1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21 #ifndef _LINUX_NETDEVICE_H 22 #define _LINUX_NETDEVICE_H 23 24 #include <linux/timer.h> 25 #include <linux/bug.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/prefetch.h> 29 #include <asm/cache.h> 30 #include <asm/byteorder.h> 31 32 #include <linux/percpu.h> 33 #include <linux/rculist.h> 34 #include <linux/workqueue.h> 35 #include <linux/dynamic_queue_limits.h> 36 37 #include <linux/ethtool.h> 38 #include <net/net_namespace.h> 39 #ifdef CONFIG_DCB 40 #include <net/dcbnl.h> 41 #endif 42 #include <net/netprio_cgroup.h> 43 #include <net/xdp.h> 44 45 #include <linux/netdev_features.h> 46 #include <linux/neighbour.h> 47 #include <uapi/linux/netdevice.h> 48 #include <uapi/linux/if_bonding.h> 49 #include <uapi/linux/pkt_cls.h> 50 #include <linux/hashtable.h> 51 52 struct netpoll_info; 53 struct device; 54 struct phy_device; 55 struct dsa_port; 56 57 struct sfp_bus; 58 /* 802.11 specific */ 59 struct wireless_dev; 60 /* 802.15.4 specific */ 61 struct wpan_dev; 62 struct mpls_dev; 63 /* UDP Tunnel offloads */ 64 struct udp_tunnel_info; 65 struct bpf_prog; 66 struct xdp_buff; 67 68 void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71 /* Backlog congestion levels */ 72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73 #define NET_RX_DROP 1 /* packet dropped */ 74 75 /* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92 /* qdisc ->enqueue() return codes. */ 93 #define NET_XMIT_SUCCESS 0x00 94 #define NET_XMIT_DROP 0x01 /* skb dropped */ 95 #define NET_XMIT_CN 0x02 /* congestion notification */ 96 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104 /* Driver transmit return codes */ 105 #define NETDEV_TX_MASK 0xf0 106 107 enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111 }; 112 typedef enum netdev_tx netdev_tx_t; 113 114 /* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118 static inline bool dev_xmit_complete(int rc) 119 { 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130 } 131 132 /* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137 #if defined(CONFIG_HYPERV_NET) 138 # define LL_MAX_HEADER 128 139 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140 # if defined(CONFIG_MAC80211_MESH) 141 # define LL_MAX_HEADER 128 142 # else 143 # define LL_MAX_HEADER 96 144 # endif 145 #else 146 # define LL_MAX_HEADER 32 147 #endif 148 149 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151 #define MAX_HEADER LL_MAX_HEADER 152 #else 153 #define MAX_HEADER (LL_MAX_HEADER + 48) 154 #endif 155 156 /* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161 struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185 }; 186 187 188 #include <linux/cache.h> 189 #include <linux/skbuff.h> 190 191 #ifdef CONFIG_RPS 192 #include <linux/static_key.h> 193 extern struct static_key_false rps_needed; 194 extern struct static_key_false rfs_needed; 195 #endif 196 197 struct neighbour; 198 struct neigh_parms; 199 struct sk_buff; 200 201 struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205 #define NETDEV_HW_ADDR_T_LAN 1 206 #define NETDEV_HW_ADDR_T_SAN 2 207 #define NETDEV_HW_ADDR_T_SLAVE 3 208 #define NETDEV_HW_ADDR_T_UNICAST 4 209 #define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215 }; 216 217 struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220 }; 221 222 #define netdev_hw_addr_list_count(l) ((l)->count) 223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224 #define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229 #define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234 #define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237 struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242 #define HH_DATA_MOD 16 243 #define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245 #define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248 }; 249 250 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258 #define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263 struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274 }; 275 276 /* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281 enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287 }; 288 289 290 /* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294 struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297 }; 298 #define NETDEV_BOOT_SETUP_MAX 8 299 300 int __init netdev_boot_setup(char *str); 301 302 struct gro_list { 303 struct list_head list; 304 int count; 305 }; 306 307 /* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311 #define GRO_HASH_BUCKETS 8 312 313 /* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316 struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329 #ifdef CONFIG_NETPOLL 330 int poll_owner; 331 #endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct hrtimer timer; 336 struct list_head dev_list; 337 struct hlist_node napi_hash_node; 338 unsigned int napi_id; 339 }; 340 341 enum { 342 NAPI_STATE_SCHED, /* Poll is scheduled */ 343 NAPI_STATE_MISSED, /* reschedule a napi */ 344 NAPI_STATE_DISABLE, /* Disable pending */ 345 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 346 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 347 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 348 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 349 }; 350 351 enum { 352 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 353 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 354 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 355 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 356 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 357 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 358 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 359 }; 360 361 enum gro_result { 362 GRO_MERGED, 363 GRO_MERGED_FREE, 364 GRO_HELD, 365 GRO_NORMAL, 366 GRO_DROP, 367 GRO_CONSUMED, 368 }; 369 typedef enum gro_result gro_result_t; 370 371 /* 372 * enum rx_handler_result - Possible return values for rx_handlers. 373 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 374 * further. 375 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 376 * case skb->dev was changed by rx_handler. 377 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 378 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 379 * 380 * rx_handlers are functions called from inside __netif_receive_skb(), to do 381 * special processing of the skb, prior to delivery to protocol handlers. 382 * 383 * Currently, a net_device can only have a single rx_handler registered. Trying 384 * to register a second rx_handler will return -EBUSY. 385 * 386 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 387 * To unregister a rx_handler on a net_device, use 388 * netdev_rx_handler_unregister(). 389 * 390 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 391 * do with the skb. 392 * 393 * If the rx_handler consumed the skb in some way, it should return 394 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 395 * the skb to be delivered in some other way. 396 * 397 * If the rx_handler changed skb->dev, to divert the skb to another 398 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 399 * new device will be called if it exists. 400 * 401 * If the rx_handler decides the skb should be ignored, it should return 402 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 403 * are registered on exact device (ptype->dev == skb->dev). 404 * 405 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 406 * delivered, it should return RX_HANDLER_PASS. 407 * 408 * A device without a registered rx_handler will behave as if rx_handler 409 * returned RX_HANDLER_PASS. 410 */ 411 412 enum rx_handler_result { 413 RX_HANDLER_CONSUMED, 414 RX_HANDLER_ANOTHER, 415 RX_HANDLER_EXACT, 416 RX_HANDLER_PASS, 417 }; 418 typedef enum rx_handler_result rx_handler_result_t; 419 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 420 421 void __napi_schedule(struct napi_struct *n); 422 void __napi_schedule_irqoff(struct napi_struct *n); 423 424 static inline bool napi_disable_pending(struct napi_struct *n) 425 { 426 return test_bit(NAPI_STATE_DISABLE, &n->state); 427 } 428 429 bool napi_schedule_prep(struct napi_struct *n); 430 431 /** 432 * napi_schedule - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Schedule NAPI poll routine to be called if it is not already 436 * running. 437 */ 438 static inline void napi_schedule(struct napi_struct *n) 439 { 440 if (napi_schedule_prep(n)) 441 __napi_schedule(n); 442 } 443 444 /** 445 * napi_schedule_irqoff - schedule NAPI poll 446 * @n: NAPI context 447 * 448 * Variant of napi_schedule(), assuming hard irqs are masked. 449 */ 450 static inline void napi_schedule_irqoff(struct napi_struct *n) 451 { 452 if (napi_schedule_prep(n)) 453 __napi_schedule_irqoff(n); 454 } 455 456 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 457 static inline bool napi_reschedule(struct napi_struct *napi) 458 { 459 if (napi_schedule_prep(napi)) { 460 __napi_schedule(napi); 461 return true; 462 } 463 return false; 464 } 465 466 bool napi_complete_done(struct napi_struct *n, int work_done); 467 /** 468 * napi_complete - NAPI processing complete 469 * @n: NAPI context 470 * 471 * Mark NAPI processing as complete. 472 * Consider using napi_complete_done() instead. 473 * Return false if device should avoid rearming interrupts. 474 */ 475 static inline bool napi_complete(struct napi_struct *n) 476 { 477 return napi_complete_done(n, 0); 478 } 479 480 /** 481 * napi_hash_del - remove a NAPI from global table 482 * @napi: NAPI context 483 * 484 * Warning: caller must observe RCU grace period 485 * before freeing memory containing @napi, if 486 * this function returns true. 487 * Note: core networking stack automatically calls it 488 * from netif_napi_del(). 489 * Drivers might want to call this helper to combine all 490 * the needed RCU grace periods into a single one. 491 */ 492 bool napi_hash_del(struct napi_struct *napi); 493 494 /** 495 * napi_disable - prevent NAPI from scheduling 496 * @n: NAPI context 497 * 498 * Stop NAPI from being scheduled on this context. 499 * Waits till any outstanding processing completes. 500 */ 501 void napi_disable(struct napi_struct *n); 502 503 /** 504 * napi_enable - enable NAPI scheduling 505 * @n: NAPI context 506 * 507 * Resume NAPI from being scheduled on this context. 508 * Must be paired with napi_disable. 509 */ 510 static inline void napi_enable(struct napi_struct *n) 511 { 512 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 513 smp_mb__before_atomic(); 514 clear_bit(NAPI_STATE_SCHED, &n->state); 515 clear_bit(NAPI_STATE_NPSVC, &n->state); 516 } 517 518 /** 519 * napi_synchronize - wait until NAPI is not running 520 * @n: NAPI context 521 * 522 * Wait until NAPI is done being scheduled on this context. 523 * Waits till any outstanding processing completes but 524 * does not disable future activations. 525 */ 526 static inline void napi_synchronize(const struct napi_struct *n) 527 { 528 if (IS_ENABLED(CONFIG_SMP)) 529 while (test_bit(NAPI_STATE_SCHED, &n->state)) 530 msleep(1); 531 else 532 barrier(); 533 } 534 535 /** 536 * napi_if_scheduled_mark_missed - if napi is running, set the 537 * NAPIF_STATE_MISSED 538 * @n: NAPI context 539 * 540 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 541 * NAPI is scheduled. 542 **/ 543 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 544 { 545 unsigned long val, new; 546 547 do { 548 val = READ_ONCE(n->state); 549 if (val & NAPIF_STATE_DISABLE) 550 return true; 551 552 if (!(val & NAPIF_STATE_SCHED)) 553 return false; 554 555 new = val | NAPIF_STATE_MISSED; 556 } while (cmpxchg(&n->state, val, new) != val); 557 558 return true; 559 } 560 561 enum netdev_queue_state_t { 562 __QUEUE_STATE_DRV_XOFF, 563 __QUEUE_STATE_STACK_XOFF, 564 __QUEUE_STATE_FROZEN, 565 }; 566 567 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 568 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 569 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 570 571 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 572 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 573 QUEUE_STATE_FROZEN) 574 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 575 QUEUE_STATE_FROZEN) 576 577 /* 578 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 579 * netif_tx_* functions below are used to manipulate this flag. The 580 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 581 * queue independently. The netif_xmit_*stopped functions below are called 582 * to check if the queue has been stopped by the driver or stack (either 583 * of the XOFF bits are set in the state). Drivers should not need to call 584 * netif_xmit*stopped functions, they should only be using netif_tx_*. 585 */ 586 587 struct netdev_queue { 588 /* 589 * read-mostly part 590 */ 591 struct net_device *dev; 592 struct Qdisc __rcu *qdisc; 593 struct Qdisc *qdisc_sleeping; 594 #ifdef CONFIG_SYSFS 595 struct kobject kobj; 596 #endif 597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 598 int numa_node; 599 #endif 600 unsigned long tx_maxrate; 601 /* 602 * Number of TX timeouts for this queue 603 * (/sys/class/net/DEV/Q/trans_timeout) 604 */ 605 unsigned long trans_timeout; 606 607 /* Subordinate device that the queue has been assigned to */ 608 struct net_device *sb_dev; 609 #ifdef CONFIG_XDP_SOCKETS 610 struct xdp_umem *umem; 611 #endif 612 /* 613 * write-mostly part 614 */ 615 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 616 int xmit_lock_owner; 617 /* 618 * Time (in jiffies) of last Tx 619 */ 620 unsigned long trans_start; 621 622 unsigned long state; 623 624 #ifdef CONFIG_BQL 625 struct dql dql; 626 #endif 627 } ____cacheline_aligned_in_smp; 628 629 extern int sysctl_fb_tunnels_only_for_init_net; 630 extern int sysctl_devconf_inherit_init_net; 631 632 static inline bool net_has_fallback_tunnels(const struct net *net) 633 { 634 return net == &init_net || 635 !IS_ENABLED(CONFIG_SYSCTL) || 636 !sysctl_fb_tunnels_only_for_init_net; 637 } 638 639 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 640 { 641 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 642 return q->numa_node; 643 #else 644 return NUMA_NO_NODE; 645 #endif 646 } 647 648 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 649 { 650 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 651 q->numa_node = node; 652 #endif 653 } 654 655 #ifdef CONFIG_RPS 656 /* 657 * This structure holds an RPS map which can be of variable length. The 658 * map is an array of CPUs. 659 */ 660 struct rps_map { 661 unsigned int len; 662 struct rcu_head rcu; 663 u16 cpus[0]; 664 }; 665 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 666 667 /* 668 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 669 * tail pointer for that CPU's input queue at the time of last enqueue, and 670 * a hardware filter index. 671 */ 672 struct rps_dev_flow { 673 u16 cpu; 674 u16 filter; 675 unsigned int last_qtail; 676 }; 677 #define RPS_NO_FILTER 0xffff 678 679 /* 680 * The rps_dev_flow_table structure contains a table of flow mappings. 681 */ 682 struct rps_dev_flow_table { 683 unsigned int mask; 684 struct rcu_head rcu; 685 struct rps_dev_flow flows[0]; 686 }; 687 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 688 ((_num) * sizeof(struct rps_dev_flow))) 689 690 /* 691 * The rps_sock_flow_table contains mappings of flows to the last CPU 692 * on which they were processed by the application (set in recvmsg). 693 * Each entry is a 32bit value. Upper part is the high-order bits 694 * of flow hash, lower part is CPU number. 695 * rps_cpu_mask is used to partition the space, depending on number of 696 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 697 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 698 * meaning we use 32-6=26 bits for the hash. 699 */ 700 struct rps_sock_flow_table { 701 u32 mask; 702 703 u32 ents[0] ____cacheline_aligned_in_smp; 704 }; 705 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 706 707 #define RPS_NO_CPU 0xffff 708 709 extern u32 rps_cpu_mask; 710 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 711 712 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 713 u32 hash) 714 { 715 if (table && hash) { 716 unsigned int index = hash & table->mask; 717 u32 val = hash & ~rps_cpu_mask; 718 719 /* We only give a hint, preemption can change CPU under us */ 720 val |= raw_smp_processor_id(); 721 722 if (table->ents[index] != val) 723 table->ents[index] = val; 724 } 725 } 726 727 #ifdef CONFIG_RFS_ACCEL 728 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 729 u16 filter_id); 730 #endif 731 #endif /* CONFIG_RPS */ 732 733 /* This structure contains an instance of an RX queue. */ 734 struct netdev_rx_queue { 735 #ifdef CONFIG_RPS 736 struct rps_map __rcu *rps_map; 737 struct rps_dev_flow_table __rcu *rps_flow_table; 738 #endif 739 struct kobject kobj; 740 struct net_device *dev; 741 struct xdp_rxq_info xdp_rxq; 742 #ifdef CONFIG_XDP_SOCKETS 743 struct xdp_umem *umem; 744 #endif 745 } ____cacheline_aligned_in_smp; 746 747 /* 748 * RX queue sysfs structures and functions. 749 */ 750 struct rx_queue_attribute { 751 struct attribute attr; 752 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 753 ssize_t (*store)(struct netdev_rx_queue *queue, 754 const char *buf, size_t len); 755 }; 756 757 #ifdef CONFIG_XPS 758 /* 759 * This structure holds an XPS map which can be of variable length. The 760 * map is an array of queues. 761 */ 762 struct xps_map { 763 unsigned int len; 764 unsigned int alloc_len; 765 struct rcu_head rcu; 766 u16 queues[0]; 767 }; 768 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 769 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 770 - sizeof(struct xps_map)) / sizeof(u16)) 771 772 /* 773 * This structure holds all XPS maps for device. Maps are indexed by CPU. 774 */ 775 struct xps_dev_maps { 776 struct rcu_head rcu; 777 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 778 }; 779 780 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 781 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 782 783 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 784 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 785 786 #endif /* CONFIG_XPS */ 787 788 #define TC_MAX_QUEUE 16 789 #define TC_BITMASK 15 790 /* HW offloaded queuing disciplines txq count and offset maps */ 791 struct netdev_tc_txq { 792 u16 count; 793 u16 offset; 794 }; 795 796 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 797 /* 798 * This structure is to hold information about the device 799 * configured to run FCoE protocol stack. 800 */ 801 struct netdev_fcoe_hbainfo { 802 char manufacturer[64]; 803 char serial_number[64]; 804 char hardware_version[64]; 805 char driver_version[64]; 806 char optionrom_version[64]; 807 char firmware_version[64]; 808 char model[256]; 809 char model_description[256]; 810 }; 811 #endif 812 813 #define MAX_PHYS_ITEM_ID_LEN 32 814 815 /* This structure holds a unique identifier to identify some 816 * physical item (port for example) used by a netdevice. 817 */ 818 struct netdev_phys_item_id { 819 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 820 unsigned char id_len; 821 }; 822 823 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 824 struct netdev_phys_item_id *b) 825 { 826 return a->id_len == b->id_len && 827 memcmp(a->id, b->id, a->id_len) == 0; 828 } 829 830 typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 831 struct sk_buff *skb, 832 struct net_device *sb_dev); 833 834 enum tc_setup_type { 835 TC_SETUP_QDISC_MQPRIO, 836 TC_SETUP_CLSU32, 837 TC_SETUP_CLSFLOWER, 838 TC_SETUP_CLSMATCHALL, 839 TC_SETUP_CLSBPF, 840 TC_SETUP_BLOCK, 841 TC_SETUP_QDISC_CBS, 842 TC_SETUP_QDISC_RED, 843 TC_SETUP_QDISC_PRIO, 844 TC_SETUP_QDISC_MQ, 845 TC_SETUP_QDISC_ETF, 846 TC_SETUP_ROOT_QDISC, 847 TC_SETUP_QDISC_GRED, 848 }; 849 850 /* These structures hold the attributes of bpf state that are being passed 851 * to the netdevice through the bpf op. 852 */ 853 enum bpf_netdev_command { 854 /* Set or clear a bpf program used in the earliest stages of packet 855 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 856 * is responsible for calling bpf_prog_put on any old progs that are 857 * stored. In case of error, the callee need not release the new prog 858 * reference, but on success it takes ownership and must bpf_prog_put 859 * when it is no longer used. 860 */ 861 XDP_SETUP_PROG, 862 XDP_SETUP_PROG_HW, 863 XDP_QUERY_PROG, 864 XDP_QUERY_PROG_HW, 865 /* BPF program for offload callbacks, invoked at program load time. */ 866 BPF_OFFLOAD_MAP_ALLOC, 867 BPF_OFFLOAD_MAP_FREE, 868 XDP_SETUP_XSK_UMEM, 869 }; 870 871 struct bpf_prog_offload_ops; 872 struct netlink_ext_ack; 873 struct xdp_umem; 874 875 struct netdev_bpf { 876 enum bpf_netdev_command command; 877 union { 878 /* XDP_SETUP_PROG */ 879 struct { 880 u32 flags; 881 struct bpf_prog *prog; 882 struct netlink_ext_ack *extack; 883 }; 884 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 885 struct { 886 u32 prog_id; 887 /* flags with which program was installed */ 888 u32 prog_flags; 889 }; 890 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 891 struct { 892 struct bpf_offloaded_map *offmap; 893 }; 894 /* XDP_SETUP_XSK_UMEM */ 895 struct { 896 struct xdp_umem *umem; 897 u16 queue_id; 898 } xsk; 899 }; 900 }; 901 902 #ifdef CONFIG_XFRM_OFFLOAD 903 struct xfrmdev_ops { 904 int (*xdo_dev_state_add) (struct xfrm_state *x); 905 void (*xdo_dev_state_delete) (struct xfrm_state *x); 906 void (*xdo_dev_state_free) (struct xfrm_state *x); 907 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 908 struct xfrm_state *x); 909 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 910 }; 911 #endif 912 913 struct dev_ifalias { 914 struct rcu_head rcuhead; 915 char ifalias[]; 916 }; 917 918 struct devlink; 919 struct tlsdev_ops; 920 921 /* 922 * This structure defines the management hooks for network devices. 923 * The following hooks can be defined; unless noted otherwise, they are 924 * optional and can be filled with a null pointer. 925 * 926 * int (*ndo_init)(struct net_device *dev); 927 * This function is called once when a network device is registered. 928 * The network device can use this for any late stage initialization 929 * or semantic validation. It can fail with an error code which will 930 * be propagated back to register_netdev. 931 * 932 * void (*ndo_uninit)(struct net_device *dev); 933 * This function is called when device is unregistered or when registration 934 * fails. It is not called if init fails. 935 * 936 * int (*ndo_open)(struct net_device *dev); 937 * This function is called when a network device transitions to the up 938 * state. 939 * 940 * int (*ndo_stop)(struct net_device *dev); 941 * This function is called when a network device transitions to the down 942 * state. 943 * 944 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 945 * struct net_device *dev); 946 * Called when a packet needs to be transmitted. 947 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 948 * the queue before that can happen; it's for obsolete devices and weird 949 * corner cases, but the stack really does a non-trivial amount 950 * of useless work if you return NETDEV_TX_BUSY. 951 * Required; cannot be NULL. 952 * 953 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 954 * struct net_device *dev 955 * netdev_features_t features); 956 * Called by core transmit path to determine if device is capable of 957 * performing offload operations on a given packet. This is to give 958 * the device an opportunity to implement any restrictions that cannot 959 * be otherwise expressed by feature flags. The check is called with 960 * the set of features that the stack has calculated and it returns 961 * those the driver believes to be appropriate. 962 * 963 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 964 * struct net_device *sb_dev); 965 * Called to decide which queue to use when device supports multiple 966 * transmit queues. 967 * 968 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 969 * This function is called to allow device receiver to make 970 * changes to configuration when multicast or promiscuous is enabled. 971 * 972 * void (*ndo_set_rx_mode)(struct net_device *dev); 973 * This function is called device changes address list filtering. 974 * If driver handles unicast address filtering, it should set 975 * IFF_UNICAST_FLT in its priv_flags. 976 * 977 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 978 * This function is called when the Media Access Control address 979 * needs to be changed. If this interface is not defined, the 980 * MAC address can not be changed. 981 * 982 * int (*ndo_validate_addr)(struct net_device *dev); 983 * Test if Media Access Control address is valid for the device. 984 * 985 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 986 * Called when a user requests an ioctl which can't be handled by 987 * the generic interface code. If not defined ioctls return 988 * not supported error code. 989 * 990 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 991 * Used to set network devices bus interface parameters. This interface 992 * is retained for legacy reasons; new devices should use the bus 993 * interface (PCI) for low level management. 994 * 995 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 996 * Called when a user wants to change the Maximum Transfer Unit 997 * of a device. 998 * 999 * void (*ndo_tx_timeout)(struct net_device *dev); 1000 * Callback used when the transmitter has not made any progress 1001 * for dev->watchdog ticks. 1002 * 1003 * void (*ndo_get_stats64)(struct net_device *dev, 1004 * struct rtnl_link_stats64 *storage); 1005 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1006 * Called when a user wants to get the network device usage 1007 * statistics. Drivers must do one of the following: 1008 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1009 * rtnl_link_stats64 structure passed by the caller. 1010 * 2. Define @ndo_get_stats to update a net_device_stats structure 1011 * (which should normally be dev->stats) and return a pointer to 1012 * it. The structure may be changed asynchronously only if each 1013 * field is written atomically. 1014 * 3. Update dev->stats asynchronously and atomically, and define 1015 * neither operation. 1016 * 1017 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1018 * Return true if this device supports offload stats of this attr_id. 1019 * 1020 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1021 * void *attr_data) 1022 * Get statistics for offload operations by attr_id. Write it into the 1023 * attr_data pointer. 1024 * 1025 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1026 * If device supports VLAN filtering this function is called when a 1027 * VLAN id is registered. 1028 * 1029 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1030 * If device supports VLAN filtering this function is called when a 1031 * VLAN id is unregistered. 1032 * 1033 * void (*ndo_poll_controller)(struct net_device *dev); 1034 * 1035 * SR-IOV management functions. 1036 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1037 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1038 * u8 qos, __be16 proto); 1039 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1040 * int max_tx_rate); 1041 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1042 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1043 * int (*ndo_get_vf_config)(struct net_device *dev, 1044 * int vf, struct ifla_vf_info *ivf); 1045 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1046 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1047 * struct nlattr *port[]); 1048 * 1049 * Enable or disable the VF ability to query its RSS Redirection Table and 1050 * Hash Key. This is needed since on some devices VF share this information 1051 * with PF and querying it may introduce a theoretical security risk. 1052 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1053 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1054 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1055 * void *type_data); 1056 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1057 * This is always called from the stack with the rtnl lock held and netif 1058 * tx queues stopped. This allows the netdevice to perform queue 1059 * management safely. 1060 * 1061 * Fiber Channel over Ethernet (FCoE) offload functions. 1062 * int (*ndo_fcoe_enable)(struct net_device *dev); 1063 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1064 * so the underlying device can perform whatever needed configuration or 1065 * initialization to support acceleration of FCoE traffic. 1066 * 1067 * int (*ndo_fcoe_disable)(struct net_device *dev); 1068 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1069 * so the underlying device can perform whatever needed clean-ups to 1070 * stop supporting acceleration of FCoE traffic. 1071 * 1072 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1073 * struct scatterlist *sgl, unsigned int sgc); 1074 * Called when the FCoE Initiator wants to initialize an I/O that 1075 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1076 * perform necessary setup and returns 1 to indicate the device is set up 1077 * successfully to perform DDP on this I/O, otherwise this returns 0. 1078 * 1079 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1080 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1081 * indicated by the FC exchange id 'xid', so the underlying device can 1082 * clean up and reuse resources for later DDP requests. 1083 * 1084 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1085 * struct scatterlist *sgl, unsigned int sgc); 1086 * Called when the FCoE Target wants to initialize an I/O that 1087 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1088 * perform necessary setup and returns 1 to indicate the device is set up 1089 * successfully to perform DDP on this I/O, otherwise this returns 0. 1090 * 1091 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1092 * struct netdev_fcoe_hbainfo *hbainfo); 1093 * Called when the FCoE Protocol stack wants information on the underlying 1094 * device. This information is utilized by the FCoE protocol stack to 1095 * register attributes with Fiber Channel management service as per the 1096 * FC-GS Fabric Device Management Information(FDMI) specification. 1097 * 1098 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1099 * Called when the underlying device wants to override default World Wide 1100 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1101 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1102 * protocol stack to use. 1103 * 1104 * RFS acceleration. 1105 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1106 * u16 rxq_index, u32 flow_id); 1107 * Set hardware filter for RFS. rxq_index is the target queue index; 1108 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1109 * Return the filter ID on success, or a negative error code. 1110 * 1111 * Slave management functions (for bridge, bonding, etc). 1112 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1113 * Called to make another netdev an underling. 1114 * 1115 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1116 * Called to release previously enslaved netdev. 1117 * 1118 * Feature/offload setting functions. 1119 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1120 * netdev_features_t features); 1121 * Adjusts the requested feature flags according to device-specific 1122 * constraints, and returns the resulting flags. Must not modify 1123 * the device state. 1124 * 1125 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1126 * Called to update device configuration to new features. Passed 1127 * feature set might be less than what was returned by ndo_fix_features()). 1128 * Must return >0 or -errno if it changed dev->features itself. 1129 * 1130 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1131 * struct net_device *dev, 1132 * const unsigned char *addr, u16 vid, u16 flags, 1133 * struct netlink_ext_ack *extack); 1134 * Adds an FDB entry to dev for addr. 1135 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1136 * struct net_device *dev, 1137 * const unsigned char *addr, u16 vid) 1138 * Deletes the FDB entry from dev coresponding to addr. 1139 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1140 * struct net_device *dev, struct net_device *filter_dev, 1141 * int *idx) 1142 * Used to add FDB entries to dump requests. Implementers should add 1143 * entries to skb and update idx with the number of entries. 1144 * 1145 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1146 * u16 flags, struct netlink_ext_ack *extack) 1147 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1148 * struct net_device *dev, u32 filter_mask, 1149 * int nlflags) 1150 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1151 * u16 flags); 1152 * 1153 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1154 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1155 * which do not represent real hardware may define this to allow their 1156 * userspace components to manage their virtual carrier state. Devices 1157 * that determine carrier state from physical hardware properties (eg 1158 * network cables) or protocol-dependent mechanisms (eg 1159 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1160 * 1161 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1162 * struct netdev_phys_item_id *ppid); 1163 * Called to get ID of physical port of this device. If driver does 1164 * not implement this, it is assumed that the hw is not able to have 1165 * multiple net devices on single physical port. 1166 * 1167 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1168 * struct netdev_phys_item_id *ppid) 1169 * Called to get the parent ID of the physical port of this device. 1170 * 1171 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1172 * struct udp_tunnel_info *ti); 1173 * Called by UDP tunnel to notify a driver about the UDP port and socket 1174 * address family that a UDP tunnel is listnening to. It is called only 1175 * when a new port starts listening. The operation is protected by the 1176 * RTNL. 1177 * 1178 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1179 * struct udp_tunnel_info *ti); 1180 * Called by UDP tunnel to notify the driver about a UDP port and socket 1181 * address family that the UDP tunnel is not listening to anymore. The 1182 * operation is protected by the RTNL. 1183 * 1184 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1185 * struct net_device *dev) 1186 * Called by upper layer devices to accelerate switching or other 1187 * station functionality into hardware. 'pdev is the lowerdev 1188 * to use for the offload and 'dev' is the net device that will 1189 * back the offload. Returns a pointer to the private structure 1190 * the upper layer will maintain. 1191 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1192 * Called by upper layer device to delete the station created 1193 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1194 * the station and priv is the structure returned by the add 1195 * operation. 1196 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1197 * int queue_index, u32 maxrate); 1198 * Called when a user wants to set a max-rate limitation of specific 1199 * TX queue. 1200 * int (*ndo_get_iflink)(const struct net_device *dev); 1201 * Called to get the iflink value of this device. 1202 * void (*ndo_change_proto_down)(struct net_device *dev, 1203 * bool proto_down); 1204 * This function is used to pass protocol port error state information 1205 * to the switch driver. The switch driver can react to the proto_down 1206 * by doing a phys down on the associated switch port. 1207 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1208 * This function is used to get egress tunnel information for given skb. 1209 * This is useful for retrieving outer tunnel header parameters while 1210 * sampling packet. 1211 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1212 * This function is used to specify the headroom that the skb must 1213 * consider when allocation skb during packet reception. Setting 1214 * appropriate rx headroom value allows avoiding skb head copy on 1215 * forward. Setting a negative value resets the rx headroom to the 1216 * default value. 1217 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1218 * This function is used to set or query state related to XDP on the 1219 * netdevice and manage BPF offload. See definition of 1220 * enum bpf_netdev_command for details. 1221 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1222 * u32 flags); 1223 * This function is used to submit @n XDP packets for transmit on a 1224 * netdevice. Returns number of frames successfully transmitted, frames 1225 * that got dropped are freed/returned via xdp_return_frame(). 1226 * Returns negative number, means general error invoking ndo, meaning 1227 * no frames were xmit'ed and core-caller will free all frames. 1228 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1229 * Get devlink port instance associated with a given netdev. 1230 * Called with a reference on the netdevice and devlink locks only, 1231 * rtnl_lock is not held. 1232 */ 1233 struct net_device_ops { 1234 int (*ndo_init)(struct net_device *dev); 1235 void (*ndo_uninit)(struct net_device *dev); 1236 int (*ndo_open)(struct net_device *dev); 1237 int (*ndo_stop)(struct net_device *dev); 1238 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1239 struct net_device *dev); 1240 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1241 struct net_device *dev, 1242 netdev_features_t features); 1243 u16 (*ndo_select_queue)(struct net_device *dev, 1244 struct sk_buff *skb, 1245 struct net_device *sb_dev); 1246 void (*ndo_change_rx_flags)(struct net_device *dev, 1247 int flags); 1248 void (*ndo_set_rx_mode)(struct net_device *dev); 1249 int (*ndo_set_mac_address)(struct net_device *dev, 1250 void *addr); 1251 int (*ndo_validate_addr)(struct net_device *dev); 1252 int (*ndo_do_ioctl)(struct net_device *dev, 1253 struct ifreq *ifr, int cmd); 1254 int (*ndo_set_config)(struct net_device *dev, 1255 struct ifmap *map); 1256 int (*ndo_change_mtu)(struct net_device *dev, 1257 int new_mtu); 1258 int (*ndo_neigh_setup)(struct net_device *dev, 1259 struct neigh_parms *); 1260 void (*ndo_tx_timeout) (struct net_device *dev); 1261 1262 void (*ndo_get_stats64)(struct net_device *dev, 1263 struct rtnl_link_stats64 *storage); 1264 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1265 int (*ndo_get_offload_stats)(int attr_id, 1266 const struct net_device *dev, 1267 void *attr_data); 1268 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1269 1270 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1271 __be16 proto, u16 vid); 1272 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1273 __be16 proto, u16 vid); 1274 #ifdef CONFIG_NET_POLL_CONTROLLER 1275 void (*ndo_poll_controller)(struct net_device *dev); 1276 int (*ndo_netpoll_setup)(struct net_device *dev, 1277 struct netpoll_info *info); 1278 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1279 #endif 1280 int (*ndo_set_vf_mac)(struct net_device *dev, 1281 int queue, u8 *mac); 1282 int (*ndo_set_vf_vlan)(struct net_device *dev, 1283 int queue, u16 vlan, 1284 u8 qos, __be16 proto); 1285 int (*ndo_set_vf_rate)(struct net_device *dev, 1286 int vf, int min_tx_rate, 1287 int max_tx_rate); 1288 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1289 int vf, bool setting); 1290 int (*ndo_set_vf_trust)(struct net_device *dev, 1291 int vf, bool setting); 1292 int (*ndo_get_vf_config)(struct net_device *dev, 1293 int vf, 1294 struct ifla_vf_info *ivf); 1295 int (*ndo_set_vf_link_state)(struct net_device *dev, 1296 int vf, int link_state); 1297 int (*ndo_get_vf_stats)(struct net_device *dev, 1298 int vf, 1299 struct ifla_vf_stats 1300 *vf_stats); 1301 int (*ndo_set_vf_port)(struct net_device *dev, 1302 int vf, 1303 struct nlattr *port[]); 1304 int (*ndo_get_vf_port)(struct net_device *dev, 1305 int vf, struct sk_buff *skb); 1306 int (*ndo_set_vf_guid)(struct net_device *dev, 1307 int vf, u64 guid, 1308 int guid_type); 1309 int (*ndo_set_vf_rss_query_en)( 1310 struct net_device *dev, 1311 int vf, bool setting); 1312 int (*ndo_setup_tc)(struct net_device *dev, 1313 enum tc_setup_type type, 1314 void *type_data); 1315 #if IS_ENABLED(CONFIG_FCOE) 1316 int (*ndo_fcoe_enable)(struct net_device *dev); 1317 int (*ndo_fcoe_disable)(struct net_device *dev); 1318 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1319 u16 xid, 1320 struct scatterlist *sgl, 1321 unsigned int sgc); 1322 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1323 u16 xid); 1324 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1325 u16 xid, 1326 struct scatterlist *sgl, 1327 unsigned int sgc); 1328 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1329 struct netdev_fcoe_hbainfo *hbainfo); 1330 #endif 1331 1332 #if IS_ENABLED(CONFIG_LIBFCOE) 1333 #define NETDEV_FCOE_WWNN 0 1334 #define NETDEV_FCOE_WWPN 1 1335 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1336 u64 *wwn, int type); 1337 #endif 1338 1339 #ifdef CONFIG_RFS_ACCEL 1340 int (*ndo_rx_flow_steer)(struct net_device *dev, 1341 const struct sk_buff *skb, 1342 u16 rxq_index, 1343 u32 flow_id); 1344 #endif 1345 int (*ndo_add_slave)(struct net_device *dev, 1346 struct net_device *slave_dev, 1347 struct netlink_ext_ack *extack); 1348 int (*ndo_del_slave)(struct net_device *dev, 1349 struct net_device *slave_dev); 1350 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1351 netdev_features_t features); 1352 int (*ndo_set_features)(struct net_device *dev, 1353 netdev_features_t features); 1354 int (*ndo_neigh_construct)(struct net_device *dev, 1355 struct neighbour *n); 1356 void (*ndo_neigh_destroy)(struct net_device *dev, 1357 struct neighbour *n); 1358 1359 int (*ndo_fdb_add)(struct ndmsg *ndm, 1360 struct nlattr *tb[], 1361 struct net_device *dev, 1362 const unsigned char *addr, 1363 u16 vid, 1364 u16 flags, 1365 struct netlink_ext_ack *extack); 1366 int (*ndo_fdb_del)(struct ndmsg *ndm, 1367 struct nlattr *tb[], 1368 struct net_device *dev, 1369 const unsigned char *addr, 1370 u16 vid); 1371 int (*ndo_fdb_dump)(struct sk_buff *skb, 1372 struct netlink_callback *cb, 1373 struct net_device *dev, 1374 struct net_device *filter_dev, 1375 int *idx); 1376 int (*ndo_fdb_get)(struct sk_buff *skb, 1377 struct nlattr *tb[], 1378 struct net_device *dev, 1379 const unsigned char *addr, 1380 u16 vid, u32 portid, u32 seq, 1381 struct netlink_ext_ack *extack); 1382 int (*ndo_bridge_setlink)(struct net_device *dev, 1383 struct nlmsghdr *nlh, 1384 u16 flags, 1385 struct netlink_ext_ack *extack); 1386 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1387 u32 pid, u32 seq, 1388 struct net_device *dev, 1389 u32 filter_mask, 1390 int nlflags); 1391 int (*ndo_bridge_dellink)(struct net_device *dev, 1392 struct nlmsghdr *nlh, 1393 u16 flags); 1394 int (*ndo_change_carrier)(struct net_device *dev, 1395 bool new_carrier); 1396 int (*ndo_get_phys_port_id)(struct net_device *dev, 1397 struct netdev_phys_item_id *ppid); 1398 int (*ndo_get_port_parent_id)(struct net_device *dev, 1399 struct netdev_phys_item_id *ppid); 1400 int (*ndo_get_phys_port_name)(struct net_device *dev, 1401 char *name, size_t len); 1402 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1403 struct udp_tunnel_info *ti); 1404 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1405 struct udp_tunnel_info *ti); 1406 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1407 struct net_device *dev); 1408 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1409 void *priv); 1410 1411 int (*ndo_get_lock_subclass)(struct net_device *dev); 1412 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1413 int queue_index, 1414 u32 maxrate); 1415 int (*ndo_get_iflink)(const struct net_device *dev); 1416 int (*ndo_change_proto_down)(struct net_device *dev, 1417 bool proto_down); 1418 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1419 struct sk_buff *skb); 1420 void (*ndo_set_rx_headroom)(struct net_device *dev, 1421 int needed_headroom); 1422 int (*ndo_bpf)(struct net_device *dev, 1423 struct netdev_bpf *bpf); 1424 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1425 struct xdp_frame **xdp, 1426 u32 flags); 1427 int (*ndo_xsk_async_xmit)(struct net_device *dev, 1428 u32 queue_id); 1429 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1430 }; 1431 1432 /** 1433 * enum net_device_priv_flags - &struct net_device priv_flags 1434 * 1435 * These are the &struct net_device, they are only set internally 1436 * by drivers and used in the kernel. These flags are invisible to 1437 * userspace; this means that the order of these flags can change 1438 * during any kernel release. 1439 * 1440 * You should have a pretty good reason to be extending these flags. 1441 * 1442 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1443 * @IFF_EBRIDGE: Ethernet bridging device 1444 * @IFF_BONDING: bonding master or slave 1445 * @IFF_ISATAP: ISATAP interface (RFC4214) 1446 * @IFF_WAN_HDLC: WAN HDLC device 1447 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1448 * release skb->dst 1449 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1450 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1451 * @IFF_MACVLAN_PORT: device used as macvlan port 1452 * @IFF_BRIDGE_PORT: device used as bridge port 1453 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1454 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1455 * @IFF_UNICAST_FLT: Supports unicast filtering 1456 * @IFF_TEAM_PORT: device used as team port 1457 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1458 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1459 * change when it's running 1460 * @IFF_MACVLAN: Macvlan device 1461 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1462 * underlying stacked devices 1463 * @IFF_L3MDEV_MASTER: device is an L3 master device 1464 * @IFF_NO_QUEUE: device can run without qdisc attached 1465 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1466 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1467 * @IFF_TEAM: device is a team device 1468 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1469 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1470 * entity (i.e. the master device for bridged veth) 1471 * @IFF_MACSEC: device is a MACsec device 1472 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1473 * @IFF_FAILOVER: device is a failover master device 1474 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1475 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1476 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1477 */ 1478 enum netdev_priv_flags { 1479 IFF_802_1Q_VLAN = 1<<0, 1480 IFF_EBRIDGE = 1<<1, 1481 IFF_BONDING = 1<<2, 1482 IFF_ISATAP = 1<<3, 1483 IFF_WAN_HDLC = 1<<4, 1484 IFF_XMIT_DST_RELEASE = 1<<5, 1485 IFF_DONT_BRIDGE = 1<<6, 1486 IFF_DISABLE_NETPOLL = 1<<7, 1487 IFF_MACVLAN_PORT = 1<<8, 1488 IFF_BRIDGE_PORT = 1<<9, 1489 IFF_OVS_DATAPATH = 1<<10, 1490 IFF_TX_SKB_SHARING = 1<<11, 1491 IFF_UNICAST_FLT = 1<<12, 1492 IFF_TEAM_PORT = 1<<13, 1493 IFF_SUPP_NOFCS = 1<<14, 1494 IFF_LIVE_ADDR_CHANGE = 1<<15, 1495 IFF_MACVLAN = 1<<16, 1496 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1497 IFF_L3MDEV_MASTER = 1<<18, 1498 IFF_NO_QUEUE = 1<<19, 1499 IFF_OPENVSWITCH = 1<<20, 1500 IFF_L3MDEV_SLAVE = 1<<21, 1501 IFF_TEAM = 1<<22, 1502 IFF_RXFH_CONFIGURED = 1<<23, 1503 IFF_PHONY_HEADROOM = 1<<24, 1504 IFF_MACSEC = 1<<25, 1505 IFF_NO_RX_HANDLER = 1<<26, 1506 IFF_FAILOVER = 1<<27, 1507 IFF_FAILOVER_SLAVE = 1<<28, 1508 IFF_L3MDEV_RX_HANDLER = 1<<29, 1509 IFF_LIVE_RENAME_OK = 1<<30, 1510 }; 1511 1512 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1513 #define IFF_EBRIDGE IFF_EBRIDGE 1514 #define IFF_BONDING IFF_BONDING 1515 #define IFF_ISATAP IFF_ISATAP 1516 #define IFF_WAN_HDLC IFF_WAN_HDLC 1517 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1518 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1519 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1520 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1521 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1522 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1523 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1524 #define IFF_UNICAST_FLT IFF_UNICAST_FLT 1525 #define IFF_TEAM_PORT IFF_TEAM_PORT 1526 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1527 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1528 #define IFF_MACVLAN IFF_MACVLAN 1529 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1530 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1531 #define IFF_NO_QUEUE IFF_NO_QUEUE 1532 #define IFF_OPENVSWITCH IFF_OPENVSWITCH 1533 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1534 #define IFF_TEAM IFF_TEAM 1535 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1536 #define IFF_MACSEC IFF_MACSEC 1537 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1538 #define IFF_FAILOVER IFF_FAILOVER 1539 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1540 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1541 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1542 1543 /** 1544 * struct net_device - The DEVICE structure. 1545 * 1546 * Actually, this whole structure is a big mistake. It mixes I/O 1547 * data with strictly "high-level" data, and it has to know about 1548 * almost every data structure used in the INET module. 1549 * 1550 * @name: This is the first field of the "visible" part of this structure 1551 * (i.e. as seen by users in the "Space.c" file). It is the name 1552 * of the interface. 1553 * 1554 * @name_hlist: Device name hash chain, please keep it close to name[] 1555 * @ifalias: SNMP alias 1556 * @mem_end: Shared memory end 1557 * @mem_start: Shared memory start 1558 * @base_addr: Device I/O address 1559 * @irq: Device IRQ number 1560 * 1561 * @state: Generic network queuing layer state, see netdev_state_t 1562 * @dev_list: The global list of network devices 1563 * @napi_list: List entry used for polling NAPI devices 1564 * @unreg_list: List entry when we are unregistering the 1565 * device; see the function unregister_netdev 1566 * @close_list: List entry used when we are closing the device 1567 * @ptype_all: Device-specific packet handlers for all protocols 1568 * @ptype_specific: Device-specific, protocol-specific packet handlers 1569 * 1570 * @adj_list: Directly linked devices, like slaves for bonding 1571 * @features: Currently active device features 1572 * @hw_features: User-changeable features 1573 * 1574 * @wanted_features: User-requested features 1575 * @vlan_features: Mask of features inheritable by VLAN devices 1576 * 1577 * @hw_enc_features: Mask of features inherited by encapsulating devices 1578 * This field indicates what encapsulation 1579 * offloads the hardware is capable of doing, 1580 * and drivers will need to set them appropriately. 1581 * 1582 * @mpls_features: Mask of features inheritable by MPLS 1583 * 1584 * @ifindex: interface index 1585 * @group: The group the device belongs to 1586 * 1587 * @stats: Statistics struct, which was left as a legacy, use 1588 * rtnl_link_stats64 instead 1589 * 1590 * @rx_dropped: Dropped packets by core network, 1591 * do not use this in drivers 1592 * @tx_dropped: Dropped packets by core network, 1593 * do not use this in drivers 1594 * @rx_nohandler: nohandler dropped packets by core network on 1595 * inactive devices, do not use this in drivers 1596 * @carrier_up_count: Number of times the carrier has been up 1597 * @carrier_down_count: Number of times the carrier has been down 1598 * 1599 * @wireless_handlers: List of functions to handle Wireless Extensions, 1600 * instead of ioctl, 1601 * see <net/iw_handler.h> for details. 1602 * @wireless_data: Instance data managed by the core of wireless extensions 1603 * 1604 * @netdev_ops: Includes several pointers to callbacks, 1605 * if one wants to override the ndo_*() functions 1606 * @ethtool_ops: Management operations 1607 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1608 * discovery handling. Necessary for e.g. 6LoWPAN. 1609 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1610 * of Layer 2 headers. 1611 * 1612 * @flags: Interface flags (a la BSD) 1613 * @priv_flags: Like 'flags' but invisible to userspace, 1614 * see if.h for the definitions 1615 * @gflags: Global flags ( kept as legacy ) 1616 * @padded: How much padding added by alloc_netdev() 1617 * @operstate: RFC2863 operstate 1618 * @link_mode: Mapping policy to operstate 1619 * @if_port: Selectable AUI, TP, ... 1620 * @dma: DMA channel 1621 * @mtu: Interface MTU value 1622 * @min_mtu: Interface Minimum MTU value 1623 * @max_mtu: Interface Maximum MTU value 1624 * @type: Interface hardware type 1625 * @hard_header_len: Maximum hardware header length. 1626 * @min_header_len: Minimum hardware header length 1627 * 1628 * @needed_headroom: Extra headroom the hardware may need, but not in all 1629 * cases can this be guaranteed 1630 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1631 * cases can this be guaranteed. Some cases also use 1632 * LL_MAX_HEADER instead to allocate the skb 1633 * 1634 * interface address info: 1635 * 1636 * @perm_addr: Permanent hw address 1637 * @addr_assign_type: Hw address assignment type 1638 * @addr_len: Hardware address length 1639 * @neigh_priv_len: Used in neigh_alloc() 1640 * @dev_id: Used to differentiate devices that share 1641 * the same link layer address 1642 * @dev_port: Used to differentiate devices that share 1643 * the same function 1644 * @addr_list_lock: XXX: need comments on this one 1645 * @uc_promisc: Counter that indicates promiscuous mode 1646 * has been enabled due to the need to listen to 1647 * additional unicast addresses in a device that 1648 * does not implement ndo_set_rx_mode() 1649 * @uc: unicast mac addresses 1650 * @mc: multicast mac addresses 1651 * @dev_addrs: list of device hw addresses 1652 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1653 * @promiscuity: Number of times the NIC is told to work in 1654 * promiscuous mode; if it becomes 0 the NIC will 1655 * exit promiscuous mode 1656 * @allmulti: Counter, enables or disables allmulticast mode 1657 * 1658 * @vlan_info: VLAN info 1659 * @dsa_ptr: dsa specific data 1660 * @tipc_ptr: TIPC specific data 1661 * @atalk_ptr: AppleTalk link 1662 * @ip_ptr: IPv4 specific data 1663 * @dn_ptr: DECnet specific data 1664 * @ip6_ptr: IPv6 specific data 1665 * @ax25_ptr: AX.25 specific data 1666 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1667 * 1668 * @dev_addr: Hw address (before bcast, 1669 * because most packets are unicast) 1670 * 1671 * @_rx: Array of RX queues 1672 * @num_rx_queues: Number of RX queues 1673 * allocated at register_netdev() time 1674 * @real_num_rx_queues: Number of RX queues currently active in device 1675 * 1676 * @rx_handler: handler for received packets 1677 * @rx_handler_data: XXX: need comments on this one 1678 * @miniq_ingress: ingress/clsact qdisc specific data for 1679 * ingress processing 1680 * @ingress_queue: XXX: need comments on this one 1681 * @broadcast: hw bcast address 1682 * 1683 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1684 * indexed by RX queue number. Assigned by driver. 1685 * This must only be set if the ndo_rx_flow_steer 1686 * operation is defined 1687 * @index_hlist: Device index hash chain 1688 * 1689 * @_tx: Array of TX queues 1690 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1691 * @real_num_tx_queues: Number of TX queues currently active in device 1692 * @qdisc: Root qdisc from userspace point of view 1693 * @tx_queue_len: Max frames per queue allowed 1694 * @tx_global_lock: XXX: need comments on this one 1695 * 1696 * @xps_maps: XXX: need comments on this one 1697 * @miniq_egress: clsact qdisc specific data for 1698 * egress processing 1699 * @watchdog_timeo: Represents the timeout that is used by 1700 * the watchdog (see dev_watchdog()) 1701 * @watchdog_timer: List of timers 1702 * 1703 * @pcpu_refcnt: Number of references to this device 1704 * @todo_list: Delayed register/unregister 1705 * @link_watch_list: XXX: need comments on this one 1706 * 1707 * @reg_state: Register/unregister state machine 1708 * @dismantle: Device is going to be freed 1709 * @rtnl_link_state: This enum represents the phases of creating 1710 * a new link 1711 * 1712 * @needs_free_netdev: Should unregister perform free_netdev? 1713 * @priv_destructor: Called from unregister 1714 * @npinfo: XXX: need comments on this one 1715 * @nd_net: Network namespace this network device is inside 1716 * 1717 * @ml_priv: Mid-layer private 1718 * @lstats: Loopback statistics 1719 * @tstats: Tunnel statistics 1720 * @dstats: Dummy statistics 1721 * @vstats: Virtual ethernet statistics 1722 * 1723 * @garp_port: GARP 1724 * @mrp_port: MRP 1725 * 1726 * @dev: Class/net/name entry 1727 * @sysfs_groups: Space for optional device, statistics and wireless 1728 * sysfs groups 1729 * 1730 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1731 * @rtnl_link_ops: Rtnl_link_ops 1732 * 1733 * @gso_max_size: Maximum size of generic segmentation offload 1734 * @gso_max_segs: Maximum number of segments that can be passed to the 1735 * NIC for GSO 1736 * 1737 * @dcbnl_ops: Data Center Bridging netlink ops 1738 * @num_tc: Number of traffic classes in the net device 1739 * @tc_to_txq: XXX: need comments on this one 1740 * @prio_tc_map: XXX: need comments on this one 1741 * 1742 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1743 * 1744 * @priomap: XXX: need comments on this one 1745 * @phydev: Physical device may attach itself 1746 * for hardware timestamping 1747 * @sfp_bus: attached &struct sfp_bus structure. 1748 * 1749 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1750 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1751 * 1752 * @proto_down: protocol port state information can be sent to the 1753 * switch driver and used to set the phys state of the 1754 * switch port. 1755 * 1756 * @wol_enabled: Wake-on-LAN is enabled 1757 * 1758 * FIXME: cleanup struct net_device such that network protocol info 1759 * moves out. 1760 */ 1761 1762 struct net_device { 1763 char name[IFNAMSIZ]; 1764 struct hlist_node name_hlist; 1765 struct dev_ifalias __rcu *ifalias; 1766 /* 1767 * I/O specific fields 1768 * FIXME: Merge these and struct ifmap into one 1769 */ 1770 unsigned long mem_end; 1771 unsigned long mem_start; 1772 unsigned long base_addr; 1773 int irq; 1774 1775 /* 1776 * Some hardware also needs these fields (state,dev_list, 1777 * napi_list,unreg_list,close_list) but they are not 1778 * part of the usual set specified in Space.c. 1779 */ 1780 1781 unsigned long state; 1782 1783 struct list_head dev_list; 1784 struct list_head napi_list; 1785 struct list_head unreg_list; 1786 struct list_head close_list; 1787 struct list_head ptype_all; 1788 struct list_head ptype_specific; 1789 1790 struct { 1791 struct list_head upper; 1792 struct list_head lower; 1793 } adj_list; 1794 1795 netdev_features_t features; 1796 netdev_features_t hw_features; 1797 netdev_features_t wanted_features; 1798 netdev_features_t vlan_features; 1799 netdev_features_t hw_enc_features; 1800 netdev_features_t mpls_features; 1801 netdev_features_t gso_partial_features; 1802 1803 int ifindex; 1804 int group; 1805 1806 struct net_device_stats stats; 1807 1808 atomic_long_t rx_dropped; 1809 atomic_long_t tx_dropped; 1810 atomic_long_t rx_nohandler; 1811 1812 /* Stats to monitor link on/off, flapping */ 1813 atomic_t carrier_up_count; 1814 atomic_t carrier_down_count; 1815 1816 #ifdef CONFIG_WIRELESS_EXT 1817 const struct iw_handler_def *wireless_handlers; 1818 struct iw_public_data *wireless_data; 1819 #endif 1820 const struct net_device_ops *netdev_ops; 1821 const struct ethtool_ops *ethtool_ops; 1822 #ifdef CONFIG_NET_L3_MASTER_DEV 1823 const struct l3mdev_ops *l3mdev_ops; 1824 #endif 1825 #if IS_ENABLED(CONFIG_IPV6) 1826 const struct ndisc_ops *ndisc_ops; 1827 #endif 1828 1829 #ifdef CONFIG_XFRM_OFFLOAD 1830 const struct xfrmdev_ops *xfrmdev_ops; 1831 #endif 1832 1833 #if IS_ENABLED(CONFIG_TLS_DEVICE) 1834 const struct tlsdev_ops *tlsdev_ops; 1835 #endif 1836 1837 const struct header_ops *header_ops; 1838 1839 unsigned int flags; 1840 unsigned int priv_flags; 1841 1842 unsigned short gflags; 1843 unsigned short padded; 1844 1845 unsigned char operstate; 1846 unsigned char link_mode; 1847 1848 unsigned char if_port; 1849 unsigned char dma; 1850 1851 /* Note : dev->mtu is often read without holding a lock. 1852 * Writers usually hold RTNL. 1853 * It is recommended to use READ_ONCE() to annotate the reads, 1854 * and to use WRITE_ONCE() to annotate the writes. 1855 */ 1856 unsigned int mtu; 1857 unsigned int min_mtu; 1858 unsigned int max_mtu; 1859 unsigned short type; 1860 unsigned short hard_header_len; 1861 unsigned char min_header_len; 1862 1863 unsigned short needed_headroom; 1864 unsigned short needed_tailroom; 1865 1866 /* Interface address info. */ 1867 unsigned char perm_addr[MAX_ADDR_LEN]; 1868 unsigned char addr_assign_type; 1869 unsigned char addr_len; 1870 unsigned short neigh_priv_len; 1871 unsigned short dev_id; 1872 unsigned short dev_port; 1873 spinlock_t addr_list_lock; 1874 unsigned char name_assign_type; 1875 bool uc_promisc; 1876 struct netdev_hw_addr_list uc; 1877 struct netdev_hw_addr_list mc; 1878 struct netdev_hw_addr_list dev_addrs; 1879 1880 #ifdef CONFIG_SYSFS 1881 struct kset *queues_kset; 1882 #endif 1883 unsigned int promiscuity; 1884 unsigned int allmulti; 1885 1886 1887 /* Protocol-specific pointers */ 1888 1889 #if IS_ENABLED(CONFIG_VLAN_8021Q) 1890 struct vlan_info __rcu *vlan_info; 1891 #endif 1892 #if IS_ENABLED(CONFIG_NET_DSA) 1893 struct dsa_port *dsa_ptr; 1894 #endif 1895 #if IS_ENABLED(CONFIG_TIPC) 1896 struct tipc_bearer __rcu *tipc_ptr; 1897 #endif 1898 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1899 void *atalk_ptr; 1900 #endif 1901 struct in_device __rcu *ip_ptr; 1902 #if IS_ENABLED(CONFIG_DECNET) 1903 struct dn_dev __rcu *dn_ptr; 1904 #endif 1905 struct inet6_dev __rcu *ip6_ptr; 1906 #if IS_ENABLED(CONFIG_AX25) 1907 void *ax25_ptr; 1908 #endif 1909 struct wireless_dev *ieee80211_ptr; 1910 struct wpan_dev *ieee802154_ptr; 1911 #if IS_ENABLED(CONFIG_MPLS_ROUTING) 1912 struct mpls_dev __rcu *mpls_ptr; 1913 #endif 1914 1915 /* 1916 * Cache lines mostly used on receive path (including eth_type_trans()) 1917 */ 1918 /* Interface address info used in eth_type_trans() */ 1919 unsigned char *dev_addr; 1920 1921 struct netdev_rx_queue *_rx; 1922 unsigned int num_rx_queues; 1923 unsigned int real_num_rx_queues; 1924 1925 struct bpf_prog __rcu *xdp_prog; 1926 unsigned long gro_flush_timeout; 1927 rx_handler_func_t __rcu *rx_handler; 1928 void __rcu *rx_handler_data; 1929 1930 #ifdef CONFIG_NET_CLS_ACT 1931 struct mini_Qdisc __rcu *miniq_ingress; 1932 #endif 1933 struct netdev_queue __rcu *ingress_queue; 1934 #ifdef CONFIG_NETFILTER_INGRESS 1935 struct nf_hook_entries __rcu *nf_hooks_ingress; 1936 #endif 1937 1938 unsigned char broadcast[MAX_ADDR_LEN]; 1939 #ifdef CONFIG_RFS_ACCEL 1940 struct cpu_rmap *rx_cpu_rmap; 1941 #endif 1942 struct hlist_node index_hlist; 1943 1944 /* 1945 * Cache lines mostly used on transmit path 1946 */ 1947 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1948 unsigned int num_tx_queues; 1949 unsigned int real_num_tx_queues; 1950 struct Qdisc *qdisc; 1951 #ifdef CONFIG_NET_SCHED 1952 DECLARE_HASHTABLE (qdisc_hash, 4); 1953 #endif 1954 unsigned int tx_queue_len; 1955 spinlock_t tx_global_lock; 1956 int watchdog_timeo; 1957 1958 #ifdef CONFIG_XPS 1959 struct xps_dev_maps __rcu *xps_cpus_map; 1960 struct xps_dev_maps __rcu *xps_rxqs_map; 1961 #endif 1962 #ifdef CONFIG_NET_CLS_ACT 1963 struct mini_Qdisc __rcu *miniq_egress; 1964 #endif 1965 1966 /* These may be needed for future network-power-down code. */ 1967 struct timer_list watchdog_timer; 1968 1969 int __percpu *pcpu_refcnt; 1970 struct list_head todo_list; 1971 1972 struct list_head link_watch_list; 1973 1974 enum { NETREG_UNINITIALIZED=0, 1975 NETREG_REGISTERED, /* completed register_netdevice */ 1976 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1977 NETREG_UNREGISTERED, /* completed unregister todo */ 1978 NETREG_RELEASED, /* called free_netdev */ 1979 NETREG_DUMMY, /* dummy device for NAPI poll */ 1980 } reg_state:8; 1981 1982 bool dismantle; 1983 1984 enum { 1985 RTNL_LINK_INITIALIZED, 1986 RTNL_LINK_INITIALIZING, 1987 } rtnl_link_state:16; 1988 1989 bool needs_free_netdev; 1990 void (*priv_destructor)(struct net_device *dev); 1991 1992 #ifdef CONFIG_NETPOLL 1993 struct netpoll_info __rcu *npinfo; 1994 #endif 1995 1996 possible_net_t nd_net; 1997 1998 /* mid-layer private */ 1999 union { 2000 void *ml_priv; 2001 struct pcpu_lstats __percpu *lstats; 2002 struct pcpu_sw_netstats __percpu *tstats; 2003 struct pcpu_dstats __percpu *dstats; 2004 }; 2005 2006 #if IS_ENABLED(CONFIG_GARP) 2007 struct garp_port __rcu *garp_port; 2008 #endif 2009 #if IS_ENABLED(CONFIG_MRP) 2010 struct mrp_port __rcu *mrp_port; 2011 #endif 2012 2013 struct device dev; 2014 const struct attribute_group *sysfs_groups[4]; 2015 const struct attribute_group *sysfs_rx_queue_group; 2016 2017 const struct rtnl_link_ops *rtnl_link_ops; 2018 2019 /* for setting kernel sock attribute on TCP connection setup */ 2020 #define GSO_MAX_SIZE 65536 2021 unsigned int gso_max_size; 2022 #define GSO_MAX_SEGS 65535 2023 u16 gso_max_segs; 2024 2025 #ifdef CONFIG_DCB 2026 const struct dcbnl_rtnl_ops *dcbnl_ops; 2027 #endif 2028 s16 num_tc; 2029 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2030 u8 prio_tc_map[TC_BITMASK + 1]; 2031 2032 #if IS_ENABLED(CONFIG_FCOE) 2033 unsigned int fcoe_ddp_xid; 2034 #endif 2035 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2036 struct netprio_map __rcu *priomap; 2037 #endif 2038 struct phy_device *phydev; 2039 struct sfp_bus *sfp_bus; 2040 struct lock_class_key *qdisc_tx_busylock; 2041 struct lock_class_key *qdisc_running_key; 2042 bool proto_down; 2043 unsigned wol_enabled:1; 2044 }; 2045 #define to_net_dev(d) container_of(d, struct net_device, dev) 2046 2047 static inline bool netif_elide_gro(const struct net_device *dev) 2048 { 2049 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2050 return true; 2051 return false; 2052 } 2053 2054 #define NETDEV_ALIGN 32 2055 2056 static inline 2057 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2058 { 2059 return dev->prio_tc_map[prio & TC_BITMASK]; 2060 } 2061 2062 static inline 2063 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2064 { 2065 if (tc >= dev->num_tc) 2066 return -EINVAL; 2067 2068 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2069 return 0; 2070 } 2071 2072 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2073 void netdev_reset_tc(struct net_device *dev); 2074 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2075 int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2076 2077 static inline 2078 int netdev_get_num_tc(struct net_device *dev) 2079 { 2080 return dev->num_tc; 2081 } 2082 2083 void netdev_unbind_sb_channel(struct net_device *dev, 2084 struct net_device *sb_dev); 2085 int netdev_bind_sb_channel_queue(struct net_device *dev, 2086 struct net_device *sb_dev, 2087 u8 tc, u16 count, u16 offset); 2088 int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2089 static inline int netdev_get_sb_channel(struct net_device *dev) 2090 { 2091 return max_t(int, -dev->num_tc, 0); 2092 } 2093 2094 static inline 2095 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2096 unsigned int index) 2097 { 2098 return &dev->_tx[index]; 2099 } 2100 2101 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2102 const struct sk_buff *skb) 2103 { 2104 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2105 } 2106 2107 static inline void netdev_for_each_tx_queue(struct net_device *dev, 2108 void (*f)(struct net_device *, 2109 struct netdev_queue *, 2110 void *), 2111 void *arg) 2112 { 2113 unsigned int i; 2114 2115 for (i = 0; i < dev->num_tx_queues; i++) 2116 f(dev, &dev->_tx[i], arg); 2117 } 2118 2119 #define netdev_lockdep_set_classes(dev) \ 2120 { \ 2121 static struct lock_class_key qdisc_tx_busylock_key; \ 2122 static struct lock_class_key qdisc_running_key; \ 2123 static struct lock_class_key qdisc_xmit_lock_key; \ 2124 static struct lock_class_key dev_addr_list_lock_key; \ 2125 unsigned int i; \ 2126 \ 2127 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2128 (dev)->qdisc_running_key = &qdisc_running_key; \ 2129 lockdep_set_class(&(dev)->addr_list_lock, \ 2130 &dev_addr_list_lock_key); \ 2131 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2132 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2133 &qdisc_xmit_lock_key); \ 2134 } 2135 2136 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2137 struct net_device *sb_dev); 2138 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2139 struct sk_buff *skb, 2140 struct net_device *sb_dev); 2141 2142 /* returns the headroom that the master device needs to take in account 2143 * when forwarding to this dev 2144 */ 2145 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2146 { 2147 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2148 } 2149 2150 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2151 { 2152 if (dev->netdev_ops->ndo_set_rx_headroom) 2153 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2154 } 2155 2156 /* set the device rx headroom to the dev's default */ 2157 static inline void netdev_reset_rx_headroom(struct net_device *dev) 2158 { 2159 netdev_set_rx_headroom(dev, -1); 2160 } 2161 2162 /* 2163 * Net namespace inlines 2164 */ 2165 static inline 2166 struct net *dev_net(const struct net_device *dev) 2167 { 2168 return read_pnet(&dev->nd_net); 2169 } 2170 2171 static inline 2172 void dev_net_set(struct net_device *dev, struct net *net) 2173 { 2174 write_pnet(&dev->nd_net, net); 2175 } 2176 2177 /** 2178 * netdev_priv - access network device private data 2179 * @dev: network device 2180 * 2181 * Get network device private data 2182 */ 2183 static inline void *netdev_priv(const struct net_device *dev) 2184 { 2185 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2186 } 2187 2188 /* Set the sysfs physical device reference for the network logical device 2189 * if set prior to registration will cause a symlink during initialization. 2190 */ 2191 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2192 2193 /* Set the sysfs device type for the network logical device to allow 2194 * fine-grained identification of different network device types. For 2195 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2196 */ 2197 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2198 2199 /* Default NAPI poll() weight 2200 * Device drivers are strongly advised to not use bigger value 2201 */ 2202 #define NAPI_POLL_WEIGHT 64 2203 2204 /** 2205 * netif_napi_add - initialize a NAPI context 2206 * @dev: network device 2207 * @napi: NAPI context 2208 * @poll: polling function 2209 * @weight: default weight 2210 * 2211 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2212 * *any* of the other NAPI-related functions. 2213 */ 2214 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2215 int (*poll)(struct napi_struct *, int), int weight); 2216 2217 /** 2218 * netif_tx_napi_add - initialize a NAPI context 2219 * @dev: network device 2220 * @napi: NAPI context 2221 * @poll: polling function 2222 * @weight: default weight 2223 * 2224 * This variant of netif_napi_add() should be used from drivers using NAPI 2225 * to exclusively poll a TX queue. 2226 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2227 */ 2228 static inline void netif_tx_napi_add(struct net_device *dev, 2229 struct napi_struct *napi, 2230 int (*poll)(struct napi_struct *, int), 2231 int weight) 2232 { 2233 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2234 netif_napi_add(dev, napi, poll, weight); 2235 } 2236 2237 /** 2238 * netif_napi_del - remove a NAPI context 2239 * @napi: NAPI context 2240 * 2241 * netif_napi_del() removes a NAPI context from the network device NAPI list 2242 */ 2243 void netif_napi_del(struct napi_struct *napi); 2244 2245 struct napi_gro_cb { 2246 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2247 void *frag0; 2248 2249 /* Length of frag0. */ 2250 unsigned int frag0_len; 2251 2252 /* This indicates where we are processing relative to skb->data. */ 2253 int data_offset; 2254 2255 /* This is non-zero if the packet cannot be merged with the new skb. */ 2256 u16 flush; 2257 2258 /* Save the IP ID here and check when we get to the transport layer */ 2259 u16 flush_id; 2260 2261 /* Number of segments aggregated. */ 2262 u16 count; 2263 2264 /* Start offset for remote checksum offload */ 2265 u16 gro_remcsum_start; 2266 2267 /* jiffies when first packet was created/queued */ 2268 unsigned long age; 2269 2270 /* Used in ipv6_gro_receive() and foo-over-udp */ 2271 u16 proto; 2272 2273 /* This is non-zero if the packet may be of the same flow. */ 2274 u8 same_flow:1; 2275 2276 /* Used in tunnel GRO receive */ 2277 u8 encap_mark:1; 2278 2279 /* GRO checksum is valid */ 2280 u8 csum_valid:1; 2281 2282 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2283 u8 csum_cnt:3; 2284 2285 /* Free the skb? */ 2286 u8 free:2; 2287 #define NAPI_GRO_FREE 1 2288 #define NAPI_GRO_FREE_STOLEN_HEAD 2 2289 2290 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2291 u8 is_ipv6:1; 2292 2293 /* Used in GRE, set in fou/gue_gro_receive */ 2294 u8 is_fou:1; 2295 2296 /* Used to determine if flush_id can be ignored */ 2297 u8 is_atomic:1; 2298 2299 /* Number of gro_receive callbacks this packet already went through */ 2300 u8 recursion_counter:4; 2301 2302 /* 1 bit hole */ 2303 2304 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2305 __wsum csum; 2306 2307 /* used in skb_gro_receive() slow path */ 2308 struct sk_buff *last; 2309 }; 2310 2311 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2312 2313 #define GRO_RECURSION_LIMIT 15 2314 static inline int gro_recursion_inc_test(struct sk_buff *skb) 2315 { 2316 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2317 } 2318 2319 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2320 static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2321 struct list_head *head, 2322 struct sk_buff *skb) 2323 { 2324 if (unlikely(gro_recursion_inc_test(skb))) { 2325 NAPI_GRO_CB(skb)->flush |= 1; 2326 return NULL; 2327 } 2328 2329 return cb(head, skb); 2330 } 2331 2332 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2333 struct sk_buff *); 2334 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2335 struct sock *sk, 2336 struct list_head *head, 2337 struct sk_buff *skb) 2338 { 2339 if (unlikely(gro_recursion_inc_test(skb))) { 2340 NAPI_GRO_CB(skb)->flush |= 1; 2341 return NULL; 2342 } 2343 2344 return cb(sk, head, skb); 2345 } 2346 2347 struct packet_type { 2348 __be16 type; /* This is really htons(ether_type). */ 2349 bool ignore_outgoing; 2350 struct net_device *dev; /* NULL is wildcarded here */ 2351 int (*func) (struct sk_buff *, 2352 struct net_device *, 2353 struct packet_type *, 2354 struct net_device *); 2355 void (*list_func) (struct list_head *, 2356 struct packet_type *, 2357 struct net_device *); 2358 bool (*id_match)(struct packet_type *ptype, 2359 struct sock *sk); 2360 void *af_packet_priv; 2361 struct list_head list; 2362 }; 2363 2364 struct offload_callbacks { 2365 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2366 netdev_features_t features); 2367 struct sk_buff *(*gro_receive)(struct list_head *head, 2368 struct sk_buff *skb); 2369 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2370 }; 2371 2372 struct packet_offload { 2373 __be16 type; /* This is really htons(ether_type). */ 2374 u16 priority; 2375 struct offload_callbacks callbacks; 2376 struct list_head list; 2377 }; 2378 2379 /* often modified stats are per-CPU, other are shared (netdev->stats) */ 2380 struct pcpu_sw_netstats { 2381 u64 rx_packets; 2382 u64 rx_bytes; 2383 u64 tx_packets; 2384 u64 tx_bytes; 2385 struct u64_stats_sync syncp; 2386 } __aligned(4 * sizeof(u64)); 2387 2388 struct pcpu_lstats { 2389 u64 packets; 2390 u64 bytes; 2391 struct u64_stats_sync syncp; 2392 } __aligned(2 * sizeof(u64)); 2393 2394 #define __netdev_alloc_pcpu_stats(type, gfp) \ 2395 ({ \ 2396 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2397 if (pcpu_stats) { \ 2398 int __cpu; \ 2399 for_each_possible_cpu(__cpu) { \ 2400 typeof(type) *stat; \ 2401 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2402 u64_stats_init(&stat->syncp); \ 2403 } \ 2404 } \ 2405 pcpu_stats; \ 2406 }) 2407 2408 #define netdev_alloc_pcpu_stats(type) \ 2409 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2410 2411 enum netdev_lag_tx_type { 2412 NETDEV_LAG_TX_TYPE_UNKNOWN, 2413 NETDEV_LAG_TX_TYPE_RANDOM, 2414 NETDEV_LAG_TX_TYPE_BROADCAST, 2415 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2416 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2417 NETDEV_LAG_TX_TYPE_HASH, 2418 }; 2419 2420 enum netdev_lag_hash { 2421 NETDEV_LAG_HASH_NONE, 2422 NETDEV_LAG_HASH_L2, 2423 NETDEV_LAG_HASH_L34, 2424 NETDEV_LAG_HASH_L23, 2425 NETDEV_LAG_HASH_E23, 2426 NETDEV_LAG_HASH_E34, 2427 NETDEV_LAG_HASH_UNKNOWN, 2428 }; 2429 2430 struct netdev_lag_upper_info { 2431 enum netdev_lag_tx_type tx_type; 2432 enum netdev_lag_hash hash_type; 2433 }; 2434 2435 struct netdev_lag_lower_state_info { 2436 u8 link_up : 1, 2437 tx_enabled : 1; 2438 }; 2439 2440 #include <linux/notifier.h> 2441 2442 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2443 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2444 * adding new types. 2445 */ 2446 enum netdev_cmd { 2447 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2448 NETDEV_DOWN, 2449 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2450 detected a hardware crash and restarted 2451 - we can use this eg to kick tcp sessions 2452 once done */ 2453 NETDEV_CHANGE, /* Notify device state change */ 2454 NETDEV_REGISTER, 2455 NETDEV_UNREGISTER, 2456 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2457 NETDEV_CHANGEADDR, /* notify after the address change */ 2458 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2459 NETDEV_GOING_DOWN, 2460 NETDEV_CHANGENAME, 2461 NETDEV_FEAT_CHANGE, 2462 NETDEV_BONDING_FAILOVER, 2463 NETDEV_PRE_UP, 2464 NETDEV_PRE_TYPE_CHANGE, 2465 NETDEV_POST_TYPE_CHANGE, 2466 NETDEV_POST_INIT, 2467 NETDEV_RELEASE, 2468 NETDEV_NOTIFY_PEERS, 2469 NETDEV_JOIN, 2470 NETDEV_CHANGEUPPER, 2471 NETDEV_RESEND_IGMP, 2472 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2473 NETDEV_CHANGEINFODATA, 2474 NETDEV_BONDING_INFO, 2475 NETDEV_PRECHANGEUPPER, 2476 NETDEV_CHANGELOWERSTATE, 2477 NETDEV_UDP_TUNNEL_PUSH_INFO, 2478 NETDEV_UDP_TUNNEL_DROP_INFO, 2479 NETDEV_CHANGE_TX_QUEUE_LEN, 2480 NETDEV_CVLAN_FILTER_PUSH_INFO, 2481 NETDEV_CVLAN_FILTER_DROP_INFO, 2482 NETDEV_SVLAN_FILTER_PUSH_INFO, 2483 NETDEV_SVLAN_FILTER_DROP_INFO, 2484 }; 2485 const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2486 2487 int register_netdevice_notifier(struct notifier_block *nb); 2488 int unregister_netdevice_notifier(struct notifier_block *nb); 2489 2490 struct netdev_notifier_info { 2491 struct net_device *dev; 2492 struct netlink_ext_ack *extack; 2493 }; 2494 2495 struct netdev_notifier_info_ext { 2496 struct netdev_notifier_info info; /* must be first */ 2497 union { 2498 u32 mtu; 2499 } ext; 2500 }; 2501 2502 struct netdev_notifier_change_info { 2503 struct netdev_notifier_info info; /* must be first */ 2504 unsigned int flags_changed; 2505 }; 2506 2507 struct netdev_notifier_changeupper_info { 2508 struct netdev_notifier_info info; /* must be first */ 2509 struct net_device *upper_dev; /* new upper dev */ 2510 bool master; /* is upper dev master */ 2511 bool linking; /* is the notification for link or unlink */ 2512 void *upper_info; /* upper dev info */ 2513 }; 2514 2515 struct netdev_notifier_changelowerstate_info { 2516 struct netdev_notifier_info info; /* must be first */ 2517 void *lower_state_info; /* is lower dev state */ 2518 }; 2519 2520 struct netdev_notifier_pre_changeaddr_info { 2521 struct netdev_notifier_info info; /* must be first */ 2522 const unsigned char *dev_addr; 2523 }; 2524 2525 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2526 struct net_device *dev) 2527 { 2528 info->dev = dev; 2529 info->extack = NULL; 2530 } 2531 2532 static inline struct net_device * 2533 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2534 { 2535 return info->dev; 2536 } 2537 2538 static inline struct netlink_ext_ack * 2539 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2540 { 2541 return info->extack; 2542 } 2543 2544 int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2545 2546 2547 extern rwlock_t dev_base_lock; /* Device list lock */ 2548 2549 #define for_each_netdev(net, d) \ 2550 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2551 #define for_each_netdev_reverse(net, d) \ 2552 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2553 #define for_each_netdev_rcu(net, d) \ 2554 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2555 #define for_each_netdev_safe(net, d, n) \ 2556 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2557 #define for_each_netdev_continue(net, d) \ 2558 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2559 #define for_each_netdev_continue_rcu(net, d) \ 2560 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2561 #define for_each_netdev_in_bond_rcu(bond, slave) \ 2562 for_each_netdev_rcu(&init_net, slave) \ 2563 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2564 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2565 2566 static inline struct net_device *next_net_device(struct net_device *dev) 2567 { 2568 struct list_head *lh; 2569 struct net *net; 2570 2571 net = dev_net(dev); 2572 lh = dev->dev_list.next; 2573 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2574 } 2575 2576 static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2577 { 2578 struct list_head *lh; 2579 struct net *net; 2580 2581 net = dev_net(dev); 2582 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2583 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2584 } 2585 2586 static inline struct net_device *first_net_device(struct net *net) 2587 { 2588 return list_empty(&net->dev_base_head) ? NULL : 2589 net_device_entry(net->dev_base_head.next); 2590 } 2591 2592 static inline struct net_device *first_net_device_rcu(struct net *net) 2593 { 2594 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2595 2596 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2597 } 2598 2599 int netdev_boot_setup_check(struct net_device *dev); 2600 unsigned long netdev_boot_base(const char *prefix, int unit); 2601 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2602 const char *hwaddr); 2603 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2604 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2605 void dev_add_pack(struct packet_type *pt); 2606 void dev_remove_pack(struct packet_type *pt); 2607 void __dev_remove_pack(struct packet_type *pt); 2608 void dev_add_offload(struct packet_offload *po); 2609 void dev_remove_offload(struct packet_offload *po); 2610 2611 int dev_get_iflink(const struct net_device *dev); 2612 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2613 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2614 unsigned short mask); 2615 struct net_device *dev_get_by_name(struct net *net, const char *name); 2616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2617 struct net_device *__dev_get_by_name(struct net *net, const char *name); 2618 int dev_alloc_name(struct net_device *dev, const char *name); 2619 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2620 void dev_close(struct net_device *dev); 2621 void dev_close_many(struct list_head *head, bool unlink); 2622 void dev_disable_lro(struct net_device *dev); 2623 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2624 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2625 struct net_device *sb_dev); 2626 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2627 struct net_device *sb_dev); 2628 int dev_queue_xmit(struct sk_buff *skb); 2629 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2630 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2631 int register_netdevice(struct net_device *dev); 2632 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2633 void unregister_netdevice_many(struct list_head *head); 2634 static inline void unregister_netdevice(struct net_device *dev) 2635 { 2636 unregister_netdevice_queue(dev, NULL); 2637 } 2638 2639 int netdev_refcnt_read(const struct net_device *dev); 2640 void free_netdev(struct net_device *dev); 2641 void netdev_freemem(struct net_device *dev); 2642 void synchronize_net(void); 2643 int init_dummy_netdev(struct net_device *dev); 2644 2645 struct net_device *dev_get_by_index(struct net *net, int ifindex); 2646 struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2647 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2648 struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2649 int netdev_get_name(struct net *net, char *name, int ifindex); 2650 int dev_restart(struct net_device *dev); 2651 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2652 2653 static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2654 { 2655 return NAPI_GRO_CB(skb)->data_offset; 2656 } 2657 2658 static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2659 { 2660 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2661 } 2662 2663 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2664 { 2665 NAPI_GRO_CB(skb)->data_offset += len; 2666 } 2667 2668 static inline void *skb_gro_header_fast(struct sk_buff *skb, 2669 unsigned int offset) 2670 { 2671 return NAPI_GRO_CB(skb)->frag0 + offset; 2672 } 2673 2674 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2675 { 2676 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2677 } 2678 2679 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2680 { 2681 NAPI_GRO_CB(skb)->frag0 = NULL; 2682 NAPI_GRO_CB(skb)->frag0_len = 0; 2683 } 2684 2685 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2686 unsigned int offset) 2687 { 2688 if (!pskb_may_pull(skb, hlen)) 2689 return NULL; 2690 2691 skb_gro_frag0_invalidate(skb); 2692 return skb->data + offset; 2693 } 2694 2695 static inline void *skb_gro_network_header(struct sk_buff *skb) 2696 { 2697 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2698 skb_network_offset(skb); 2699 } 2700 2701 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2702 const void *start, unsigned int len) 2703 { 2704 if (NAPI_GRO_CB(skb)->csum_valid) 2705 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2706 csum_partial(start, len, 0)); 2707 } 2708 2709 /* GRO checksum functions. These are logical equivalents of the normal 2710 * checksum functions (in skbuff.h) except that they operate on the GRO 2711 * offsets and fields in sk_buff. 2712 */ 2713 2714 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2715 2716 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2717 { 2718 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2719 } 2720 2721 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2722 bool zero_okay, 2723 __sum16 check) 2724 { 2725 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2726 skb_checksum_start_offset(skb) < 2727 skb_gro_offset(skb)) && 2728 !skb_at_gro_remcsum_start(skb) && 2729 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2730 (!zero_okay || check)); 2731 } 2732 2733 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2734 __wsum psum) 2735 { 2736 if (NAPI_GRO_CB(skb)->csum_valid && 2737 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2738 return 0; 2739 2740 NAPI_GRO_CB(skb)->csum = psum; 2741 2742 return __skb_gro_checksum_complete(skb); 2743 } 2744 2745 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2746 { 2747 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2748 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2749 NAPI_GRO_CB(skb)->csum_cnt--; 2750 } else { 2751 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2752 * verified a new top level checksum or an encapsulated one 2753 * during GRO. This saves work if we fallback to normal path. 2754 */ 2755 __skb_incr_checksum_unnecessary(skb); 2756 } 2757 } 2758 2759 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2760 compute_pseudo) \ 2761 ({ \ 2762 __sum16 __ret = 0; \ 2763 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2764 __ret = __skb_gro_checksum_validate_complete(skb, \ 2765 compute_pseudo(skb, proto)); \ 2766 if (!__ret) \ 2767 skb_gro_incr_csum_unnecessary(skb); \ 2768 __ret; \ 2769 }) 2770 2771 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2772 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2773 2774 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2775 compute_pseudo) \ 2776 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2777 2778 #define skb_gro_checksum_simple_validate(skb) \ 2779 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2780 2781 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2782 { 2783 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2784 !NAPI_GRO_CB(skb)->csum_valid); 2785 } 2786 2787 static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2788 __sum16 check, __wsum pseudo) 2789 { 2790 NAPI_GRO_CB(skb)->csum = ~pseudo; 2791 NAPI_GRO_CB(skb)->csum_valid = 1; 2792 } 2793 2794 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2795 do { \ 2796 if (__skb_gro_checksum_convert_check(skb)) \ 2797 __skb_gro_checksum_convert(skb, check, \ 2798 compute_pseudo(skb, proto)); \ 2799 } while (0) 2800 2801 struct gro_remcsum { 2802 int offset; 2803 __wsum delta; 2804 }; 2805 2806 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2807 { 2808 grc->offset = 0; 2809 grc->delta = 0; 2810 } 2811 2812 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2813 unsigned int off, size_t hdrlen, 2814 int start, int offset, 2815 struct gro_remcsum *grc, 2816 bool nopartial) 2817 { 2818 __wsum delta; 2819 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2820 2821 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2822 2823 if (!nopartial) { 2824 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2825 return ptr; 2826 } 2827 2828 ptr = skb_gro_header_fast(skb, off); 2829 if (skb_gro_header_hard(skb, off + plen)) { 2830 ptr = skb_gro_header_slow(skb, off + plen, off); 2831 if (!ptr) 2832 return NULL; 2833 } 2834 2835 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2836 start, offset); 2837 2838 /* Adjust skb->csum since we changed the packet */ 2839 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2840 2841 grc->offset = off + hdrlen + offset; 2842 grc->delta = delta; 2843 2844 return ptr; 2845 } 2846 2847 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2848 struct gro_remcsum *grc) 2849 { 2850 void *ptr; 2851 size_t plen = grc->offset + sizeof(u16); 2852 2853 if (!grc->delta) 2854 return; 2855 2856 ptr = skb_gro_header_fast(skb, grc->offset); 2857 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2858 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2859 if (!ptr) 2860 return; 2861 } 2862 2863 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2864 } 2865 2866 #ifdef CONFIG_XFRM_OFFLOAD 2867 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2868 { 2869 if (PTR_ERR(pp) != -EINPROGRESS) 2870 NAPI_GRO_CB(skb)->flush |= flush; 2871 } 2872 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2873 struct sk_buff *pp, 2874 int flush, 2875 struct gro_remcsum *grc) 2876 { 2877 if (PTR_ERR(pp) != -EINPROGRESS) { 2878 NAPI_GRO_CB(skb)->flush |= flush; 2879 skb_gro_remcsum_cleanup(skb, grc); 2880 skb->remcsum_offload = 0; 2881 } 2882 } 2883 #else 2884 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2885 { 2886 NAPI_GRO_CB(skb)->flush |= flush; 2887 } 2888 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2889 struct sk_buff *pp, 2890 int flush, 2891 struct gro_remcsum *grc) 2892 { 2893 NAPI_GRO_CB(skb)->flush |= flush; 2894 skb_gro_remcsum_cleanup(skb, grc); 2895 skb->remcsum_offload = 0; 2896 } 2897 #endif 2898 2899 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2900 unsigned short type, 2901 const void *daddr, const void *saddr, 2902 unsigned int len) 2903 { 2904 if (!dev->header_ops || !dev->header_ops->create) 2905 return 0; 2906 2907 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2908 } 2909 2910 static inline int dev_parse_header(const struct sk_buff *skb, 2911 unsigned char *haddr) 2912 { 2913 const struct net_device *dev = skb->dev; 2914 2915 if (!dev->header_ops || !dev->header_ops->parse) 2916 return 0; 2917 return dev->header_ops->parse(skb, haddr); 2918 } 2919 2920 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2921 { 2922 const struct net_device *dev = skb->dev; 2923 2924 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2925 return 0; 2926 return dev->header_ops->parse_protocol(skb); 2927 } 2928 2929 /* ll_header must have at least hard_header_len allocated */ 2930 static inline bool dev_validate_header(const struct net_device *dev, 2931 char *ll_header, int len) 2932 { 2933 if (likely(len >= dev->hard_header_len)) 2934 return true; 2935 if (len < dev->min_header_len) 2936 return false; 2937 2938 if (capable(CAP_SYS_RAWIO)) { 2939 memset(ll_header + len, 0, dev->hard_header_len - len); 2940 return true; 2941 } 2942 2943 if (dev->header_ops && dev->header_ops->validate) 2944 return dev->header_ops->validate(ll_header, len); 2945 2946 return false; 2947 } 2948 2949 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2950 int len, int size); 2951 int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2952 static inline int unregister_gifconf(unsigned int family) 2953 { 2954 return register_gifconf(family, NULL); 2955 } 2956 2957 #ifdef CONFIG_NET_FLOW_LIMIT 2958 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2959 struct sd_flow_limit { 2960 u64 count; 2961 unsigned int num_buckets; 2962 unsigned int history_head; 2963 u16 history[FLOW_LIMIT_HISTORY]; 2964 u8 buckets[]; 2965 }; 2966 2967 extern int netdev_flow_limit_table_len; 2968 #endif /* CONFIG_NET_FLOW_LIMIT */ 2969 2970 /* 2971 * Incoming packets are placed on per-CPU queues 2972 */ 2973 struct softnet_data { 2974 struct list_head poll_list; 2975 struct sk_buff_head process_queue; 2976 2977 /* stats */ 2978 unsigned int processed; 2979 unsigned int time_squeeze; 2980 unsigned int received_rps; 2981 #ifdef CONFIG_RPS 2982 struct softnet_data *rps_ipi_list; 2983 #endif 2984 #ifdef CONFIG_NET_FLOW_LIMIT 2985 struct sd_flow_limit __rcu *flow_limit; 2986 #endif 2987 struct Qdisc *output_queue; 2988 struct Qdisc **output_queue_tailp; 2989 struct sk_buff *completion_queue; 2990 #ifdef CONFIG_XFRM_OFFLOAD 2991 struct sk_buff_head xfrm_backlog; 2992 #endif 2993 /* written and read only by owning cpu: */ 2994 struct { 2995 u16 recursion; 2996 u8 more; 2997 } xmit; 2998 #ifdef CONFIG_RPS 2999 /* input_queue_head should be written by cpu owning this struct, 3000 * and only read by other cpus. Worth using a cache line. 3001 */ 3002 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3003 3004 /* Elements below can be accessed between CPUs for RPS/RFS */ 3005 call_single_data_t csd ____cacheline_aligned_in_smp; 3006 struct softnet_data *rps_ipi_next; 3007 unsigned int cpu; 3008 unsigned int input_queue_tail; 3009 #endif 3010 unsigned int dropped; 3011 struct sk_buff_head input_pkt_queue; 3012 struct napi_struct backlog; 3013 3014 }; 3015 3016 static inline void input_queue_head_incr(struct softnet_data *sd) 3017 { 3018 #ifdef CONFIG_RPS 3019 sd->input_queue_head++; 3020 #endif 3021 } 3022 3023 static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3024 unsigned int *qtail) 3025 { 3026 #ifdef CONFIG_RPS 3027 *qtail = ++sd->input_queue_tail; 3028 #endif 3029 } 3030 3031 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3032 3033 static inline int dev_recursion_level(void) 3034 { 3035 return this_cpu_read(softnet_data.xmit.recursion); 3036 } 3037 3038 #define XMIT_RECURSION_LIMIT 10 3039 static inline bool dev_xmit_recursion(void) 3040 { 3041 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3042 XMIT_RECURSION_LIMIT); 3043 } 3044 3045 static inline void dev_xmit_recursion_inc(void) 3046 { 3047 __this_cpu_inc(softnet_data.xmit.recursion); 3048 } 3049 3050 static inline void dev_xmit_recursion_dec(void) 3051 { 3052 __this_cpu_dec(softnet_data.xmit.recursion); 3053 } 3054 3055 void __netif_schedule(struct Qdisc *q); 3056 void netif_schedule_queue(struct netdev_queue *txq); 3057 3058 static inline void netif_tx_schedule_all(struct net_device *dev) 3059 { 3060 unsigned int i; 3061 3062 for (i = 0; i < dev->num_tx_queues; i++) 3063 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3064 } 3065 3066 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3067 { 3068 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3069 } 3070 3071 /** 3072 * netif_start_queue - allow transmit 3073 * @dev: network device 3074 * 3075 * Allow upper layers to call the device hard_start_xmit routine. 3076 */ 3077 static inline void netif_start_queue(struct net_device *dev) 3078 { 3079 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3080 } 3081 3082 static inline void netif_tx_start_all_queues(struct net_device *dev) 3083 { 3084 unsigned int i; 3085 3086 for (i = 0; i < dev->num_tx_queues; i++) { 3087 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3088 netif_tx_start_queue(txq); 3089 } 3090 } 3091 3092 void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3093 3094 /** 3095 * netif_wake_queue - restart transmit 3096 * @dev: network device 3097 * 3098 * Allow upper layers to call the device hard_start_xmit routine. 3099 * Used for flow control when transmit resources are available. 3100 */ 3101 static inline void netif_wake_queue(struct net_device *dev) 3102 { 3103 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3104 } 3105 3106 static inline void netif_tx_wake_all_queues(struct net_device *dev) 3107 { 3108 unsigned int i; 3109 3110 for (i = 0; i < dev->num_tx_queues; i++) { 3111 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3112 netif_tx_wake_queue(txq); 3113 } 3114 } 3115 3116 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3117 { 3118 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3119 } 3120 3121 /** 3122 * netif_stop_queue - stop transmitted packets 3123 * @dev: network device 3124 * 3125 * Stop upper layers calling the device hard_start_xmit routine. 3126 * Used for flow control when transmit resources are unavailable. 3127 */ 3128 static inline void netif_stop_queue(struct net_device *dev) 3129 { 3130 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3131 } 3132 3133 void netif_tx_stop_all_queues(struct net_device *dev); 3134 3135 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3136 { 3137 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3138 } 3139 3140 /** 3141 * netif_queue_stopped - test if transmit queue is flowblocked 3142 * @dev: network device 3143 * 3144 * Test if transmit queue on device is currently unable to send. 3145 */ 3146 static inline bool netif_queue_stopped(const struct net_device *dev) 3147 { 3148 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3149 } 3150 3151 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3152 { 3153 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3154 } 3155 3156 static inline bool 3157 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3158 { 3159 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3160 } 3161 3162 static inline bool 3163 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3164 { 3165 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3166 } 3167 3168 /** 3169 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3170 * @dev_queue: pointer to transmit queue 3171 * 3172 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3173 * to give appropriate hint to the CPU. 3174 */ 3175 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3176 { 3177 #ifdef CONFIG_BQL 3178 prefetchw(&dev_queue->dql.num_queued); 3179 #endif 3180 } 3181 3182 /** 3183 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3184 * @dev_queue: pointer to transmit queue 3185 * 3186 * BQL enabled drivers might use this helper in their TX completion path, 3187 * to give appropriate hint to the CPU. 3188 */ 3189 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3190 { 3191 #ifdef CONFIG_BQL 3192 prefetchw(&dev_queue->dql.limit); 3193 #endif 3194 } 3195 3196 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3197 unsigned int bytes) 3198 { 3199 #ifdef CONFIG_BQL 3200 dql_queued(&dev_queue->dql, bytes); 3201 3202 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3203 return; 3204 3205 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3206 3207 /* 3208 * The XOFF flag must be set before checking the dql_avail below, 3209 * because in netdev_tx_completed_queue we update the dql_completed 3210 * before checking the XOFF flag. 3211 */ 3212 smp_mb(); 3213 3214 /* check again in case another CPU has just made room avail */ 3215 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3216 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3217 #endif 3218 } 3219 3220 /* Variant of netdev_tx_sent_queue() for drivers that are aware 3221 * that they should not test BQL status themselves. 3222 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3223 * skb of a batch. 3224 * Returns true if the doorbell must be used to kick the NIC. 3225 */ 3226 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3227 unsigned int bytes, 3228 bool xmit_more) 3229 { 3230 if (xmit_more) { 3231 #ifdef CONFIG_BQL 3232 dql_queued(&dev_queue->dql, bytes); 3233 #endif 3234 return netif_tx_queue_stopped(dev_queue); 3235 } 3236 netdev_tx_sent_queue(dev_queue, bytes); 3237 return true; 3238 } 3239 3240 /** 3241 * netdev_sent_queue - report the number of bytes queued to hardware 3242 * @dev: network device 3243 * @bytes: number of bytes queued to the hardware device queue 3244 * 3245 * Report the number of bytes queued for sending/completion to the network 3246 * device hardware queue. @bytes should be a good approximation and should 3247 * exactly match netdev_completed_queue() @bytes 3248 */ 3249 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3250 { 3251 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3252 } 3253 3254 static inline bool __netdev_sent_queue(struct net_device *dev, 3255 unsigned int bytes, 3256 bool xmit_more) 3257 { 3258 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3259 xmit_more); 3260 } 3261 3262 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3263 unsigned int pkts, unsigned int bytes) 3264 { 3265 #ifdef CONFIG_BQL 3266 if (unlikely(!bytes)) 3267 return; 3268 3269 dql_completed(&dev_queue->dql, bytes); 3270 3271 /* 3272 * Without the memory barrier there is a small possiblity that 3273 * netdev_tx_sent_queue will miss the update and cause the queue to 3274 * be stopped forever 3275 */ 3276 smp_mb(); 3277 3278 if (dql_avail(&dev_queue->dql) < 0) 3279 return; 3280 3281 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3282 netif_schedule_queue(dev_queue); 3283 #endif 3284 } 3285 3286 /** 3287 * netdev_completed_queue - report bytes and packets completed by device 3288 * @dev: network device 3289 * @pkts: actual number of packets sent over the medium 3290 * @bytes: actual number of bytes sent over the medium 3291 * 3292 * Report the number of bytes and packets transmitted by the network device 3293 * hardware queue over the physical medium, @bytes must exactly match the 3294 * @bytes amount passed to netdev_sent_queue() 3295 */ 3296 static inline void netdev_completed_queue(struct net_device *dev, 3297 unsigned int pkts, unsigned int bytes) 3298 { 3299 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3300 } 3301 3302 static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3303 { 3304 #ifdef CONFIG_BQL 3305 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3306 dql_reset(&q->dql); 3307 #endif 3308 } 3309 3310 /** 3311 * netdev_reset_queue - reset the packets and bytes count of a network device 3312 * @dev_queue: network device 3313 * 3314 * Reset the bytes and packet count of a network device and clear the 3315 * software flow control OFF bit for this network device 3316 */ 3317 static inline void netdev_reset_queue(struct net_device *dev_queue) 3318 { 3319 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3320 } 3321 3322 /** 3323 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3324 * @dev: network device 3325 * @queue_index: given tx queue index 3326 * 3327 * Returns 0 if given tx queue index >= number of device tx queues, 3328 * otherwise returns the originally passed tx queue index. 3329 */ 3330 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3331 { 3332 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3333 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3334 dev->name, queue_index, 3335 dev->real_num_tx_queues); 3336 return 0; 3337 } 3338 3339 return queue_index; 3340 } 3341 3342 /** 3343 * netif_running - test if up 3344 * @dev: network device 3345 * 3346 * Test if the device has been brought up. 3347 */ 3348 static inline bool netif_running(const struct net_device *dev) 3349 { 3350 return test_bit(__LINK_STATE_START, &dev->state); 3351 } 3352 3353 /* 3354 * Routines to manage the subqueues on a device. We only need start, 3355 * stop, and a check if it's stopped. All other device management is 3356 * done at the overall netdevice level. 3357 * Also test the device if we're multiqueue. 3358 */ 3359 3360 /** 3361 * netif_start_subqueue - allow sending packets on subqueue 3362 * @dev: network device 3363 * @queue_index: sub queue index 3364 * 3365 * Start individual transmit queue of a device with multiple transmit queues. 3366 */ 3367 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3368 { 3369 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3370 3371 netif_tx_start_queue(txq); 3372 } 3373 3374 /** 3375 * netif_stop_subqueue - stop sending packets on subqueue 3376 * @dev: network device 3377 * @queue_index: sub queue index 3378 * 3379 * Stop individual transmit queue of a device with multiple transmit queues. 3380 */ 3381 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3382 { 3383 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3384 netif_tx_stop_queue(txq); 3385 } 3386 3387 /** 3388 * netif_subqueue_stopped - test status of subqueue 3389 * @dev: network device 3390 * @queue_index: sub queue index 3391 * 3392 * Check individual transmit queue of a device with multiple transmit queues. 3393 */ 3394 static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3395 u16 queue_index) 3396 { 3397 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3398 3399 return netif_tx_queue_stopped(txq); 3400 } 3401 3402 static inline bool netif_subqueue_stopped(const struct net_device *dev, 3403 struct sk_buff *skb) 3404 { 3405 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3406 } 3407 3408 /** 3409 * netif_wake_subqueue - allow sending packets on subqueue 3410 * @dev: network device 3411 * @queue_index: sub queue index 3412 * 3413 * Resume individual transmit queue of a device with multiple transmit queues. 3414 */ 3415 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3416 { 3417 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3418 3419 netif_tx_wake_queue(txq); 3420 } 3421 3422 #ifdef CONFIG_XPS 3423 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3424 u16 index); 3425 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3426 u16 index, bool is_rxqs_map); 3427 3428 /** 3429 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3430 * @j: CPU/Rx queue index 3431 * @mask: bitmask of all cpus/rx queues 3432 * @nr_bits: number of bits in the bitmask 3433 * 3434 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3435 */ 3436 static inline bool netif_attr_test_mask(unsigned long j, 3437 const unsigned long *mask, 3438 unsigned int nr_bits) 3439 { 3440 cpu_max_bits_warn(j, nr_bits); 3441 return test_bit(j, mask); 3442 } 3443 3444 /** 3445 * netif_attr_test_online - Test for online CPU/Rx queue 3446 * @j: CPU/Rx queue index 3447 * @online_mask: bitmask for CPUs/Rx queues that are online 3448 * @nr_bits: number of bits in the bitmask 3449 * 3450 * Returns true if a CPU/Rx queue is online. 3451 */ 3452 static inline bool netif_attr_test_online(unsigned long j, 3453 const unsigned long *online_mask, 3454 unsigned int nr_bits) 3455 { 3456 cpu_max_bits_warn(j, nr_bits); 3457 3458 if (online_mask) 3459 return test_bit(j, online_mask); 3460 3461 return (j < nr_bits); 3462 } 3463 3464 /** 3465 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3466 * @n: CPU/Rx queue index 3467 * @srcp: the cpumask/Rx queue mask pointer 3468 * @nr_bits: number of bits in the bitmask 3469 * 3470 * Returns >= nr_bits if no further CPUs/Rx queues set. 3471 */ 3472 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3473 unsigned int nr_bits) 3474 { 3475 /* -1 is a legal arg here. */ 3476 if (n != -1) 3477 cpu_max_bits_warn(n, nr_bits); 3478 3479 if (srcp) 3480 return find_next_bit(srcp, nr_bits, n + 1); 3481 3482 return n + 1; 3483 } 3484 3485 /** 3486 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3487 * @n: CPU/Rx queue index 3488 * @src1p: the first CPUs/Rx queues mask pointer 3489 * @src2p: the second CPUs/Rx queues mask pointer 3490 * @nr_bits: number of bits in the bitmask 3491 * 3492 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3493 */ 3494 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3495 const unsigned long *src2p, 3496 unsigned int nr_bits) 3497 { 3498 /* -1 is a legal arg here. */ 3499 if (n != -1) 3500 cpu_max_bits_warn(n, nr_bits); 3501 3502 if (src1p && src2p) 3503 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3504 else if (src1p) 3505 return find_next_bit(src1p, nr_bits, n + 1); 3506 else if (src2p) 3507 return find_next_bit(src2p, nr_bits, n + 1); 3508 3509 return n + 1; 3510 } 3511 #else 3512 static inline int netif_set_xps_queue(struct net_device *dev, 3513 const struct cpumask *mask, 3514 u16 index) 3515 { 3516 return 0; 3517 } 3518 3519 static inline int __netif_set_xps_queue(struct net_device *dev, 3520 const unsigned long *mask, 3521 u16 index, bool is_rxqs_map) 3522 { 3523 return 0; 3524 } 3525 #endif 3526 3527 /** 3528 * netif_is_multiqueue - test if device has multiple transmit queues 3529 * @dev: network device 3530 * 3531 * Check if device has multiple transmit queues 3532 */ 3533 static inline bool netif_is_multiqueue(const struct net_device *dev) 3534 { 3535 return dev->num_tx_queues > 1; 3536 } 3537 3538 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3539 3540 #ifdef CONFIG_SYSFS 3541 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3542 #else 3543 static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3544 unsigned int rxqs) 3545 { 3546 dev->real_num_rx_queues = rxqs; 3547 return 0; 3548 } 3549 #endif 3550 3551 static inline struct netdev_rx_queue * 3552 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3553 { 3554 return dev->_rx + rxq; 3555 } 3556 3557 #ifdef CONFIG_SYSFS 3558 static inline unsigned int get_netdev_rx_queue_index( 3559 struct netdev_rx_queue *queue) 3560 { 3561 struct net_device *dev = queue->dev; 3562 int index = queue - dev->_rx; 3563 3564 BUG_ON(index >= dev->num_rx_queues); 3565 return index; 3566 } 3567 #endif 3568 3569 #define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3570 int netif_get_num_default_rss_queues(void); 3571 3572 enum skb_free_reason { 3573 SKB_REASON_CONSUMED, 3574 SKB_REASON_DROPPED, 3575 }; 3576 3577 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3578 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3579 3580 /* 3581 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3582 * interrupt context or with hardware interrupts being disabled. 3583 * (in_irq() || irqs_disabled()) 3584 * 3585 * We provide four helpers that can be used in following contexts : 3586 * 3587 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3588 * replacing kfree_skb(skb) 3589 * 3590 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3591 * Typically used in place of consume_skb(skb) in TX completion path 3592 * 3593 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3594 * replacing kfree_skb(skb) 3595 * 3596 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3597 * and consumed a packet. Used in place of consume_skb(skb) 3598 */ 3599 static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3600 { 3601 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3602 } 3603 3604 static inline void dev_consume_skb_irq(struct sk_buff *skb) 3605 { 3606 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3607 } 3608 3609 static inline void dev_kfree_skb_any(struct sk_buff *skb) 3610 { 3611 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3612 } 3613 3614 static inline void dev_consume_skb_any(struct sk_buff *skb) 3615 { 3616 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3617 } 3618 3619 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3620 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3621 int netif_rx(struct sk_buff *skb); 3622 int netif_rx_ni(struct sk_buff *skb); 3623 int netif_receive_skb(struct sk_buff *skb); 3624 int netif_receive_skb_core(struct sk_buff *skb); 3625 void netif_receive_skb_list(struct list_head *head); 3626 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3627 void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3628 struct sk_buff *napi_get_frags(struct napi_struct *napi); 3629 gro_result_t napi_gro_frags(struct napi_struct *napi); 3630 struct packet_offload *gro_find_receive_by_type(__be16 type); 3631 struct packet_offload *gro_find_complete_by_type(__be16 type); 3632 3633 static inline void napi_free_frags(struct napi_struct *napi) 3634 { 3635 kfree_skb(napi->skb); 3636 napi->skb = NULL; 3637 } 3638 3639 bool netdev_is_rx_handler_busy(struct net_device *dev); 3640 int netdev_rx_handler_register(struct net_device *dev, 3641 rx_handler_func_t *rx_handler, 3642 void *rx_handler_data); 3643 void netdev_rx_handler_unregister(struct net_device *dev); 3644 3645 bool dev_valid_name(const char *name); 3646 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3647 bool *need_copyout); 3648 int dev_ifconf(struct net *net, struct ifconf *, int); 3649 int dev_ethtool(struct net *net, struct ifreq *); 3650 unsigned int dev_get_flags(const struct net_device *); 3651 int __dev_change_flags(struct net_device *dev, unsigned int flags, 3652 struct netlink_ext_ack *extack); 3653 int dev_change_flags(struct net_device *dev, unsigned int flags, 3654 struct netlink_ext_ack *extack); 3655 void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3656 unsigned int gchanges); 3657 int dev_change_name(struct net_device *, const char *); 3658 int dev_set_alias(struct net_device *, const char *, size_t); 3659 int dev_get_alias(const struct net_device *, char *, size_t); 3660 int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3661 int __dev_set_mtu(struct net_device *, int); 3662 int dev_set_mtu_ext(struct net_device *dev, int mtu, 3663 struct netlink_ext_ack *extack); 3664 int dev_set_mtu(struct net_device *, int); 3665 int dev_change_tx_queue_len(struct net_device *, unsigned long); 3666 void dev_set_group(struct net_device *, int); 3667 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3668 struct netlink_ext_ack *extack); 3669 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3670 struct netlink_ext_ack *extack); 3671 int dev_change_carrier(struct net_device *, bool new_carrier); 3672 int dev_get_phys_port_id(struct net_device *dev, 3673 struct netdev_phys_item_id *ppid); 3674 int dev_get_phys_port_name(struct net_device *dev, 3675 char *name, size_t len); 3676 int dev_get_port_parent_id(struct net_device *dev, 3677 struct netdev_phys_item_id *ppid, bool recurse); 3678 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3679 int dev_change_proto_down(struct net_device *dev, bool proto_down); 3680 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3681 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3682 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3683 struct netdev_queue *txq, int *ret); 3684 3685 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3686 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3687 int fd, u32 flags); 3688 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3689 enum bpf_netdev_command cmd); 3690 int xdp_umem_query(struct net_device *dev, u16 queue_id); 3691 3692 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3693 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3694 bool is_skb_forwardable(const struct net_device *dev, 3695 const struct sk_buff *skb); 3696 3697 static __always_inline int ____dev_forward_skb(struct net_device *dev, 3698 struct sk_buff *skb) 3699 { 3700 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3701 unlikely(!is_skb_forwardable(dev, skb))) { 3702 atomic_long_inc(&dev->rx_dropped); 3703 kfree_skb(skb); 3704 return NET_RX_DROP; 3705 } 3706 3707 skb_scrub_packet(skb, true); 3708 skb->priority = 0; 3709 return 0; 3710 } 3711 3712 bool dev_nit_active(struct net_device *dev); 3713 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3714 3715 extern int netdev_budget; 3716 extern unsigned int netdev_budget_usecs; 3717 3718 /* Called by rtnetlink.c:rtnl_unlock() */ 3719 void netdev_run_todo(void); 3720 3721 /** 3722 * dev_put - release reference to device 3723 * @dev: network device 3724 * 3725 * Release reference to device to allow it to be freed. 3726 */ 3727 static inline void dev_put(struct net_device *dev) 3728 { 3729 this_cpu_dec(*dev->pcpu_refcnt); 3730 } 3731 3732 /** 3733 * dev_hold - get reference to device 3734 * @dev: network device 3735 * 3736 * Hold reference to device to keep it from being freed. 3737 */ 3738 static inline void dev_hold(struct net_device *dev) 3739 { 3740 this_cpu_inc(*dev->pcpu_refcnt); 3741 } 3742 3743 /* Carrier loss detection, dial on demand. The functions netif_carrier_on 3744 * and _off may be called from IRQ context, but it is caller 3745 * who is responsible for serialization of these calls. 3746 * 3747 * The name carrier is inappropriate, these functions should really be 3748 * called netif_lowerlayer_*() because they represent the state of any 3749 * kind of lower layer not just hardware media. 3750 */ 3751 3752 void linkwatch_init_dev(struct net_device *dev); 3753 void linkwatch_fire_event(struct net_device *dev); 3754 void linkwatch_forget_dev(struct net_device *dev); 3755 3756 /** 3757 * netif_carrier_ok - test if carrier present 3758 * @dev: network device 3759 * 3760 * Check if carrier is present on device 3761 */ 3762 static inline bool netif_carrier_ok(const struct net_device *dev) 3763 { 3764 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3765 } 3766 3767 unsigned long dev_trans_start(struct net_device *dev); 3768 3769 void __netdev_watchdog_up(struct net_device *dev); 3770 3771 void netif_carrier_on(struct net_device *dev); 3772 3773 void netif_carrier_off(struct net_device *dev); 3774 3775 /** 3776 * netif_dormant_on - mark device as dormant. 3777 * @dev: network device 3778 * 3779 * Mark device as dormant (as per RFC2863). 3780 * 3781 * The dormant state indicates that the relevant interface is not 3782 * actually in a condition to pass packets (i.e., it is not 'up') but is 3783 * in a "pending" state, waiting for some external event. For "on- 3784 * demand" interfaces, this new state identifies the situation where the 3785 * interface is waiting for events to place it in the up state. 3786 */ 3787 static inline void netif_dormant_on(struct net_device *dev) 3788 { 3789 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3790 linkwatch_fire_event(dev); 3791 } 3792 3793 /** 3794 * netif_dormant_off - set device as not dormant. 3795 * @dev: network device 3796 * 3797 * Device is not in dormant state. 3798 */ 3799 static inline void netif_dormant_off(struct net_device *dev) 3800 { 3801 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3802 linkwatch_fire_event(dev); 3803 } 3804 3805 /** 3806 * netif_dormant - test if device is dormant 3807 * @dev: network device 3808 * 3809 * Check if device is dormant. 3810 */ 3811 static inline bool netif_dormant(const struct net_device *dev) 3812 { 3813 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3814 } 3815 3816 3817 /** 3818 * netif_oper_up - test if device is operational 3819 * @dev: network device 3820 * 3821 * Check if carrier is operational 3822 */ 3823 static inline bool netif_oper_up(const struct net_device *dev) 3824 { 3825 return (dev->operstate == IF_OPER_UP || 3826 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3827 } 3828 3829 /** 3830 * netif_device_present - is device available or removed 3831 * @dev: network device 3832 * 3833 * Check if device has not been removed from system. 3834 */ 3835 static inline bool netif_device_present(struct net_device *dev) 3836 { 3837 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3838 } 3839 3840 void netif_device_detach(struct net_device *dev); 3841 3842 void netif_device_attach(struct net_device *dev); 3843 3844 /* 3845 * Network interface message level settings 3846 */ 3847 3848 enum { 3849 NETIF_MSG_DRV = 0x0001, 3850 NETIF_MSG_PROBE = 0x0002, 3851 NETIF_MSG_LINK = 0x0004, 3852 NETIF_MSG_TIMER = 0x0008, 3853 NETIF_MSG_IFDOWN = 0x0010, 3854 NETIF_MSG_IFUP = 0x0020, 3855 NETIF_MSG_RX_ERR = 0x0040, 3856 NETIF_MSG_TX_ERR = 0x0080, 3857 NETIF_MSG_TX_QUEUED = 0x0100, 3858 NETIF_MSG_INTR = 0x0200, 3859 NETIF_MSG_TX_DONE = 0x0400, 3860 NETIF_MSG_RX_STATUS = 0x0800, 3861 NETIF_MSG_PKTDATA = 0x1000, 3862 NETIF_MSG_HW = 0x2000, 3863 NETIF_MSG_WOL = 0x4000, 3864 }; 3865 3866 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3867 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3868 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3869 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3870 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3871 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3872 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3873 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3874 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3875 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3876 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3877 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3878 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3879 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3880 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3881 3882 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3883 { 3884 /* use default */ 3885 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3886 return default_msg_enable_bits; 3887 if (debug_value == 0) /* no output */ 3888 return 0; 3889 /* set low N bits */ 3890 return (1U << debug_value) - 1; 3891 } 3892 3893 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3894 { 3895 spin_lock(&txq->_xmit_lock); 3896 txq->xmit_lock_owner = cpu; 3897 } 3898 3899 static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3900 { 3901 __acquire(&txq->_xmit_lock); 3902 return true; 3903 } 3904 3905 static inline void __netif_tx_release(struct netdev_queue *txq) 3906 { 3907 __release(&txq->_xmit_lock); 3908 } 3909 3910 static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3911 { 3912 spin_lock_bh(&txq->_xmit_lock); 3913 txq->xmit_lock_owner = smp_processor_id(); 3914 } 3915 3916 static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3917 { 3918 bool ok = spin_trylock(&txq->_xmit_lock); 3919 if (likely(ok)) 3920 txq->xmit_lock_owner = smp_processor_id(); 3921 return ok; 3922 } 3923 3924 static inline void __netif_tx_unlock(struct netdev_queue *txq) 3925 { 3926 txq->xmit_lock_owner = -1; 3927 spin_unlock(&txq->_xmit_lock); 3928 } 3929 3930 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3931 { 3932 txq->xmit_lock_owner = -1; 3933 spin_unlock_bh(&txq->_xmit_lock); 3934 } 3935 3936 static inline void txq_trans_update(struct netdev_queue *txq) 3937 { 3938 if (txq->xmit_lock_owner != -1) 3939 txq->trans_start = jiffies; 3940 } 3941 3942 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3943 static inline void netif_trans_update(struct net_device *dev) 3944 { 3945 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3946 3947 if (txq->trans_start != jiffies) 3948 txq->trans_start = jiffies; 3949 } 3950 3951 /** 3952 * netif_tx_lock - grab network device transmit lock 3953 * @dev: network device 3954 * 3955 * Get network device transmit lock 3956 */ 3957 static inline void netif_tx_lock(struct net_device *dev) 3958 { 3959 unsigned int i; 3960 int cpu; 3961 3962 spin_lock(&dev->tx_global_lock); 3963 cpu = smp_processor_id(); 3964 for (i = 0; i < dev->num_tx_queues; i++) { 3965 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3966 3967 /* We are the only thread of execution doing a 3968 * freeze, but we have to grab the _xmit_lock in 3969 * order to synchronize with threads which are in 3970 * the ->hard_start_xmit() handler and already 3971 * checked the frozen bit. 3972 */ 3973 __netif_tx_lock(txq, cpu); 3974 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3975 __netif_tx_unlock(txq); 3976 } 3977 } 3978 3979 static inline void netif_tx_lock_bh(struct net_device *dev) 3980 { 3981 local_bh_disable(); 3982 netif_tx_lock(dev); 3983 } 3984 3985 static inline void netif_tx_unlock(struct net_device *dev) 3986 { 3987 unsigned int i; 3988 3989 for (i = 0; i < dev->num_tx_queues; i++) { 3990 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3991 3992 /* No need to grab the _xmit_lock here. If the 3993 * queue is not stopped for another reason, we 3994 * force a schedule. 3995 */ 3996 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3997 netif_schedule_queue(txq); 3998 } 3999 spin_unlock(&dev->tx_global_lock); 4000 } 4001 4002 static inline void netif_tx_unlock_bh(struct net_device *dev) 4003 { 4004 netif_tx_unlock(dev); 4005 local_bh_enable(); 4006 } 4007 4008 #define HARD_TX_LOCK(dev, txq, cpu) { \ 4009 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4010 __netif_tx_lock(txq, cpu); \ 4011 } else { \ 4012 __netif_tx_acquire(txq); \ 4013 } \ 4014 } 4015 4016 #define HARD_TX_TRYLOCK(dev, txq) \ 4017 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4018 __netif_tx_trylock(txq) : \ 4019 __netif_tx_acquire(txq)) 4020 4021 #define HARD_TX_UNLOCK(dev, txq) { \ 4022 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4023 __netif_tx_unlock(txq); \ 4024 } else { \ 4025 __netif_tx_release(txq); \ 4026 } \ 4027 } 4028 4029 static inline void netif_tx_disable(struct net_device *dev) 4030 { 4031 unsigned int i; 4032 int cpu; 4033 4034 local_bh_disable(); 4035 cpu = smp_processor_id(); 4036 for (i = 0; i < dev->num_tx_queues; i++) { 4037 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4038 4039 __netif_tx_lock(txq, cpu); 4040 netif_tx_stop_queue(txq); 4041 __netif_tx_unlock(txq); 4042 } 4043 local_bh_enable(); 4044 } 4045 4046 static inline void netif_addr_lock(struct net_device *dev) 4047 { 4048 spin_lock(&dev->addr_list_lock); 4049 } 4050 4051 static inline void netif_addr_lock_nested(struct net_device *dev) 4052 { 4053 int subclass = SINGLE_DEPTH_NESTING; 4054 4055 if (dev->netdev_ops->ndo_get_lock_subclass) 4056 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 4057 4058 spin_lock_nested(&dev->addr_list_lock, subclass); 4059 } 4060 4061 static inline void netif_addr_lock_bh(struct net_device *dev) 4062 { 4063 spin_lock_bh(&dev->addr_list_lock); 4064 } 4065 4066 static inline void netif_addr_unlock(struct net_device *dev) 4067 { 4068 spin_unlock(&dev->addr_list_lock); 4069 } 4070 4071 static inline void netif_addr_unlock_bh(struct net_device *dev) 4072 { 4073 spin_unlock_bh(&dev->addr_list_lock); 4074 } 4075 4076 /* 4077 * dev_addrs walker. Should be used only for read access. Call with 4078 * rcu_read_lock held. 4079 */ 4080 #define for_each_dev_addr(dev, ha) \ 4081 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4082 4083 /* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4084 4085 void ether_setup(struct net_device *dev); 4086 4087 /* Support for loadable net-drivers */ 4088 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4089 unsigned char name_assign_type, 4090 void (*setup)(struct net_device *), 4091 unsigned int txqs, unsigned int rxqs); 4092 int dev_get_valid_name(struct net *net, struct net_device *dev, 4093 const char *name); 4094 4095 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4096 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4097 4098 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4099 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4100 count) 4101 4102 int register_netdev(struct net_device *dev); 4103 void unregister_netdev(struct net_device *dev); 4104 4105 /* General hardware address lists handling functions */ 4106 int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4107 struct netdev_hw_addr_list *from_list, int addr_len); 4108 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4109 struct netdev_hw_addr_list *from_list, int addr_len); 4110 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4111 struct net_device *dev, 4112 int (*sync)(struct net_device *, const unsigned char *), 4113 int (*unsync)(struct net_device *, 4114 const unsigned char *)); 4115 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4116 struct net_device *dev, 4117 int (*sync)(struct net_device *, 4118 const unsigned char *, int), 4119 int (*unsync)(struct net_device *, 4120 const unsigned char *, int)); 4121 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4122 struct net_device *dev, 4123 int (*unsync)(struct net_device *, 4124 const unsigned char *, int)); 4125 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4126 struct net_device *dev, 4127 int (*unsync)(struct net_device *, 4128 const unsigned char *)); 4129 void __hw_addr_init(struct netdev_hw_addr_list *list); 4130 4131 /* Functions used for device addresses handling */ 4132 int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4133 unsigned char addr_type); 4134 int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4135 unsigned char addr_type); 4136 void dev_addr_flush(struct net_device *dev); 4137 int dev_addr_init(struct net_device *dev); 4138 4139 /* Functions used for unicast addresses handling */ 4140 int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4141 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4142 int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4143 int dev_uc_sync(struct net_device *to, struct net_device *from); 4144 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4145 void dev_uc_unsync(struct net_device *to, struct net_device *from); 4146 void dev_uc_flush(struct net_device *dev); 4147 void dev_uc_init(struct net_device *dev); 4148 4149 /** 4150 * __dev_uc_sync - Synchonize device's unicast list 4151 * @dev: device to sync 4152 * @sync: function to call if address should be added 4153 * @unsync: function to call if address should be removed 4154 * 4155 * Add newly added addresses to the interface, and release 4156 * addresses that have been deleted. 4157 */ 4158 static inline int __dev_uc_sync(struct net_device *dev, 4159 int (*sync)(struct net_device *, 4160 const unsigned char *), 4161 int (*unsync)(struct net_device *, 4162 const unsigned char *)) 4163 { 4164 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4165 } 4166 4167 /** 4168 * __dev_uc_unsync - Remove synchronized addresses from device 4169 * @dev: device to sync 4170 * @unsync: function to call if address should be removed 4171 * 4172 * Remove all addresses that were added to the device by dev_uc_sync(). 4173 */ 4174 static inline void __dev_uc_unsync(struct net_device *dev, 4175 int (*unsync)(struct net_device *, 4176 const unsigned char *)) 4177 { 4178 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4179 } 4180 4181 /* Functions used for multicast addresses handling */ 4182 int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4183 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4184 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4185 int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4186 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4187 int dev_mc_sync(struct net_device *to, struct net_device *from); 4188 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4189 void dev_mc_unsync(struct net_device *to, struct net_device *from); 4190 void dev_mc_flush(struct net_device *dev); 4191 void dev_mc_init(struct net_device *dev); 4192 4193 /** 4194 * __dev_mc_sync - Synchonize device's multicast list 4195 * @dev: device to sync 4196 * @sync: function to call if address should be added 4197 * @unsync: function to call if address should be removed 4198 * 4199 * Add newly added addresses to the interface, and release 4200 * addresses that have been deleted. 4201 */ 4202 static inline int __dev_mc_sync(struct net_device *dev, 4203 int (*sync)(struct net_device *, 4204 const unsigned char *), 4205 int (*unsync)(struct net_device *, 4206 const unsigned char *)) 4207 { 4208 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4209 } 4210 4211 /** 4212 * __dev_mc_unsync - Remove synchronized addresses from device 4213 * @dev: device to sync 4214 * @unsync: function to call if address should be removed 4215 * 4216 * Remove all addresses that were added to the device by dev_mc_sync(). 4217 */ 4218 static inline void __dev_mc_unsync(struct net_device *dev, 4219 int (*unsync)(struct net_device *, 4220 const unsigned char *)) 4221 { 4222 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4223 } 4224 4225 /* Functions used for secondary unicast and multicast support */ 4226 void dev_set_rx_mode(struct net_device *dev); 4227 void __dev_set_rx_mode(struct net_device *dev); 4228 int dev_set_promiscuity(struct net_device *dev, int inc); 4229 int dev_set_allmulti(struct net_device *dev, int inc); 4230 void netdev_state_change(struct net_device *dev); 4231 void netdev_notify_peers(struct net_device *dev); 4232 void netdev_features_change(struct net_device *dev); 4233 /* Load a device via the kmod */ 4234 void dev_load(struct net *net, const char *name); 4235 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4236 struct rtnl_link_stats64 *storage); 4237 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4238 const struct net_device_stats *netdev_stats); 4239 4240 extern int netdev_max_backlog; 4241 extern int netdev_tstamp_prequeue; 4242 extern int weight_p; 4243 extern int dev_weight_rx_bias; 4244 extern int dev_weight_tx_bias; 4245 extern int dev_rx_weight; 4246 extern int dev_tx_weight; 4247 4248 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4249 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4250 struct list_head **iter); 4251 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4252 struct list_head **iter); 4253 4254 /* iterate through upper list, must be called under RCU read lock */ 4255 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4256 for (iter = &(dev)->adj_list.upper, \ 4257 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4258 updev; \ 4259 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4260 4261 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4262 int (*fn)(struct net_device *upper_dev, 4263 void *data), 4264 void *data); 4265 4266 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4267 struct net_device *upper_dev); 4268 4269 bool netdev_has_any_upper_dev(struct net_device *dev); 4270 4271 void *netdev_lower_get_next_private(struct net_device *dev, 4272 struct list_head **iter); 4273 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4274 struct list_head **iter); 4275 4276 #define netdev_for_each_lower_private(dev, priv, iter) \ 4277 for (iter = (dev)->adj_list.lower.next, \ 4278 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4279 priv; \ 4280 priv = netdev_lower_get_next_private(dev, &(iter))) 4281 4282 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4283 for (iter = &(dev)->adj_list.lower, \ 4284 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4285 priv; \ 4286 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4287 4288 void *netdev_lower_get_next(struct net_device *dev, 4289 struct list_head **iter); 4290 4291 #define netdev_for_each_lower_dev(dev, ldev, iter) \ 4292 for (iter = (dev)->adj_list.lower.next, \ 4293 ldev = netdev_lower_get_next(dev, &(iter)); \ 4294 ldev; \ 4295 ldev = netdev_lower_get_next(dev, &(iter))) 4296 4297 struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4298 struct list_head **iter); 4299 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4300 struct list_head **iter); 4301 4302 int netdev_walk_all_lower_dev(struct net_device *dev, 4303 int (*fn)(struct net_device *lower_dev, 4304 void *data), 4305 void *data); 4306 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4307 int (*fn)(struct net_device *lower_dev, 4308 void *data), 4309 void *data); 4310 4311 void *netdev_adjacent_get_private(struct list_head *adj_list); 4312 void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4313 struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4314 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4315 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4316 struct netlink_ext_ack *extack); 4317 int netdev_master_upper_dev_link(struct net_device *dev, 4318 struct net_device *upper_dev, 4319 void *upper_priv, void *upper_info, 4320 struct netlink_ext_ack *extack); 4321 void netdev_upper_dev_unlink(struct net_device *dev, 4322 struct net_device *upper_dev); 4323 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4324 void *netdev_lower_dev_get_private(struct net_device *dev, 4325 struct net_device *lower_dev); 4326 void netdev_lower_state_changed(struct net_device *lower_dev, 4327 void *lower_state_info); 4328 4329 /* RSS keys are 40 or 52 bytes long */ 4330 #define NETDEV_RSS_KEY_LEN 52 4331 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4332 void netdev_rss_key_fill(void *buffer, size_t len); 4333 4334 int dev_get_nest_level(struct net_device *dev); 4335 int skb_checksum_help(struct sk_buff *skb); 4336 int skb_crc32c_csum_help(struct sk_buff *skb); 4337 int skb_csum_hwoffload_help(struct sk_buff *skb, 4338 const netdev_features_t features); 4339 4340 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4341 netdev_features_t features, bool tx_path); 4342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4343 netdev_features_t features); 4344 4345 struct netdev_bonding_info { 4346 ifslave slave; 4347 ifbond master; 4348 }; 4349 4350 struct netdev_notifier_bonding_info { 4351 struct netdev_notifier_info info; /* must be first */ 4352 struct netdev_bonding_info bonding_info; 4353 }; 4354 4355 void netdev_bonding_info_change(struct net_device *dev, 4356 struct netdev_bonding_info *bonding_info); 4357 4358 static inline 4359 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4360 { 4361 return __skb_gso_segment(skb, features, true); 4362 } 4363 __be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4364 4365 static inline bool can_checksum_protocol(netdev_features_t features, 4366 __be16 protocol) 4367 { 4368 if (protocol == htons(ETH_P_FCOE)) 4369 return !!(features & NETIF_F_FCOE_CRC); 4370 4371 /* Assume this is an IP checksum (not SCTP CRC) */ 4372 4373 if (features & NETIF_F_HW_CSUM) { 4374 /* Can checksum everything */ 4375 return true; 4376 } 4377 4378 switch (protocol) { 4379 case htons(ETH_P_IP): 4380 return !!(features & NETIF_F_IP_CSUM); 4381 case htons(ETH_P_IPV6): 4382 return !!(features & NETIF_F_IPV6_CSUM); 4383 default: 4384 return false; 4385 } 4386 } 4387 4388 #ifdef CONFIG_BUG 4389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4390 #else 4391 static inline void netdev_rx_csum_fault(struct net_device *dev, 4392 struct sk_buff *skb) 4393 { 4394 } 4395 #endif 4396 /* rx skb timestamps */ 4397 void net_enable_timestamp(void); 4398 void net_disable_timestamp(void); 4399 4400 #ifdef CONFIG_PROC_FS 4401 int __init dev_proc_init(void); 4402 #else 4403 #define dev_proc_init() 0 4404 #endif 4405 4406 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4407 struct sk_buff *skb, struct net_device *dev, 4408 bool more) 4409 { 4410 __this_cpu_write(softnet_data.xmit.more, more); 4411 return ops->ndo_start_xmit(skb, dev); 4412 } 4413 4414 static inline bool netdev_xmit_more(void) 4415 { 4416 return __this_cpu_read(softnet_data.xmit.more); 4417 } 4418 4419 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4420 struct netdev_queue *txq, bool more) 4421 { 4422 const struct net_device_ops *ops = dev->netdev_ops; 4423 netdev_tx_t rc; 4424 4425 rc = __netdev_start_xmit(ops, skb, dev, more); 4426 if (rc == NETDEV_TX_OK) 4427 txq_trans_update(txq); 4428 4429 return rc; 4430 } 4431 4432 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4433 const void *ns); 4434 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4435 const void *ns); 4436 4437 static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4438 { 4439 return netdev_class_create_file_ns(class_attr, NULL); 4440 } 4441 4442 static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4443 { 4444 netdev_class_remove_file_ns(class_attr, NULL); 4445 } 4446 4447 extern const struct kobj_ns_type_operations net_ns_type_operations; 4448 4449 const char *netdev_drivername(const struct net_device *dev); 4450 4451 void linkwatch_run_queue(void); 4452 4453 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4454 netdev_features_t f2) 4455 { 4456 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4457 if (f1 & NETIF_F_HW_CSUM) 4458 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4459 else 4460 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4461 } 4462 4463 return f1 & f2; 4464 } 4465 4466 static inline netdev_features_t netdev_get_wanted_features( 4467 struct net_device *dev) 4468 { 4469 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4470 } 4471 netdev_features_t netdev_increment_features(netdev_features_t all, 4472 netdev_features_t one, netdev_features_t mask); 4473 4474 /* Allow TSO being used on stacked device : 4475 * Performing the GSO segmentation before last device 4476 * is a performance improvement. 4477 */ 4478 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4479 netdev_features_t mask) 4480 { 4481 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4482 } 4483 4484 int __netdev_update_features(struct net_device *dev); 4485 void netdev_update_features(struct net_device *dev); 4486 void netdev_change_features(struct net_device *dev); 4487 4488 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4489 struct net_device *dev); 4490 4491 netdev_features_t passthru_features_check(struct sk_buff *skb, 4492 struct net_device *dev, 4493 netdev_features_t features); 4494 netdev_features_t netif_skb_features(struct sk_buff *skb); 4495 4496 static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4497 { 4498 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4499 4500 /* check flags correspondence */ 4501 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4502 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4503 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4514 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4515 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4517 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4518 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4519 4520 return (features & feature) == feature; 4521 } 4522 4523 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4524 { 4525 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4526 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4527 } 4528 4529 static inline bool netif_needs_gso(struct sk_buff *skb, 4530 netdev_features_t features) 4531 { 4532 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4533 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4534 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4535 } 4536 4537 static inline void netif_set_gso_max_size(struct net_device *dev, 4538 unsigned int size) 4539 { 4540 dev->gso_max_size = size; 4541 } 4542 4543 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4544 int pulled_hlen, u16 mac_offset, 4545 int mac_len) 4546 { 4547 skb->protocol = protocol; 4548 skb->encapsulation = 1; 4549 skb_push(skb, pulled_hlen); 4550 skb_reset_transport_header(skb); 4551 skb->mac_header = mac_offset; 4552 skb->network_header = skb->mac_header + mac_len; 4553 skb->mac_len = mac_len; 4554 } 4555 4556 static inline bool netif_is_macsec(const struct net_device *dev) 4557 { 4558 return dev->priv_flags & IFF_MACSEC; 4559 } 4560 4561 static inline bool netif_is_macvlan(const struct net_device *dev) 4562 { 4563 return dev->priv_flags & IFF_MACVLAN; 4564 } 4565 4566 static inline bool netif_is_macvlan_port(const struct net_device *dev) 4567 { 4568 return dev->priv_flags & IFF_MACVLAN_PORT; 4569 } 4570 4571 static inline bool netif_is_bond_master(const struct net_device *dev) 4572 { 4573 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4574 } 4575 4576 static inline bool netif_is_bond_slave(const struct net_device *dev) 4577 { 4578 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4579 } 4580 4581 static inline bool netif_supports_nofcs(struct net_device *dev) 4582 { 4583 return dev->priv_flags & IFF_SUPP_NOFCS; 4584 } 4585 4586 static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4587 { 4588 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4589 } 4590 4591 static inline bool netif_is_l3_master(const struct net_device *dev) 4592 { 4593 return dev->priv_flags & IFF_L3MDEV_MASTER; 4594 } 4595 4596 static inline bool netif_is_l3_slave(const struct net_device *dev) 4597 { 4598 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4599 } 4600 4601 static inline bool netif_is_bridge_master(const struct net_device *dev) 4602 { 4603 return dev->priv_flags & IFF_EBRIDGE; 4604 } 4605 4606 static inline bool netif_is_bridge_port(const struct net_device *dev) 4607 { 4608 return dev->priv_flags & IFF_BRIDGE_PORT; 4609 } 4610 4611 static inline bool netif_is_ovs_master(const struct net_device *dev) 4612 { 4613 return dev->priv_flags & IFF_OPENVSWITCH; 4614 } 4615 4616 static inline bool netif_is_ovs_port(const struct net_device *dev) 4617 { 4618 return dev->priv_flags & IFF_OVS_DATAPATH; 4619 } 4620 4621 static inline bool netif_is_team_master(const struct net_device *dev) 4622 { 4623 return dev->priv_flags & IFF_TEAM; 4624 } 4625 4626 static inline bool netif_is_team_port(const struct net_device *dev) 4627 { 4628 return dev->priv_flags & IFF_TEAM_PORT; 4629 } 4630 4631 static inline bool netif_is_lag_master(const struct net_device *dev) 4632 { 4633 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4634 } 4635 4636 static inline bool netif_is_lag_port(const struct net_device *dev) 4637 { 4638 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4639 } 4640 4641 static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4642 { 4643 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4644 } 4645 4646 static inline bool netif_is_failover(const struct net_device *dev) 4647 { 4648 return dev->priv_flags & IFF_FAILOVER; 4649 } 4650 4651 static inline bool netif_is_failover_slave(const struct net_device *dev) 4652 { 4653 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4654 } 4655 4656 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4657 static inline void netif_keep_dst(struct net_device *dev) 4658 { 4659 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4660 } 4661 4662 /* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4663 static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4664 { 4665 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4666 return dev->priv_flags & IFF_MACSEC; 4667 } 4668 4669 extern struct pernet_operations __net_initdata loopback_net_ops; 4670 4671 /* Logging, debugging and troubleshooting/diagnostic helpers. */ 4672 4673 /* netdev_printk helpers, similar to dev_printk */ 4674 4675 static inline const char *netdev_name(const struct net_device *dev) 4676 { 4677 if (!dev->name[0] || strchr(dev->name, '%')) 4678 return "(unnamed net_device)"; 4679 return dev->name; 4680 } 4681 4682 static inline bool netdev_unregistering(const struct net_device *dev) 4683 { 4684 return dev->reg_state == NETREG_UNREGISTERING; 4685 } 4686 4687 static inline const char *netdev_reg_state(const struct net_device *dev) 4688 { 4689 switch (dev->reg_state) { 4690 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4691 case NETREG_REGISTERED: return ""; 4692 case NETREG_UNREGISTERING: return " (unregistering)"; 4693 case NETREG_UNREGISTERED: return " (unregistered)"; 4694 case NETREG_RELEASED: return " (released)"; 4695 case NETREG_DUMMY: return " (dummy)"; 4696 } 4697 4698 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4699 return " (unknown)"; 4700 } 4701 4702 __printf(3, 4) __cold 4703 void netdev_printk(const char *level, const struct net_device *dev, 4704 const char *format, ...); 4705 __printf(2, 3) __cold 4706 void netdev_emerg(const struct net_device *dev, const char *format, ...); 4707 __printf(2, 3) __cold 4708 void netdev_alert(const struct net_device *dev, const char *format, ...); 4709 __printf(2, 3) __cold 4710 void netdev_crit(const struct net_device *dev, const char *format, ...); 4711 __printf(2, 3) __cold 4712 void netdev_err(const struct net_device *dev, const char *format, ...); 4713 __printf(2, 3) __cold 4714 void netdev_warn(const struct net_device *dev, const char *format, ...); 4715 __printf(2, 3) __cold 4716 void netdev_notice(const struct net_device *dev, const char *format, ...); 4717 __printf(2, 3) __cold 4718 void netdev_info(const struct net_device *dev, const char *format, ...); 4719 4720 #define netdev_level_once(level, dev, fmt, ...) \ 4721 do { \ 4722 static bool __print_once __read_mostly; \ 4723 \ 4724 if (!__print_once) { \ 4725 __print_once = true; \ 4726 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4727 } \ 4728 } while (0) 4729 4730 #define netdev_emerg_once(dev, fmt, ...) \ 4731 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4732 #define netdev_alert_once(dev, fmt, ...) \ 4733 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4734 #define netdev_crit_once(dev, fmt, ...) \ 4735 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4736 #define netdev_err_once(dev, fmt, ...) \ 4737 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4738 #define netdev_warn_once(dev, fmt, ...) \ 4739 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4740 #define netdev_notice_once(dev, fmt, ...) \ 4741 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4742 #define netdev_info_once(dev, fmt, ...) \ 4743 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4744 4745 #define MODULE_ALIAS_NETDEV(device) \ 4746 MODULE_ALIAS("netdev-" device) 4747 4748 #if defined(CONFIG_DYNAMIC_DEBUG) 4749 #define netdev_dbg(__dev, format, args...) \ 4750 do { \ 4751 dynamic_netdev_dbg(__dev, format, ##args); \ 4752 } while (0) 4753 #elif defined(DEBUG) 4754 #define netdev_dbg(__dev, format, args...) \ 4755 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4756 #else 4757 #define netdev_dbg(__dev, format, args...) \ 4758 ({ \ 4759 if (0) \ 4760 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4761 }) 4762 #endif 4763 4764 #if defined(VERBOSE_DEBUG) 4765 #define netdev_vdbg netdev_dbg 4766 #else 4767 4768 #define netdev_vdbg(dev, format, args...) \ 4769 ({ \ 4770 if (0) \ 4771 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4772 0; \ 4773 }) 4774 #endif 4775 4776 /* 4777 * netdev_WARN() acts like dev_printk(), but with the key difference 4778 * of using a WARN/WARN_ON to get the message out, including the 4779 * file/line information and a backtrace. 4780 */ 4781 #define netdev_WARN(dev, format, args...) \ 4782 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4783 netdev_reg_state(dev), ##args) 4784 4785 #define netdev_WARN_ONCE(dev, format, args...) \ 4786 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4787 netdev_reg_state(dev), ##args) 4788 4789 /* netif printk helpers, similar to netdev_printk */ 4790 4791 #define netif_printk(priv, type, level, dev, fmt, args...) \ 4792 do { \ 4793 if (netif_msg_##type(priv)) \ 4794 netdev_printk(level, (dev), fmt, ##args); \ 4795 } while (0) 4796 4797 #define netif_level(level, priv, type, dev, fmt, args...) \ 4798 do { \ 4799 if (netif_msg_##type(priv)) \ 4800 netdev_##level(dev, fmt, ##args); \ 4801 } while (0) 4802 4803 #define netif_emerg(priv, type, dev, fmt, args...) \ 4804 netif_level(emerg, priv, type, dev, fmt, ##args) 4805 #define netif_alert(priv, type, dev, fmt, args...) \ 4806 netif_level(alert, priv, type, dev, fmt, ##args) 4807 #define netif_crit(priv, type, dev, fmt, args...) \ 4808 netif_level(crit, priv, type, dev, fmt, ##args) 4809 #define netif_err(priv, type, dev, fmt, args...) \ 4810 netif_level(err, priv, type, dev, fmt, ##args) 4811 #define netif_warn(priv, type, dev, fmt, args...) \ 4812 netif_level(warn, priv, type, dev, fmt, ##args) 4813 #define netif_notice(priv, type, dev, fmt, args...) \ 4814 netif_level(notice, priv, type, dev, fmt, ##args) 4815 #define netif_info(priv, type, dev, fmt, args...) \ 4816 netif_level(info, priv, type, dev, fmt, ##args) 4817 4818 #if defined(CONFIG_DYNAMIC_DEBUG) 4819 #define netif_dbg(priv, type, netdev, format, args...) \ 4820 do { \ 4821 if (netif_msg_##type(priv)) \ 4822 dynamic_netdev_dbg(netdev, format, ##args); \ 4823 } while (0) 4824 #elif defined(DEBUG) 4825 #define netif_dbg(priv, type, dev, format, args...) \ 4826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4827 #else 4828 #define netif_dbg(priv, type, dev, format, args...) \ 4829 ({ \ 4830 if (0) \ 4831 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4832 0; \ 4833 }) 4834 #endif 4835 4836 /* if @cond then downgrade to debug, else print at @level */ 4837 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4838 do { \ 4839 if (cond) \ 4840 netif_dbg(priv, type, netdev, fmt, ##args); \ 4841 else \ 4842 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4843 } while (0) 4844 4845 #if defined(VERBOSE_DEBUG) 4846 #define netif_vdbg netif_dbg 4847 #else 4848 #define netif_vdbg(priv, type, dev, format, args...) \ 4849 ({ \ 4850 if (0) \ 4851 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4852 0; \ 4853 }) 4854 #endif 4855 4856 /* 4857 * The list of packet types we will receive (as opposed to discard) 4858 * and the routines to invoke. 4859 * 4860 * Why 16. Because with 16 the only overlap we get on a hash of the 4861 * low nibble of the protocol value is RARP/SNAP/X.25. 4862 * 4863 * 0800 IP 4864 * 0001 802.3 4865 * 0002 AX.25 4866 * 0004 802.2 4867 * 8035 RARP 4868 * 0005 SNAP 4869 * 0805 X.25 4870 * 0806 ARP 4871 * 8137 IPX 4872 * 0009 Localtalk 4873 * 86DD IPv6 4874 */ 4875 #define PTYPE_HASH_SIZE (16) 4876 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4877 4878 extern struct net_device *blackhole_netdev; 4879 4880 #endif /* _LINUX_NETDEVICE_H */ 4881
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.