                                   struct ifmap *map);
1006         int                     (*ndo_change_mtu)(struct net_device *dev,
1007                                                   int new_mtu);
1008         int                     (*ndo_neigh_setup)(struct net_device *dev,
1009                                                    struct neigh_parms *);
1010         void                    (*ndo_tx_timeout) (struct net_device *dev);
1011 
1012         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1013                                                      struct rtnl_link_stats64 *storage);
1014         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1015 
1016         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1017                                                        __be16 proto, u16 vid);
1018         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1019                                                         __be16 proto, u16 vid);
1020 #ifdef CONFIG_NET_POLL_CONTROLLER
1021         void                    (*ndo_poll_controller)(struct net_device *dev);
1022         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1023                                                      struct netpoll_info *info,
1024                                                      gfp_t gfp);
1025         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1026 #endif
1027 #ifdef CONFIG_NET_RX_BUSY_POLL
1028         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1029 #endif
1030         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1031                                                   int queue, u8 *mac);
1032         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1033                                                    int queue, u16 vlan, u8 qos);
1034         int                     (*ndo_set_vf_tx_rate)(struct net_device *dev,
1035                                                       int vf, int rate);
1036         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1037                                                        int vf, bool setting);
1038         int                     (*ndo_get_vf_config)(struct net_device *dev,
1039                                                      int vf,
1040                                                      struct ifla_vf_info *ivf);
1041         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1042                                                          int vf, int link_state);
1043         int                     (*ndo_set_vf_port)(struct net_device *dev,
1044                                                    int vf,
1045                                                    struct nlattr *port[]);
1046         int                     (*ndo_get_vf_port)(struct net_device *dev,
1047                                                    int vf, struct sk_buff *skb);
1048         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1049 #if IS_ENABLED(CONFIG_FCOE)
1050         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1051         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1052         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1053                                                       u16 xid,
1054                                                       struct scatterlist *sgl,
1055                                                       unsigned int sgc);
1056         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1057                                                      u16 xid);
1058         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1059                                                        u16 xid,
1060                                                        struct scatterlist *sgl,
1061                                                        unsigned int sgc);
1062         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1063                                                         struct netdev_fcoe_hbainfo *hbainfo);
1064 #endif
1065 
1066 #if IS_ENABLED(CONFIG_LIBFCOE)
1067 #define NETDEV_FCOE_WWNN 0
1068 #define NETDEV_FCOE_WWPN 1
1069         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1070                                                     u64 *wwn, int type);
1071 #endif
1072 
1073 #ifdef CONFIG_RFS_ACCEL
1074         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1075                                                      const struct sk_buff *skb,
1076                                                      u16 rxq_index,
1077                                                      u32 flow_id);
1078 #endif
1079         int                     (*ndo_add_slave)(struct net_device *dev,
1080                                                  struct net_device *slave_dev);
1081         int                     (*ndo_del_slave)(struct net_device *dev,
1082                                                  struct net_device *slave_dev);
1083         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1084                                                     netdev_features_t features);
1085         int                     (*ndo_set_features)(struct net_device *dev,
1086                                                     netdev_features_t features);
1087         int                     (*ndo_neigh_construct)(struct neighbour *n);
1088         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1089 
1090         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1091                                                struct nlattr *tb[],
1092                                                struct net_device *dev,
1093                                                const unsigned char *addr,
1094                                                u16 flags);
1095         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1096                                                struct nlattr *tb[],
1097                                                struct net_device *dev,
1098                                                const unsigned char *addr);
1099         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1100                                                 struct netlink_callback *cb,
1101                                                 struct net_device *dev,
1102                                                 int idx);
1103 
1104         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1105                                                       struct nlmsghdr *nlh);
1106         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1107                                                       u32 pid, u32 seq,
1108                                                       struct net_device *dev,
1109                                                       u32 filter_mask);
1110         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1111                                                       struct nlmsghdr *nlh);
1112         int                     (*ndo_change_carrier)(struct net_device *dev,
1113                                                       bool new_carrier);
1114         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1115                                                         struct netdev_phys_port_id *ppid);
1116         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1117                                                       sa_family_t sa_family,
1118                                                       __be16 port);
1119         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1120                                                       sa_family_t sa_family,
1121                                                       __be16 port);
1122 
1123         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1124                                                         struct net_device *dev);
1125         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1126                                                         void *priv);
1127 
1128         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1129                                                         struct net_device *dev,
1130                                                         void *priv);
1131 };
1132 
1133 /*
1134  *      The DEVICE structure.
1135  *      Actually, this whole structure is a big mistake.  It mixes I/O
1136  *      data with strictly "high-level" data, and it has to know about
1137  *      almost every data structure used in the INET module.
1138  *
1139  *      FIXME: cleanup struct net_device such that network protocol info
1140  *      moves out.
1141  */
1142 
1143 struct net_device {
1144 
1145         /*
1146          * This is the first field of the "visible" part of this structure
1147          * (i.e. as seen by users in the "Space.c" file).  It is the name
1148          * of the interface.
1149          */
1150         char                    name[IFNAMSIZ];
1151 
1152         /* device name hash chain, please keep it close to name[] */
1153         struct hlist_node       name_hlist;
1154 
1155         /* snmp alias */
1156         char                    *ifalias;
1157 
1158         /*
1159          *      I/O specific fields
1160          *      FIXME: Merge these and struct ifmap into one
1161          */
1162         unsigned long           mem_end;        /* shared mem end       */
1163         unsigned long           mem_start;      /* shared mem start     */
1164         unsigned long           base_addr;      /* device I/O address   */
1165         int                     irq;            /* device IRQ number    */
1166 
1167         /*
1168          *      Some hardware also needs these fields, but they are not
1169          *      part of the usual set specified in Space.c.
1170          */
1171 
1172         unsigned long           state;
1173 
1174         struct list_head        dev_list;
1175         struct list_head        napi_list;
1176         struct list_head        unreg_list;
1177         struct list_head        close_list;
1178 
1179         /* directly linked devices, like slaves for bonding */
1180         struct {
1181                 struct list_head upper;
1182                 struct list_head lower;
1183         } adj_list;
1184 
1185         /* all linked devices, *including* neighbours */
1186         struct {
1187                 struct list_head upper;
1188                 struct list_head lower;
1189         } all_adj_list;
1190 
1191 
1192         /* currently active device features */
1193         netdev_features_t       features;
1194         /* user-changeable features */
1195         netdev_features_t       hw_features;
1196         /* user-requested features */
1197         netdev_features_t       wanted_features;
1198         /* mask of features inheritable by VLAN devices */
1199         netdev_features_t       vlan_features;
1200         /* mask of features inherited by encapsulating devices
1201          * This field indicates what encapsulation offloads
1202          * the hardware is capable of doing, and drivers will
1203          * need to set them appropriately.
1204          */
1205         netdev_features_t       hw_enc_features;
1206         /* mask of fetures inheritable by MPLS */
1207         netdev_features_t       mpls_features;
1208 
1209         /* Interface index. Unique device identifier    */
1210         int                     ifindex;
1211         int                     iflink;
1212 
1213         struct net_device_stats stats;
1214         atomic_long_t           rx_dropped; /* dropped packets by core network
1215                                              * Do not use this in drivers.
1216                                              */
1217 
1218 #ifdef CONFIG_WIRELESS_EXT
1219         /* List of functions to handle Wireless Extensions (instead of ioctl).
1220          * See <net/iw_handler.h> for details. Jean II */
1221         const struct iw_handler_def *   wireless_handlers;
1222         /* Instance data managed by the core of Wireless Extensions. */
1223         struct iw_public_data * wireless_data;
1224 #endif
1225         /* Management operations */
1226         const struct net_device_ops *netdev_ops;
1227         const struct ethtool_ops *ethtool_ops;
1228         const struct forwarding_accel_ops *fwd_ops;
1229 
1230         /* Hardware header description */
1231         const struct header_ops *header_ops;
1232 
1233         unsigned int            flags;  /* interface flags (a la BSD)   */
1234         unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1235                                              * See if.h for definitions. */
1236         unsigned short          gflags;
1237         unsigned short          padded; /* How much padding added by alloc_netdev() */
1238 
1239         unsigned char           operstate; /* RFC2863 operstate */
1240         unsigned char           link_mode; /* mapping policy to operstate */
1241 
1242         unsigned char           if_port;        /* Selectable AUI, TP,..*/
1243         unsigned char           dma;            /* DMA channel          */
1244 
1245         unsigned int            mtu;    /* interface MTU value          */
1246         unsigned short          type;   /* interface hardware type      */
1247         unsigned short          hard_header_len;        /* hardware hdr length  */
1248 
1249         /* extra head- and tailroom the hardware may need, but not in all cases
1250          * can this be guaranteed, especially tailroom. Some cases also use
1251          * LL_MAX_HEADER instead to allocate the skb.
1252          */
1253         unsigned short          needed_headroom;
1254         unsigned short          needed_tailroom;
1255 
1256         /* Interface address info. */
1257         unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1258         unsigned char           addr_assign_type; /* hw address assignment type */
1259         unsigned char           addr_len;       /* hardware address length      */
1260         unsigned short          neigh_priv_len;
1261         unsigned short          dev_id;         /* Used to differentiate devices
1262                                                  * that share the same link
1263                                                  * layer address
1264                                                  */
1265         spinlock_t              addr_list_lock;
1266         struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1267         struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1268         struct netdev_hw_addr_list      dev_addrs; /* list of device
1269                                                     * hw addresses
1270                                                     */
1271 #ifdef CONFIG_SYSFS
1272         struct kset             *queues_kset;
1273 #endif
1274 
1275         bool                    uc_promisc;
1276         unsigned int            promiscuity;
1277         unsigned int            allmulti;
1278 
1279 
1280         /* Protocol specific pointers */
1281 
1282 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1283         struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1284 #endif
1285 #if IS_ENABLED(CONFIG_NET_DSA)
1286         struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1287 #endif
1288         void                    *atalk_ptr;     /* AppleTalk link       */
1289         struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1290         struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1291         struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1292         void                    *ax25_ptr;      /* AX.25 specific data */
1293         struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1294                                                    assign before registering */
1295 
1296 /*
1297  * Cache lines mostly used on receive path (including eth_type_trans())
1298  */
1299         unsigned long           last_rx;        /* Time of last Rx
1300                                                  * This should not be set in
1301                                                  * drivers, unless really needed,
1302                                                  * because network stack (bonding)
1303                                                  * use it if/when necessary, to
1304                                                  * avoid dirtying this cache line.
1305                                                  */
1306 
1307         /* Interface address info used in eth_type_trans() */
1308         unsigned char           *dev_addr;      /* hw address, (before bcast
1309                                                    because most packets are
1310                                                    unicast) */
1311 
1312 
1313 #ifdef CONFIG_RPS
1314         struct netdev_rx_queue  *_rx;
1315 
1316         /* Number of RX queues allocated at register_netdev() time */
1317         unsigned int            num_rx_queues;
1318 
1319         /* Number of RX queues currently active in device */
1320         unsigned int            real_num_rx_queues;
1321 
1322 #endif
1323 
1324         rx_handler_func_t __rcu *rx_handler;
1325         void __rcu              *rx_handler_data;
1326 
1327         struct netdev_queue __rcu *ingress_queue;
1328         unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1329 
1330 
1331 /*
1332  * Cache lines mostly used on transmit path
1333  */
1334         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1335 
1336         /* Number of TX queues allocated at alloc_netdev_mq() time  */
1337         unsigned int            num_tx_queues;
1338 
1339         /* Number of TX queues currently active in device  */
1340         unsigned int            real_num_tx_queues;
1341 
1342         /* root qdisc from userspace point of view */
1343         struct Qdisc            *qdisc;
1344 
1345         unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1346         spinlock_t              tx_global_lock;
1347 
1348 #ifdef CONFIG_XPS
1349         struct xps_dev_maps __rcu *xps_maps;
1350 #endif
1351 #ifdef CONFIG_RFS_ACCEL
1352         /* CPU reverse-mapping for RX completion interrupts, indexed
1353          * by RX queue number.  Assigned by driver.  This must only be
1354          * set if the ndo_rx_flow_steer operation is defined. */
1355         struct cpu_rmap         *rx_cpu_rmap;
1356 #endif
1357 
1358         /* These may be needed for future network-power-down code. */
1359 
1360         /*
1361          * trans_start here is expensive for high speed devices on SMP,
1362          * please use netdev_queue->trans_start instead.
1363          */
1364         unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1365 
1366         int                     watchdog_timeo; /* used by dev_watchdog() */
1367         struct timer_list       watchdog_timer;
1368 
1369         /* Number of references to this device */
1370         int __percpu            *pcpu_refcnt;
1371 
1372         /* delayed register/unregister */
1373         struct list_head        todo_list;
1374         /* device index hash chain */
1375         struct hlist_node       index_hlist;
1376 
1377         struct list_head        link_watch_list;
1378 
1379         /* register/unregister state machine */
1380         enum { NETREG_UNINITIALIZED=0,
1381                NETREG_REGISTERED,       /* completed register_netdevice */
1382                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1383                NETREG_UNREGISTERED,     /* completed unregister todo */
1384                NETREG_RELEASED,         /* called free_netdev */
1385                NETREG_DUMMY,            /* dummy device for NAPI poll */
1386         } reg_state:8;
1387 
1388         bool dismantle; /* device is going do be freed */
1389 
1390         enum {
1391                 RTNL_LINK_INITIALIZED,
1392                 RTNL_LINK_INITIALIZING,
1393         } rtnl_link_state:16;
1394 
1395         /* Called from unregister, can be used to call free_netdev */
1396         void (*destructor)(struct net_device *dev);
1397 
1398 #ifdef CONFIG_NETPOLL
1399         struct netpoll_info __rcu       *npinfo;
1400 #endif
1401 
1402 #ifdef CONFIG_NET_NS
1403         /* Network namespace this network device is inside */
1404         struct net              *nd_net;
1405 #endif
1406 
1407         /* mid-layer private */
1408         union {
1409                 void                            *ml_priv;
1410                 struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1411                 struct pcpu_tstats __percpu     *tstats; /* tunnel stats */
1412                 struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1413                 struct pcpu_vstats __percpu     *vstats; /* veth stats */
1414         };
1415         /* GARP */
1416         struct garp_port __rcu  *garp_port;
1417         /* MRP */
1418         struct mrp_port __rcu   *mrp_port;
1419 
1420         /* class/net/name entry */
1421         struct device           dev;
1422         /* space for optional device, statistics, and wireless sysfs groups */
1423         const struct attribute_group *sysfs_groups[4];
1424 
1425         /* rtnetlink link ops */
1426         const struct rtnl_link_ops *rtnl_link_ops;
1427 
1428         /* for setting kernel sock attribute on TCP connection setup */
1429 #define GSO_MAX_SIZE            65536
1430         unsigned int            gso_max_size;
1431 #define GSO_MAX_SEGS            65535
1432         u16                     gso_max_segs;
1433 
1434 #ifdef CONFIG_DCB
1435         /* Data Center Bridging netlink ops */
1436         const struct dcbnl_rtnl_ops *dcbnl_ops;
1437 #endif
1438         u8 num_tc;
1439         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1440         u8 prio_tc_map[TC_BITMASK + 1];
1441 
1442 #if IS_ENABLED(CONFIG_FCOE)
1443         /* max exchange id for FCoE LRO by ddp */
1444         unsigned int            fcoe_ddp_xid;
1445 #endif
1446 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1447         struct netprio_map __rcu *priomap;
1448 #endif
1449         /* phy device may attach itself for hardware timestamping */
1450         struct phy_device *phydev;
1451 
1452         struct lock_class_key *qdisc_tx_busylock;
1453 
1454         /* group the device belongs to */
1455         int group;
1456 
1457         struct pm_qos_request   pm_qos_req;
1458 };
1459 #define to_net_dev(d) container_of(d, struct net_device, dev)
1460 
1461 #define NETDEV_ALIGN            32
1462 
1463 static inline
1464 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1465 {
1466         return dev->prio_tc_map[prio & TC_BITMASK];
1467 }
1468 
1469 static inline
1470 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1471 {
1472         if (tc >= dev->num_tc)
1473                 return -EINVAL;
1474 
1475         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1476         return 0;
1477 }
1478 
1479 static inline
1480 void netdev_reset_tc(struct net_device *dev)
1481 {
1482         dev->num_tc = 0;
1483         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1484         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1485 }
1486 
1487 static inline
1488 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1489 {
1490         if (tc >= dev->num_tc)
1491                 return -EINVAL;
1492 
1493         dev->tc_to_txq[tc].count = count;
1494         dev->tc_to_txq[tc].offset = offset;
1495         return 0;
1496 }
1497 
1498 static inline
1499 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1500 {
1501         if (num_tc > TC_MAX_QUEUE)
1502                 return -EINVAL;
1503 
1504         dev->num_tc = num_tc;
1505         return 0;
1506 }
1507 
1508 static inline
1509 int netdev_get_num_tc(struct net_device *dev)
1510 {
1511         return dev->num_tc;
1512 }
1513 
1514 static inline
1515 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1516                                          unsigned int index)
1517 {
1518         return &dev->_tx[index];
1519 }
1520 
1521 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1522                                             void (*f)(struct net_device *,
1523                                                       struct netdev_queue *,
1524                                                       void *),
1525                                             void *arg)
1526 {
1527         unsigned int i;
1528 
1529         for (i = 0; i < dev->num_tx_queues; i++)
1530                 f(dev, &dev->_tx[i], arg);
1531 }
1532 
1533 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1534                                     struct sk_buff *skb,
1535                                     void *accel_priv);
1536 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1537 
1538 /*
1539  * Net namespace inlines
1540  */
1541 static inline
1542 struct net *dev_net(const struct net_device *dev)
1543 {
1544         return read_pnet(&dev->nd_net);
1545 }
1546 
1547 static inline
1548 void dev_net_set(struct net_device *dev, struct net *net)
1549 {
1550 #ifdef CONFIG_NET_NS
1551         release_net(dev->nd_net);
1552         dev->nd_net = hold_net(net);
1553 #endif
1554 }
1555 
1556 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1557 {
1558 #ifdef CONFIG_NET_DSA_TAG_DSA
1559         if (dev->dsa_ptr != NULL)
1560                 return dsa_uses_dsa_tags(dev->dsa_ptr);
1561 #endif
1562 
1563         return 0;
1564 }
1565 
1566 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1567 {
1568 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1569         if (dev->dsa_ptr != NULL)
1570                 return dsa_uses_trailer_tags(dev->dsa_ptr);
1571 #endif
1572 
1573         return 0;
1574 }
1575 
1576 /**
1577  *      netdev_priv - access network device private data
1578  *      @dev: network device
1579  *
1580  * Get network device private data
1581  */
1582 static inline void *netdev_priv(const struct net_device *dev)
1583 {
1584         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1585 }
1586 
1587 /* Set the sysfs physical device reference for the network logical device
1588  * if set prior to registration will cause a symlink during initialization.
1589  */
1590 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1591 
1592 /* Set the sysfs device type for the network logical device to allow
1593  * fine-grained identification of different network device types. For
1594  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1595  */
1596 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1597 
1598 /* Default NAPI poll() weight
1599  * Device drivers are strongly advised to not use bigger value
1600  */
1601 #define NAPI_POLL_WEIGHT 64
1602 
1603 /**
1604  *      netif_napi_add - initialize a napi context
1605  *      @dev:  network device
1606  *      @napi: napi context
1607  *      @poll: polling function
1608  *      @weight: default weight
1609  *
1610  * netif_napi_add() must be used to initialize a napi context prior to calling
1611  * *any* of the other napi related functions.
1612  */
1613 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1614                     int (*poll)(struct napi_struct *, int), int weight);
1615 
1616 /**
1617  *  netif_napi_del - remove a napi context
1618  *  @napi: napi context
1619  *
1620  *  netif_napi_del() removes a napi context from the network device napi list
1621  */
1622 void netif_napi_del(struct napi_struct *napi);
1623 
1624 struct napi_gro_cb {
1625         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1626         void *frag0;
1627 
1628         /* Length of frag0. */
1629         unsigned int frag0_len;
1630 
1631         /* This indicates where we are processing relative to skb->data. */
1632         int data_offset;
1633 
1634         /* This is non-zero if the packet cannot be merged with the new skb. */
1635         int flush;
1636 
1637         /* Number of segments aggregated. */
1638         u16     count;
1639 
1640         /* This is non-zero if the packet may be of the same flow. */
1641         u8      same_flow;
1642 
1643         /* Free the skb? */
1644         u8      free;
1645 #define NAPI_GRO_FREE             1
1646 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1647 
1648         /* jiffies when first packet was created/queued */
1649         unsigned long age;
1650 
1651         /* Used in ipv6_gro_receive() */
1652         int     proto;
1653 
1654         /* used in skb_gro_receive() slow path */
1655         struct sk_buff *last;
1656 };
1657 
1658 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1659 
1660 struct packet_type {
1661         __be16                  type;   /* This is really htons(ether_type). */
1662         struct net_device       *dev;   /* NULL is wildcarded here           */
1663         int                     (*func) (struct sk_buff *,
1664                                          struct net_device *,
1665                                          struct packet_type *,
1666                                          struct net_device *);
1667         bool                    (*id_match)(struct packet_type *ptype,
1668                                             struct sock *sk);
1669         void                    *af_packet_priv;
1670         struct list_head        list;
1671 };
1672 
1673 struct offload_callbacks {
1674         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1675                                                 netdev_features_t features);
1676         int                     (*gso_send_check)(struct sk_buff *skb);
1677         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1678                                                struct sk_buff *skb);
1679         int                     (*gro_complete)(struct sk_buff *skb);
1680 };
1681 
1682 struct packet_offload {
1683         __be16                   type;  /* This is really htons(ether_type). */
1684         struct offload_callbacks callbacks;
1685         struct list_head         list;
1686 };
1687 
1688 #include <linux/notifier.h>
1689 
1690 /* netdevice notifier chain. Please remember to update the rtnetlink
1691  * notification exclusion list in rtnetlink_event() when adding new
1692  * types.
1693  */
1694 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1695 #define NETDEV_DOWN     0x0002
1696 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1697                                    detected a hardware crash and restarted
1698                                    - we can use this eg to kick tcp sessions
1699                                    once done */
1700 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1701 #define NETDEV_REGISTER 0x0005
1702 #define NETDEV_UNREGISTER       0x0006
1703 #define NETDEV_CHANGEMTU        0x0007
1704 #define NETDEV_CHANGEADDR       0x0008
1705 #define NETDEV_GOING_DOWN       0x0009
1706 #define NETDEV_CHANGENAME       0x000A
1707 #define NETDEV_FEAT_CHANGE      0x000B
1708 #define NETDEV_BONDING_FAILOVER 0x000C
1709 #define NETDEV_PRE_UP           0x000D
1710 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1711 #define NETDEV_POST_TYPE_CHANGE 0x000F
1712 #define NETDEV_POST_INIT        0x0010
1713 #define NETDEV_UNREGISTER_FINAL 0x0011
1714 #define NETDEV_RELEASE          0x0012
1715 #define NETDEV_NOTIFY_PEERS     0x0013
1716 #define NETDEV_JOIN             0x0014
1717 #define NETDEV_CHANGEUPPER      0x0015
1718 #define NETDEV_RESEND_IGMP      0x0016
1719 
1720 int register_netdevice_notifier(struct notifier_block *nb);
1721 int unregister_netdevice_notifier(struct notifier_block *nb);
1722 
1723 struct netdev_notifier_info {
1724         struct net_device *dev;
1725 };
1726 
1727 struct netdev_notifier_change_info {
1728         struct netdev_notifier_info info; /* must be first */
1729         unsigned int flags_changed;
1730 };
1731 
1732 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1733                                              struct net_device *dev)
1734 {
1735         info->dev = dev;
1736 }
1737 
1738 static inline struct net_device *
1739 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1740 {
1741         return info->dev;
1742 }
1743 
1744 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1745                                   struct netdev_notifier_info *info);
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1747 
1748 
1749 extern rwlock_t                         dev_base_lock;          /* Device list lock */
1750 
1751 #define for_each_netdev(net, d)         \
1752                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1753 #define for_each_netdev_reverse(net, d) \
1754                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1755 #define for_each_netdev_rcu(net, d)             \
1756                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1757 #define for_each_netdev_safe(net, d, n) \
1758                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1759 #define for_each_netdev_continue(net, d)                \
1760                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1761 #define for_each_netdev_continue_rcu(net, d)            \
1762         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1763 #define for_each_netdev_in_bond_rcu(bond, slave)        \
1764                 for_each_netdev_rcu(&init_net, slave)   \
1765                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
1766 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1767 
1768 static inline struct net_device *next_net_device(struct net_device *dev)
1769 {
1770         struct list_head *lh;
1771         struct net *net;
1772 
1773         net = dev_net(dev);
1774         lh = dev->dev_list.next;
1775         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1776 }
1777 
1778 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1779 {
1780         struct list_head *lh;
1781         struct net *net;
1782 
1783         net = dev_net(dev);
1784         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1785         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1786 }
1787 
1788 static inline struct net_device *first_net_device(struct net *net)
1789 {
1790         return list_empty(&net->dev_base_head) ? NULL :
1791                 net_device_entry(net->dev_base_head.next);
1792 }
1793 
1794 static inline struct net_device *first_net_device_rcu(struct net *net)
1795 {
1796         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1797 
1798         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1799 }
1800 
1801 int netdev_boot_setup_check(struct net_device *dev);
1802 unsigned long netdev_boot_base(const char *prefix, int unit);
1803 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1804                                        const char *hwaddr);
1805 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1806 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1807 void dev_add_pack(struct packet_type *pt);
1808 void dev_remove_pack(struct packet_type *pt);
1809 void __dev_remove_pack(struct packet_type *pt);
1810 void dev_add_offload(struct packet_offload *po);
1811 void dev_remove_offload(struct packet_offload *po);
1812 void __dev_remove_offload(struct packet_offload *po);
1813 
1814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1815                                         unsigned short mask);
1816 struct net_device *dev_get_by_name(struct net *net, const char *name);
1817 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1818 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1819 int dev_alloc_name(struct net_device *dev, const char *name);
1820 int dev_open(struct net_device *dev);
1821 int dev_close(struct net_device *dev);
1822 void dev_disable_lro(struct net_device *dev);
1823 int dev_loopback_xmit(struct sk_buff *newskb);
1824 int dev_queue_xmit(struct sk_buff *skb);
1825 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1826 int register_netdevice(struct net_device *dev);
1827 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1828 void unregister_netdevice_many(struct list_head *head);
1829 static inline void unregister_netdevice(struct net_device *dev)
1830 {
1831         unregister_netdevice_queue(dev, NULL);
1832 }
1833 
1834 int netdev_refcnt_read(const struct net_device *dev);
1835 void free_netdev(struct net_device *dev);
1836 void netdev_freemem(struct net_device *dev);
1837 void synchronize_net(void);
1838 int init_dummy_netdev(struct net_device *dev);
1839 
1840 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1841 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1842 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1843 int netdev_get_name(struct net *net, char *name, int ifindex);
1844 int dev_restart(struct net_device *dev);
1845 #ifdef CONFIG_NETPOLL_TRAP
1846 int netpoll_trap(void);
1847 #endif
1848 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1849 
1850 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1851 {
1852         return NAPI_GRO_CB(skb)->data_offset;
1853 }
1854 
1855 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1856 {
1857         return skb->len - NAPI_GRO_CB(skb)->data_offset;
1858 }
1859 
1860 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1861 {
1862         NAPI_GRO_CB(skb)->data_offset += len;
1863 }
1864 
1865 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1866                                         unsigned int offset)
1867 {
1868         return NAPI_GRO_CB(skb)->frag0 + offset;
1869 }
1870 
1871 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1872 {
1873         return NAPI_GRO_CB(skb)->frag0_len < hlen;
1874 }
1875 
1876 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1877                                         unsigned int offset)
1878 {
1879         if (!pskb_may_pull(skb, hlen))
1880                 return NULL;
1881 
1882         NAPI_GRO_CB(skb)->frag0 = NULL;
1883         NAPI_GRO_CB(skb)->frag0_len = 0;
1884         return skb->data + offset;
1885 }
1886 
1887 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1888 {
1889         return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1890 }
1891 
1892 static inline void *skb_gro_network_header(struct sk_buff *skb)
1893 {
1894         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1895                skb_network_offset(skb);
1896 }
1897 
1898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1899                                   unsigned short type,
1900                                   const void *daddr, const void *saddr,
1901                                   unsigned int len)
1902 {
1903         if (!dev->header_ops || !dev->header_ops->create)
1904                 return 0;
1905 
1906         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1907 }
1908 
1909 static inline int dev_parse_header(const struct sk_buff *skb,
1910                                    unsigned char *haddr)
1911 {
1912         const struct net_device *dev = skb->dev;
1913 
1914         if (!dev->header_ops || !dev->header_ops->parse)
1915                 return 0;
1916         return dev->header_ops->parse(skb, haddr);
1917 }
1918 
1919 static inline int dev_rebuild_header(struct sk_buff *skb)
1920 {
1921         const struct net_device *dev = skb->dev;
1922 
1923         if (!dev->header_ops || !dev->header_ops->rebuild)
1924                 return 0;
1925         return dev->header_ops->rebuild(skb);
1926 }
1927 
1928 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1929 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1930 static inline int unregister_gifconf(unsigned int family)
1931 {
1932         return register_gifconf(family, NULL);
1933 }
1934 
1935 #ifdef CONFIG_NET_FLOW_LIMIT
1936 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
1937 struct sd_flow_limit {
1938         u64                     count;
1939         unsigned int            num_buckets;
1940         unsigned int            history_head;
1941         u16                     history[FLOW_LIMIT_HISTORY];
1942         u8                      buckets[];
1943 };
1944 
1945 extern int netdev_flow_limit_table_len;
1946 #endif /* CONFIG_NET_FLOW_LIMIT */
1947 
1948 /*
1949  * Incoming packets are placed on per-cpu queues
1950  */
1951 struct softnet_data {
1952         struct Qdisc            *output_queue;
1953         struct Qdisc            **output_queue_tailp;
1954         struct list_head        poll_list;
1955         struct sk_buff          *completion_queue;
1956         struct sk_buff_head     process_queue;
1957 
1958         /* stats */
1959         unsigned int            processed;
1960         unsigned int            time_squeeze;
1961         unsigned int            cpu_collision;
1962         unsigned int            received_rps;
1963 
1964 #ifdef CONFIG_RPS
1965         struct softnet_data     *rps_ipi_list;
1966 
1967         /* Elements below can be accessed between CPUs for RPS */
1968         struct call_single_data csd ____cacheline_aligned_in_smp;
1969         struct softnet_data     *rps_ipi_next;
1970         unsigned int            cpu;
1971         unsigned int            input_queue_head;
1972         unsigned int            input_queue_tail;
1973 #endif
1974         unsigned int            dropped;
1975         struct sk_buff_head     input_pkt_queue;
1976         struct napi_struct      backlog;
1977 
1978 #ifdef CONFIG_NET_FLOW_LIMIT
1979         struct sd_flow_limit __rcu *flow_limit;
1980 #endif
1981 };
1982 
1983 static inline void input_queue_head_incr(struct softnet_data *sd)
1984 {
1985 #ifdef CONFIG_RPS
1986         sd->input_queue_head++;
1987 #endif
1988 }
1989 
1990 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1991                                               unsigned int *qtail)
1992 {
1993 #ifdef CONFIG_RPS
1994         *qtail = ++sd->input_queue_tail;
1995 #endif
1996 }
1997 
1998 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1999 
2000 void __netif_schedule(struct Qdisc *q);
2001 
2002 static inline void netif_schedule_queue(struct netdev_queue *txq)
2003 {
2004         if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2005                 __netif_schedule(txq->qdisc);
2006 }
2007 
2008 static inline void netif_tx_schedule_all(struct net_device *dev)
2009 {
2010         unsigned int i;
2011 
2012         for (i = 0; i < dev->num_tx_queues; i++)
2013                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2014 }
2015 
2016 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2017 {
2018         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2019 }
2020 
2021 /**
2022  *      netif_start_queue - allow transmit
2023  *      @dev: network device
2024  *
2025  *      Allow upper layers to call the device hard_start_xmit routine.
2026  */
2027 static inline void netif_start_queue(struct net_device *dev)
2028 {
2029         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2030 }
2031 
2032 static inline void netif_tx_start_all_queues(struct net_device *dev)
2033 {
2034         unsigned int i;
2035 
2036         for (i = 0; i < dev->num_tx_queues; i++) {
2037                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2038                 netif_tx_start_queue(txq);
2039         }
2040 }
2041 
2042 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2043 {
2044 #ifdef CONFIG_NETPOLL_TRAP
2045         if (netpoll_trap()) {
2046                 netif_tx_start_queue(dev_queue);
2047                 return;
2048         }
2049 #endif
2050         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2051                 __netif_schedule(dev_queue->qdisc);
2052 }
2053 
2054 /**
2055  *      netif_wake_queue - restart transmit
2056  *      @dev: network device
2057  *
2058  *      Allow upper layers to call the device hard_start_xmit routine.
2059  *      Used for flow control when transmit resources are available.
2060  */
2061 static inline void netif_wake_queue(struct net_device *dev)
2062 {
2063         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2064 }
2065 
2066 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2067 {
2068         unsigned int i;
2069 
2070         for (i = 0; i < dev->num_tx_queues; i++) {
2071                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2072                 netif_tx_wake_queue(txq);
2073         }
2074 }
2075 
2076 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2077 {
2078         if (WARN_ON(!dev_queue)) {
2079                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2080                 return;
2081         }
2082         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2083 }
2084 
2085 /**
2086  *      netif_stop_queue - stop transmitted packets
2087  *      @dev: network device
2088  *
2089  *      Stop upper layers calling the device hard_start_xmit routine.
2090  *      Used for flow control when transmit resources are unavailable.
2091  */
2092 static inline void netif_stop_queue(struct net_device *dev)
2093 {
2094         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2095 }
2096 
2097 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2098 {
2099         unsigned int i;
2100 
2101         for (i = 0; i < dev->num_tx_queues; i++) {
2102                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2103                 netif_tx_stop_queue(txq);
2104         }
2105 }
2106 
2107 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2108 {
2109         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2110 }
2111 
2112 /**
2113  *      netif_queue_stopped - test if transmit queue is flowblocked
2114  *      @dev: network device
2115  *
2116  *      Test if transmit queue on device is currently unable to send.
2117  */
2118 static inline bool netif_queue_stopped(const struct net_device *dev)
2119 {
2120         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2121 }
2122 
2123 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2124 {
2125         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2126 }
2127 
2128 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2129 {
2130         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2131 }
2132 
2133 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2134                                         unsigned int bytes)
2135 {
2136 #ifdef CONFIG_BQL
2137         dql_queued(&dev_queue->dql, bytes);
2138 
2139         if (likely(dql_avail(&dev_queue->dql) >= 0))
2140                 return;
2141 
2142         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2143 
2144         /*
2145          * The XOFF flag must be set before checking the dql_avail below,
2146          * because in netdev_tx_completed_queue we update the dql_completed
2147          * before checking the XOFF flag.
2148          */
2149         smp_mb();
2150 
2151         /* check again in case another CPU has just made room avail */
2152         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2153                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2154 #endif
2155 }
2156 
2157 /**
2158  *      netdev_sent_queue - report the number of bytes queued to hardware
2159  *      @dev: network device
2160  *      @bytes: number of bytes queued to the hardware device queue
2161  *
2162  *      Report the number of bytes queued for sending/completion to the network
2163  *      device hardware queue. @bytes should be a good approximation and should
2164  *      exactly match netdev_completed_queue() @bytes
2165  */
2166 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2167 {
2168         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2169 }
2170 
2171 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2172                                              unsigned int pkts, unsigned int bytes)
2173 {
2174 #ifdef CONFIG_BQL
2175         if (unlikely(!bytes))
2176                 return;
2177 
2178         dql_completed(&dev_queue->dql, bytes);
2179 
2180         /*
2181          * Without the memory barrier there is a small possiblity that
2182          * netdev_tx_sent_queue will miss the update and cause the queue to
2183          * be stopped forever
2184          */
2185         smp_mb();
2186 
2187         if (dql_avail(&dev_queue->dql) < 0)
2188                 return;
2189 
2190         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2191                 netif_schedule_queue(dev_queue);
2192 #endif
2193 }
2194 
2195 /**
2196  *      netdev_completed_queue - report bytes and packets completed by device
2197  *      @dev: network device
2198  *      @pkts: actual number of packets sent over the medium
2199  *      @bytes: actual number of bytes sent over the medium
2200  *
2201  *      Report the number of bytes and packets transmitted by the network device
2202  *      hardware queue over the physical medium, @bytes must exactly match the
2203  *      @bytes amount passed to netdev_sent_queue()
2204  */
2205 static inline void netdev_completed_queue(struct net_device *dev,
2206                                           unsigned int pkts, unsigned int bytes)
2207 {
2208         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2209 }
2210 
2211 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2212 {
2213 #ifdef CONFIG_BQL
2214         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2215         dql_reset(&q->dql);
2216 #endif
2217 }
2218 
2219 /**
2220  *      netdev_reset_queue - reset the packets and bytes count of a network device
2221  *      @dev_queue: network device
2222  *
2223  *      Reset the bytes and packet count of a network device and clear the
2224  *      software flow control OFF bit for this network device
2225  */
2226 static inline void netdev_reset_queue(struct net_device *dev_queue)
2227 {
2228         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2229 }
2230 
2231 /**
2232  *      netif_running - test if up
2233  *      @dev: network device
2234  *
2235  *      Test if the device has been brought up.
2236  */
2237 static inline bool netif_running(const struct net_device *dev)
2238 {
2239         return test_bit(__LINK_STATE_START, &dev->state);
2240 }
2241 
2242 /*
2243  * Routines to manage the subqueues on a device.  We only need start
2244  * stop, and a check if it's stopped.  All other device management is
2245  * done at the overall netdevice level.
2246  * Also test the device if we're multiqueue.
2247  */
2248 
2249 /**
2250  *      netif_start_subqueue - allow sending packets on subqueue
2251  *      @dev: network device
2252  *      @queue_index: sub queue index
2253  *
2254  * Start individual transmit queue of a device with multiple transmit queues.
2255  */
2256 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2257 {
2258         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2259 
2260         netif_tx_start_queue(txq);
2261 }
2262 
2263 /**
2264  *      netif_stop_subqueue - stop sending packets on subqueue
2265  *      @dev: network device
2266  *      @queue_index: sub queue index
2267  *
2268  * Stop individual transmit queue of a device with multiple transmit queues.
2269  */
2270 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2271 {
2272         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2273 #ifdef CONFIG_NETPOLL_TRAP
2274         if (netpoll_trap())
2275                 return;
2276 #endif
2277         netif_tx_stop_queue(txq);
2278 }
2279 
2280 /**
2281  *      netif_subqueue_stopped - test status of subqueue
2282  *      @dev: network device
2283  *      @queue_index: sub queue index
2284  *
2285  * Check individual transmit queue of a device with multiple transmit queues.
2286  */
2287 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2288                                             u16 queue_index)
2289 {
2290         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2291 
2292         return netif_tx_queue_stopped(txq);
2293 }
2294 
2295 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2296                                           struct sk_buff *skb)
2297 {
2298         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2299 }
2300 
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 #ifdef CONFIG_NETPOLL_TRAP
2312         if (netpoll_trap())
2313                 return;
2314 #endif
2315         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2316                 __netif_schedule(txq->qdisc);
2317 }
2318 
2319 #ifdef CONFIG_XPS
2320 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2321                         u16 index);
2322 #else
2323 static inline int netif_set_xps_queue(struct net_device *dev,
2324                                       const struct cpumask *mask,
2325                                       u16 index)
2326 {
2327         return 0;
2328 }
2329 #endif
2330 
2331 /*
2332  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2333  * as a distribution range limit for the returned value.
2334  */
2335 static inline u16 skb_tx_hash(const struct net_device *dev,
2336                               const struct sk_buff *skb)
2337 {
2338         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2339 }
2340 
2341 /**
2342  *      netif_is_multiqueue - test if device has multiple transmit queues
2343  *      @dev: network device
2344  *
2345  * Check if device has multiple transmit queues
2346  */
2347 static inline bool netif_is_multiqueue(const struct net_device *dev)
2348 {
2349         return dev->num_tx_queues > 1;
2350 }
2351 
2352 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2353 
2354 #ifdef CONFIG_RPS
2355 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2356 #else
2357 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2358                                                 unsigned int rxq)
2359 {
2360         return 0;
2361 }
2362 #endif
2363 
2364 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2365                                              const struct net_device *from_dev)
2366 {
2367         int err;
2368 
2369         err = netif_set_real_num_tx_queues(to_dev,
2370                                            from_dev->real_num_tx_queues);
2371         if (err)
2372                 return err;
2373 #ifdef CONFIG_RPS
2374         return netif_set_real_num_rx_queues(to_dev,
2375                                             from_dev->real_num_rx_queues);
2376 #else
2377         return 0;
2378 #endif
2379 }
2380 
2381 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2382 int netif_get_num_default_rss_queues(void);
2383 
2384 /* Use this variant when it is known for sure that it
2385  * is executing from hardware interrupt context or with hardware interrupts
2386  * disabled.
2387  */
2388 void dev_kfree_skb_irq(struct sk_buff *skb);
2389 
2390 /* Use this variant in places where it could be invoked
2391  * from either hardware interrupt or other context, with hardware interrupts
2392  * either disabled or enabled.
2393  */
2394 void dev_kfree_skb_any(struct sk_buff *skb);
2395 
2396 int netif_rx(struct sk_buff *skb);
2397 int netif_rx_ni(struct sk_buff *skb);
2398 int netif_receive_skb(struct sk_buff *skb);
2399 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2400 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2401 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2402 gro_result_t napi_gro_frags(struct napi_struct *napi);
2403 
2404 static inline void napi_free_frags(struct napi_struct *napi)
2405 {
2406         kfree_skb(napi->skb);
2407         napi->skb = NULL;
2408 }
2409 
2410 int netdev_rx_handler_register(struct net_device *dev,
2411                                rx_handler_func_t *rx_handler,
2412                                void *rx_handler_data);
2413 void netdev_rx_handler_unregister(struct net_device *dev);
2414 
2415 bool dev_valid_name(const char *name);
2416 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2417 int dev_ethtool(struct net *net, struct ifreq *);
2418 unsigned int dev_get_flags(const struct net_device *);
2419 int __dev_change_flags(struct net_device *, unsigned int flags);
2420 int dev_change_flags(struct net_device *, unsigned int);
2421 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2422                         unsigned int gchanges);
2423 int dev_change_name(struct net_device *, const char *);
2424 int dev_set_alias(struct net_device *, const char *, size_t);
2425 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2426 int dev_set_mtu(struct net_device *, int);
2427 void dev_set_group(struct net_device *, int);
2428 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2429 int dev_change_carrier(struct net_device *, bool new_carrier);
2430 int dev_get_phys_port_id(struct net_device *dev,
2431                          struct netdev_phys_port_id *ppid);
2432 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2433                         struct netdev_queue *txq);
2434 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2435 
2436 extern int              netdev_budget;
2437 
2438 /* Called by rtnetlink.c:rtnl_unlock() */
2439 void netdev_run_todo(void);
2440 
2441 /**
2442  *      dev_put - release reference to device
2443  *      @dev: network device
2444  *
2445  * Release reference to device to allow it to be freed.
2446  */
2447 static inline void dev_put(struct net_device *dev)
2448 {
2449         this_cpu_dec(*dev->pcpu_refcnt);
2450 }
2451 
2452 /**
2453  *      dev_hold - get reference to device
2454  *      @dev: network device
2455  *
2456  * Hold reference to device to keep it from being freed.
2457  */
2458 static inline void dev_hold(struct net_device *dev)
2459 {
2460         this_cpu_inc(*dev->pcpu_refcnt);
2461 }
2462 
2463 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2464  * and _off may be called from IRQ context, but it is caller
2465  * who is responsible for serialization of these calls.
2466  *
2467  * The name carrier is inappropriate, these functions should really be
2468  * called netif_lowerlayer_*() because they represent the state of any
2469  * kind of lower layer not just hardware media.
2470  */
2471 
2472 void linkwatch_init_dev(struct net_device *dev);
2473 void linkwatch_fire_event(struct net_device *dev);
2474 void linkwatch_forget_dev(struct net_device *dev);
2475 
2476 /**
2477  *      netif_carrier_ok - test if carrier present
2478  *      @dev: network device
2479  *
2480  * Check if carrier is present on device
2481  */
2482 static inline bool netif_carrier_ok(const struct net_device *dev)
2483 {
2484         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2485 }
2486 
2487 unsigned long dev_trans_start(struct net_device *dev);
2488 
2489 void __netdev_watchdog_up(struct net_device *dev);
2490 
2491 void netif_carrier_on(struct net_device *dev);
2492 
2493 void netif_carrier_off(struct net_device *dev);
2494 
2495 /**
2496  *      netif_dormant_on - mark device as dormant.
2497  *      @dev: network device
2498  *
2499  * Mark device as dormant (as per RFC2863).
2500  *
2501  * The dormant state indicates that the relevant interface is not
2502  * actually in a condition to pass packets (i.e., it is not 'up') but is
2503  * in a "pending" state, waiting for some external event.  For "on-
2504  * demand" interfaces, this new state identifies the situation where the
2505  * interface is waiting for events to place it in the up state.
2506  *
2507  */
2508 static inline void netif_dormant_on(struct net_device *dev)
2509 {
2510         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2511                 linkwatch_fire_event(dev);
2512 }
2513 
2514 /**
2515  *      netif_dormant_off - set device as not dormant.
2516  *      @dev: network device
2517  *
2518  * Device is not in dormant state.
2519  */
2520 static inline void netif_dormant_off(struct net_device *dev)
2521 {
2522         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2523                 linkwatch_fire_event(dev);
2524 }
2525 
2526 /**
2527  *      netif_dormant - test if carrier present
2528  *      @dev: network device
2529  *
2530  * Check if carrier is present on device
2531  */
2532 static inline bool netif_dormant(const struct net_device *dev)
2533 {
2534         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2535 }
2536 
2537 
2538 /**
2539  *      netif_oper_up - test if device is operational
2540  *      @dev: network device
2541  *
2542  * Check if carrier is operational
2543  */
2544 static inline bool netif_oper_up(const struct net_device *dev)
2545 {
2546         return (dev->operstate == IF_OPER_UP ||
2547                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2548 }
2549 
2550 /**
2551  *      netif_device_present - is device available or removed
2552  *      @dev: network device
2553  *
2554  * Check if device has not been removed from system.
2555  */
2556 static inline bool netif_device_present(struct net_device *dev)
2557 {
2558         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2559 }
2560 
2561 void netif_device_detach(struct net_device *dev);
2562 
2563 void netif_device_attach(struct net_device *dev);
2564 
2565 /*
2566  * Network interface message level settings
2567  */
2568 
2569 enum {
2570         NETIF_MSG_DRV           = 0x0001,
2571         NETIF_MSG_PROBE         = 0x0002,
2572         NETIF_MSG_LINK          = 0x0004,
2573         NETIF_MSG_TIMER         = 0x0008,
2574         NETIF_MSG_IFDOWN        = 0x0010,
2575         NETIF_MSG_IFUP          = 0x0020,
2576         NETIF_MSG_RX_ERR        = 0x0040,
2577         NETIF_MSG_TX_ERR        = 0x0080,
2578         NETIF_MSG_TX_QUEUED     = 0x0100,
2579         NETIF_MSG_INTR          = 0x0200,
2580         NETIF_MSG_TX_DONE       = 0x0400,
2581         NETIF_MSG_RX_STATUS     = 0x0800,
2582         NETIF_MSG_PKTDATA       = 0x1000,
2583         NETIF_MSG_HW            = 0x2000,
2584         NETIF_MSG_WOL           = 0x4000,
2585 };
2586 
2587 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2588 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2589 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2590 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2591 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2592 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2593 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2594 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2595 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2596 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2597 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2598 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2599 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2600 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2601 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2602 
2603 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2604 {
2605         /* use default */
2606         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2607                 return default_msg_enable_bits;
2608         if (debug_value == 0)   /* no output */
2609                 return 0;
2610         /* set low N bits */
2611         return (1 << debug_value) - 1;
2612 }
2613 
2614 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2615 {
2616         spin_lock(&txq->_xmit_lock);
2617         txq->xmit_lock_owner = cpu;
2618 }
2619 
2620 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2621 {
2622         spin_lock_bh(&txq->_xmit_lock);
2623         txq->xmit_lock_owner = smp_processor_id();
2624 }
2625 
2626 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2627 {
2628         bool ok = spin_trylock(&txq->_xmit_lock);
2629         if (likely(ok))
2630                 txq->xmit_lock_owner = smp_processor_id();
2631         return ok;
2632 }
2633 
2634 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2635 {
2636         txq->xmit_lock_owner = -1;
2637         spin_unlock(&txq->_xmit_lock);
2638 }
2639 
2640 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2641 {
2642         txq->xmit_lock_owner = -1;
2643         spin_unlock_bh(&txq->_xmit_lock);
2644 }
2645 
2646 static inline void txq_trans_update(struct netdev_queue *txq)
2647 {
2648         if (txq->xmit_lock_owner != -1)
2649                 txq->trans_start = jiffies;
2650 }
2651 
2652 /**
2653  *      netif_tx_lock - grab network device transmit lock
2654  *      @dev: network device
2655  *
2656  * Get network device transmit lock
2657  */
2658 static inline void netif_tx_lock(struct net_device *dev)
2659 {
2660         unsigned int i;
2661         int cpu;
2662 
2663         spin_lock(&dev->tx_global_lock);
2664         cpu = smp_processor_id();
2665         for (i = 0; i < dev->num_tx_queues; i++) {
2666                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2667 
2668                 /* We are the only thread of execution doing a
2669                  * freeze, but we have to grab the _xmit_lock in
2670                  * order to synchronize with threads which are in
2671                  * the ->hard_start_xmit() handler and already
2672                  * checked the frozen bit.
2673                  */
2674                 __netif_tx_lock(txq, cpu);
2675                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2676                 __netif_tx_unlock(txq);
2677         }
2678 }
2679 
2680 static inline void netif_tx_lock_bh(struct net_device *dev)
2681 {
2682         local_bh_disable();
2683         netif_tx_lock(dev);
2684 }
2685 
2686 static inline void netif_tx_unlock(struct net_device *dev)
2687 {
2688         unsigned int i;
2689 
2690         for (i = 0; i < dev->num_tx_queues; i++) {
2691                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2692 
2693                 /* No need to grab the _xmit_lock here.  If the
2694                  * queue is not stopped for another reason, we
2695                  * force a schedule.
2696                  */
2697                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2698                 netif_schedule_queue(txq);
2699         }
2700         spin_unlock(&dev->tx_global_lock);
2701 }
2702 
2703 static inline void netif_tx_unlock_bh(struct net_device *dev)
2704 {
2705         netif_tx_unlock(dev);
2706         local_bh_enable();
2707 }
2708 
2709 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
2710         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2711                 __netif_tx_lock(txq, cpu);              \
2712         }                                               \
2713 }
2714 
2715 #define HARD_TX_UNLOCK(dev, txq) {                      \
2716         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2717                 __netif_tx_unlock(txq);                 \
2718         }                                               \
2719 }
2720 
2721 static inline void netif_tx_disable(struct net_device *dev)
2722 {
2723         unsigned int i;
2724         int cpu;
2725 
2726         local_bh_disable();
2727         cpu = smp_processor_id();
2728         for (i = 0; i < dev->num_tx_queues; i++) {
2729                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2730 
2731                 __netif_tx_lock(txq, cpu);
2732                 netif_tx_stop_queue(txq);
2733                 __netif_tx_unlock(txq);
2734         }
2735         local_bh_enable();
2736 }
2737 
2738 static inline void netif_addr_lock(struct net_device *dev)
2739 {
2740         spin_lock(&dev->addr_list_lock);
2741 }
2742 
2743 static inline void netif_addr_lock_nested(struct net_device *dev)
2744 {
2745         spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2746 }
2747 
2748 static inline void netif_addr_lock_bh(struct net_device *dev)
2749 {
2750         spin_lock_bh(&dev->addr_list_lock);
2751 }
2752 
2753 static inline void netif_addr_unlock(struct net_device *dev)
2754 {
2755         spin_unlock(&dev->addr_list_lock);
2756 }
2757 
2758 static inline void netif_addr_unlock_bh(struct net_device *dev)
2759 {
2760         spin_unlock_bh(&dev->addr_list_lock);
2761 }
2762 
2763 /*
2764  * dev_addrs walker. Should be used only for read access. Call with
2765  * rcu_read_lock held.
2766  */
2767 #define for_each_dev_addr(dev, ha) \
2768                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2769 
2770 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2771 
2772 void ether_setup(struct net_device *dev);
2773 
2774 /* Support for loadable net-drivers */
2775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2776                                     void (*setup)(struct net_device *),
2777                                     unsigned int txqs, unsigned int rxqs);
2778 #define alloc_netdev(sizeof_priv, name, setup) \
2779         alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2780 
2781 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2782         alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2783 
2784 int register_netdev(struct net_device *dev);
2785 void unregister_netdev(struct net_device *dev);
2786 
2787 /* General hardware address lists handling functions */
2788 int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2789                            struct netdev_hw_addr_list *from_list,
2790                            int addr_len, unsigned char addr_type);
2791 void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2792                             struct netdev_hw_addr_list *from_list,
2793                             int addr_len, unsigned char addr_type);
2794 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2795                    struct netdev_hw_addr_list *from_list, int addr_len);
2796 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2797                       struct netdev_hw_addr_list *from_list, int addr_len);
2798 void __hw_addr_flush(struct netdev_hw_addr_list *list);
2799 void __hw_addr_init(struct netdev_hw_addr_list *list);
2800 
2801 /* Functions used for device addresses handling */
2802 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2803                  unsigned char addr_type);
2804 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2805                  unsigned char addr_type);
2806 int dev_addr_add_multiple(struct net_device *to_dev,
2807                           struct net_device *from_dev, unsigned char addr_type);
2808 int dev_addr_del_multiple(struct net_device *to_dev,
2809                           struct net_device *from_dev, unsigned char addr_type);
2810 void dev_addr_flush(struct net_device *dev);
2811 int dev_addr_init(struct net_device *dev);
2812 
2813 /* Functions used for unicast addresses handling */
2814 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2815 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2816 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2817 int dev_uc_sync(struct net_device *to, struct net_device *from);
2818 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2819 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2820 void dev_uc_flush(struct net_device *dev);
2821 void dev_uc_init(struct net_device *dev);
2822 
2823 /* Functions used for multicast addresses handling */
2824 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2825 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2826 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2827 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2828 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2829 int dev_mc_sync(struct net_device *to, struct net_device *from);
2830 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2831 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2832 void dev_mc_flush(struct net_device *dev);
2833 void dev_mc_init(struct net_device *dev);
2834 
2835 /* Functions used for secondary unicast and multicast support */
2836 void dev_set_rx_mode(struct net_device *dev);
2837 void __dev_set_rx_mode(struct net_device *dev);
2838 int dev_set_promiscuity(struct net_device *dev, int inc);
2839 int dev_set_allmulti(struct net_device *dev, int inc);
2840 void netdev_state_change(struct net_device *dev);
2841 void netdev_notify_peers(struct net_device *dev);
2842 void netdev_features_change(struct net_device *dev);
2843 /* Load a device via the kmod */
2844 void dev_load(struct net *net, const char *name);
2845 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2846                                         struct rtnl_link_stats64 *storage);
2847 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2848                              const struct net_device_stats *netdev_stats);
2849 
2850 extern int              netdev_max_backlog;
2851 extern int              netdev_tstamp_prequeue;
2852 extern int              weight_p;
2853 extern int              bpf_jit_enable;
2854 
2855 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2856 bool netdev_has_any_upper_dev(struct net_device *dev);
2857 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2858                                                      struct list_head **iter);
2859 
2860 /* iterate through upper list, must be called under RCU read lock */
2861 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2862         for (iter = &(dev)->all_adj_list.upper, \
2863              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2864              updev; \
2865              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2866 
2867 void *netdev_lower_get_next_private(struct net_device *dev,
2868                                     struct list_head **iter);
2869 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2870                                         struct list_head **iter);
2871 
2872 #define netdev_for_each_lower_private(dev, priv, iter) \
2873         for (iter = (dev)->adj_list.lower.next, \
2874              priv = netdev_lower_get_next_private(dev, &(iter)); \
2875              priv; \
2876              priv = netdev_lower_get_next_private(dev, &(iter)))
2877 
2878 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2879         for (iter = &(dev)->adj_list.lower, \
2880              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2881              priv; \
2882              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2883 
2884 void *netdev_adjacent_get_private(struct list_head *adj_list);
2885 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2887 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2888 int netdev_master_upper_dev_link(struct net_device *dev,
2889                                  struct net_device *upper_dev);
2890 int netdev_master_upper_dev_link_private(struct net_device *dev,
2891                                          struct net_device *upper_dev,
2892                                          void *private);
2893 void netdev_upper_dev_unlink(struct net_device *dev,
2894                              struct net_device *upper_dev);
2895 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
2896                                        struct net_device *lower_dev);
2897 void *netdev_lower_dev_get_private(struct net_device *dev,
2898                                    struct net_device *lower_dev);
2899 int skb_checksum_help(struct sk_buff *skb);
2900 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2901                                   netdev_features_t features, bool tx_path);
2902 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2903                                     netdev_features_t features);
2904 
2905 static inline
2906 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2907 {
2908         return __skb_gso_segment(skb, features, true);
2909 }
2910 __be16 skb_network_protocol(struct sk_buff *skb);
2911 
2912 static inline bool can_checksum_protocol(netdev_features_t features,
2913                                          __be16 protocol)
2914 {
2915         return ((features & NETIF_F_GEN_CSUM) ||
2916                 ((features & NETIF_F_V4_CSUM) &&
2917                  protocol == htons(ETH_P_IP)) ||
2918                 ((features & NETIF_F_V6_CSUM) &&
2919                  protocol == htons(ETH_P_IPV6)) ||
2920                 ((features & NETIF_F_FCOE_CRC) &&
2921                  protocol == htons(ETH_P_FCOE)));
2922 }
2923 
2924 #ifdef CONFIG_BUG
2925 void netdev_rx_csum_fault(struct net_device *dev);
2926 #else
2927 static inline void netdev_rx_csum_fault(struct net_device *dev)
2928 {
2929 }
2930 #endif
2931 /* rx skb timestamps */
2932 void net_enable_timestamp(void);
2933 void net_disable_timestamp(void);
2934 
2935 #ifdef CONFIG_PROC_FS
2936 int __init dev_proc_init(void);
2937 #else
2938 #define dev_proc_init() 0
2939 #endif
2940 
2941 int netdev_class_create_file_ns(struct class_attribute *class_attr,
2942                                 const void *ns);
2943 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
2944                                  const void *ns);
2945 
2946 static inline int netdev_class_create_file(struct class_attribute *class_attr)
2947 {
2948         return netdev_class_create_file_ns(class_attr, NULL);
2949 }
2950 
2951 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
2952 {
2953         netdev_class_remove_file_ns(class_attr, NULL);
2954 }
2955 
2956 extern struct kobj_ns_type_operations net_ns_type_operations;
2957 
2958 const char *netdev_drivername(const struct net_device *dev);
2959 
2960 void linkwatch_run_queue(void);
2961 
2962 static inline netdev_features_t netdev_get_wanted_features(
2963         struct net_device *dev)
2964 {
2965         return (dev->features & ~dev->hw_features) | dev->wanted_features;
2966 }
2967 netdev_features_t netdev_increment_features(netdev_features_t all,
2968         netdev_features_t one, netdev_features_t mask);
2969 
2970 /* Allow TSO being used on stacked device :
2971  * Performing the GSO segmentation before last device
2972  * is a performance improvement.
2973  */
2974 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2975                                                         netdev_features_t mask)
2976 {
2977         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2978 }
2979 
2980 int __netdev_update_features(struct net_device *dev);
2981 void netdev_update_features(struct net_device *dev);
2982 void netdev_change_features(struct net_device *dev);
2983 
2984 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2985                                         struct net_device *dev);
2986 
2987 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2988                                          const struct net_device *dev);
2989 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
2990 {
2991         return netif_skb_dev_features(skb, skb->dev);
2992 }
2993 
2994 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2995 {
2996         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2997 
2998         /* check flags correspondence */
2999         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3000         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3001         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3002         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3003         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3004         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3005 
3006         return (features & feature) == feature;
3007 }
3008 
3009 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3010 {
3011         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3012                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3013 }
3014 
3015 static inline bool netif_needs_gso(struct sk_buff *skb,
3016                                    netdev_features_t features)
3017 {
3018         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3019                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3020                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3021 }
3022 
3023 static inline void netif_set_gso_max_size(struct net_device *dev,
3024                                           unsigned int size)
3025 {
3026         dev->gso_max_size = size;
3027 }
3028 
3029 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3030                                         int pulled_hlen, u16 mac_offset,
3031                                         int mac_len)
3032 {
3033         skb->protocol = protocol;
3034         skb->encapsulation = 1;
3035         skb_push(skb, pulled_hlen);
3036         skb_reset_transport_header(skb);
3037         skb->mac_header = mac_offset;
3038         skb->network_header = skb->mac_header + mac_len;
3039         skb->mac_len = mac_len;
3040 }
3041 
3042 static inline bool netif_is_macvlan(struct net_device *dev)
3043 {
3044         return dev->priv_flags & IFF_MACVLAN;
3045 }
3046 
3047 static inline bool netif_is_bond_master(struct net_device *dev)
3048 {
3049         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3050 }
3051 
3052 static inline bool netif_is_bond_slave(struct net_device *dev)
3053 {
3054         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3055 }
3056 
3057 static inline bool netif_supports_nofcs(struct net_device *dev)
3058 {
3059         return dev->priv_flags & IFF_SUPP_NOFCS;
3060 }
3061 
3062 extern struct pernet_operations __net_initdata loopback_net_ops;
3063 
3064 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3065 
3066 /* netdev_printk helpers, similar to dev_printk */
3067 
3068 static inline const char *netdev_name(const struct net_device *dev)
3069 {
3070         if (dev->reg_state != NETREG_REGISTERED)
3071                 return "(unregistered net_device)";
3072         return dev->name;
3073 }
3074 
3075 __printf(3, 4)
3076 int netdev_printk(const char *level, const struct net_device *dev,
3077                   const char *format, ...);
3078 __printf(2, 3)
3079 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3080 __printf(2, 3)
3081 int netdev_alert(const struct net_device *dev, const char *format, ...);
3082 __printf(2, 3)
3083 int netdev_crit(const struct net_device *dev, const char *format, ...);
3084 __printf(2, 3)
3085 int netdev_err(const struct net_device *dev, const char *format, ...);
3086 __printf(2, 3)
3087 int netdev_warn(const struct net_device *dev, const char *format, ...);
3088 __printf(2, 3)
3089 int netdev_notice(const struct net_device *dev, const char *format, ...);
3090 __printf(2, 3)
3091 int netdev_info(const struct net_device *dev, const char *format, ...);
3092 
3093 #define MODULE_ALIAS_NETDEV(device) \
3094         MODULE_ALIAS("netdev-" device)
3095 
3096 #if defined(CONFIG_DYNAMIC_DEBUG)
3097 #define netdev_dbg(__dev, format, args...)                      \
3098 do {                                                            \
3099         dynamic_netdev_dbg(__dev, format, ##args);              \
3100 } while (0)
3101 #elif defined(DEBUG)
3102 #define netdev_dbg(__dev, format, args...)                      \
3103         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3104 #else
3105 #define netdev_dbg(__dev, format, args...)                      \
3106 ({                                                              \
3107         if (0)                                                  \
3108                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3109         0;                                                      \
3110 })
3111 #endif
3112 
3113 #if defined(VERBOSE_DEBUG)
3114 #define netdev_vdbg     netdev_dbg
3115 #else
3116 
3117 #define netdev_vdbg(dev, format, args...)                       \
3118 ({                                                              \
3119         if (0)                                                  \
3120                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3121         0;                                                      \
3122 })
3123 #endif
3124 
3125 /*
3126  * netdev_WARN() acts like dev_printk(), but with the key difference
3127  * of using a WARN/WARN_ON to get the message out, including the
3128  * file/line information and a backtrace.
3129  */
3130 #define netdev_WARN(dev, format, args...)                       \
3131         WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3132 
3133 /* netif printk helpers, similar to netdev_printk */
3134 
3135 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3136 do {                                                            \
3137         if (netif_msg_##type(priv))                             \
3138                 netdev_printk(level, (dev), fmt, ##args);       \
3139 } while (0)
3140 
3141 #define netif_level(level, priv, type, dev, fmt, args...)       \
3142 do {                                                            \
3143         if (netif_msg_##type(priv))                             \
3144                 netdev_##level(dev, fmt, ##args);               \
3145 } while (0)
3146 
3147 #define netif_emerg(priv, type, dev, fmt, args...)              \
3148         netif_level(emerg, priv, type, dev, fmt, ##args)
3149 #define netif_alert(priv, type, dev, fmt, args...)              \
3150         netif_level(alert, priv, type, dev, fmt, ##args)
3151 #define netif_crit(priv, type, dev, fmt, args...)               \
3152         netif_level(crit, priv, type, dev, fmt, ##args)
3153 #define netif_err(priv, type, dev, fmt, args...)                \
3154         netif_level(err, priv, type, dev, fmt, ##args)
3155 #define netif_warn(priv, type, dev, fmt, args...)               \
3156         netif_level(warn, priv, type, dev, fmt, ##args)
3157 #define netif_notice(priv, type, dev, fmt, args...)             \
3158         netif_level(notice, priv, type, dev, fmt, ##args)
3159 #define netif_info(priv, type, dev, fmt, args...)               \
3160         netif_level(info, priv, type, dev, fmt, ##args)
3161 
3162 #if defined(CONFIG_DYNAMIC_DEBUG)
3163 #define netif_dbg(priv, type, netdev, format, args...)          \
3164 do {                                                            \
3165         if (netif_msg_##type(priv))                             \
3166                 dynamic_netdev_dbg(netdev, format, ##args);     \
3167 } while (0)
3168 #elif defined(DEBUG)
3169 #define netif_dbg(priv, type, dev, format, args...)             \
3170         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3171 #else
3172 #define netif_dbg(priv, type, dev, format, args...)                     \
3173 ({                                                                      \
3174         if (0)                                                          \
3175                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3176         0;                                                              \
3177 })
3178 #endif
3179 
3180 #if defined(VERBOSE_DEBUG)
3181 #define netif_vdbg      netif_dbg
3182 #else
3183 #define netif_vdbg(priv, type, dev, format, args...)            \
3184 ({                                                              \
3185         if (0)                                                  \
3186                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3187         0;                                                      \
3188 })
3189 #endif
3190 
3191 /*
3192  *      The list of packet types we will receive (as opposed to discard)
3193  *      and the routines to invoke.
3194  *
3195  *      Why 16. Because with 16 the only overlap we get on a hash of the
3196  *      low nibble of the protocol value is RARP/SNAP/X.25.
3197  *
3198  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3199  *             sure which should go first, but I bet it won't make much
3200  *             difference if we are running VLANs.  The good news is that
3201  *             this protocol won't be in the list unless compiled in, so
3202  *             the average user (w/out VLANs) will not be adversely affected.
3203  *             --BLG
3204  *
3205  *              0800    IP
3206  *              8100    802.1Q VLAN
3207  *              0001    802.3
3208  *              0002    AX.25
3209  *              0004    802.2
3210  *              8035    RARP
3211  *              0005    SNAP
3212  *              0805    X.25
3213  *              0806    ARP
3214  *              8137    IPX
3215  *              0009    Localtalk
3216  *              86DD    IPv6
3217  */
3218 #define PTYPE_HASH_SIZE (16)
3219 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3220 
3221 #endif  /* _LINUX_NETDEVICE_H */
3222 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp