~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/pagemap.h

Version: ~ [ linux-5.11-rc3 ] ~ [ linux-5.10.7 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.89 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.167 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.215 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.251 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.251 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_PAGEMAP_H
  3 #define _LINUX_PAGEMAP_H
  4 
  5 /*
  6  * Copyright 1995 Linus Torvalds
  7  */
  8 #include <linux/mm.h>
  9 #include <linux/fs.h>
 10 #include <linux/list.h>
 11 #include <linux/highmem.h>
 12 #include <linux/compiler.h>
 13 #include <linux/uaccess.h>
 14 #include <linux/gfp.h>
 15 #include <linux/bitops.h>
 16 #include <linux/hardirq.h> /* for in_interrupt() */
 17 #include <linux/hugetlb_inline.h>
 18 
 19 struct pagevec;
 20 
 21 /*
 22  * Bits in mapping->flags.
 23  */
 24 enum mapping_flags {
 25         AS_EIO          = 0,    /* IO error on async write */
 26         AS_ENOSPC       = 1,    /* ENOSPC on async write */
 27         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
 28         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
 29         AS_EXITING      = 4,    /* final truncate in progress */
 30         /* writeback related tags are not used */
 31         AS_NO_WRITEBACK_TAGS = 5,
 32 };
 33 
 34 /**
 35  * mapping_set_error - record a writeback error in the address_space
 36  * @mapping - the mapping in which an error should be set
 37  * @error - the error to set in the mapping
 38  *
 39  * When writeback fails in some way, we must record that error so that
 40  * userspace can be informed when fsync and the like are called.  We endeavor
 41  * to report errors on any file that was open at the time of the error.  Some
 42  * internal callers also need to know when writeback errors have occurred.
 43  *
 44  * When a writeback error occurs, most filesystems will want to call
 45  * mapping_set_error to record the error in the mapping so that it can be
 46  * reported when the application calls fsync(2).
 47  */
 48 static inline void mapping_set_error(struct address_space *mapping, int error)
 49 {
 50         if (likely(!error))
 51                 return;
 52 
 53         /* Record in wb_err for checkers using errseq_t based tracking */
 54         filemap_set_wb_err(mapping, error);
 55 
 56         /* Record it in flags for now, for legacy callers */
 57         if (error == -ENOSPC)
 58                 set_bit(AS_ENOSPC, &mapping->flags);
 59         else
 60                 set_bit(AS_EIO, &mapping->flags);
 61 }
 62 
 63 static inline void mapping_set_unevictable(struct address_space *mapping)
 64 {
 65         set_bit(AS_UNEVICTABLE, &mapping->flags);
 66 }
 67 
 68 static inline void mapping_clear_unevictable(struct address_space *mapping)
 69 {
 70         clear_bit(AS_UNEVICTABLE, &mapping->flags);
 71 }
 72 
 73 static inline int mapping_unevictable(struct address_space *mapping)
 74 {
 75         if (mapping)
 76                 return test_bit(AS_UNEVICTABLE, &mapping->flags);
 77         return !!mapping;
 78 }
 79 
 80 static inline void mapping_set_exiting(struct address_space *mapping)
 81 {
 82         set_bit(AS_EXITING, &mapping->flags);
 83 }
 84 
 85 static inline int mapping_exiting(struct address_space *mapping)
 86 {
 87         return test_bit(AS_EXITING, &mapping->flags);
 88 }
 89 
 90 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
 91 {
 92         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 93 }
 94 
 95 static inline int mapping_use_writeback_tags(struct address_space *mapping)
 96 {
 97         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
 98 }
 99 
100 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
101 {
102         return mapping->gfp_mask;
103 }
104 
105 /* Restricts the given gfp_mask to what the mapping allows. */
106 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
107                 gfp_t gfp_mask)
108 {
109         return mapping_gfp_mask(mapping) & gfp_mask;
110 }
111 
112 /*
113  * This is non-atomic.  Only to be used before the mapping is activated.
114  * Probably needs a barrier...
115  */
116 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
117 {
118         m->gfp_mask = mask;
119 }
120 
121 void release_pages(struct page **pages, int nr);
122 
123 /*
124  * speculatively take a reference to a page.
125  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
126  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
127  *
128  * This function must be called inside the same rcu_read_lock() section as has
129  * been used to lookup the page in the pagecache radix-tree (or page table):
130  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
131  *
132  * Unless an RCU grace period has passed, the count of all pages coming out
133  * of the allocator must be considered unstable. page_count may return higher
134  * than expected, and put_page must be able to do the right thing when the
135  * page has been finished with, no matter what it is subsequently allocated
136  * for (because put_page is what is used here to drop an invalid speculative
137  * reference).
138  *
139  * This is the interesting part of the lockless pagecache (and lockless
140  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
141  * has the following pattern:
142  * 1. find page in radix tree
143  * 2. conditionally increment refcount
144  * 3. check the page is still in pagecache (if no, goto 1)
145  *
146  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
147  * following (with the i_pages lock held):
148  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
149  * B. remove page from pagecache
150  * C. free the page
151  *
152  * There are 2 critical interleavings that matter:
153  * - 2 runs before A: in this case, A sees elevated refcount and bails out
154  * - A runs before 2: in this case, 2 sees zero refcount and retries;
155  *   subsequently, B will complete and 1 will find no page, causing the
156  *   lookup to return NULL.
157  *
158  * It is possible that between 1 and 2, the page is removed then the exact same
159  * page is inserted into the same position in pagecache. That's OK: the
160  * old find_get_page using a lock could equally have run before or after
161  * such a re-insertion, depending on order that locks are granted.
162  *
163  * Lookups racing against pagecache insertion isn't a big problem: either 1
164  * will find the page or it will not. Likewise, the old find_get_page could run
165  * either before the insertion or afterwards, depending on timing.
166  */
167 static inline int __page_cache_add_speculative(struct page *page, int count)
168 {
169 #ifdef CONFIG_TINY_RCU
170 # ifdef CONFIG_PREEMPT_COUNT
171         VM_BUG_ON(!in_atomic() && !irqs_disabled());
172 # endif
173         /*
174          * Preempt must be disabled here - we rely on rcu_read_lock doing
175          * this for us.
176          *
177          * Pagecache won't be truncated from interrupt context, so if we have
178          * found a page in the radix tree here, we have pinned its refcount by
179          * disabling preempt, and hence no need for the "speculative get" that
180          * SMP requires.
181          */
182         VM_BUG_ON_PAGE(page_count(page) == 0, page);
183         page_ref_add(page, count);
184 
185 #else
186         if (unlikely(!page_ref_add_unless(page, count, 0))) {
187                 /*
188                  * Either the page has been freed, or will be freed.
189                  * In either case, retry here and the caller should
190                  * do the right thing (see comments above).
191                  */
192                 return 0;
193         }
194 #endif
195         VM_BUG_ON_PAGE(PageTail(page), page);
196 
197         return 1;
198 }
199 
200 static inline int page_cache_get_speculative(struct page *page)
201 {
202         return __page_cache_add_speculative(page, 1);
203 }
204 
205 static inline int page_cache_add_speculative(struct page *page, int count)
206 {
207         return __page_cache_add_speculative(page, count);
208 }
209 
210 #ifdef CONFIG_NUMA
211 extern struct page *__page_cache_alloc(gfp_t gfp);
212 #else
213 static inline struct page *__page_cache_alloc(gfp_t gfp)
214 {
215         return alloc_pages(gfp, 0);
216 }
217 #endif
218 
219 static inline struct page *page_cache_alloc(struct address_space *x)
220 {
221         return __page_cache_alloc(mapping_gfp_mask(x));
222 }
223 
224 static inline gfp_t readahead_gfp_mask(struct address_space *x)
225 {
226         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
227 }
228 
229 typedef int filler_t(void *, struct page *);
230 
231 pgoff_t page_cache_next_miss(struct address_space *mapping,
232                              pgoff_t index, unsigned long max_scan);
233 pgoff_t page_cache_prev_miss(struct address_space *mapping,
234                              pgoff_t index, unsigned long max_scan);
235 
236 #define FGP_ACCESSED            0x00000001
237 #define FGP_LOCK                0x00000002
238 #define FGP_CREAT               0x00000004
239 #define FGP_WRITE               0x00000008
240 #define FGP_NOFS                0x00000010
241 #define FGP_NOWAIT              0x00000020
242 #define FGP_FOR_MMAP            0x00000040
243 
244 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
245                 int fgp_flags, gfp_t cache_gfp_mask);
246 
247 /**
248  * find_get_page - find and get a page reference
249  * @mapping: the address_space to search
250  * @offset: the page index
251  *
252  * Looks up the page cache slot at @mapping & @offset.  If there is a
253  * page cache page, it is returned with an increased refcount.
254  *
255  * Otherwise, %NULL is returned.
256  */
257 static inline struct page *find_get_page(struct address_space *mapping,
258                                         pgoff_t offset)
259 {
260         return pagecache_get_page(mapping, offset, 0, 0);
261 }
262 
263 static inline struct page *find_get_page_flags(struct address_space *mapping,
264                                         pgoff_t offset, int fgp_flags)
265 {
266         return pagecache_get_page(mapping, offset, fgp_flags, 0);
267 }
268 
269 /**
270  * find_lock_page - locate, pin and lock a pagecache page
271  * @mapping: the address_space to search
272  * @offset: the page index
273  *
274  * Looks up the page cache slot at @mapping & @offset.  If there is a
275  * page cache page, it is returned locked and with an increased
276  * refcount.
277  *
278  * Otherwise, %NULL is returned.
279  *
280  * find_lock_page() may sleep.
281  */
282 static inline struct page *find_lock_page(struct address_space *mapping,
283                                         pgoff_t offset)
284 {
285         return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
286 }
287 
288 /**
289  * find_or_create_page - locate or add a pagecache page
290  * @mapping: the page's address_space
291  * @index: the page's index into the mapping
292  * @gfp_mask: page allocation mode
293  *
294  * Looks up the page cache slot at @mapping & @offset.  If there is a
295  * page cache page, it is returned locked and with an increased
296  * refcount.
297  *
298  * If the page is not present, a new page is allocated using @gfp_mask
299  * and added to the page cache and the VM's LRU list.  The page is
300  * returned locked and with an increased refcount.
301  *
302  * On memory exhaustion, %NULL is returned.
303  *
304  * find_or_create_page() may sleep, even if @gfp_flags specifies an
305  * atomic allocation!
306  */
307 static inline struct page *find_or_create_page(struct address_space *mapping,
308                                         pgoff_t offset, gfp_t gfp_mask)
309 {
310         return pagecache_get_page(mapping, offset,
311                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
312                                         gfp_mask);
313 }
314 
315 /**
316  * grab_cache_page_nowait - returns locked page at given index in given cache
317  * @mapping: target address_space
318  * @index: the page index
319  *
320  * Same as grab_cache_page(), but do not wait if the page is unavailable.
321  * This is intended for speculative data generators, where the data can
322  * be regenerated if the page couldn't be grabbed.  This routine should
323  * be safe to call while holding the lock for another page.
324  *
325  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
326  * and deadlock against the caller's locked page.
327  */
328 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
329                                 pgoff_t index)
330 {
331         return pagecache_get_page(mapping, index,
332                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
333                         mapping_gfp_mask(mapping));
334 }
335 
336 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
337 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
338 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
339                           unsigned int nr_entries, struct page **entries,
340                           pgoff_t *indices);
341 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
342                         pgoff_t end, unsigned int nr_pages,
343                         struct page **pages);
344 static inline unsigned find_get_pages(struct address_space *mapping,
345                         pgoff_t *start, unsigned int nr_pages,
346                         struct page **pages)
347 {
348         return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
349                                     pages);
350 }
351 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
352                                unsigned int nr_pages, struct page **pages);
353 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
354                         pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
355                         struct page **pages);
356 static inline unsigned find_get_pages_tag(struct address_space *mapping,
357                         pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
358                         struct page **pages)
359 {
360         return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
361                                         nr_pages, pages);
362 }
363 
364 struct page *grab_cache_page_write_begin(struct address_space *mapping,
365                         pgoff_t index, unsigned flags);
366 
367 /*
368  * Returns locked page at given index in given cache, creating it if needed.
369  */
370 static inline struct page *grab_cache_page(struct address_space *mapping,
371                                                                 pgoff_t index)
372 {
373         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
374 }
375 
376 extern struct page * read_cache_page(struct address_space *mapping,
377                                 pgoff_t index, filler_t *filler, void *data);
378 extern struct page * read_cache_page_gfp(struct address_space *mapping,
379                                 pgoff_t index, gfp_t gfp_mask);
380 extern int read_cache_pages(struct address_space *mapping,
381                 struct list_head *pages, filler_t *filler, void *data);
382 
383 static inline struct page *read_mapping_page(struct address_space *mapping,
384                                 pgoff_t index, void *data)
385 {
386         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
387         return read_cache_page(mapping, index, filler, data);
388 }
389 
390 /*
391  * Get index of the page with in radix-tree
392  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
393  */
394 static inline pgoff_t page_to_index(struct page *page)
395 {
396         pgoff_t pgoff;
397 
398         if (likely(!PageTransTail(page)))
399                 return page->index;
400 
401         /*
402          *  We don't initialize ->index for tail pages: calculate based on
403          *  head page
404          */
405         pgoff = compound_head(page)->index;
406         pgoff += page - compound_head(page);
407         return pgoff;
408 }
409 
410 /*
411  * Get the offset in PAGE_SIZE.
412  * (TODO: hugepage should have ->index in PAGE_SIZE)
413  */
414 static inline pgoff_t page_to_pgoff(struct page *page)
415 {
416         if (unlikely(PageHeadHuge(page)))
417                 return page->index << compound_order(page);
418 
419         return page_to_index(page);
420 }
421 
422 /*
423  * Return byte-offset into filesystem object for page.
424  */
425 static inline loff_t page_offset(struct page *page)
426 {
427         return ((loff_t)page->index) << PAGE_SHIFT;
428 }
429 
430 static inline loff_t page_file_offset(struct page *page)
431 {
432         return ((loff_t)page_index(page)) << PAGE_SHIFT;
433 }
434 
435 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
436                                      unsigned long address);
437 
438 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
439                                         unsigned long address)
440 {
441         pgoff_t pgoff;
442         if (unlikely(is_vm_hugetlb_page(vma)))
443                 return linear_hugepage_index(vma, address);
444         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
445         pgoff += vma->vm_pgoff;
446         return pgoff;
447 }
448 
449 extern void __lock_page(struct page *page);
450 extern int __lock_page_killable(struct page *page);
451 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
452                                 unsigned int flags);
453 extern void unlock_page(struct page *page);
454 
455 static inline int trylock_page(struct page *page)
456 {
457         page = compound_head(page);
458         return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
459 }
460 
461 /*
462  * lock_page may only be called if we have the page's inode pinned.
463  */
464 static inline void lock_page(struct page *page)
465 {
466         might_sleep();
467         if (!trylock_page(page))
468                 __lock_page(page);
469 }
470 
471 /*
472  * lock_page_killable is like lock_page but can be interrupted by fatal
473  * signals.  It returns 0 if it locked the page and -EINTR if it was
474  * killed while waiting.
475  */
476 static inline int lock_page_killable(struct page *page)
477 {
478         might_sleep();
479         if (!trylock_page(page))
480                 return __lock_page_killable(page);
481         return 0;
482 }
483 
484 /*
485  * lock_page_or_retry - Lock the page, unless this would block and the
486  * caller indicated that it can handle a retry.
487  *
488  * Return value and mmap_sem implications depend on flags; see
489  * __lock_page_or_retry().
490  */
491 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
492                                      unsigned int flags)
493 {
494         might_sleep();
495         return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
496 }
497 
498 /*
499  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
500  * and should not be used directly.
501  */
502 extern void wait_on_page_bit(struct page *page, int bit_nr);
503 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
504 
505 /* 
506  * Wait for a page to be unlocked.
507  *
508  * This must be called with the caller "holding" the page,
509  * ie with increased "page->count" so that the page won't
510  * go away during the wait..
511  */
512 static inline void wait_on_page_locked(struct page *page)
513 {
514         if (PageLocked(page))
515                 wait_on_page_bit(compound_head(page), PG_locked);
516 }
517 
518 static inline int wait_on_page_locked_killable(struct page *page)
519 {
520         if (!PageLocked(page))
521                 return 0;
522         return wait_on_page_bit_killable(compound_head(page), PG_locked);
523 }
524 
525 extern void put_and_wait_on_page_locked(struct page *page);
526 
527 void wait_on_page_writeback(struct page *page);
528 extern void end_page_writeback(struct page *page);
529 void wait_for_stable_page(struct page *page);
530 
531 void page_endio(struct page *page, bool is_write, int err);
532 
533 /*
534  * Add an arbitrary waiter to a page's wait queue
535  */
536 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
537 
538 /*
539  * Fault everything in given userspace address range in.
540  */
541 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
542 {
543         char __user *end = uaddr + size - 1;
544 
545         if (unlikely(size == 0))
546                 return 0;
547 
548         if (unlikely(uaddr > end))
549                 return -EFAULT;
550         /*
551          * Writing zeroes into userspace here is OK, because we know that if
552          * the zero gets there, we'll be overwriting it.
553          */
554         do {
555                 if (unlikely(__put_user(0, uaddr) != 0))
556                         return -EFAULT;
557                 uaddr += PAGE_SIZE;
558         } while (uaddr <= end);
559 
560         /* Check whether the range spilled into the next page. */
561         if (((unsigned long)uaddr & PAGE_MASK) ==
562                         ((unsigned long)end & PAGE_MASK))
563                 return __put_user(0, end);
564 
565         return 0;
566 }
567 
568 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
569 {
570         volatile char c;
571         const char __user *end = uaddr + size - 1;
572 
573         if (unlikely(size == 0))
574                 return 0;
575 
576         if (unlikely(uaddr > end))
577                 return -EFAULT;
578 
579         do {
580                 if (unlikely(__get_user(c, uaddr) != 0))
581                         return -EFAULT;
582                 uaddr += PAGE_SIZE;
583         } while (uaddr <= end);
584 
585         /* Check whether the range spilled into the next page. */
586         if (((unsigned long)uaddr & PAGE_MASK) ==
587                         ((unsigned long)end & PAGE_MASK)) {
588                 return __get_user(c, end);
589         }
590 
591         (void)c;
592         return 0;
593 }
594 
595 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
596                                 pgoff_t index, gfp_t gfp_mask);
597 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
598                                 pgoff_t index, gfp_t gfp_mask);
599 extern void delete_from_page_cache(struct page *page);
600 extern void __delete_from_page_cache(struct page *page, void *shadow);
601 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
602 void delete_from_page_cache_batch(struct address_space *mapping,
603                                   struct pagevec *pvec);
604 
605 /*
606  * Like add_to_page_cache_locked, but used to add newly allocated pages:
607  * the page is new, so we can just run __SetPageLocked() against it.
608  */
609 static inline int add_to_page_cache(struct page *page,
610                 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
611 {
612         int error;
613 
614         __SetPageLocked(page);
615         error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
616         if (unlikely(error))
617                 __ClearPageLocked(page);
618         return error;
619 }
620 
621 static inline unsigned long dir_pages(struct inode *inode)
622 {
623         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
624                                PAGE_SHIFT;
625 }
626 
627 #endif /* _LINUX_PAGEMAP_H */
628 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp