~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/netdevice.h

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.11 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.84 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.154 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.201 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.201 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.77 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #ifdef CONFIG_DCB
 45 #include <net/dcbnl.h>
 46 #endif
 47 #include <net/netprio_cgroup.h>
 48 
 49 #include <linux/netdev_features.h>
 50 #include <linux/neighbour.h>
 51 #include <uapi/linux/netdevice.h>
 52 #include <uapi/linux/if_bonding.h>
 53 #include <uapi/linux/pkt_cls.h>
 54 #include <linux/hashtable.h>
 55 
 56 struct netpoll_info;
 57 struct device;
 58 struct phy_device;
 59 struct dsa_switch_tree;
 60 
 61 /* 802.11 specific */
 62 struct wireless_dev;
 63 /* 802.15.4 specific */
 64 struct wpan_dev;
 65 struct mpls_dev;
 66 /* UDP Tunnel offloads */
 67 struct udp_tunnel_info;
 68 struct bpf_prog;
 69 
 70 void netdev_set_default_ethtool_ops(struct net_device *dev,
 71                                     const struct ethtool_ops *ops);
 72 
 73 /* Backlog congestion levels */
 74 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 75 #define NET_RX_DROP             1       /* packet dropped */
 76 
 77 /*
 78  * Transmit return codes: transmit return codes originate from three different
 79  * namespaces:
 80  *
 81  * - qdisc return codes
 82  * - driver transmit return codes
 83  * - errno values
 84  *
 85  * Drivers are allowed to return any one of those in their hard_start_xmit()
 86  * function. Real network devices commonly used with qdiscs should only return
 87  * the driver transmit return codes though - when qdiscs are used, the actual
 88  * transmission happens asynchronously, so the value is not propagated to
 89  * higher layers. Virtual network devices transmit synchronously; in this case
 90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 91  * others are propagated to higher layers.
 92  */
 93 
 94 /* qdisc ->enqueue() return codes. */
 95 #define NET_XMIT_SUCCESS        0x00
 96 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 97 #define NET_XMIT_CN             0x02    /* congestion notification      */
 98 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 99 
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105 
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK          0xf0
108 
109 enum netdev_tx {
110         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
111         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
112         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122         /*
123          * Positive cases with an skb consumed by a driver:
124          * - successful transmission (rc == NETDEV_TX_OK)
125          * - error while transmitting (rc < 0)
126          * - error while queueing to a different device (rc & NET_XMIT_MASK)
127          */
128         if (likely(rc < NET_XMIT_MASK))
129                 return true;
130 
131         return false;
132 }
133 
134 /*
135  *      Compute the worst-case header length according to the protocols
136  *      used.
137  */
138 
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *      Old network device statistics. Fields are native words
160  *      (unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164         unsigned long   rx_packets;
165         unsigned long   tx_packets;
166         unsigned long   rx_bytes;
167         unsigned long   tx_bytes;
168         unsigned long   rx_errors;
169         unsigned long   tx_errors;
170         unsigned long   rx_dropped;
171         unsigned long   tx_dropped;
172         unsigned long   multicast;
173         unsigned long   collisions;
174         unsigned long   rx_length_errors;
175         unsigned long   rx_over_errors;
176         unsigned long   rx_crc_errors;
177         unsigned long   rx_frame_errors;
178         unsigned long   rx_fifo_errors;
179         unsigned long   rx_missed_errors;
180         unsigned long   tx_aborted_errors;
181         unsigned long   tx_carrier_errors;
182         unsigned long   tx_fifo_errors;
183         unsigned long   tx_heartbeat_errors;
184         unsigned long   tx_window_errors;
185         unsigned long   rx_compressed;
186         unsigned long   tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198 
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202 
203 struct netdev_hw_addr {
204         struct list_head        list;
205         unsigned char           addr[MAX_ADDR_LEN];
206         unsigned char           type;
207 #define NETDEV_HW_ADDR_T_LAN            1
208 #define NETDEV_HW_ADDR_T_SAN            2
209 #define NETDEV_HW_ADDR_T_SLAVE          3
210 #define NETDEV_HW_ADDR_T_UNICAST        4
211 #define NETDEV_HW_ADDR_T_MULTICAST      5
212         bool                    global_use;
213         int                     sync_cnt;
214         int                     refcount;
215         int                     synced;
216         struct rcu_head         rcu_head;
217 };
218 
219 struct netdev_hw_addr_list {
220         struct list_head        list;
221         int                     count;
222 };
223 
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227         list_for_each_entry(ha, &(l)->list, list)
228 
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233 
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238 
239 struct hh_cache {
240         unsigned int    hh_len;
241         seqlock_t       hh_lock;
242 
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271         void    (*cache_update)(struct hh_cache *hh,
272                                 const struct net_device *dev,
273                                 const unsigned char *haddr);
274         bool    (*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-CPU poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314 
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         int                     poll_owner;
321 #endif
322         struct net_device       *dev;
323         struct sk_buff          *gro_list;
324         struct sk_buff          *skb;
325         struct hrtimer          timer;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330 
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_MISSED,      /* reschedule a napi */
334         NAPI_STATE_DISABLE,     /* Disable pending */
335         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
336         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
337         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340 
341 enum {
342         NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
343         NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
344         NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
345         NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
346         NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
347         NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348         NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350 
351 enum gro_result {
352         GRO_MERGED,
353         GRO_MERGED_FREE,
354         GRO_HELD,
355         GRO_NORMAL,
356         GRO_DROP,
357         GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360 
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401 
402 enum rx_handler_result {
403         RX_HANDLER_CONSUMED,
404         RX_HANDLER_ANOTHER,
405         RX_HANDLER_EXACT,
406         RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410 
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413 
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416         return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418 
419 bool napi_schedule_prep(struct napi_struct *n);
420 
421 /**
422  *      napi_schedule - schedule NAPI poll
423  *      @n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430         if (napi_schedule_prep(n))
431                 __napi_schedule(n);
432 }
433 
434 /**
435  *      napi_schedule_irqoff - schedule NAPI poll
436  *      @n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442         if (napi_schedule_prep(n))
443                 __napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449         if (napi_schedule_prep(napi)) {
450                 __napi_schedule(napi);
451                 return true;
452         }
453         return false;
454 }
455 
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *      napi_complete - NAPI processing complete
459  *      @n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467         return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *      napi_hash_del - remove a NAPI from global table
472  *      @napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483 
484 /**
485  *      napi_disable - prevent NAPI from scheduling
486  *      @n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492 
493 /**
494  *      napi_enable - enable NAPI scheduling
495  *      @n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503         smp_mb__before_atomic();
504         clear_bit(NAPI_STATE_SCHED, &n->state);
505         clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507 
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         if (IS_ENABLED(CONFIG_SMP))
519                 while (test_bit(NAPI_STATE_SCHED, &n->state))
520                         msleep(1);
521         else
522                 barrier();
523 }
524 
525 enum netdev_queue_state_t {
526         __QUEUE_STATE_DRV_XOFF,
527         __QUEUE_STATE_STACK_XOFF,
528         __QUEUE_STATE_FROZEN,
529 };
530 
531 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
534 
535 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537                                         QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539                                         QUEUE_STATE_FROZEN)
540 
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550 
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555         struct net_device       *dev;
556         struct Qdisc __rcu      *qdisc;
557         struct Qdisc            *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559         struct kobject          kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562         int                     numa_node;
563 #endif
564         unsigned long           tx_maxrate;
565         /*
566          * Number of TX timeouts for this queue
567          * (/sys/class/net/DEV/Q/trans_timeout)
568          */
569         unsigned long           trans_timeout;
570 /*
571  * write-mostly part
572  */
573         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
574         int                     xmit_lock_owner;
575         /*
576          * Time (in jiffies) of last Tx
577          */
578         unsigned long           trans_start;
579 
580         unsigned long           state;
581 
582 #ifdef CONFIG_BQL
583         struct dql              dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586 
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590         return q->numa_node;
591 #else
592         return NUMA_NO_NODE;
593 #endif
594 }
595 
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599         q->numa_node = node;
600 #endif
601 }
602 
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609         unsigned int len;
610         struct rcu_head rcu;
611         u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614 
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621         u16 cpu;
622         u16 filter;
623         unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626 
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631         unsigned int mask;
632         struct rcu_head rcu;
633         struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637 
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649         u32     mask;
650 
651         u32     ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654 
655 #define RPS_NO_CPU 0xffff
656 
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659 
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661                                         u32 hash)
662 {
663         if (table && hash) {
664                 unsigned int index = hash & table->mask;
665                 u32 val = hash & ~rps_cpu_mask;
666 
667                 /* We only give a hint, preemption can change CPU under us */
668                 val |= raw_smp_processor_id();
669 
670                 if (table->ents[index] != val)
671                         table->ents[index] = val;
672         }
673 }
674 
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677                          u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680 
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684         struct rps_map __rcu            *rps_map;
685         struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687         struct kobject                  kobj;
688         struct net_device               *dev;
689 } ____cacheline_aligned_in_smp;
690 
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695         struct attribute attr;
696         ssize_t (*show)(struct netdev_rx_queue *queue,
697             struct rx_queue_attribute *attr, char *buf);
698         ssize_t (*store)(struct netdev_rx_queue *queue,
699             struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701 
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708         unsigned int len;
709         unsigned int alloc_len;
710         struct rcu_head rcu;
711         u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716 
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721         struct rcu_head rcu;
722         struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
725         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727 
728 #define TC_MAX_QUEUE    16
729 #define TC_BITMASK      15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732         u16 count;
733         u16 offset;
734 };
735 
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742         char    manufacturer[64];
743         char    serial_number[64];
744         char    hardware_version[64];
745         char    driver_version[64];
746         char    optionrom_version[64];
747         char    firmware_version[64];
748         char    model[256];
749         char    model_description[256];
750 };
751 #endif
752 
753 #define MAX_PHYS_ITEM_ID_LEN 32
754 
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760         unsigned char id_len;
761 };
762 
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764                                             struct netdev_phys_item_id *b)
765 {
766         return a->id_len == b->id_len &&
767                memcmp(a->id, b->id, a->id_len) == 0;
768 }
769 
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771                                        struct sk_buff *skb);
772 
773 /* These structures hold the attributes of qdisc and classifiers
774  * that are being passed to the netdevice through the setup_tc op.
775  */
776 enum {
777         TC_SETUP_MQPRIO,
778         TC_SETUP_CLSU32,
779         TC_SETUP_CLSFLOWER,
780         TC_SETUP_MATCHALL,
781         TC_SETUP_CLSBPF,
782 };
783 
784 struct tc_cls_u32_offload;
785 
786 struct tc_to_netdev {
787         unsigned int type;
788         union {
789                 struct tc_cls_u32_offload *cls_u32;
790                 struct tc_cls_flower_offload *cls_flower;
791                 struct tc_cls_matchall_offload *cls_mall;
792                 struct tc_cls_bpf_offload *cls_bpf;
793                 struct tc_mqprio_qopt *mqprio;
794         };
795         bool egress_dev;
796 };
797 
798 /* These structures hold the attributes of xdp state that are being passed
799  * to the netdevice through the xdp op.
800  */
801 enum xdp_netdev_command {
802         /* Set or clear a bpf program used in the earliest stages of packet
803          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804          * is responsible for calling bpf_prog_put on any old progs that are
805          * stored. In case of error, the callee need not release the new prog
806          * reference, but on success it takes ownership and must bpf_prog_put
807          * when it is no longer used.
808          */
809         XDP_SETUP_PROG,
810         XDP_SETUP_PROG_HW,
811         /* Check if a bpf program is set on the device.  The callee should
812          * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
813          * is equivalent to XDP_ATTACHED_DRV.
814          */
815         XDP_QUERY_PROG,
816 };
817 
818 struct netlink_ext_ack;
819 
820 struct netdev_xdp {
821         enum xdp_netdev_command command;
822         union {
823                 /* XDP_SETUP_PROG */
824                 struct {
825                         u32 flags;
826                         struct bpf_prog *prog;
827                         struct netlink_ext_ack *extack;
828                 };
829                 /* XDP_QUERY_PROG */
830                 struct {
831                         u8 prog_attached;
832                         u32 prog_id;
833                 };
834         };
835 };
836 
837 #ifdef CONFIG_XFRM_OFFLOAD
838 struct xfrmdev_ops {
839         int     (*xdo_dev_state_add) (struct xfrm_state *x);
840         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
841         void    (*xdo_dev_state_free) (struct xfrm_state *x);
842         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
843                                        struct xfrm_state *x);
844 };
845 #endif
846 
847 /*
848  * This structure defines the management hooks for network devices.
849  * The following hooks can be defined; unless noted otherwise, they are
850  * optional and can be filled with a null pointer.
851  *
852  * int (*ndo_init)(struct net_device *dev);
853  *     This function is called once when a network device is registered.
854  *     The network device can use this for any late stage initialization
855  *     or semantic validation. It can fail with an error code which will
856  *     be propagated back to register_netdev.
857  *
858  * void (*ndo_uninit)(struct net_device *dev);
859  *     This function is called when device is unregistered or when registration
860  *     fails. It is not called if init fails.
861  *
862  * int (*ndo_open)(struct net_device *dev);
863  *     This function is called when a network device transitions to the up
864  *     state.
865  *
866  * int (*ndo_stop)(struct net_device *dev);
867  *     This function is called when a network device transitions to the down
868  *     state.
869  *
870  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
871  *                               struct net_device *dev);
872  *      Called when a packet needs to be transmitted.
873  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
874  *      the queue before that can happen; it's for obsolete devices and weird
875  *      corner cases, but the stack really does a non-trivial amount
876  *      of useless work if you return NETDEV_TX_BUSY.
877  *      Required; cannot be NULL.
878  *
879  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
880  *                                         struct net_device *dev
881  *                                         netdev_features_t features);
882  *      Called by core transmit path to determine if device is capable of
883  *      performing offload operations on a given packet. This is to give
884  *      the device an opportunity to implement any restrictions that cannot
885  *      be otherwise expressed by feature flags. The check is called with
886  *      the set of features that the stack has calculated and it returns
887  *      those the driver believes to be appropriate.
888  *
889  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
890  *                         void *accel_priv, select_queue_fallback_t fallback);
891  *      Called to decide which queue to use when device supports multiple
892  *      transmit queues.
893  *
894  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
895  *      This function is called to allow device receiver to make
896  *      changes to configuration when multicast or promiscuous is enabled.
897  *
898  * void (*ndo_set_rx_mode)(struct net_device *dev);
899  *      This function is called device changes address list filtering.
900  *      If driver handles unicast address filtering, it should set
901  *      IFF_UNICAST_FLT in its priv_flags.
902  *
903  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
904  *      This function  is called when the Media Access Control address
905  *      needs to be changed. If this interface is not defined, the
906  *      MAC address can not be changed.
907  *
908  * int (*ndo_validate_addr)(struct net_device *dev);
909  *      Test if Media Access Control address is valid for the device.
910  *
911  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
912  *      Called when a user requests an ioctl which can't be handled by
913  *      the generic interface code. If not defined ioctls return
914  *      not supported error code.
915  *
916  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
917  *      Used to set network devices bus interface parameters. This interface
918  *      is retained for legacy reasons; new devices should use the bus
919  *      interface (PCI) for low level management.
920  *
921  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
922  *      Called when a user wants to change the Maximum Transfer Unit
923  *      of a device.
924  *
925  * void (*ndo_tx_timeout)(struct net_device *dev);
926  *      Callback used when the transmitter has not made any progress
927  *      for dev->watchdog ticks.
928  *
929  * void (*ndo_get_stats64)(struct net_device *dev,
930  *                         struct rtnl_link_stats64 *storage);
931  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
932  *      Called when a user wants to get the network device usage
933  *      statistics. Drivers must do one of the following:
934  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
935  *         rtnl_link_stats64 structure passed by the caller.
936  *      2. Define @ndo_get_stats to update a net_device_stats structure
937  *         (which should normally be dev->stats) and return a pointer to
938  *         it. The structure may be changed asynchronously only if each
939  *         field is written atomically.
940  *      3. Update dev->stats asynchronously and atomically, and define
941  *         neither operation.
942  *
943  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
944  *      Return true if this device supports offload stats of this attr_id.
945  *
946  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
947  *      void *attr_data)
948  *      Get statistics for offload operations by attr_id. Write it into the
949  *      attr_data pointer.
950  *
951  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
952  *      If device supports VLAN filtering this function is called when a
953  *      VLAN id is registered.
954  *
955  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
956  *      If device supports VLAN filtering this function is called when a
957  *      VLAN id is unregistered.
958  *
959  * void (*ndo_poll_controller)(struct net_device *dev);
960  *
961  *      SR-IOV management functions.
962  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
963  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
964  *                        u8 qos, __be16 proto);
965  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
966  *                        int max_tx_rate);
967  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
968  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
969  * int (*ndo_get_vf_config)(struct net_device *dev,
970  *                          int vf, struct ifla_vf_info *ivf);
971  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
972  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
973  *                        struct nlattr *port[]);
974  *
975  *      Enable or disable the VF ability to query its RSS Redirection Table and
976  *      Hash Key. This is needed since on some devices VF share this information
977  *      with PF and querying it may introduce a theoretical security risk.
978  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
979  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
980  * int (*ndo_setup_tc)(struct net_device *dev, u32 handle, u32 chain_index,
981  *                     __be16 protocol, struct tc_to_netdev *tc);
982  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
983  *      This is always called from the stack with the rtnl lock held and netif
984  *      tx queues stopped. This allows the netdevice to perform queue
985  *      management safely.
986  *
987  *      Fiber Channel over Ethernet (FCoE) offload functions.
988  * int (*ndo_fcoe_enable)(struct net_device *dev);
989  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
990  *      so the underlying device can perform whatever needed configuration or
991  *      initialization to support acceleration of FCoE traffic.
992  *
993  * int (*ndo_fcoe_disable)(struct net_device *dev);
994  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
995  *      so the underlying device can perform whatever needed clean-ups to
996  *      stop supporting acceleration of FCoE traffic.
997  *
998  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
999  *                           struct scatterlist *sgl, unsigned int sgc);
1000  *      Called when the FCoE Initiator wants to initialize an I/O that
1001  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1002  *      perform necessary setup and returns 1 to indicate the device is set up
1003  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1004  *
1005  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1006  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1007  *      indicated by the FC exchange id 'xid', so the underlying device can
1008  *      clean up and reuse resources for later DDP requests.
1009  *
1010  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1011  *                            struct scatterlist *sgl, unsigned int sgc);
1012  *      Called when the FCoE Target wants to initialize an I/O that
1013  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1014  *      perform necessary setup and returns 1 to indicate the device is set up
1015  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1016  *
1017  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1018  *                             struct netdev_fcoe_hbainfo *hbainfo);
1019  *      Called when the FCoE Protocol stack wants information on the underlying
1020  *      device. This information is utilized by the FCoE protocol stack to
1021  *      register attributes with Fiber Channel management service as per the
1022  *      FC-GS Fabric Device Management Information(FDMI) specification.
1023  *
1024  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1025  *      Called when the underlying device wants to override default World Wide
1026  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1027  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1028  *      protocol stack to use.
1029  *
1030  *      RFS acceleration.
1031  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1032  *                          u16 rxq_index, u32 flow_id);
1033  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1034  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1035  *      Return the filter ID on success, or a negative error code.
1036  *
1037  *      Slave management functions (for bridge, bonding, etc).
1038  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1039  *      Called to make another netdev an underling.
1040  *
1041  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1042  *      Called to release previously enslaved netdev.
1043  *
1044  *      Feature/offload setting functions.
1045  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1046  *              netdev_features_t features);
1047  *      Adjusts the requested feature flags according to device-specific
1048  *      constraints, and returns the resulting flags. Must not modify
1049  *      the device state.
1050  *
1051  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1052  *      Called to update device configuration to new features. Passed
1053  *      feature set might be less than what was returned by ndo_fix_features()).
1054  *      Must return >0 or -errno if it changed dev->features itself.
1055  *
1056  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1057  *                    struct net_device *dev,
1058  *                    const unsigned char *addr, u16 vid, u16 flags)
1059  *      Adds an FDB entry to dev for addr.
1060  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1061  *                    struct net_device *dev,
1062  *                    const unsigned char *addr, u16 vid)
1063  *      Deletes the FDB entry from dev coresponding to addr.
1064  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1065  *                     struct net_device *dev, struct net_device *filter_dev,
1066  *                     int *idx)
1067  *      Used to add FDB entries to dump requests. Implementers should add
1068  *      entries to skb and update idx with the number of entries.
1069  *
1070  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1071  *                           u16 flags)
1072  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1073  *                           struct net_device *dev, u32 filter_mask,
1074  *                           int nlflags)
1075  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1076  *                           u16 flags);
1077  *
1078  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1079  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1080  *      which do not represent real hardware may define this to allow their
1081  *      userspace components to manage their virtual carrier state. Devices
1082  *      that determine carrier state from physical hardware properties (eg
1083  *      network cables) or protocol-dependent mechanisms (eg
1084  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1085  *
1086  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1087  *                             struct netdev_phys_item_id *ppid);
1088  *      Called to get ID of physical port of this device. If driver does
1089  *      not implement this, it is assumed that the hw is not able to have
1090  *      multiple net devices on single physical port.
1091  *
1092  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1093  *                            struct udp_tunnel_info *ti);
1094  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1095  *      address family that a UDP tunnel is listnening to. It is called only
1096  *      when a new port starts listening. The operation is protected by the
1097  *      RTNL.
1098  *
1099  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1100  *                            struct udp_tunnel_info *ti);
1101  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1102  *      address family that the UDP tunnel is not listening to anymore. The
1103  *      operation is protected by the RTNL.
1104  *
1105  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1106  *                               struct net_device *dev)
1107  *      Called by upper layer devices to accelerate switching or other
1108  *      station functionality into hardware. 'pdev is the lowerdev
1109  *      to use for the offload and 'dev' is the net device that will
1110  *      back the offload. Returns a pointer to the private structure
1111  *      the upper layer will maintain.
1112  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1113  *      Called by upper layer device to delete the station created
1114  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1115  *      the station and priv is the structure returned by the add
1116  *      operation.
1117  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1118  *                           int queue_index, u32 maxrate);
1119  *      Called when a user wants to set a max-rate limitation of specific
1120  *      TX queue.
1121  * int (*ndo_get_iflink)(const struct net_device *dev);
1122  *      Called to get the iflink value of this device.
1123  * void (*ndo_change_proto_down)(struct net_device *dev,
1124  *                               bool proto_down);
1125  *      This function is used to pass protocol port error state information
1126  *      to the switch driver. The switch driver can react to the proto_down
1127  *      by doing a phys down on the associated switch port.
1128  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1129  *      This function is used to get egress tunnel information for given skb.
1130  *      This is useful for retrieving outer tunnel header parameters while
1131  *      sampling packet.
1132  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1133  *      This function is used to specify the headroom that the skb must
1134  *      consider when allocation skb during packet reception. Setting
1135  *      appropriate rx headroom value allows avoiding skb head copy on
1136  *      forward. Setting a negative value resets the rx headroom to the
1137  *      default value.
1138  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1139  *      This function is used to set or query state related to XDP on the
1140  *      netdevice. See definition of enum xdp_netdev_command for details.
1141  *
1142  */
1143 struct net_device_ops {
1144         int                     (*ndo_init)(struct net_device *dev);
1145         void                    (*ndo_uninit)(struct net_device *dev);
1146         int                     (*ndo_open)(struct net_device *dev);
1147         int                     (*ndo_stop)(struct net_device *dev);
1148         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1149                                                   struct net_device *dev);
1150         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1151                                                       struct net_device *dev,
1152                                                       netdev_features_t features);
1153         u16                     (*ndo_select_queue)(struct net_device *dev,
1154                                                     struct sk_buff *skb,
1155                                                     void *accel_priv,
1156                                                     select_queue_fallback_t fallback);
1157         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1158                                                        int flags);
1159         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1160         int                     (*ndo_set_mac_address)(struct net_device *dev,
1161                                                        void *addr);
1162         int                     (*ndo_validate_addr)(struct net_device *dev);
1163         int                     (*ndo_do_ioctl)(struct net_device *dev,
1164                                                 struct ifreq *ifr, int cmd);
1165         int                     (*ndo_set_config)(struct net_device *dev,
1166                                                   struct ifmap *map);
1167         int                     (*ndo_change_mtu)(struct net_device *dev,
1168                                                   int new_mtu);
1169         int                     (*ndo_neigh_setup)(struct net_device *dev,
1170                                                    struct neigh_parms *);
1171         void                    (*ndo_tx_timeout) (struct net_device *dev);
1172 
1173         void                    (*ndo_get_stats64)(struct net_device *dev,
1174                                                    struct rtnl_link_stats64 *storage);
1175         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1176         int                     (*ndo_get_offload_stats)(int attr_id,
1177                                                          const struct net_device *dev,
1178                                                          void *attr_data);
1179         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1180 
1181         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1182                                                        __be16 proto, u16 vid);
1183         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1184                                                         __be16 proto, u16 vid);
1185 #ifdef CONFIG_NET_POLL_CONTROLLER
1186         void                    (*ndo_poll_controller)(struct net_device *dev);
1187         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1188                                                      struct netpoll_info *info);
1189         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1190 #endif
1191         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1192                                                   int queue, u8 *mac);
1193         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1194                                                    int queue, u16 vlan,
1195                                                    u8 qos, __be16 proto);
1196         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1197                                                    int vf, int min_tx_rate,
1198                                                    int max_tx_rate);
1199         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1200                                                        int vf, bool setting);
1201         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1202                                                     int vf, bool setting);
1203         int                     (*ndo_get_vf_config)(struct net_device *dev,
1204                                                      int vf,
1205                                                      struct ifla_vf_info *ivf);
1206         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1207                                                          int vf, int link_state);
1208         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1209                                                     int vf,
1210                                                     struct ifla_vf_stats
1211                                                     *vf_stats);
1212         int                     (*ndo_set_vf_port)(struct net_device *dev,
1213                                                    int vf,
1214                                                    struct nlattr *port[]);
1215         int                     (*ndo_get_vf_port)(struct net_device *dev,
1216                                                    int vf, struct sk_buff *skb);
1217         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1218                                                    int vf, u64 guid,
1219                                                    int guid_type);
1220         int                     (*ndo_set_vf_rss_query_en)(
1221                                                    struct net_device *dev,
1222                                                    int vf, bool setting);
1223         int                     (*ndo_setup_tc)(struct net_device *dev,
1224                                                 u32 handle, u32 chain_index,
1225                                                 __be16 protocol,
1226                                                 struct tc_to_netdev *tc);
1227 #if IS_ENABLED(CONFIG_FCOE)
1228         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1229         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1230         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1231                                                       u16 xid,
1232                                                       struct scatterlist *sgl,
1233                                                       unsigned int sgc);
1234         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1235                                                      u16 xid);
1236         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1237                                                        u16 xid,
1238                                                        struct scatterlist *sgl,
1239                                                        unsigned int sgc);
1240         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1241                                                         struct netdev_fcoe_hbainfo *hbainfo);
1242 #endif
1243 
1244 #if IS_ENABLED(CONFIG_LIBFCOE)
1245 #define NETDEV_FCOE_WWNN 0
1246 #define NETDEV_FCOE_WWPN 1
1247         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1248                                                     u64 *wwn, int type);
1249 #endif
1250 
1251 #ifdef CONFIG_RFS_ACCEL
1252         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1253                                                      const struct sk_buff *skb,
1254                                                      u16 rxq_index,
1255                                                      u32 flow_id);
1256 #endif
1257         int                     (*ndo_add_slave)(struct net_device *dev,
1258                                                  struct net_device *slave_dev);
1259         int                     (*ndo_del_slave)(struct net_device *dev,
1260                                                  struct net_device *slave_dev);
1261         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1262                                                     netdev_features_t features);
1263         int                     (*ndo_set_features)(struct net_device *dev,
1264                                                     netdev_features_t features);
1265         int                     (*ndo_neigh_construct)(struct net_device *dev,
1266                                                        struct neighbour *n);
1267         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1268                                                      struct neighbour *n);
1269 
1270         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1271                                                struct nlattr *tb[],
1272                                                struct net_device *dev,
1273                                                const unsigned char *addr,
1274                                                u16 vid,
1275                                                u16 flags);
1276         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1277                                                struct nlattr *tb[],
1278                                                struct net_device *dev,
1279                                                const unsigned char *addr,
1280                                                u16 vid);
1281         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1282                                                 struct netlink_callback *cb,
1283                                                 struct net_device *dev,
1284                                                 struct net_device *filter_dev,
1285                                                 int *idx);
1286 
1287         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1288                                                       struct nlmsghdr *nlh,
1289                                                       u16 flags);
1290         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1291                                                       u32 pid, u32 seq,
1292                                                       struct net_device *dev,
1293                                                       u32 filter_mask,
1294                                                       int nlflags);
1295         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1296                                                       struct nlmsghdr *nlh,
1297                                                       u16 flags);
1298         int                     (*ndo_change_carrier)(struct net_device *dev,
1299                                                       bool new_carrier);
1300         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1301                                                         struct netdev_phys_item_id *ppid);
1302         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1303                                                           char *name, size_t len);
1304         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1305                                                       struct udp_tunnel_info *ti);
1306         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1307                                                       struct udp_tunnel_info *ti);
1308         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1309                                                         struct net_device *dev);
1310         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1311                                                         void *priv);
1312 
1313         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1314         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1315                                                       int queue_index,
1316                                                       u32 maxrate);
1317         int                     (*ndo_get_iflink)(const struct net_device *dev);
1318         int                     (*ndo_change_proto_down)(struct net_device *dev,
1319                                                          bool proto_down);
1320         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1321                                                        struct sk_buff *skb);
1322         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1323                                                        int needed_headroom);
1324         int                     (*ndo_xdp)(struct net_device *dev,
1325                                            struct netdev_xdp *xdp);
1326 };
1327 
1328 /**
1329  * enum net_device_priv_flags - &struct net_device priv_flags
1330  *
1331  * These are the &struct net_device, they are only set internally
1332  * by drivers and used in the kernel. These flags are invisible to
1333  * userspace; this means that the order of these flags can change
1334  * during any kernel release.
1335  *
1336  * You should have a pretty good reason to be extending these flags.
1337  *
1338  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339  * @IFF_EBRIDGE: Ethernet bridging device
1340  * @IFF_BONDING: bonding master or slave
1341  * @IFF_ISATAP: ISATAP interface (RFC4214)
1342  * @IFF_WAN_HDLC: WAN HDLC device
1343  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344  *      release skb->dst
1345  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347  * @IFF_MACVLAN_PORT: device used as macvlan port
1348  * @IFF_BRIDGE_PORT: device used as bridge port
1349  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351  * @IFF_UNICAST_FLT: Supports unicast filtering
1352  * @IFF_TEAM_PORT: device used as team port
1353  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355  *      change when it's running
1356  * @IFF_MACVLAN: Macvlan device
1357  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358  *      underlying stacked devices
1359  * @IFF_IPVLAN_MASTER: IPvlan master device
1360  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361  * @IFF_L3MDEV_MASTER: device is an L3 master device
1362  * @IFF_NO_QUEUE: device can run without qdisc attached
1363  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365  * @IFF_TEAM: device is a team device
1366  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368  *      entity (i.e. the master device for bridged veth)
1369  * @IFF_MACSEC: device is a MACsec device
1370  */
1371 enum netdev_priv_flags {
1372         IFF_802_1Q_VLAN                 = 1<<0,
1373         IFF_EBRIDGE                     = 1<<1,
1374         IFF_BONDING                     = 1<<2,
1375         IFF_ISATAP                      = 1<<3,
1376         IFF_WAN_HDLC                    = 1<<4,
1377         IFF_XMIT_DST_RELEASE            = 1<<5,
1378         IFF_DONT_BRIDGE                 = 1<<6,
1379         IFF_DISABLE_NETPOLL             = 1<<7,
1380         IFF_MACVLAN_PORT                = 1<<8,
1381         IFF_BRIDGE_PORT                 = 1<<9,
1382         IFF_OVS_DATAPATH                = 1<<10,
1383         IFF_TX_SKB_SHARING              = 1<<11,
1384         IFF_UNICAST_FLT                 = 1<<12,
1385         IFF_TEAM_PORT                   = 1<<13,
1386         IFF_SUPP_NOFCS                  = 1<<14,
1387         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1388         IFF_MACVLAN                     = 1<<16,
1389         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1390         IFF_IPVLAN_MASTER               = 1<<18,
1391         IFF_IPVLAN_SLAVE                = 1<<19,
1392         IFF_L3MDEV_MASTER               = 1<<20,
1393         IFF_NO_QUEUE                    = 1<<21,
1394         IFF_OPENVSWITCH                 = 1<<22,
1395         IFF_L3MDEV_SLAVE                = 1<<23,
1396         IFF_TEAM                        = 1<<24,
1397         IFF_RXFH_CONFIGURED             = 1<<25,
1398         IFF_PHONY_HEADROOM              = 1<<26,
1399         IFF_MACSEC                      = 1<<27,
1400 };
1401 
1402 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE                     IFF_EBRIDGE
1404 #define IFF_BONDING                     IFF_BONDING
1405 #define IFF_ISATAP                      IFF_ISATAP
1406 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN                     IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM                        IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC                      IFF_MACSEC
1429 
1430 /**
1431  *      struct net_device - The DEVICE structure.
1432  *
1433  *      Actually, this whole structure is a big mistake.  It mixes I/O
1434  *      data with strictly "high-level" data, and it has to know about
1435  *      almost every data structure used in the INET module.
1436  *
1437  *      @name:  This is the first field of the "visible" part of this structure
1438  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1439  *              of the interface.
1440  *
1441  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1442  *      @ifalias:       SNMP alias
1443  *      @mem_end:       Shared memory end
1444  *      @mem_start:     Shared memory start
1445  *      @base_addr:     Device I/O address
1446  *      @irq:           Device IRQ number
1447  *
1448  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1449  *
1450  *      @state:         Generic network queuing layer state, see netdev_state_t
1451  *      @dev_list:      The global list of network devices
1452  *      @napi_list:     List entry used for polling NAPI devices
1453  *      @unreg_list:    List entry  when we are unregistering the
1454  *                      device; see the function unregister_netdev
1455  *      @close_list:    List entry used when we are closing the device
1456  *      @ptype_all:     Device-specific packet handlers for all protocols
1457  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1458  *
1459  *      @adj_list:      Directly linked devices, like slaves for bonding
1460  *      @features:      Currently active device features
1461  *      @hw_features:   User-changeable features
1462  *
1463  *      @wanted_features:       User-requested features
1464  *      @vlan_features:         Mask of features inheritable by VLAN devices
1465  *
1466  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1467  *                              This field indicates what encapsulation
1468  *                              offloads the hardware is capable of doing,
1469  *                              and drivers will need to set them appropriately.
1470  *
1471  *      @mpls_features: Mask of features inheritable by MPLS
1472  *
1473  *      @ifindex:       interface index
1474  *      @group:         The group the device belongs to
1475  *
1476  *      @stats:         Statistics struct, which was left as a legacy, use
1477  *                      rtnl_link_stats64 instead
1478  *
1479  *      @rx_dropped:    Dropped packets by core network,
1480  *                      do not use this in drivers
1481  *      @tx_dropped:    Dropped packets by core network,
1482  *                      do not use this in drivers
1483  *      @rx_nohandler:  nohandler dropped packets by core network on
1484  *                      inactive devices, do not use this in drivers
1485  *
1486  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1487  *                              instead of ioctl,
1488  *                              see <net/iw_handler.h> for details.
1489  *      @wireless_data: Instance data managed by the core of wireless extensions
1490  *
1491  *      @netdev_ops:    Includes several pointers to callbacks,
1492  *                      if one wants to override the ndo_*() functions
1493  *      @ethtool_ops:   Management operations
1494  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1495  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1496  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1497  *                      of Layer 2 headers.
1498  *
1499  *      @flags:         Interface flags (a la BSD)
1500  *      @priv_flags:    Like 'flags' but invisible to userspace,
1501  *                      see if.h for the definitions
1502  *      @gflags:        Global flags ( kept as legacy )
1503  *      @padded:        How much padding added by alloc_netdev()
1504  *      @operstate:     RFC2863 operstate
1505  *      @link_mode:     Mapping policy to operstate
1506  *      @if_port:       Selectable AUI, TP, ...
1507  *      @dma:           DMA channel
1508  *      @mtu:           Interface MTU value
1509  *      @min_mtu:       Interface Minimum MTU value
1510  *      @max_mtu:       Interface Maximum MTU value
1511  *      @type:          Interface hardware type
1512  *      @hard_header_len: Maximum hardware header length.
1513  *      @min_header_len:  Minimum hardware header length
1514  *
1515  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1516  *                        cases can this be guaranteed
1517  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1518  *                        cases can this be guaranteed. Some cases also use
1519  *                        LL_MAX_HEADER instead to allocate the skb
1520  *
1521  *      interface address info:
1522  *
1523  *      @perm_addr:             Permanent hw address
1524  *      @addr_assign_type:      Hw address assignment type
1525  *      @addr_len:              Hardware address length
1526  *      @neigh_priv_len:        Used in neigh_alloc()
1527  *      @dev_id:                Used to differentiate devices that share
1528  *                              the same link layer address
1529  *      @dev_port:              Used to differentiate devices that share
1530  *                              the same function
1531  *      @addr_list_lock:        XXX: need comments on this one
1532  *      @uc_promisc:            Counter that indicates promiscuous mode
1533  *                              has been enabled due to the need to listen to
1534  *                              additional unicast addresses in a device that
1535  *                              does not implement ndo_set_rx_mode()
1536  *      @uc:                    unicast mac addresses
1537  *      @mc:                    multicast mac addresses
1538  *      @dev_addrs:             list of device hw addresses
1539  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1540  *      @promiscuity:           Number of times the NIC is told to work in
1541  *                              promiscuous mode; if it becomes 0 the NIC will
1542  *                              exit promiscuous mode
1543  *      @allmulti:              Counter, enables or disables allmulticast mode
1544  *
1545  *      @vlan_info:     VLAN info
1546  *      @dsa_ptr:       dsa specific data
1547  *      @tipc_ptr:      TIPC specific data
1548  *      @atalk_ptr:     AppleTalk link
1549  *      @ip_ptr:        IPv4 specific data
1550  *      @dn_ptr:        DECnet specific data
1551  *      @ip6_ptr:       IPv6 specific data
1552  *      @ax25_ptr:      AX.25 specific data
1553  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1554  *
1555  *      @dev_addr:      Hw address (before bcast,
1556  *                      because most packets are unicast)
1557  *
1558  *      @_rx:                   Array of RX queues
1559  *      @num_rx_queues:         Number of RX queues
1560  *                              allocated at register_netdev() time
1561  *      @real_num_rx_queues:    Number of RX queues currently active in device
1562  *
1563  *      @rx_handler:            handler for received packets
1564  *      @rx_handler_data:       XXX: need comments on this one
1565  *      @ingress_queue:         XXX: need comments on this one
1566  *      @broadcast:             hw bcast address
1567  *
1568  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1569  *                      indexed by RX queue number. Assigned by driver.
1570  *                      This must only be set if the ndo_rx_flow_steer
1571  *                      operation is defined
1572  *      @index_hlist:           Device index hash chain
1573  *
1574  *      @_tx:                   Array of TX queues
1575  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1576  *      @real_num_tx_queues:    Number of TX queues currently active in device
1577  *      @qdisc:                 Root qdisc from userspace point of view
1578  *      @tx_queue_len:          Max frames per queue allowed
1579  *      @tx_global_lock:        XXX: need comments on this one
1580  *
1581  *      @xps_maps:      XXX: need comments on this one
1582  *
1583  *      @watchdog_timeo:        Represents the timeout that is used by
1584  *                              the watchdog (see dev_watchdog())
1585  *      @watchdog_timer:        List of timers
1586  *
1587  *      @pcpu_refcnt:           Number of references to this device
1588  *      @todo_list:             Delayed register/unregister
1589  *      @link_watch_list:       XXX: need comments on this one
1590  *
1591  *      @reg_state:             Register/unregister state machine
1592  *      @dismantle:             Device is going to be freed
1593  *      @rtnl_link_state:       This enum represents the phases of creating
1594  *                              a new link
1595  *
1596  *      @needs_free_netdev:     Should unregister perform free_netdev?
1597  *      @priv_destructor:       Called from unregister
1598  *      @npinfo:                XXX: need comments on this one
1599  *      @nd_net:                Network namespace this network device is inside
1600  *
1601  *      @ml_priv:       Mid-layer private
1602  *      @lstats:        Loopback statistics
1603  *      @tstats:        Tunnel statistics
1604  *      @dstats:        Dummy statistics
1605  *      @vstats:        Virtual ethernet statistics
1606  *
1607  *      @garp_port:     GARP
1608  *      @mrp_port:      MRP
1609  *
1610  *      @dev:           Class/net/name entry
1611  *      @sysfs_groups:  Space for optional device, statistics and wireless
1612  *                      sysfs groups
1613  *
1614  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1615  *      @rtnl_link_ops: Rtnl_link_ops
1616  *
1617  *      @gso_max_size:  Maximum size of generic segmentation offload
1618  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1619  *                      NIC for GSO
1620  *
1621  *      @dcbnl_ops:     Data Center Bridging netlink ops
1622  *      @num_tc:        Number of traffic classes in the net device
1623  *      @tc_to_txq:     XXX: need comments on this one
1624  *      @prio_tc_map:   XXX: need comments on this one
1625  *
1626  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1627  *
1628  *      @priomap:       XXX: need comments on this one
1629  *      @phydev:        Physical device may attach itself
1630  *                      for hardware timestamping
1631  *
1632  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1633  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1634  *
1635  *      @proto_down:    protocol port state information can be sent to the
1636  *                      switch driver and used to set the phys state of the
1637  *                      switch port.
1638  *
1639  *      FIXME: cleanup struct net_device such that network protocol info
1640  *      moves out.
1641  */
1642 
1643 struct net_device {
1644         char                    name[IFNAMSIZ];
1645         struct hlist_node       name_hlist;
1646         char                    *ifalias;
1647         /*
1648          *      I/O specific fields
1649          *      FIXME: Merge these and struct ifmap into one
1650          */
1651         unsigned long           mem_end;
1652         unsigned long           mem_start;
1653         unsigned long           base_addr;
1654         int                     irq;
1655 
1656         atomic_t                carrier_changes;
1657 
1658         /*
1659          *      Some hardware also needs these fields (state,dev_list,
1660          *      napi_list,unreg_list,close_list) but they are not
1661          *      part of the usual set specified in Space.c.
1662          */
1663 
1664         unsigned long           state;
1665 
1666         struct list_head        dev_list;
1667         struct list_head        napi_list;
1668         struct list_head        unreg_list;
1669         struct list_head        close_list;
1670         struct list_head        ptype_all;
1671         struct list_head        ptype_specific;
1672 
1673         struct {
1674                 struct list_head upper;
1675                 struct list_head lower;
1676         } adj_list;
1677 
1678         netdev_features_t       features;
1679         netdev_features_t       hw_features;
1680         netdev_features_t       wanted_features;
1681         netdev_features_t       vlan_features;
1682         netdev_features_t       hw_enc_features;
1683         netdev_features_t       mpls_features;
1684         netdev_features_t       gso_partial_features;
1685 
1686         int                     ifindex;
1687         int                     group;
1688 
1689         struct net_device_stats stats;
1690 
1691         atomic_long_t           rx_dropped;
1692         atomic_long_t           tx_dropped;
1693         atomic_long_t           rx_nohandler;
1694 
1695 #ifdef CONFIG_WIRELESS_EXT
1696         const struct iw_handler_def *wireless_handlers;
1697         struct iw_public_data   *wireless_data;
1698 #endif
1699         const struct net_device_ops *netdev_ops;
1700         const struct ethtool_ops *ethtool_ops;
1701 #ifdef CONFIG_NET_SWITCHDEV
1702         const struct switchdev_ops *switchdev_ops;
1703 #endif
1704 #ifdef CONFIG_NET_L3_MASTER_DEV
1705         const struct l3mdev_ops *l3mdev_ops;
1706 #endif
1707 #if IS_ENABLED(CONFIG_IPV6)
1708         const struct ndisc_ops *ndisc_ops;
1709 #endif
1710 
1711 #ifdef CONFIG_XFRM
1712         const struct xfrmdev_ops *xfrmdev_ops;
1713 #endif
1714 
1715         const struct header_ops *header_ops;
1716 
1717         unsigned int            flags;
1718         unsigned int            priv_flags;
1719 
1720         unsigned short          gflags;
1721         unsigned short          padded;
1722 
1723         unsigned char           operstate;
1724         unsigned char           link_mode;
1725 
1726         unsigned char           if_port;
1727         unsigned char           dma;
1728 
1729         unsigned int            mtu;
1730         unsigned int            min_mtu;
1731         unsigned int            max_mtu;
1732         unsigned short          type;
1733         unsigned short          hard_header_len;
1734         unsigned char           min_header_len;
1735 
1736         unsigned short          needed_headroom;
1737         unsigned short          needed_tailroom;
1738 
1739         /* Interface address info. */
1740         unsigned char           perm_addr[MAX_ADDR_LEN];
1741         unsigned char           addr_assign_type;
1742         unsigned char           addr_len;
1743         unsigned short          neigh_priv_len;
1744         unsigned short          dev_id;
1745         unsigned short          dev_port;
1746         spinlock_t              addr_list_lock;
1747         unsigned char           name_assign_type;
1748         bool                    uc_promisc;
1749         struct netdev_hw_addr_list      uc;
1750         struct netdev_hw_addr_list      mc;
1751         struct netdev_hw_addr_list      dev_addrs;
1752 
1753 #ifdef CONFIG_SYSFS
1754         struct kset             *queues_kset;
1755 #endif
1756         unsigned int            promiscuity;
1757         unsigned int            allmulti;
1758 
1759 
1760         /* Protocol-specific pointers */
1761 
1762 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1763         struct vlan_info __rcu  *vlan_info;
1764 #endif
1765 #if IS_ENABLED(CONFIG_NET_DSA)
1766         struct dsa_switch_tree  *dsa_ptr;
1767 #endif
1768 #if IS_ENABLED(CONFIG_TIPC)
1769         struct tipc_bearer __rcu *tipc_ptr;
1770 #endif
1771         void                    *atalk_ptr;
1772         struct in_device __rcu  *ip_ptr;
1773         struct dn_dev __rcu     *dn_ptr;
1774         struct inet6_dev __rcu  *ip6_ptr;
1775         void                    *ax25_ptr;
1776         struct wireless_dev     *ieee80211_ptr;
1777         struct wpan_dev         *ieee802154_ptr;
1778 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1779         struct mpls_dev __rcu   *mpls_ptr;
1780 #endif
1781 
1782 /*
1783  * Cache lines mostly used on receive path (including eth_type_trans())
1784  */
1785         /* Interface address info used in eth_type_trans() */
1786         unsigned char           *dev_addr;
1787 
1788 #ifdef CONFIG_SYSFS
1789         struct netdev_rx_queue  *_rx;
1790 
1791         unsigned int            num_rx_queues;
1792         unsigned int            real_num_rx_queues;
1793 #endif
1794 
1795         struct bpf_prog __rcu   *xdp_prog;
1796         unsigned long           gro_flush_timeout;
1797         rx_handler_func_t __rcu *rx_handler;
1798         void __rcu              *rx_handler_data;
1799 
1800 #ifdef CONFIG_NET_CLS_ACT
1801         struct tcf_proto __rcu  *ingress_cl_list;
1802 #endif
1803         struct netdev_queue __rcu *ingress_queue;
1804 #ifdef CONFIG_NETFILTER_INGRESS
1805         struct nf_hook_entry __rcu *nf_hooks_ingress;
1806 #endif
1807 
1808         unsigned char           broadcast[MAX_ADDR_LEN];
1809 #ifdef CONFIG_RFS_ACCEL
1810         struct cpu_rmap         *rx_cpu_rmap;
1811 #endif
1812         struct hlist_node       index_hlist;
1813 
1814 /*
1815  * Cache lines mostly used on transmit path
1816  */
1817         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1818         unsigned int            num_tx_queues;
1819         unsigned int            real_num_tx_queues;
1820         struct Qdisc            *qdisc;
1821 #ifdef CONFIG_NET_SCHED
1822         DECLARE_HASHTABLE       (qdisc_hash, 4);
1823 #endif
1824         unsigned int            tx_queue_len;
1825         spinlock_t              tx_global_lock;
1826         int                     watchdog_timeo;
1827 
1828 #ifdef CONFIG_XPS
1829         struct xps_dev_maps __rcu *xps_maps;
1830 #endif
1831 #ifdef CONFIG_NET_CLS_ACT
1832         struct tcf_proto __rcu  *egress_cl_list;
1833 #endif
1834 
1835         /* These may be needed for future network-power-down code. */
1836         struct timer_list       watchdog_timer;
1837 
1838         int __percpu            *pcpu_refcnt;
1839         struct list_head        todo_list;
1840 
1841         struct list_head        link_watch_list;
1842 
1843         enum { NETREG_UNINITIALIZED=0,
1844                NETREG_REGISTERED,       /* completed register_netdevice */
1845                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1846                NETREG_UNREGISTERED,     /* completed unregister todo */
1847                NETREG_RELEASED,         /* called free_netdev */
1848                NETREG_DUMMY,            /* dummy device for NAPI poll */
1849         } reg_state:8;
1850 
1851         bool dismantle;
1852 
1853         enum {
1854                 RTNL_LINK_INITIALIZED,
1855                 RTNL_LINK_INITIALIZING,
1856         } rtnl_link_state:16;
1857 
1858         bool needs_free_netdev;
1859         void (*priv_destructor)(struct net_device *dev);
1860 
1861 #ifdef CONFIG_NETPOLL
1862         struct netpoll_info __rcu       *npinfo;
1863 #endif
1864 
1865         possible_net_t                  nd_net;
1866 
1867         /* mid-layer private */
1868         union {
1869                 void                                    *ml_priv;
1870                 struct pcpu_lstats __percpu             *lstats;
1871                 struct pcpu_sw_netstats __percpu        *tstats;
1872                 struct pcpu_dstats __percpu             *dstats;
1873                 struct pcpu_vstats __percpu             *vstats;
1874         };
1875 
1876 #if IS_ENABLED(CONFIG_GARP)
1877         struct garp_port __rcu  *garp_port;
1878 #endif
1879 #if IS_ENABLED(CONFIG_MRP)
1880         struct mrp_port __rcu   *mrp_port;
1881 #endif
1882 
1883         struct device           dev;
1884         const struct attribute_group *sysfs_groups[4];
1885         const struct attribute_group *sysfs_rx_queue_group;
1886 
1887         const struct rtnl_link_ops *rtnl_link_ops;
1888 
1889         /* for setting kernel sock attribute on TCP connection setup */
1890 #define GSO_MAX_SIZE            65536
1891         unsigned int            gso_max_size;
1892 #define GSO_MAX_SEGS            65535
1893         u16                     gso_max_segs;
1894 
1895 #ifdef CONFIG_DCB
1896         const struct dcbnl_rtnl_ops *dcbnl_ops;
1897 #endif
1898         u8                      num_tc;
1899         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1900         u8                      prio_tc_map[TC_BITMASK + 1];
1901 
1902 #if IS_ENABLED(CONFIG_FCOE)
1903         unsigned int            fcoe_ddp_xid;
1904 #endif
1905 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1906         struct netprio_map __rcu *priomap;
1907 #endif
1908         struct phy_device       *phydev;
1909         struct lock_class_key   *qdisc_tx_busylock;
1910         struct lock_class_key   *qdisc_running_key;
1911         bool                    proto_down;
1912 };
1913 #define to_net_dev(d) container_of(d, struct net_device, dev)
1914 
1915 static inline bool netif_elide_gro(const struct net_device *dev)
1916 {
1917         if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1918                 return true;
1919         return false;
1920 }
1921 
1922 #define NETDEV_ALIGN            32
1923 
1924 static inline
1925 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1926 {
1927         return dev->prio_tc_map[prio & TC_BITMASK];
1928 }
1929 
1930 static inline
1931 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1932 {
1933         if (tc >= dev->num_tc)
1934                 return -EINVAL;
1935 
1936         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1937         return 0;
1938 }
1939 
1940 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1941 void netdev_reset_tc(struct net_device *dev);
1942 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1943 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1944 
1945 static inline
1946 int netdev_get_num_tc(struct net_device *dev)
1947 {
1948         return dev->num_tc;
1949 }
1950 
1951 static inline
1952 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1953                                          unsigned int index)
1954 {
1955         return &dev->_tx[index];
1956 }
1957 
1958 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1959                                                     const struct sk_buff *skb)
1960 {
1961         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1962 }
1963 
1964 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1965                                             void (*f)(struct net_device *,
1966                                                       struct netdev_queue *,
1967                                                       void *),
1968                                             void *arg)
1969 {
1970         unsigned int i;
1971 
1972         for (i = 0; i < dev->num_tx_queues; i++)
1973                 f(dev, &dev->_tx[i], arg);
1974 }
1975 
1976 #define netdev_lockdep_set_classes(dev)                         \
1977 {                                                               \
1978         static struct lock_class_key qdisc_tx_busylock_key;     \
1979         static struct lock_class_key qdisc_running_key;         \
1980         static struct lock_class_key qdisc_xmit_lock_key;       \
1981         static struct lock_class_key dev_addr_list_lock_key;    \
1982         unsigned int i;                                         \
1983                                                                 \
1984         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1985         (dev)->qdisc_running_key = &qdisc_running_key;          \
1986         lockdep_set_class(&(dev)->addr_list_lock,               \
1987                           &dev_addr_list_lock_key);             \
1988         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1989                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1990                                   &qdisc_xmit_lock_key);        \
1991 }
1992 
1993 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1994                                     struct sk_buff *skb,
1995                                     void *accel_priv);
1996 
1997 /* returns the headroom that the master device needs to take in account
1998  * when forwarding to this dev
1999  */
2000 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2001 {
2002         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2003 }
2004 
2005 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2006 {
2007         if (dev->netdev_ops->ndo_set_rx_headroom)
2008                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2009 }
2010 
2011 /* set the device rx headroom to the dev's default */
2012 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2013 {
2014         netdev_set_rx_headroom(dev, -1);
2015 }
2016 
2017 /*
2018  * Net namespace inlines
2019  */
2020 static inline
2021 struct net *dev_net(const struct net_device *dev)
2022 {
2023         return read_pnet(&dev->nd_net);
2024 }
2025 
2026 static inline
2027 void dev_net_set(struct net_device *dev, struct net *net)
2028 {
2029         write_pnet(&dev->nd_net, net);
2030 }
2031 
2032 /**
2033  *      netdev_priv - access network device private data
2034  *      @dev: network device
2035  *
2036  * Get network device private data
2037  */
2038 static inline void *netdev_priv(const struct net_device *dev)
2039 {
2040         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2041 }
2042 
2043 /* Set the sysfs physical device reference for the network logical device
2044  * if set prior to registration will cause a symlink during initialization.
2045  */
2046 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2047 
2048 /* Set the sysfs device type for the network logical device to allow
2049  * fine-grained identification of different network device types. For
2050  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2051  */
2052 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2053 
2054 /* Default NAPI poll() weight
2055  * Device drivers are strongly advised to not use bigger value
2056  */
2057 #define NAPI_POLL_WEIGHT 64
2058 
2059 /**
2060  *      netif_napi_add - initialize a NAPI context
2061  *      @dev:  network device
2062  *      @napi: NAPI context
2063  *      @poll: polling function
2064  *      @weight: default weight
2065  *
2066  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2067  * *any* of the other NAPI-related functions.
2068  */
2069 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2070                     int (*poll)(struct napi_struct *, int), int weight);
2071 
2072 /**
2073  *      netif_tx_napi_add - initialize a NAPI context
2074  *      @dev:  network device
2075  *      @napi: NAPI context
2076  *      @poll: polling function
2077  *      @weight: default weight
2078  *
2079  * This variant of netif_napi_add() should be used from drivers using NAPI
2080  * to exclusively poll a TX queue.
2081  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2082  */
2083 static inline void netif_tx_napi_add(struct net_device *dev,
2084                                      struct napi_struct *napi,
2085                                      int (*poll)(struct napi_struct *, int),
2086                                      int weight)
2087 {
2088         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2089         netif_napi_add(dev, napi, poll, weight);
2090 }
2091 
2092 /**
2093  *  netif_napi_del - remove a NAPI context
2094  *  @napi: NAPI context
2095  *
2096  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2097  */
2098 void netif_napi_del(struct napi_struct *napi);
2099 
2100 struct napi_gro_cb {
2101         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2102         void    *frag0;
2103 
2104         /* Length of frag0. */
2105         unsigned int frag0_len;
2106 
2107         /* This indicates where we are processing relative to skb->data. */
2108         int     data_offset;
2109 
2110         /* This is non-zero if the packet cannot be merged with the new skb. */
2111         u16     flush;
2112 
2113         /* Save the IP ID here and check when we get to the transport layer */
2114         u16     flush_id;
2115 
2116         /* Number of segments aggregated. */
2117         u16     count;
2118 
2119         /* Start offset for remote checksum offload */
2120         u16     gro_remcsum_start;
2121 
2122         /* jiffies when first packet was created/queued */
2123         unsigned long age;
2124 
2125         /* Used in ipv6_gro_receive() and foo-over-udp */
2126         u16     proto;
2127 
2128         /* This is non-zero if the packet may be of the same flow. */
2129         u8      same_flow:1;
2130 
2131         /* Used in tunnel GRO receive */
2132         u8      encap_mark:1;
2133 
2134         /* GRO checksum is valid */
2135         u8      csum_valid:1;
2136 
2137         /* Number of checksums via CHECKSUM_UNNECESSARY */
2138         u8      csum_cnt:3;
2139 
2140         /* Free the skb? */
2141         u8      free:2;
2142 #define NAPI_GRO_FREE             1
2143 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2144 
2145         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2146         u8      is_ipv6:1;
2147 
2148         /* Used in GRE, set in fou/gue_gro_receive */
2149         u8      is_fou:1;
2150 
2151         /* Used to determine if flush_id can be ignored */
2152         u8      is_atomic:1;
2153 
2154         /* Number of gro_receive callbacks this packet already went through */
2155         u8 recursion_counter:4;
2156 
2157         /* 1 bit hole */
2158 
2159         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2160         __wsum  csum;
2161 
2162         /* used in skb_gro_receive() slow path */
2163         struct sk_buff *last;
2164 };
2165 
2166 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2167 
2168 #define GRO_RECURSION_LIMIT 15
2169 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2170 {
2171         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2172 }
2173 
2174 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2175 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2176                                                 struct sk_buff **head,
2177                                                 struct sk_buff *skb)
2178 {
2179         if (unlikely(gro_recursion_inc_test(skb))) {
2180                 NAPI_GRO_CB(skb)->flush |= 1;
2181                 return NULL;
2182         }
2183 
2184         return cb(head, skb);
2185 }
2186 
2187 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2188                                              struct sk_buff *);
2189 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2190                                                    struct sock *sk,
2191                                                    struct sk_buff **head,
2192                                                    struct sk_buff *skb)
2193 {
2194         if (unlikely(gro_recursion_inc_test(skb))) {
2195                 NAPI_GRO_CB(skb)->flush |= 1;
2196                 return NULL;
2197         }
2198 
2199         return cb(sk, head, skb);
2200 }
2201 
2202 struct packet_type {
2203         __be16                  type;   /* This is really htons(ether_type). */
2204         struct net_device       *dev;   /* NULL is wildcarded here           */
2205         int                     (*func) (struct sk_buff *,
2206                                          struct net_device *,
2207                                          struct packet_type *,
2208                                          struct net_device *);
2209         bool                    (*id_match)(struct packet_type *ptype,
2210                                             struct sock *sk);
2211         void                    *af_packet_priv;
2212         struct list_head        list;
2213 };
2214 
2215 struct offload_callbacks {
2216         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2217                                                 netdev_features_t features);
2218         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2219                                                  struct sk_buff *skb);
2220         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2221 };
2222 
2223 struct packet_offload {
2224         __be16                   type;  /* This is really htons(ether_type). */
2225         u16                      priority;
2226         struct offload_callbacks callbacks;
2227         struct list_head         list;
2228 };
2229 
2230 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2231 struct pcpu_sw_netstats {
2232         u64     rx_packets;
2233         u64     rx_bytes;
2234         u64     tx_packets;
2235         u64     tx_bytes;
2236         struct u64_stats_sync   syncp;
2237 };
2238 
2239 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2240 ({                                                                      \
2241         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2242         if (pcpu_stats) {                                               \
2243                 int __cpu;                                              \
2244                 for_each_possible_cpu(__cpu) {                          \
2245                         typeof(type) *stat;                             \
2246                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2247                         u64_stats_init(&stat->syncp);                   \
2248                 }                                                       \
2249         }                                                               \
2250         pcpu_stats;                                                     \
2251 })
2252 
2253 #define netdev_alloc_pcpu_stats(type)                                   \
2254         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2255 
2256 enum netdev_lag_tx_type {
2257         NETDEV_LAG_TX_TYPE_UNKNOWN,
2258         NETDEV_LAG_TX_TYPE_RANDOM,
2259         NETDEV_LAG_TX_TYPE_BROADCAST,
2260         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2261         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2262         NETDEV_LAG_TX_TYPE_HASH,
2263 };
2264 
2265 struct netdev_lag_upper_info {
2266         enum netdev_lag_tx_type tx_type;
2267 };
2268 
2269 struct netdev_lag_lower_state_info {
2270         u8 link_up : 1,
2271            tx_enabled : 1;
2272 };
2273 
2274 #include <linux/notifier.h>
2275 
2276 /* netdevice notifier chain. Please remember to update the rtnetlink
2277  * notification exclusion list in rtnetlink_event() when adding new
2278  * types.
2279  */
2280 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2281 #define NETDEV_DOWN     0x0002
2282 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2283                                    detected a hardware crash and restarted
2284                                    - we can use this eg to kick tcp sessions
2285                                    once done */
2286 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2287 #define NETDEV_REGISTER 0x0005
2288 #define NETDEV_UNREGISTER       0x0006
2289 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2290 #define NETDEV_CHANGEADDR       0x0008
2291 #define NETDEV_GOING_DOWN       0x0009
2292 #define NETDEV_CHANGENAME       0x000A
2293 #define NETDEV_FEAT_CHANGE      0x000B
2294 #define NETDEV_BONDING_FAILOVER 0x000C
2295 #define NETDEV_PRE_UP           0x000D
2296 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2297 #define NETDEV_POST_TYPE_CHANGE 0x000F
2298 #define NETDEV_POST_INIT        0x0010
2299 #define NETDEV_UNREGISTER_FINAL 0x0011
2300 #define NETDEV_RELEASE          0x0012
2301 #define NETDEV_NOTIFY_PEERS     0x0013
2302 #define NETDEV_JOIN             0x0014
2303 #define NETDEV_CHANGEUPPER      0x0015
2304 #define NETDEV_RESEND_IGMP      0x0016
2305 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2306 #define NETDEV_CHANGEINFODATA   0x0018
2307 #define NETDEV_BONDING_INFO     0x0019
2308 #define NETDEV_PRECHANGEUPPER   0x001A
2309 #define NETDEV_CHANGELOWERSTATE 0x001B
2310 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2311 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2312 
2313 int register_netdevice_notifier(struct notifier_block *nb);
2314 int unregister_netdevice_notifier(struct notifier_block *nb);
2315 
2316 struct netdev_notifier_info {
2317         struct net_device *dev;
2318 };
2319 
2320 struct netdev_notifier_change_info {
2321         struct netdev_notifier_info info; /* must be first */
2322         unsigned int flags_changed;
2323 };
2324 
2325 struct netdev_notifier_changeupper_info {
2326         struct netdev_notifier_info info; /* must be first */
2327         struct net_device *upper_dev; /* new upper dev */
2328         bool master; /* is upper dev master */
2329         bool linking; /* is the notification for link or unlink */
2330         void *upper_info; /* upper dev info */
2331 };
2332 
2333 struct netdev_notifier_changelowerstate_info {
2334         struct netdev_notifier_info info; /* must be first */
2335         void *lower_state_info; /* is lower dev state */
2336 };
2337 
2338 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2339                                              struct net_device *dev)
2340 {
2341         info->dev = dev;
2342 }
2343 
2344 static inline struct net_device *
2345 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2346 {
2347         return info->dev;
2348 }
2349 
2350 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2351 
2352 
2353 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2354 
2355 #define for_each_netdev(net, d)         \
2356                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_reverse(net, d) \
2358                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_rcu(net, d)             \
2360                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_safe(net, d, n) \
2362                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_continue(net, d)                \
2364                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2365 #define for_each_netdev_continue_rcu(net, d)            \
2366         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2367 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2368                 for_each_netdev_rcu(&init_net, slave)   \
2369                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2370 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2371 
2372 static inline struct net_device *next_net_device(struct net_device *dev)
2373 {
2374         struct list_head *lh;
2375         struct net *net;
2376 
2377         net = dev_net(dev);
2378         lh = dev->dev_list.next;
2379         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2380 }
2381 
2382 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2383 {
2384         struct list_head *lh;
2385         struct net *net;
2386 
2387         net = dev_net(dev);
2388         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2389         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2390 }
2391 
2392 static inline struct net_device *first_net_device(struct net *net)
2393 {
2394         return list_empty(&net->dev_base_head) ? NULL :
2395                 net_device_entry(net->dev_base_head.next);
2396 }
2397 
2398 static inline struct net_device *first_net_device_rcu(struct net *net)
2399 {
2400         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2401 
2402         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2403 }
2404 
2405 int netdev_boot_setup_check(struct net_device *dev);
2406 unsigned long netdev_boot_base(const char *prefix, int unit);
2407 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2408                                        const char *hwaddr);
2409 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2410 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2411 void dev_add_pack(struct packet_type *pt);
2412 void dev_remove_pack(struct packet_type *pt);
2413 void __dev_remove_pack(struct packet_type *pt);
2414 void dev_add_offload(struct packet_offload *po);
2415 void dev_remove_offload(struct packet_offload *po);
2416 
2417 int dev_get_iflink(const struct net_device *dev);
2418 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2419 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2420                                       unsigned short mask);
2421 struct net_device *dev_get_by_name(struct net *net, const char *name);
2422 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2423 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2424 int dev_alloc_name(struct net_device *dev, const char *name);
2425 int dev_open(struct net_device *dev);
2426 int dev_close(struct net_device *dev);
2427 int dev_close_many(struct list_head *head, bool unlink);
2428 void dev_disable_lro(struct net_device *dev);
2429 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2430 int dev_queue_xmit(struct sk_buff *skb);
2431 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2432 int register_netdevice(struct net_device *dev);
2433 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2434 void unregister_netdevice_many(struct list_head *head);
2435 static inline void unregister_netdevice(struct net_device *dev)
2436 {
2437         unregister_netdevice_queue(dev, NULL);
2438 }
2439 
2440 int netdev_refcnt_read(const struct net_device *dev);
2441 void free_netdev(struct net_device *dev);
2442 void netdev_freemem(struct net_device *dev);
2443 void synchronize_net(void);
2444 int init_dummy_netdev(struct net_device *dev);
2445 
2446 DECLARE_PER_CPU(int, xmit_recursion);
2447 #define XMIT_RECURSION_LIMIT    10
2448 
2449 static inline int dev_recursion_level(void)
2450 {
2451         return this_cpu_read(xmit_recursion);
2452 }
2453 
2454 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2455 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2456 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2457 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2458 int netdev_get_name(struct net *net, char *name, int ifindex);
2459 int dev_restart(struct net_device *dev);
2460 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2461 
2462 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2463 {
2464         return NAPI_GRO_CB(skb)->data_offset;
2465 }
2466 
2467 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2468 {
2469         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2470 }
2471 
2472 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2473 {
2474         NAPI_GRO_CB(skb)->data_offset += len;
2475 }
2476 
2477 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2478                                         unsigned int offset)
2479 {
2480         return NAPI_GRO_CB(skb)->frag0 + offset;
2481 }
2482 
2483 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2484 {
2485         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2486 }
2487 
2488 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2489 {
2490         NAPI_GRO_CB(skb)->frag0 = NULL;
2491         NAPI_GRO_CB(skb)->frag0_len = 0;
2492 }
2493 
2494 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2495                                         unsigned int offset)
2496 {
2497         if (!pskb_may_pull(skb, hlen))
2498                 return NULL;
2499 
2500         skb_gro_frag0_invalidate(skb);
2501         return skb->data + offset;
2502 }
2503 
2504 static inline void *skb_gro_network_header(struct sk_buff *skb)
2505 {
2506         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2507                skb_network_offset(skb);
2508 }
2509 
2510 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2511                                         const void *start, unsigned int len)
2512 {
2513         if (NAPI_GRO_CB(skb)->csum_valid)
2514                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2515                                                   csum_partial(start, len, 0));
2516 }
2517 
2518 /* GRO checksum functions. These are logical equivalents of the normal
2519  * checksum functions (in skbuff.h) except that they operate on the GRO
2520  * offsets and fields in sk_buff.
2521  */
2522 
2523 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2524 
2525 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2526 {
2527         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2528 }
2529 
2530 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2531                                                       bool zero_okay,
2532                                                       __sum16 check)
2533 {
2534         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2535                 skb_checksum_start_offset(skb) <
2536                  skb_gro_offset(skb)) &&
2537                 !skb_at_gro_remcsum_start(skb) &&
2538                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2539                 (!zero_okay || check));
2540 }
2541 
2542 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2543                                                            __wsum psum)
2544 {
2545         if (NAPI_GRO_CB(skb)->csum_valid &&
2546             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2547                 return 0;
2548 
2549         NAPI_GRO_CB(skb)->csum = psum;
2550 
2551         return __skb_gro_checksum_complete(skb);
2552 }
2553 
2554 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2555 {
2556         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2557                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2558                 NAPI_GRO_CB(skb)->csum_cnt--;
2559         } else {
2560                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2561                  * verified a new top level checksum or an encapsulated one
2562                  * during GRO. This saves work if we fallback to normal path.
2563                  */
2564                 __skb_incr_checksum_unnecessary(skb);
2565         }
2566 }
2567 
2568 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2569                                     compute_pseudo)                     \
2570 ({                                                                      \
2571         __sum16 __ret = 0;                                              \
2572         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2573                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2574                                 compute_pseudo(skb, proto));            \
2575         if (!__ret)                                                     \
2576                 skb_gro_incr_csum_unnecessary(skb);                     \
2577         __ret;                                                          \
2578 })
2579 
2580 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2581         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2582 
2583 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2584                                              compute_pseudo)            \
2585         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2586 
2587 #define skb_gro_checksum_simple_validate(skb)                           \
2588         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2589 
2590 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2591 {
2592         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2593                 !NAPI_GRO_CB(skb)->csum_valid);
2594 }
2595 
2596 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2597                                               __sum16 check, __wsum pseudo)
2598 {
2599         NAPI_GRO_CB(skb)->csum = ~pseudo;
2600         NAPI_GRO_CB(skb)->csum_valid = 1;
2601 }
2602 
2603 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2604 do {                                                                    \
2605         if (__skb_gro_checksum_convert_check(skb))                      \
2606                 __skb_gro_checksum_convert(skb, check,                  \
2607                                            compute_pseudo(skb, proto)); \
2608 } while (0)
2609 
2610 struct gro_remcsum {
2611         int offset;
2612         __wsum delta;
2613 };
2614 
2615 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2616 {
2617         grc->offset = 0;
2618         grc->delta = 0;
2619 }
2620 
2621 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2622                                             unsigned int off, size_t hdrlen,
2623                                             int start, int offset,
2624                                             struct gro_remcsum *grc,
2625                                             bool nopartial)
2626 {
2627         __wsum delta;
2628         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2629 
2630         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2631 
2632         if (!nopartial) {
2633                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2634                 return ptr;
2635         }
2636 
2637         ptr = skb_gro_header_fast(skb, off);
2638         if (skb_gro_header_hard(skb, off + plen)) {
2639                 ptr = skb_gro_header_slow(skb, off + plen, off);
2640                 if (!ptr)
2641                         return NULL;
2642         }
2643 
2644         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2645                                start, offset);
2646 
2647         /* Adjust skb->csum since we changed the packet */
2648         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2649 
2650         grc->offset = off + hdrlen + offset;
2651         grc->delta = delta;
2652 
2653         return ptr;
2654 }
2655 
2656 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2657                                            struct gro_remcsum *grc)
2658 {
2659         void *ptr;
2660         size_t plen = grc->offset + sizeof(u16);
2661 
2662         if (!grc->delta)
2663                 return;
2664 
2665         ptr = skb_gro_header_fast(skb, grc->offset);
2666         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2667                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2668                 if (!ptr)
2669                         return;
2670         }
2671 
2672         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2673 }
2674 
2675 #ifdef CONFIG_XFRM_OFFLOAD
2676 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2677 {
2678         if (PTR_ERR(pp) != -EINPROGRESS)
2679                 NAPI_GRO_CB(skb)->flush |= flush;
2680 }
2681 #else
2682 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2683 {
2684         NAPI_GRO_CB(skb)->flush |= flush;
2685 }
2686 #endif
2687 
2688 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2689                                   unsigned short type,
2690                                   const void *daddr, const void *saddr,
2691                                   unsigned int len)
2692 {
2693         if (!dev->header_ops || !dev->header_ops->create)
2694                 return 0;
2695 
2696         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2697 }
2698 
2699 static inline int dev_parse_header(const struct sk_buff *skb,
2700                                    unsigned char *haddr)
2701 {
2702         const struct net_device *dev = skb->dev;
2703 
2704         if (!dev->header_ops || !dev->header_ops->parse)
2705                 return 0;
2706         return dev->header_ops->parse(skb, haddr);
2707 }
2708 
2709 /* ll_header must have at least hard_header_len allocated */
2710 static inline bool dev_validate_header(const struct net_device *dev,
2711                                        char *ll_header, int len)
2712 {
2713         if (likely(len >= dev->hard_header_len))
2714                 return true;
2715         if (len < dev->min_header_len)
2716                 return false;
2717 
2718         if (capable(CAP_SYS_RAWIO)) {
2719                 memset(ll_header + len, 0, dev->hard_header_len - len);
2720                 return true;
2721         }
2722 
2723         if (dev->header_ops && dev->header_ops->validate)
2724                 return dev->header_ops->validate(ll_header, len);
2725 
2726         return false;
2727 }
2728 
2729 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2730 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2731 static inline int unregister_gifconf(unsigned int family)
2732 {
2733         return register_gifconf(family, NULL);
2734 }
2735 
2736 #ifdef CONFIG_NET_FLOW_LIMIT
2737 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2738 struct sd_flow_limit {
2739         u64                     count;
2740         unsigned int            num_buckets;
2741         unsigned int            history_head;
2742         u16                     history[FLOW_LIMIT_HISTORY];
2743         u8                      buckets[];
2744 };
2745 
2746 extern int netdev_flow_limit_table_len;
2747 #endif /* CONFIG_NET_FLOW_LIMIT */
2748 
2749 /*
2750  * Incoming packets are placed on per-CPU queues
2751  */
2752 struct softnet_data {
2753         struct list_head        poll_list;
2754         struct sk_buff_head     process_queue;
2755 
2756         /* stats */
2757         unsigned int            processed;
2758         unsigned int            time_squeeze;
2759         unsigned int            received_rps;
2760 #ifdef CONFIG_RPS
2761         struct softnet_data     *rps_ipi_list;
2762 #endif
2763 #ifdef CONFIG_NET_FLOW_LIMIT
2764         struct sd_flow_limit __rcu *flow_limit;
2765 #endif
2766         struct Qdisc            *output_queue;
2767         struct Qdisc            **output_queue_tailp;
2768         struct sk_buff          *completion_queue;
2769 
2770 #ifdef CONFIG_RPS
2771         /* input_queue_head should be written by cpu owning this struct,
2772          * and only read by other cpus. Worth using a cache line.
2773          */
2774         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2775 
2776         /* Elements below can be accessed between CPUs for RPS/RFS */
2777         struct call_single_data csd ____cacheline_aligned_in_smp;
2778         struct softnet_data     *rps_ipi_next;
2779         unsigned int            cpu;
2780         unsigned int            input_queue_tail;
2781 #endif
2782         unsigned int            dropped;
2783         struct sk_buff_head     input_pkt_queue;
2784         struct napi_struct      backlog;
2785 
2786 };
2787 
2788 static inline void input_queue_head_incr(struct softnet_data *sd)
2789 {
2790 #ifdef CONFIG_RPS
2791         sd->input_queue_head++;
2792 #endif
2793 }
2794 
2795 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2796                                               unsigned int *qtail)
2797 {
2798 #ifdef CONFIG_RPS
2799         *qtail = ++sd->input_queue_tail;
2800 #endif
2801 }
2802 
2803 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2804 
2805 void __netif_schedule(struct Qdisc *q);
2806 void netif_schedule_queue(struct netdev_queue *txq);
2807 
2808 static inline void netif_tx_schedule_all(struct net_device *dev)
2809 {
2810         unsigned int i;
2811 
2812         for (i = 0; i < dev->num_tx_queues; i++)
2813                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2814 }
2815 
2816 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2817 {
2818         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2819 }
2820 
2821 /**
2822  *      netif_start_queue - allow transmit
2823  *      @dev: network device
2824  *
2825  *      Allow upper layers to call the device hard_start_xmit routine.
2826  */
2827 static inline void netif_start_queue(struct net_device *dev)
2828 {
2829         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2830 }
2831 
2832 static inline void netif_tx_start_all_queues(struct net_device *dev)
2833 {
2834         unsigned int i;
2835 
2836         for (i = 0; i < dev->num_tx_queues; i++) {
2837                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2838                 netif_tx_start_queue(txq);
2839         }
2840 }
2841 
2842 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2843 
2844 /**
2845  *      netif_wake_queue - restart transmit
2846  *      @dev: network device
2847  *
2848  *      Allow upper layers to call the device hard_start_xmit routine.
2849  *      Used for flow control when transmit resources are available.
2850  */
2851 static inline void netif_wake_queue(struct net_device *dev)
2852 {
2853         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2854 }
2855 
2856 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2857 {
2858         unsigned int i;
2859 
2860         for (i = 0; i < dev->num_tx_queues; i++) {
2861                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2862                 netif_tx_wake_queue(txq);
2863         }
2864 }
2865 
2866 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2867 {
2868         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2869 }
2870 
2871 /**
2872  *      netif_stop_queue - stop transmitted packets
2873  *      @dev: network device
2874  *
2875  *      Stop upper layers calling the device hard_start_xmit routine.
2876  *      Used for flow control when transmit resources are unavailable.
2877  */
2878 static inline void netif_stop_queue(struct net_device *dev)
2879 {
2880         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2881 }
2882 
2883 void netif_tx_stop_all_queues(struct net_device *dev);
2884 
2885 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2886 {
2887         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2888 }
2889 
2890 /**
2891  *      netif_queue_stopped - test if transmit queue is flowblocked
2892  *      @dev: network device
2893  *
2894  *      Test if transmit queue on device is currently unable to send.
2895  */
2896 static inline bool netif_queue_stopped(const struct net_device *dev)
2897 {
2898         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2899 }
2900 
2901 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2902 {
2903         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2904 }
2905 
2906 static inline bool
2907 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2908 {
2909         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2910 }
2911 
2912 static inline bool
2913 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2914 {
2915         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2916 }
2917 
2918 /**
2919  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2920  *      @dev_queue: pointer to transmit queue
2921  *
2922  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2923  * to give appropriate hint to the CPU.
2924  */
2925 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2926 {
2927 #ifdef CONFIG_BQL
2928         prefetchw(&dev_queue->dql.num_queued);
2929 #endif
2930 }
2931 
2932 /**
2933  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2934  *      @dev_queue: pointer to transmit queue
2935  *
2936  * BQL enabled drivers might use this helper in their TX completion path,
2937  * to give appropriate hint to the CPU.
2938  */
2939 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2940 {
2941 #ifdef CONFIG_BQL
2942         prefetchw(&dev_queue->dql.limit);
2943 #endif
2944 }
2945 
2946 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2947                                         unsigned int bytes)
2948 {
2949 #ifdef CONFIG_BQL
2950         dql_queued(&dev_queue->dql, bytes);
2951 
2952         if (likely(dql_avail(&dev_queue->dql) >= 0))
2953                 return;
2954 
2955         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2956 
2957         /*
2958          * The XOFF flag must be set before checking the dql_avail below,
2959          * because in netdev_tx_completed_queue we update the dql_completed
2960          * before checking the XOFF flag.
2961          */
2962         smp_mb();
2963 
2964         /* check again in case another CPU has just made room avail */
2965         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2966                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2967 #endif
2968 }
2969 
2970 /**
2971  *      netdev_sent_queue - report the number of bytes queued to hardware
2972  *      @dev: network device
2973  *      @bytes: number of bytes queued to the hardware device queue
2974  *
2975  *      Report the number of bytes queued for sending/completion to the network
2976  *      device hardware queue. @bytes should be a good approximation and should
2977  *      exactly match netdev_completed_queue() @bytes
2978  */
2979 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2980 {
2981         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2982 }
2983 
2984 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2985                                              unsigned int pkts, unsigned int bytes)
2986 {
2987 #ifdef CONFIG_BQL
2988         if (unlikely(!bytes))
2989                 return;
2990 
2991         dql_completed(&dev_queue->dql, bytes);
2992 
2993         /*
2994          * Without the memory barrier there is a small possiblity that
2995          * netdev_tx_sent_queue will miss the update and cause the queue to
2996          * be stopped forever
2997          */
2998         smp_mb();
2999 
3000         if (dql_avail(&dev_queue->dql) < 0)
3001                 return;
3002 
3003         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3004                 netif_schedule_queue(dev_queue);
3005 #endif
3006 }
3007 
3008 /**
3009  *      netdev_completed_queue - report bytes and packets completed by device
3010  *      @dev: network device
3011  *      @pkts: actual number of packets sent over the medium
3012  *      @bytes: actual number of bytes sent over the medium
3013  *
3014  *      Report the number of bytes and packets transmitted by the network device
3015  *      hardware queue over the physical medium, @bytes must exactly match the
3016  *      @bytes amount passed to netdev_sent_queue()
3017  */
3018 static inline void netdev_completed_queue(struct net_device *dev,
3019                                           unsigned int pkts, unsigned int bytes)
3020 {
3021         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3022 }
3023 
3024 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3025 {
3026 #ifdef CONFIG_BQL
3027         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3028         dql_reset(&q->dql);
3029 #endif
3030 }
3031 
3032 /**
3033  *      netdev_reset_queue - reset the packets and bytes count of a network device
3034  *      @dev_queue: network device
3035  *
3036  *      Reset the bytes and packet count of a network device and clear the
3037  *      software flow control OFF bit for this network device
3038  */
3039 static inline void netdev_reset_queue(struct net_device *dev_queue)
3040 {
3041         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3042 }
3043 
3044 /**
3045  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3046  *      @dev: network device
3047  *      @queue_index: given tx queue index
3048  *
3049  *      Returns 0 if given tx queue index >= number of device tx queues,
3050  *      otherwise returns the originally passed tx queue index.
3051  */
3052 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3053 {
3054         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3055                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3056                                      dev->name, queue_index,
3057                                      dev->real_num_tx_queues);
3058                 return 0;
3059         }
3060 
3061         return queue_index;
3062 }
3063 
3064 /**
3065  *      netif_running - test if up
3066  *      @dev: network device
3067  *
3068  *      Test if the device has been brought up.
3069  */
3070 static inline bool netif_running(const struct net_device *dev)
3071 {
3072         return test_bit(__LINK_STATE_START, &dev->state);
3073 }
3074 
3075 /*
3076  * Routines to manage the subqueues on a device.  We only need start,
3077  * stop, and a check if it's stopped.  All other device management is
3078  * done at the overall netdevice level.
3079  * Also test the device if we're multiqueue.
3080  */
3081 
3082 /**
3083  *      netif_start_subqueue - allow sending packets on subqueue
3084  *      @dev: network device
3085  *      @queue_index: sub queue index
3086  *
3087  * Start individual transmit queue of a device with multiple transmit queues.
3088  */
3089 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3090 {
3091         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3092 
3093         netif_tx_start_queue(txq);
3094 }
3095 
3096 /**
3097  *      netif_stop_subqueue - stop sending packets on subqueue
3098  *      @dev: network device
3099  *      @queue_index: sub queue index
3100  *
3101  * Stop individual transmit queue of a device with multiple transmit queues.
3102  */
3103 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3104 {
3105         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3106         netif_tx_stop_queue(txq);
3107 }
3108 
3109 /**
3110  *      netif_subqueue_stopped - test status of subqueue
3111  *      @dev: network device
3112  *      @queue_index: sub queue index
3113  *
3114  * Check individual transmit queue of a device with multiple transmit queues.
3115  */
3116 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3117                                             u16 queue_index)
3118 {
3119         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3120 
3121         return netif_tx_queue_stopped(txq);
3122 }
3123 
3124 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3125                                           struct sk_buff *skb)
3126 {
3127         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3128 }
3129 
3130 /**
3131  *      netif_wake_subqueue - allow sending packets on subqueue
3132  *      @dev: network device
3133  *      @queue_index: sub queue index
3134  *
3135  * Resume individual transmit queue of a device with multiple transmit queues.
3136  */
3137 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3138 {
3139         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3140 
3141         netif_tx_wake_queue(txq);
3142 }
3143 
3144 #ifdef CONFIG_XPS
3145 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3146                         u16 index);
3147 #else
3148 static inline int netif_set_xps_queue(struct net_device *dev,
3149                                       const struct cpumask *mask,
3150                                       u16 index)
3151 {
3152         return 0;
3153 }
3154 #endif
3155 
3156 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3157                   unsigned int num_tx_queues);
3158 
3159 /*
3160  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3161  * as a distribution range limit for the returned value.
3162  */
3163 static inline u16 skb_tx_hash(const struct net_device *dev,
3164                               struct sk_buff *skb)
3165 {
3166         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3167 }
3168 
3169 /**
3170  *      netif_is_multiqueue - test if device has multiple transmit queues
3171  *      @dev: network device
3172  *
3173  * Check if device has multiple transmit queues
3174  */
3175 static inline bool netif_is_multiqueue(const struct net_device *dev)
3176 {
3177         return dev->num_tx_queues > 1;
3178 }
3179 
3180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3181 
3182 #ifdef CONFIG_SYSFS
3183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3184 #else
3185 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3186                                                 unsigned int rxq)
3187 {
3188         return 0;
3189 }
3190 #endif
3191 
3192 #ifdef CONFIG_SYSFS
3193 static inline unsigned int get_netdev_rx_queue_index(
3194                 struct netdev_rx_queue *queue)
3195 {
3196         struct net_device *dev = queue->dev;
3197         int index = queue - dev->_rx;
3198 
3199         BUG_ON(index >= dev->num_rx_queues);
3200         return index;
3201 }
3202 #endif
3203 
3204 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3205 int netif_get_num_default_rss_queues(void);
3206 
3207 enum skb_free_reason {
3208         SKB_REASON_CONSUMED,
3209         SKB_REASON_DROPPED,
3210 };
3211 
3212 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3213 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3214 
3215 /*
3216  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3217  * interrupt context or with hardware interrupts being disabled.
3218  * (in_irq() || irqs_disabled())
3219  *
3220  * We provide four helpers that can be used in following contexts :
3221  *
3222  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3223  *  replacing kfree_skb(skb)
3224  *
3225  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3226  *  Typically used in place of consume_skb(skb) in TX completion path
3227  *
3228  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3229  *  replacing kfree_skb(skb)
3230  *
3231  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3232  *  and consumed a packet. Used in place of consume_skb(skb)
3233  */
3234 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3235 {
3236         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3237 }
3238 
3239 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3240 {
3241         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3242 }
3243 
3244 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3245 {
3246         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3247 }
3248 
3249 static inline void dev_consume_skb_any(struct sk_buff *skb)
3250 {
3251         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3252 }
3253 
3254 int netif_rx(struct sk_buff *skb);
3255 int netif_rx_ni(struct sk_buff *skb);
3256 int netif_receive_skb(struct sk_buff *skb);
3257 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3258 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3259 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3260 gro_result_t napi_gro_frags(struct napi_struct *napi);
3261 struct packet_offload *gro_find_receive_by_type(__be16 type);
3262 struct packet_offload *gro_find_complete_by_type(__be16 type);
3263 
3264 static inline void napi_free_frags(struct napi_struct *napi)
3265 {
3266         kfree_skb(napi->skb);
3267         napi->skb = NULL;
3268 }
3269 
3270 bool netdev_is_rx_handler_busy(struct net_device *dev);
3271 int netdev_rx_handler_register(struct net_device *dev,
3272                                rx_handler_func_t *rx_handler,
3273                                void *rx_handler_data);
3274 void netdev_rx_handler_unregister(struct net_device *dev);
3275 
3276 bool dev_valid_name(const char *name);
3277 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3278 int dev_ethtool(struct net *net, struct ifreq *);
3279 unsigned int dev_get_flags(const struct net_device *);
3280 int __dev_change_flags(struct net_device *, unsigned int flags);
3281 int dev_change_flags(struct net_device *, unsigned int);
3282 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3283                         unsigned int gchanges);
3284 int dev_change_name(struct net_device *, const char *);
3285 int dev_set_alias(struct net_device *, const char *, size_t);
3286 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3287 int __dev_set_mtu(struct net_device *, int);
3288 int dev_set_mtu(struct net_device *, int);
3289 void dev_set_group(struct net_device *, int);
3290 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3291 int dev_change_carrier(struct net_device *, bool new_carrier);
3292 int dev_get_phys_port_id(struct net_device *dev,
3293                          struct netdev_phys_item_id *ppid);
3294 int dev_get_phys_port_name(struct net_device *dev,
3295                            char *name, size_t len);
3296 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3297 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3299                                     struct netdev_queue *txq, int *ret);
3300 
3301 typedef int (*xdp_op_t)(struct net_device *dev, struct netdev_xdp *xdp);
3302 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3303                       int fd, u32 flags);
3304 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id);
3305 
3306 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3307 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3308 bool is_skb_forwardable(const struct net_device *dev,
3309                         const struct sk_buff *skb);
3310 
3311 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3312                                                struct sk_buff *skb)
3313 {
3314         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3315             unlikely(!is_skb_forwardable(dev, skb))) {
3316                 atomic_long_inc(&dev->rx_dropped);
3317                 kfree_skb(skb);
3318                 return NET_RX_DROP;
3319         }
3320 
3321         skb_scrub_packet(skb, true);
3322         skb->priority = 0;
3323         return 0;
3324 }
3325 
3326 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3327 
3328 extern int              netdev_budget;
3329 extern unsigned int     netdev_budget_usecs;
3330 
3331 /* Called by rtnetlink.c:rtnl_unlock() */
3332 void netdev_run_todo(void);
3333 
3334 /**
3335  *      dev_put - release reference to device
3336  *      @dev: network device
3337  *
3338  * Release reference to device to allow it to be freed.
3339  */
3340 static inline void dev_put(struct net_device *dev)
3341 {
3342         this_cpu_dec(*dev->pcpu_refcnt);
3343 }
3344 
3345 /**
3346  *      dev_hold - get reference to device
3347  *      @dev: network device
3348  *
3349  * Hold reference to device to keep it from being freed.
3350  */
3351 static inline void dev_hold(struct net_device *dev)
3352 {
3353         this_cpu_inc(*dev->pcpu_refcnt);
3354 }
3355 
3356 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3357  * and _off may be called from IRQ context, but it is caller
3358  * who is responsible for serialization of these calls.
3359  *
3360  * The name carrier is inappropriate, these functions should really be
3361  * called netif_lowerlayer_*() because they represent the state of any
3362  * kind of lower layer not just hardware media.
3363  */
3364 
3365 void linkwatch_init_dev(struct net_device *dev);
3366 void linkwatch_fire_event(struct net_device *dev);
3367 void linkwatch_forget_dev(struct net_device *dev);
3368 
3369 /**
3370  *      netif_carrier_ok - test if carrier present
3371  *      @dev: network device
3372  *
3373  * Check if carrier is present on device
3374  */
3375 static inline bool netif_carrier_ok(const struct net_device *dev)
3376 {
3377         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3378 }
3379 
3380 unsigned long dev_trans_start(struct net_device *dev);
3381 
3382 void __netdev_watchdog_up(struct net_device *dev);
3383 
3384 void netif_carrier_on(struct net_device *dev);
3385 
3386 void netif_carrier_off(struct net_device *dev);
3387 
3388 /**
3389  *      netif_dormant_on - mark device as dormant.
3390  *      @dev: network device
3391  *
3392  * Mark device as dormant (as per RFC2863).
3393  *
3394  * The dormant state indicates that the relevant interface is not
3395  * actually in a condition to pass packets (i.e., it is not 'up') but is
3396  * in a "pending" state, waiting for some external event.  For "on-
3397  * demand" interfaces, this new state identifies the situation where the
3398  * interface is waiting for events to place it in the up state.
3399  */
3400 static inline void netif_dormant_on(struct net_device *dev)
3401 {
3402         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3403                 linkwatch_fire_event(dev);
3404 }
3405 
3406 /**
3407  *      netif_dormant_off - set device as not dormant.
3408  *      @dev: network device
3409  *
3410  * Device is not in dormant state.
3411  */
3412 static inline void netif_dormant_off(struct net_device *dev)
3413 {
3414         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3415                 linkwatch_fire_event(dev);
3416 }
3417 
3418 /**
3419  *      netif_dormant - test if device is dormant
3420  *      @dev: network device
3421  *
3422  * Check if device is dormant.
3423  */
3424 static inline bool netif_dormant(const struct net_device *dev)
3425 {
3426         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3427 }
3428 
3429 
3430 /**
3431  *      netif_oper_up - test if device is operational
3432  *      @dev: network device
3433  *
3434  * Check if carrier is operational
3435  */
3436 static inline bool netif_oper_up(const struct net_device *dev)
3437 {
3438         return (dev->operstate == IF_OPER_UP ||
3439                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3440 }
3441 
3442 /**
3443  *      netif_device_present - is device available or removed
3444  *      @dev: network device
3445  *
3446  * Check if device has not been removed from system.
3447  */
3448 static inline bool netif_device_present(struct net_device *dev)
3449 {
3450         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3451 }
3452 
3453 void netif_device_detach(struct net_device *dev);
3454 
3455 void netif_device_attach(struct net_device *dev);
3456 
3457 /*
3458  * Network interface message level settings
3459  */
3460 
3461 enum {
3462         NETIF_MSG_DRV           = 0x0001,
3463         NETIF_MSG_PROBE         = 0x0002,
3464         NETIF_MSG_LINK          = 0x0004,
3465         NETIF_MSG_TIMER         = 0x0008,
3466         NETIF_MSG_IFDOWN        = 0x0010,
3467         NETIF_MSG_IFUP          = 0x0020,
3468         NETIF_MSG_RX_ERR        = 0x0040,
3469         NETIF_MSG_TX_ERR        = 0x0080,
3470         NETIF_MSG_TX_QUEUED     = 0x0100,
3471         NETIF_MSG_INTR          = 0x0200,
3472         NETIF_MSG_TX_DONE       = 0x0400,
3473         NETIF_MSG_RX_STATUS     = 0x0800,
3474         NETIF_MSG_PKTDATA       = 0x1000,
3475         NETIF_MSG_HW            = 0x2000,
3476         NETIF_MSG_WOL           = 0x4000,
3477 };
3478 
3479 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3480 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3481 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3482 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3483 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3484 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3485 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3486 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3487 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3488 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3489 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3490 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3491 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3492 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3493 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3494 
3495 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3496 {
3497         /* use default */
3498         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3499                 return default_msg_enable_bits;
3500         if (debug_value == 0)   /* no output */
3501                 return 0;
3502         /* set low N bits */
3503         return (1 << debug_value) - 1;
3504 }
3505 
3506 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3507 {
3508         spin_lock(&txq->_xmit_lock);
3509         txq->xmit_lock_owner = cpu;
3510 }
3511 
3512 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3513 {
3514         __acquire(&txq->_xmit_lock);
3515         return true;
3516 }
3517 
3518 static inline void __netif_tx_release(struct netdev_queue *txq)
3519 {
3520         __release(&txq->_xmit_lock);
3521 }
3522 
3523 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3524 {
3525         spin_lock_bh(&txq->_xmit_lock);
3526         txq->xmit_lock_owner = smp_processor_id();
3527 }
3528 
3529 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3530 {
3531         bool ok = spin_trylock(&txq->_xmit_lock);
3532         if (likely(ok))
3533                 txq->xmit_lock_owner = smp_processor_id();
3534         return ok;
3535 }
3536 
3537 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3538 {
3539         txq->xmit_lock_owner = -1;
3540         spin_unlock(&txq->_xmit_lock);
3541 }
3542 
3543 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3544 {
3545         txq->xmit_lock_owner = -1;
3546         spin_unlock_bh(&txq->_xmit_lock);
3547 }
3548 
3549 static inline void txq_trans_update(struct netdev_queue *txq)
3550 {
3551         if (txq->xmit_lock_owner != -1)
3552                 txq->trans_start = jiffies;
3553 }
3554 
3555 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3556 static inline void netif_trans_update(struct net_device *dev)
3557 {
3558         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3559 
3560         if (txq->trans_start != jiffies)
3561                 txq->trans_start = jiffies;
3562 }
3563 
3564 /**
3565  *      netif_tx_lock - grab network device transmit lock
3566  *      @dev: network device
3567  *
3568  * Get network device transmit lock
3569  */
3570 static inline void netif_tx_lock(struct net_device *dev)
3571 {
3572         unsigned int i;
3573         int cpu;
3574 
3575         spin_lock(&dev->tx_global_lock);
3576         cpu = smp_processor_id();
3577         for (i = 0; i < dev->num_tx_queues; i++) {
3578                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3579 
3580                 /* We are the only thread of execution doing a
3581                  * freeze, but we have to grab the _xmit_lock in
3582                  * order to synchronize with threads which are in
3583                  * the ->hard_start_xmit() handler and already
3584                  * checked the frozen bit.
3585                  */
3586                 __netif_tx_lock(txq, cpu);
3587                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3588                 __netif_tx_unlock(txq);
3589         }
3590 }
3591 
3592 static inline void netif_tx_lock_bh(struct net_device *dev)
3593 {
3594         local_bh_disable();
3595         netif_tx_lock(dev);
3596 }
3597 
3598 static inline void netif_tx_unlock(struct net_device *dev)
3599 {
3600         unsigned int i;
3601 
3602         for (i = 0; i < dev->num_tx_queues; i++) {
3603                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3604 
3605                 /* No need to grab the _xmit_lock here.  If the
3606                  * queue is not stopped for another reason, we
3607                  * force a schedule.
3608                  */
3609                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3610                 netif_schedule_queue(txq);
3611         }
3612         spin_unlock(&dev->tx_global_lock);
3613 }
3614 
3615 static inline void netif_tx_unlock_bh(struct net_device *dev)
3616 {
3617         netif_tx_unlock(dev);
3618         local_bh_enable();
3619 }
3620 
3621 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3622         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3623                 __netif_tx_lock(txq, cpu);              \
3624         } else {                                        \
3625                 __netif_tx_acquire(txq);                \
3626         }                                               \
3627 }
3628 
3629 #define HARD_TX_TRYLOCK(dev, txq)                       \
3630         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3631                 __netif_tx_trylock(txq) :               \
3632                 __netif_tx_acquire(txq))
3633 
3634 #define HARD_TX_UNLOCK(dev, txq) {                      \
3635         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3636                 __netif_tx_unlock(txq);                 \
3637         } else {                                        \
3638                 __netif_tx_release(txq);                \
3639         }                                               \
3640 }
3641 
3642 static inline void netif_tx_disable(struct net_device *dev)
3643 {
3644         unsigned int i;
3645         int cpu;
3646 
3647         local_bh_disable();
3648         cpu = smp_processor_id();
3649         for (i = 0; i < dev->num_tx_queues; i++) {
3650                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3651 
3652                 __netif_tx_lock(txq, cpu);
3653                 netif_tx_stop_queue(txq);
3654                 __netif_tx_unlock(txq);
3655         }
3656         local_bh_enable();
3657 }
3658 
3659 static inline void netif_addr_lock(struct net_device *dev)
3660 {
3661         spin_lock(&dev->addr_list_lock);
3662 }
3663 
3664 static inline void netif_addr_lock_nested(struct net_device *dev)
3665 {
3666         int subclass = SINGLE_DEPTH_NESTING;
3667 
3668         if (dev->netdev_ops->ndo_get_lock_subclass)
3669                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3670 
3671         spin_lock_nested(&dev->addr_list_lock, subclass);
3672 }
3673 
3674 static inline void netif_addr_lock_bh(struct net_device *dev)
3675 {
3676         spin_lock_bh(&dev->addr_list_lock);
3677 }
3678 
3679 static inline void netif_addr_unlock(struct net_device *dev)
3680 {
3681         spin_unlock(&dev->addr_list_lock);
3682 }
3683 
3684 static inline void netif_addr_unlock_bh(struct net_device *dev)
3685 {
3686         spin_unlock_bh(&dev->addr_list_lock);
3687 }
3688 
3689 /*
3690  * dev_addrs walker. Should be used only for read access. Call with
3691  * rcu_read_lock held.
3692  */
3693 #define for_each_dev_addr(dev, ha) \
3694                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3695 
3696 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3697 
3698 void ether_setup(struct net_device *dev);
3699 
3700 /* Support for loadable net-drivers */
3701 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3702                                     unsigned char name_assign_type,
3703                                     void (*setup)(struct net_device *),
3704                                     unsigned int txqs, unsigned int rxqs);
3705 int dev_get_valid_name(struct net *net, struct net_device *dev,
3706                        const char *name);
3707 
3708 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3709         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3710 
3711 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3712         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3713                          count)
3714 
3715 int register_netdev(struct net_device *dev);
3716 void unregister_netdev(struct net_device *dev);
3717 
3718 /* General hardware address lists handling functions */
3719 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3720                    struct netdev_hw_addr_list *from_list, int addr_len);
3721 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3722                       struct netdev_hw_addr_list *from_list, int addr_len);
3723 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3724                        struct net_device *dev,
3725                        int (*sync)(struct net_device *, const unsigned char *),
3726                        int (*unsync)(struct net_device *,
3727                                      const unsigned char *));
3728 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3729                           struct net_device *dev,
3730                           int (*unsync)(struct net_device *,
3731                                         const unsigned char *));
3732 void __hw_addr_init(struct netdev_hw_addr_list *list);
3733 
3734 /* Functions used for device addresses handling */
3735 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3736                  unsigned char addr_type);
3737 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3738                  unsigned char addr_type);
3739 void dev_addr_flush(struct net_device *dev);
3740 int dev_addr_init(struct net_device *dev);
3741 
3742 /* Functions used for unicast addresses handling */
3743 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3744 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3745 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3746 int dev_uc_sync(struct net_device *to, struct net_device *from);
3747 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3748 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3749 void dev_uc_flush(struct net_device *dev);
3750 void dev_uc_init(struct net_device *dev);
3751 
3752 /**
3753  *  __dev_uc_sync - Synchonize device's unicast list
3754  *  @dev:  device to sync
3755  *  @sync: function to call if address should be added
3756  *  @unsync: function to call if address should be removed
3757  *
3758  *  Add newly added addresses to the interface, and release
3759  *  addresses that have been deleted.
3760  */
3761 static inline int __dev_uc_sync(struct net_device *dev,
3762                                 int (*sync)(struct net_device *,
3763                                             const unsigned char *),
3764                                 int (*unsync)(struct net_device *,
3765                                               const unsigned char *))
3766 {
3767         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3768 }
3769 
3770 /**
3771  *  __dev_uc_unsync - Remove synchronized addresses from device
3772  *  @dev:  device to sync
3773  *  @unsync: function to call if address should be removed
3774  *
3775  *  Remove all addresses that were added to the device by dev_uc_sync().
3776  */
3777 static inline void __dev_uc_unsync(struct net_device *dev,
3778                                    int (*unsync)(struct net_device *,
3779                                                  const unsigned char *))
3780 {
3781         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3782 }
3783 
3784 /* Functions used for multicast addresses handling */
3785 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3786 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3787 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3788 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3789 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3790 int dev_mc_sync(struct net_device *to, struct net_device *from);
3791 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3792 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3793 void dev_mc_flush(struct net_device *dev);
3794 void dev_mc_init(struct net_device *dev);
3795 
3796 /**
3797  *  __dev_mc_sync - Synchonize device's multicast list
3798  *  @dev:  device to sync
3799  *  @sync: function to call if address should be added
3800  *  @unsync: function to call if address should be removed
3801  *
3802  *  Add newly added addresses to the interface, and release
3803  *  addresses that have been deleted.
3804  */
3805 static inline int __dev_mc_sync(struct net_device *dev,
3806                                 int (*sync)(struct net_device *,
3807                                             const unsigned char *),
3808                                 int (*unsync)(struct net_device *,
3809                                               const unsigned char *))
3810 {
3811         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3812 }
3813 
3814 /**
3815  *  __dev_mc_unsync - Remove synchronized addresses from device
3816  *  @dev:  device to sync
3817  *  @unsync: function to call if address should be removed
3818  *
3819  *  Remove all addresses that were added to the device by dev_mc_sync().
3820  */
3821 static inline void __dev_mc_unsync(struct net_device *dev,
3822                                    int (*unsync)(struct net_device *,
3823                                                  const unsigned char *))
3824 {
3825         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3826 }
3827 
3828 /* Functions used for secondary unicast and multicast support */
3829 void dev_set_rx_mode(struct net_device *dev);
3830 void __dev_set_rx_mode(struct net_device *dev);
3831 int dev_set_promiscuity(struct net_device *dev, int inc);
3832 int dev_set_allmulti(struct net_device *dev, int inc);
3833 void netdev_state_change(struct net_device *dev);
3834 void netdev_notify_peers(struct net_device *dev);
3835 void netdev_features_change(struct net_device *dev);
3836 /* Load a device via the kmod */
3837 void dev_load(struct net *net, const char *name);
3838 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3839                                         struct rtnl_link_stats64 *storage);
3840 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3841                              const struct net_device_stats *netdev_stats);
3842 
3843 extern int              netdev_max_backlog;
3844 extern int              netdev_tstamp_prequeue;
3845 extern int              weight_p;
3846 extern int              dev_weight_rx_bias;
3847 extern int              dev_weight_tx_bias;
3848 extern int              dev_rx_weight;
3849 extern int              dev_tx_weight;
3850 
3851 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3852 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3853                                                      struct list_head **iter);
3854 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3855                                                      struct list_head **iter);
3856 
3857 /* iterate through upper list, must be called under RCU read lock */
3858 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3859         for (iter = &(dev)->adj_list.upper, \
3860              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3861              updev; \
3862              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3863 
3864 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3865                                   int (*fn)(struct net_device *upper_dev,
3866                                             void *data),
3867                                   void *data);
3868 
3869 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3870                                   struct net_device *upper_dev);
3871 
3872 bool netdev_has_any_upper_dev(struct net_device *dev);
3873 
3874 void *netdev_lower_get_next_private(struct net_device *dev,
3875                                     struct list_head **iter);
3876 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3877                                         struct list_head **iter);
3878 
3879 #define netdev_for_each_lower_private(dev, priv, iter) \
3880         for (iter = (dev)->adj_list.lower.next, \
3881              priv = netdev_lower_get_next_private(dev, &(iter)); \
3882              priv; \
3883              priv = netdev_lower_get_next_private(dev, &(iter)))
3884 
3885 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3886         for (iter = &(dev)->adj_list.lower, \
3887              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3888              priv; \
3889              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3890 
3891 void *netdev_lower_get_next(struct net_device *dev,
3892                                 struct list_head **iter);
3893 
3894 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3895         for (iter = (dev)->adj_list.lower.next, \
3896              ldev = netdev_lower_get_next(dev, &(iter)); \
3897              ldev; \
3898              ldev = netdev_lower_get_next(dev, &(iter)))
3899 
3900 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3901                                              struct list_head **iter);
3902 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3903                                                  struct list_head **iter);
3904 
3905 int netdev_walk_all_lower_dev(struct net_device *dev,
3906                               int (*fn)(struct net_device *lower_dev,
3907                                         void *data),
3908                               void *data);
3909 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3910                                   int (*fn)(struct net_device *lower_dev,
3911                                             void *data),
3912                                   void *data);
3913 
3914 void *netdev_adjacent_get_private(struct list_head *adj_list);
3915 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3916 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3917 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3918 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3919 int netdev_master_upper_dev_link(struct net_device *dev,
3920                                  struct net_device *upper_dev,
3921                                  void *upper_priv, void *upper_info);
3922 void netdev_upper_dev_unlink(struct net_device *dev,
3923                              struct net_device *upper_dev);
3924 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3925 void *netdev_lower_dev_get_private(struct net_device *dev,
3926                                    struct net_device *lower_dev);
3927 void netdev_lower_state_changed(struct net_device *lower_dev,
3928                                 void *lower_state_info);
3929 
3930 /* RSS keys are 40 or 52 bytes long */
3931 #define NETDEV_RSS_KEY_LEN 52
3932 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3933 void netdev_rss_key_fill(void *buffer, size_t len);
3934 
3935 int dev_get_nest_level(struct net_device *dev);
3936 int skb_checksum_help(struct sk_buff *skb);
3937 int skb_crc32c_csum_help(struct sk_buff *skb);
3938 int skb_csum_hwoffload_help(struct sk_buff *skb,
3939                             const netdev_features_t features);
3940 
3941 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3942                                   netdev_features_t features, bool tx_path);
3943 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3944                                     netdev_features_t features);
3945 
3946 struct netdev_bonding_info {
3947         ifslave slave;
3948         ifbond  master;
3949 };
3950 
3951 struct netdev_notifier_bonding_info {
3952         struct netdev_notifier_info info; /* must be first */
3953         struct netdev_bonding_info  bonding_info;
3954 };
3955 
3956 void netdev_bonding_info_change(struct net_device *dev,
3957                                 struct netdev_bonding_info *bonding_info);
3958 
3959 static inline
3960 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3961 {
3962         return __skb_gso_segment(skb, features, true);
3963 }
3964 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3965 
3966 static inline bool can_checksum_protocol(netdev_features_t features,
3967                                          __be16 protocol)
3968 {
3969         if (protocol == htons(ETH_P_FCOE))
3970                 return !!(features & NETIF_F_FCOE_CRC);
3971 
3972         /* Assume this is an IP checksum (not SCTP CRC) */
3973 
3974         if (features & NETIF_F_HW_CSUM) {
3975                 /* Can checksum everything */
3976                 return true;
3977         }
3978 
3979         switch (protocol) {
3980         case htons(ETH_P_IP):
3981                 return !!(features & NETIF_F_IP_CSUM);
3982         case htons(ETH_P_IPV6):
3983                 return !!(features & NETIF_F_IPV6_CSUM);
3984         default:
3985                 return false;
3986         }
3987 }
3988 
3989 #ifdef CONFIG_BUG
3990 void netdev_rx_csum_fault(struct net_device *dev);
3991 #else
3992 static inline void netdev_rx_csum_fault(struct net_device *dev)
3993 {
3994 }
3995 #endif
3996 /* rx skb timestamps */
3997 void net_enable_timestamp(void);
3998 void net_disable_timestamp(void);
3999 
4000 #ifdef CONFIG_PROC_FS
4001 int __init dev_proc_init(void);
4002 #else
4003 #define dev_proc_init() 0
4004 #endif
4005 
4006 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4007                                               struct sk_buff *skb, struct net_device *dev,
4008                                               bool more)
4009 {
4010         skb->xmit_more = more ? 1 : 0;
4011         return ops->ndo_start_xmit(skb, dev);
4012 }
4013 
4014 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4015                                             struct netdev_queue *txq, bool more)
4016 {
4017         const struct net_device_ops *ops = dev->netdev_ops;
4018         int rc;
4019 
4020         rc = __netdev_start_xmit(ops, skb, dev, more);
4021         if (rc == NETDEV_TX_OK)
4022                 txq_trans_update(txq);
4023 
4024         return rc;
4025 }
4026 
4027 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4028                                 const void *ns);
4029 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4030                                  const void *ns);
4031 
4032 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4033 {
4034         return netdev_class_create_file_ns(class_attr, NULL);
4035 }
4036 
4037 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4038 {
4039         netdev_class_remove_file_ns(class_attr, NULL);
4040 }
4041 
4042 extern struct kobj_ns_type_operations net_ns_type_operations;
4043 
4044 const char *netdev_drivername(const struct net_device *dev);
4045 
4046 void linkwatch_run_queue(void);
4047 
4048 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4049                                                           netdev_features_t f2)
4050 {
4051         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4052                 if (f1 & NETIF_F_HW_CSUM)
4053                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4054                 else
4055                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4056         }
4057 
4058         return f1 & f2;
4059 }
4060 
4061 static inline netdev_features_t netdev_get_wanted_features(
4062         struct net_device *dev)
4063 {
4064         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4065 }
4066 netdev_features_t netdev_increment_features(netdev_features_t all,
4067         netdev_features_t one, netdev_features_t mask);
4068 
4069 /* Allow TSO being used on stacked device :
4070  * Performing the GSO segmentation before last device
4071  * is a performance improvement.
4072  */
4073 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4074                                                         netdev_features_t mask)
4075 {
4076         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4077 }
4078 
4079 int __netdev_update_features(struct net_device *dev);
4080 void netdev_update_features(struct net_device *dev);
4081 void netdev_change_features(struct net_device *dev);
4082 
4083 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4084                                         struct net_device *dev);
4085 
4086 netdev_features_t passthru_features_check(struct sk_buff *skb,
4087                                           struct net_device *dev,
4088                                           netdev_features_t features);
4089 netdev_features_t netif_skb_features(struct sk_buff *skb);
4090 
4091 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4092 {
4093         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4094 
4095         /* check flags correspondence */
4096         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4097         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4098         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4099         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4100         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4101         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4102         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4103         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4104         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4105         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4106         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4107         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4108         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4109         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4110         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4111         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4112         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4113 
4114         return (features & feature) == feature;
4115 }
4116 
4117 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4118 {
4119         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4120                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4121 }
4122 
4123 static inline bool netif_needs_gso(struct sk_buff *skb,
4124                                    netdev_features_t features)
4125 {
4126         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4127                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4128                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4129 }
4130 
4131 static inline void netif_set_gso_max_size(struct net_device *dev,
4132                                           unsigned int size)
4133 {
4134         dev->gso_max_size = size;
4135 }
4136 
4137 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4138                                         int pulled_hlen, u16 mac_offset,
4139                                         int mac_len)
4140 {
4141         skb->protocol = protocol;
4142         skb->encapsulation = 1;
4143         skb_push(skb, pulled_hlen);
4144         skb_reset_transport_header(skb);
4145         skb->mac_header = mac_offset;
4146         skb->network_header = skb->mac_header + mac_len;
4147         skb->mac_len = mac_len;
4148 }
4149 
4150 static inline bool netif_is_macsec(const struct net_device *dev)
4151 {
4152         return dev->priv_flags & IFF_MACSEC;
4153 }
4154 
4155 static inline bool netif_is_macvlan(const struct net_device *dev)
4156 {
4157         return dev->priv_flags & IFF_MACVLAN;
4158 }
4159 
4160 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4161 {
4162         return dev->priv_flags & IFF_MACVLAN_PORT;
4163 }
4164 
4165 static inline bool netif_is_ipvlan(const struct net_device *dev)
4166 {
4167         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4168 }
4169 
4170 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4171 {
4172         return dev->priv_flags & IFF_IPVLAN_MASTER;
4173 }
4174 
4175 static inline bool netif_is_bond_master(const struct net_device *dev)
4176 {
4177         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4178 }
4179 
4180 static inline bool netif_is_bond_slave(const struct net_device *dev)
4181 {
4182         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4183 }
4184 
4185 static inline bool netif_supports_nofcs(struct net_device *dev)
4186 {
4187         return dev->priv_flags & IFF_SUPP_NOFCS;
4188 }
4189 
4190 static inline bool netif_is_l3_master(const struct net_device *dev)
4191 {
4192         return dev->priv_flags & IFF_L3MDEV_MASTER;
4193 }
4194 
4195 static inline bool netif_is_l3_slave(const struct net_device *dev)
4196 {
4197         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4198 }
4199 
4200 static inline bool netif_is_bridge_master(const struct net_device *dev)
4201 {
4202         return dev->priv_flags & IFF_EBRIDGE;
4203 }
4204 
4205 static inline bool netif_is_bridge_port(const struct net_device *dev)
4206 {
4207         return dev->priv_flags & IFF_BRIDGE_PORT;
4208 }
4209 
4210 static inline bool netif_is_ovs_master(const struct net_device *dev)
4211 {
4212         return dev->priv_flags & IFF_OPENVSWITCH;
4213 }
4214 
4215 static inline bool netif_is_ovs_port(const struct net_device *dev)
4216 {
4217         return dev->priv_flags & IFF_OVS_DATAPATH;
4218 }
4219 
4220 static inline bool netif_is_team_master(const struct net_device *dev)
4221 {
4222         return dev->priv_flags & IFF_TEAM;
4223 }
4224 
4225 static inline bool netif_is_team_port(const struct net_device *dev)
4226 {
4227         return dev->priv_flags & IFF_TEAM_PORT;
4228 }
4229 
4230 static inline bool netif_is_lag_master(const struct net_device *dev)
4231 {
4232         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4233 }
4234 
4235 static inline bool netif_is_lag_port(const struct net_device *dev)
4236 {
4237         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4238 }
4239 
4240 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4241 {
4242         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4243 }
4244 
4245 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4246 static inline void netif_keep_dst(struct net_device *dev)
4247 {
4248         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4249 }
4250 
4251 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4252 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4253 {
4254         /* TODO: reserve and use an additional IFF bit, if we get more users */
4255         return dev->priv_flags & IFF_MACSEC;
4256 }
4257 
4258 extern struct pernet_operations __net_initdata loopback_net_ops;
4259 
4260 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4261 
4262 /* netdev_printk helpers, similar to dev_printk */
4263 
4264 static inline const char *netdev_name(const struct net_device *dev)
4265 {
4266         if (!dev->name[0] || strchr(dev->name, '%'))
4267                 return "(unnamed net_device)";
4268         return dev->name;
4269 }
4270 
4271 static inline bool netdev_unregistering(const struct net_device *dev)
4272 {
4273         return dev->reg_state == NETREG_UNREGISTERING;
4274 }
4275 
4276 static inline const char *netdev_reg_state(const struct net_device *dev)
4277 {
4278         switch (dev->reg_state) {
4279         case NETREG_UNINITIALIZED: return " (uninitialized)";
4280         case NETREG_REGISTERED: return "";
4281         case NETREG_UNREGISTERING: return " (unregistering)";
4282         case NETREG_UNREGISTERED: return " (unregistered)";
4283         case NETREG_RELEASED: return " (released)";
4284         case NETREG_DUMMY: return " (dummy)";
4285         }
4286 
4287         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4288         return " (unknown)";
4289 }
4290 
4291 __printf(3, 4)
4292 void netdev_printk(const char *level, const struct net_device *dev,
4293                    const char *format, ...);
4294 __printf(2, 3)
4295 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4296 __printf(2, 3)
4297 void netdev_alert(const struct net_device *dev, const char *format, ...);
4298 __printf(2, 3)
4299 void netdev_crit(const struct net_device *dev, const char *format, ...);
4300 __printf(2, 3)
4301 void netdev_err(const struct net_device *dev, const char *format, ...);
4302 __printf(2, 3)
4303 void netdev_warn(const struct net_device *dev, const char *format, ...);
4304 __printf(2, 3)
4305 void netdev_notice(const struct net_device *dev, const char *format, ...);
4306 __printf(2, 3)
4307 void netdev_info(const struct net_device *dev, const char *format, ...);
4308 
4309 #define MODULE_ALIAS_NETDEV(device) \
4310         MODULE_ALIAS("netdev-" device)
4311 
4312 #if defined(CONFIG_DYNAMIC_DEBUG)
4313 #define netdev_dbg(__dev, format, args...)                      \
4314 do {                                                            \
4315         dynamic_netdev_dbg(__dev, format, ##args);              \
4316 } while (0)
4317 #elif defined(DEBUG)
4318 #define netdev_dbg(__dev, format, args...)                      \
4319         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4320 #else
4321 #define netdev_dbg(__dev, format, args...)                      \
4322 ({                                                              \
4323         if (0)                                                  \
4324                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4325 })
4326 #endif
4327 
4328 #if defined(VERBOSE_DEBUG)
4329 #define netdev_vdbg     netdev_dbg
4330 #else
4331 
4332 #define netdev_vdbg(dev, format, args...)                       \
4333 ({                                                              \
4334         if (0)                                                  \
4335                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4336         0;                                                      \
4337 })
4338 #endif
4339 
4340 /*
4341  * netdev_WARN() acts like dev_printk(), but with the key difference
4342  * of using a WARN/WARN_ON to get the message out, including the
4343  * file/line information and a backtrace.
4344  */
4345 #define netdev_WARN(dev, format, args...)                       \
4346         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4347              netdev_reg_state(dev), ##args)
4348 
4349 /* netif printk helpers, similar to netdev_printk */
4350 
4351 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4352 do {                                                            \
4353         if (netif_msg_##type(priv))                             \
4354                 netdev_printk(level, (dev), fmt, ##args);       \
4355 } while (0)
4356 
4357 #define netif_level(level, priv, type, dev, fmt, args...)       \
4358 do {                                                            \
4359         if (netif_msg_##type(priv))                             \
4360                 netdev_##level(dev, fmt, ##args);               \
4361 } while (0)
4362 
4363 #define netif_emerg(priv, type, dev, fmt, args...)              \
4364         netif_level(emerg, priv, type, dev, fmt, ##args)
4365 #define netif_alert(priv, type, dev, fmt, args...)              \
4366         netif_level(alert, priv, type, dev, fmt, ##args)
4367 #define netif_crit(priv, type, dev, fmt, args...)               \
4368         netif_level(crit, priv, type, dev, fmt, ##args)
4369 #define netif_err(priv, type, dev, fmt, args...)                \
4370         netif_level(err, priv, type, dev, fmt, ##args)
4371 #define netif_warn(priv, type, dev, fmt, args...)               \
4372         netif_level(warn, priv, type, dev, fmt, ##args)
4373 #define netif_notice(priv, type, dev, fmt, args...)             \
4374         netif_level(notice, priv, type, dev, fmt, ##args)
4375 #define netif_info(priv, type, dev, fmt, args...)               \
4376         netif_level(info, priv, type, dev, fmt, ##args)
4377 
4378 #if defined(CONFIG_DYNAMIC_DEBUG)
4379 #define netif_dbg(priv, type, netdev, format, args...)          \
4380 do {                                                            \
4381         if (netif_msg_##type(priv))                             \
4382                 dynamic_netdev_dbg(netdev, format, ##args);     \
4383 } while (0)
4384 #elif defined(DEBUG)
4385 #define netif_dbg(priv, type, dev, format, args...)             \
4386         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4387 #else
4388 #define netif_dbg(priv, type, dev, format, args...)                     \
4389 ({                                                                      \
4390         if (0)                                                          \
4391                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4392         0;                                                              \
4393 })
4394 #endif
4395 
4396 /* if @cond then downgrade to debug, else print at @level */
4397 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4398         do {                                                              \
4399                 if (cond)                                                 \
4400                         netif_dbg(priv, type, netdev, fmt, ##args);       \
4401                 else                                                      \
4402                         netif_ ## level(priv, type, netdev, fmt, ##args); \
4403         } while (0)
4404 
4405 #if defined(VERBOSE_DEBUG)
4406 #define netif_vdbg      netif_dbg
4407 #else
4408 #define netif_vdbg(priv, type, dev, format, args...)            \
4409 ({                                                              \
4410         if (0)                                                  \
4411                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4412         0;                                                      \
4413 })
4414 #endif
4415 
4416 /*
4417  *      The list of packet types we will receive (as opposed to discard)
4418  *      and the routines to invoke.
4419  *
4420  *      Why 16. Because with 16 the only overlap we get on a hash of the
4421  *      low nibble of the protocol value is RARP/SNAP/X.25.
4422  *
4423  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4424  *             sure which should go first, but I bet it won't make much
4425  *             difference if we are running VLANs.  The good news is that
4426  *             this protocol won't be in the list unless compiled in, so
4427  *             the average user (w/out VLANs) will not be adversely affected.
4428  *             --BLG
4429  *
4430  *              0800    IP
4431  *              8100    802.1Q VLAN
4432  *              0001    802.3
4433  *              0002    AX.25
4434  *              0004    802.2
4435  *              8035    RARP
4436  *              0005    SNAP
4437  *              0805    X.25
4438  *              0806    ARP
4439  *              8137    IPX
4440  *              0009    Localtalk
4441  *              86DD    IPv6
4442  */
4443 #define PTYPE_HASH_SIZE (16)
4444 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4445 
4446 #endif  /* _LINUX_NETDEVICE_H */
4447 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp