~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/perf_event.h

Version: ~ [ linux-5.2-rc1 ] ~ [ linux-5.1.2 ] ~ [ linux-5.0.16 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.43 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.119 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.176 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.179 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.139 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.67 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Performance events:
  3  *
  4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
  5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
  6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
  7  *
  8  * Data type definitions, declarations, prototypes.
  9  *
 10  *    Started by: Thomas Gleixner and Ingo Molnar
 11  *
 12  * For licencing details see kernel-base/COPYING
 13  */
 14 #ifndef _LINUX_PERF_EVENT_H
 15 #define _LINUX_PERF_EVENT_H
 16 
 17 #include <linux/types.h>
 18 #include <linux/ioctl.h>
 19 #include <asm/byteorder.h>
 20 
 21 /*
 22  * User-space ABI bits:
 23  */
 24 
 25 /*
 26  * attr.type
 27  */
 28 enum perf_type_id {
 29         PERF_TYPE_HARDWARE                      = 0,
 30         PERF_TYPE_SOFTWARE                      = 1,
 31         PERF_TYPE_TRACEPOINT                    = 2,
 32         PERF_TYPE_HW_CACHE                      = 3,
 33         PERF_TYPE_RAW                           = 4,
 34         PERF_TYPE_BREAKPOINT                    = 5,
 35 
 36         PERF_TYPE_MAX,                          /* non-ABI */
 37 };
 38 
 39 /*
 40  * Generalized performance event event_id types, used by the
 41  * attr.event_id parameter of the sys_perf_event_open()
 42  * syscall:
 43  */
 44 enum perf_hw_id {
 45         /*
 46          * Common hardware events, generalized by the kernel:
 47          */
 48         PERF_COUNT_HW_CPU_CYCLES                = 0,
 49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
 50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
 51         PERF_COUNT_HW_CACHE_MISSES              = 3,
 52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
 53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
 54         PERF_COUNT_HW_BUS_CYCLES                = 6,
 55         PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
 56         PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
 57         PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
 58 
 59         PERF_COUNT_HW_MAX,                      /* non-ABI */
 60 };
 61 
 62 /*
 63  * Generalized hardware cache events:
 64  *
 65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
 66  *       { read, write, prefetch } x
 67  *       { accesses, misses }
 68  */
 69 enum perf_hw_cache_id {
 70         PERF_COUNT_HW_CACHE_L1D                 = 0,
 71         PERF_COUNT_HW_CACHE_L1I                 = 1,
 72         PERF_COUNT_HW_CACHE_LL                  = 2,
 73         PERF_COUNT_HW_CACHE_DTLB                = 3,
 74         PERF_COUNT_HW_CACHE_ITLB                = 4,
 75         PERF_COUNT_HW_CACHE_BPU                 = 5,
 76         PERF_COUNT_HW_CACHE_NODE                = 6,
 77 
 78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
 79 };
 80 
 81 enum perf_hw_cache_op_id {
 82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
 83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
 84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
 85 
 86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
 87 };
 88 
 89 enum perf_hw_cache_op_result_id {
 90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
 91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
 92 
 93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
 94 };
 95 
 96 /*
 97  * Special "software" events provided by the kernel, even if the hardware
 98  * does not support performance events. These events measure various
 99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112 
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115 
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132         PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
133 
134         PERF_SAMPLE_MAX = 1U << 12,             /* non-ABI */
135 };
136 
137 /*
138  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139  *
140  * If the user does not pass priv level information via branch_sample_type,
141  * the kernel uses the event's priv level. Branch and event priv levels do
142  * not have to match. Branch priv level is checked for permissions.
143  *
144  * The branch types can be combined, however BRANCH_ANY covers all types
145  * of branches and therefore it supersedes all the other types.
146  */
147 enum perf_branch_sample_type {
148         PERF_SAMPLE_BRANCH_USER         = 1U << 0, /* user branches */
149         PERF_SAMPLE_BRANCH_KERNEL       = 1U << 1, /* kernel branches */
150         PERF_SAMPLE_BRANCH_HV           = 1U << 2, /* hypervisor branches */
151 
152         PERF_SAMPLE_BRANCH_ANY          = 1U << 3, /* any branch types */
153         PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << 4, /* any call branch */
154         PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << 5, /* any return branch */
155         PERF_SAMPLE_BRANCH_IND_CALL     = 1U << 6, /* indirect calls */
156 
157         PERF_SAMPLE_BRANCH_MAX          = 1U << 7, /* non-ABI */
158 };
159 
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161         (PERF_SAMPLE_BRANCH_USER|\
162          PERF_SAMPLE_BRANCH_KERNEL|\
163          PERF_SAMPLE_BRANCH_HV)
164 
165 /*
166  * The format of the data returned by read() on a perf event fd,
167  * as specified by attr.read_format:
168  *
169  * struct read_format {
170  *      { u64           value;
171  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173  *        { u64         id;           } && PERF_FORMAT_ID
174  *      } && !PERF_FORMAT_GROUP
175  *
176  *      { u64           nr;
177  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179  *        { u64         value;
180  *          { u64       id;           } && PERF_FORMAT_ID
181  *        }             cntr[nr];
182  *      } && PERF_FORMAT_GROUP
183  * };
184  */
185 enum perf_event_read_format {
186         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
187         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
188         PERF_FORMAT_ID                          = 1U << 2,
189         PERF_FORMAT_GROUP                       = 1U << 3,
190 
191         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
192 };
193 
194 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
195 #define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
196 #define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
197 
198 /*
199  * Hardware event_id to monitor via a performance monitoring event:
200  */
201 struct perf_event_attr {
202 
203         /*
204          * Major type: hardware/software/tracepoint/etc.
205          */
206         __u32                   type;
207 
208         /*
209          * Size of the attr structure, for fwd/bwd compat.
210          */
211         __u32                   size;
212 
213         /*
214          * Type specific configuration information.
215          */
216         __u64                   config;
217 
218         union {
219                 __u64           sample_period;
220                 __u64           sample_freq;
221         };
222 
223         __u64                   sample_type;
224         __u64                   read_format;
225 
226         __u64                   disabled       :  1, /* off by default        */
227                                 inherit        :  1, /* children inherit it   */
228                                 pinned         :  1, /* must always be on PMU */
229                                 exclusive      :  1, /* only group on PMU     */
230                                 exclude_user   :  1, /* don't count user      */
231                                 exclude_kernel :  1, /* ditto kernel          */
232                                 exclude_hv     :  1, /* ditto hypervisor      */
233                                 exclude_idle   :  1, /* don't count when idle */
234                                 mmap           :  1, /* include mmap data     */
235                                 comm           :  1, /* include comm data     */
236                                 freq           :  1, /* use freq, not period  */
237                                 inherit_stat   :  1, /* per task counts       */
238                                 enable_on_exec :  1, /* next exec enables     */
239                                 task           :  1, /* trace fork/exit       */
240                                 watermark      :  1, /* wakeup_watermark      */
241                                 /*
242                                  * precise_ip:
243                                  *
244                                  *  0 - SAMPLE_IP can have arbitrary skid
245                                  *  1 - SAMPLE_IP must have constant skid
246                                  *  2 - SAMPLE_IP requested to have 0 skid
247                                  *  3 - SAMPLE_IP must have 0 skid
248                                  *
249                                  *  See also PERF_RECORD_MISC_EXACT_IP
250                                  */
251                                 precise_ip     :  2, /* skid constraint       */
252                                 mmap_data      :  1, /* non-exec mmap data    */
253                                 sample_id_all  :  1, /* sample_type all events */
254 
255                                 exclude_host   :  1, /* don't count in host   */
256                                 exclude_guest  :  1, /* don't count in guest  */
257 
258                                 __reserved_1   : 43;
259 
260         union {
261                 __u32           wakeup_events;    /* wakeup every n events */
262                 __u32           wakeup_watermark; /* bytes before wakeup   */
263         };
264 
265         __u32                   bp_type;
266         union {
267                 __u64           bp_addr;
268                 __u64           config1; /* extension of config */
269         };
270         union {
271                 __u64           bp_len;
272                 __u64           config2; /* extension of config1 */
273         };
274         __u64   branch_sample_type; /* enum branch_sample_type */
275 };
276 
277 #define perf_flags(attr)        (*(&(attr)->read_format + 1))
278 
279 /*
280  * Ioctls that can be done on a perf event fd:
281  */
282 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
283 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
284 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
285 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
286 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
287 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
288 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
289 
290 enum perf_event_ioc_flags {
291         PERF_IOC_FLAG_GROUP             = 1U << 0,
292 };
293 
294 /*
295  * Structure of the page that can be mapped via mmap
296  */
297 struct perf_event_mmap_page {
298         __u32   version;                /* version number of this structure */
299         __u32   compat_version;         /* lowest version this is compat with */
300 
301         /*
302          * Bits needed to read the hw events in user-space.
303          *
304          *   u32 seq, time_mult, time_shift, idx, width;
305          *   u64 count, enabled, running;
306          *   u64 cyc, time_offset;
307          *   s64 pmc = 0;
308          *
309          *   do {
310          *     seq = pc->lock;
311          *     barrier()
312          *
313          *     enabled = pc->time_enabled;
314          *     running = pc->time_running;
315          *
316          *     if (pc->cap_usr_time && enabled != running) {
317          *       cyc = rdtsc();
318          *       time_offset = pc->time_offset;
319          *       time_mult   = pc->time_mult;
320          *       time_shift  = pc->time_shift;
321          *     }
322          *
323          *     idx = pc->index;
324          *     count = pc->offset;
325          *     if (pc->cap_usr_rdpmc && idx) {
326          *       width = pc->pmc_width;
327          *       pmc = rdpmc(idx - 1);
328          *     }
329          *
330          *     barrier();
331          *   } while (pc->lock != seq);
332          *
333          * NOTE: for obvious reason this only works on self-monitoring
334          *       processes.
335          */
336         __u32   lock;                   /* seqlock for synchronization */
337         __u32   index;                  /* hardware event identifier */
338         __s64   offset;                 /* add to hardware event value */
339         __u64   time_enabled;           /* time event active */
340         __u64   time_running;           /* time event on cpu */
341         union {
342                 __u64   capabilities;
343                 __u64   cap_usr_time  : 1,
344                         cap_usr_rdpmc : 1,
345                         cap_____res   : 62;
346         };
347 
348         /*
349          * If cap_usr_rdpmc this field provides the bit-width of the value
350          * read using the rdpmc() or equivalent instruction. This can be used
351          * to sign extend the result like:
352          *
353          *   pmc <<= 64 - width;
354          *   pmc >>= 64 - width; // signed shift right
355          *   count += pmc;
356          */
357         __u16   pmc_width;
358 
359         /*
360          * If cap_usr_time the below fields can be used to compute the time
361          * delta since time_enabled (in ns) using rdtsc or similar.
362          *
363          *   u64 quot, rem;
364          *   u64 delta;
365          *
366          *   quot = (cyc >> time_shift);
367          *   rem = cyc & ((1 << time_shift) - 1);
368          *   delta = time_offset + quot * time_mult +
369          *              ((rem * time_mult) >> time_shift);
370          *
371          * Where time_offset,time_mult,time_shift and cyc are read in the
372          * seqcount loop described above. This delta can then be added to
373          * enabled and possible running (if idx), improving the scaling:
374          *
375          *   enabled += delta;
376          *   if (idx)
377          *     running += delta;
378          *
379          *   quot = count / running;
380          *   rem  = count % running;
381          *   count = quot * enabled + (rem * enabled) / running;
382          */
383         __u16   time_shift;
384         __u32   time_mult;
385         __u64   time_offset;
386 
387                 /*
388                  * Hole for extension of the self monitor capabilities
389                  */
390 
391         __u64   __reserved[120];        /* align to 1k */
392 
393         /*
394          * Control data for the mmap() data buffer.
395          *
396          * User-space reading the @data_head value should issue an rmb(), on
397          * SMP capable platforms, after reading this value -- see
398          * perf_event_wakeup().
399          *
400          * When the mapping is PROT_WRITE the @data_tail value should be
401          * written by userspace to reflect the last read data. In this case
402          * the kernel will not over-write unread data.
403          */
404         __u64   data_head;              /* head in the data section */
405         __u64   data_tail;              /* user-space written tail */
406 };
407 
408 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
409 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
410 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
411 #define PERF_RECORD_MISC_USER                   (2 << 0)
412 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
413 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
414 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
415 
416 /*
417  * Indicates that the content of PERF_SAMPLE_IP points to
418  * the actual instruction that triggered the event. See also
419  * perf_event_attr::precise_ip.
420  */
421 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
422 /*
423  * Reserve the last bit to indicate some extended misc field
424  */
425 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
426 
427 struct perf_event_header {
428         __u32   type;
429         __u16   misc;
430         __u16   size;
431 };
432 
433 enum perf_event_type {
434 
435         /*
436          * If perf_event_attr.sample_id_all is set then all event types will
437          * have the sample_type selected fields related to where/when
438          * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
439          * described in PERF_RECORD_SAMPLE below, it will be stashed just after
440          * the perf_event_header and the fields already present for the existing
441          * fields, i.e. at the end of the payload. That way a newer perf.data
442          * file will be supported by older perf tools, with these new optional
443          * fields being ignored.
444          *
445          * The MMAP events record the PROT_EXEC mappings so that we can
446          * correlate userspace IPs to code. They have the following structure:
447          *
448          * struct {
449          *      struct perf_event_header        header;
450          *
451          *      u32                             pid, tid;
452          *      u64                             addr;
453          *      u64                             len;
454          *      u64                             pgoff;
455          *      char                            filename[];
456          * };
457          */
458         PERF_RECORD_MMAP                        = 1,
459 
460         /*
461          * struct {
462          *      struct perf_event_header        header;
463          *      u64                             id;
464          *      u64                             lost;
465          * };
466          */
467         PERF_RECORD_LOST                        = 2,
468 
469         /*
470          * struct {
471          *      struct perf_event_header        header;
472          *
473          *      u32                             pid, tid;
474          *      char                            comm[];
475          * };
476          */
477         PERF_RECORD_COMM                        = 3,
478 
479         /*
480          * struct {
481          *      struct perf_event_header        header;
482          *      u32                             pid, ppid;
483          *      u32                             tid, ptid;
484          *      u64                             time;
485          * };
486          */
487         PERF_RECORD_EXIT                        = 4,
488 
489         /*
490          * struct {
491          *      struct perf_event_header        header;
492          *      u64                             time;
493          *      u64                             id;
494          *      u64                             stream_id;
495          * };
496          */
497         PERF_RECORD_THROTTLE                    = 5,
498         PERF_RECORD_UNTHROTTLE                  = 6,
499 
500         /*
501          * struct {
502          *      struct perf_event_header        header;
503          *      u32                             pid, ppid;
504          *      u32                             tid, ptid;
505          *      u64                             time;
506          * };
507          */
508         PERF_RECORD_FORK                        = 7,
509 
510         /*
511          * struct {
512          *      struct perf_event_header        header;
513          *      u32                             pid, tid;
514          *
515          *      struct read_format              values;
516          * };
517          */
518         PERF_RECORD_READ                        = 8,
519 
520         /*
521          * struct {
522          *      struct perf_event_header        header;
523          *
524          *      { u64                   ip;       } && PERF_SAMPLE_IP
525          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
526          *      { u64                   time;     } && PERF_SAMPLE_TIME
527          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
528          *      { u64                   id;       } && PERF_SAMPLE_ID
529          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
530          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
531          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
532          *
533          *      { struct read_format    values;   } && PERF_SAMPLE_READ
534          *
535          *      { u64                   nr,
536          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
537          *
538          *      #
539          *      # The RAW record below is opaque data wrt the ABI
540          *      #
541          *      # That is, the ABI doesn't make any promises wrt to
542          *      # the stability of its content, it may vary depending
543          *      # on event, hardware, kernel version and phase of
544          *      # the moon.
545          *      #
546          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
547          *      #
548          *
549          *      { u32                   size;
550          *        char                  data[size];}&& PERF_SAMPLE_RAW
551          *
552          *      { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
553          * };
554          */
555         PERF_RECORD_SAMPLE                      = 9,
556 
557         PERF_RECORD_MAX,                        /* non-ABI */
558 };
559 
560 #define PERF_MAX_STACK_DEPTH            127
561 
562 enum perf_callchain_context {
563         PERF_CONTEXT_HV                 = (__u64)-32,
564         PERF_CONTEXT_KERNEL             = (__u64)-128,
565         PERF_CONTEXT_USER               = (__u64)-512,
566 
567         PERF_CONTEXT_GUEST              = (__u64)-2048,
568         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
569         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
570 
571         PERF_CONTEXT_MAX                = (__u64)-4095,
572 };
573 
574 #define PERF_FLAG_FD_NO_GROUP           (1U << 0)
575 #define PERF_FLAG_FD_OUTPUT             (1U << 1)
576 #define PERF_FLAG_PID_CGROUP            (1U << 2) /* pid=cgroup id, per-cpu mode only */
577 
578 #ifdef __KERNEL__
579 /*
580  * Kernel-internal data types and definitions:
581  */
582 
583 #ifdef CONFIG_PERF_EVENTS
584 # include <linux/cgroup.h>
585 # include <asm/perf_event.h>
586 # include <asm/local64.h>
587 #endif
588 
589 struct perf_guest_info_callbacks {
590         int                             (*is_in_guest)(void);
591         int                             (*is_user_mode)(void);
592         unsigned long                   (*get_guest_ip)(void);
593 };
594 
595 #ifdef CONFIG_HAVE_HW_BREAKPOINT
596 #include <asm/hw_breakpoint.h>
597 #endif
598 
599 #include <linux/list.h>
600 #include <linux/mutex.h>
601 #include <linux/rculist.h>
602 #include <linux/rcupdate.h>
603 #include <linux/spinlock.h>
604 #include <linux/hrtimer.h>
605 #include <linux/fs.h>
606 #include <linux/pid_namespace.h>
607 #include <linux/workqueue.h>
608 #include <linux/ftrace.h>
609 #include <linux/cpu.h>
610 #include <linux/irq_work.h>
611 #include <linux/static_key.h>
612 #include <linux/atomic.h>
613 #include <linux/sysfs.h>
614 #include <asm/local.h>
615 
616 struct perf_callchain_entry {
617         __u64                           nr;
618         __u64                           ip[PERF_MAX_STACK_DEPTH];
619 };
620 
621 struct perf_raw_record {
622         u32                             size;
623         void                            *data;
624 };
625 
626 /*
627  * single taken branch record layout:
628  *
629  *      from: source instruction (may not always be a branch insn)
630  *        to: branch target
631  *   mispred: branch target was mispredicted
632  * predicted: branch target was predicted
633  *
634  * support for mispred, predicted is optional. In case it
635  * is not supported mispred = predicted = 0.
636  */
637 struct perf_branch_entry {
638         __u64   from;
639         __u64   to;
640         __u64   mispred:1,  /* target mispredicted */
641                 predicted:1,/* target predicted */
642                 reserved:62;
643 };
644 
645 /*
646  * branch stack layout:
647  *  nr: number of taken branches stored in entries[]
648  *
649  * Note that nr can vary from sample to sample
650  * branches (to, from) are stored from most recent
651  * to least recent, i.e., entries[0] contains the most
652  * recent branch.
653  */
654 struct perf_branch_stack {
655         __u64                           nr;
656         struct perf_branch_entry        entries[0];
657 };
658 
659 struct task_struct;
660 
661 /*
662  * extra PMU register associated with an event
663  */
664 struct hw_perf_event_extra {
665         u64             config; /* register value */
666         unsigned int    reg;    /* register address or index */
667         int             alloc;  /* extra register already allocated */
668         int             idx;    /* index in shared_regs->regs[] */
669 };
670 
671 /**
672  * struct hw_perf_event - performance event hardware details:
673  */
674 struct hw_perf_event {
675 #ifdef CONFIG_PERF_EVENTS
676         union {
677                 struct { /* hardware */
678                         u64             config;
679                         u64             last_tag;
680                         unsigned long   config_base;
681                         unsigned long   event_base;
682                         int             idx;
683                         int             last_cpu;
684 
685                         struct hw_perf_event_extra extra_reg;
686                         struct hw_perf_event_extra branch_reg;
687                 };
688                 struct { /* software */
689                         struct hrtimer  hrtimer;
690                 };
691 #ifdef CONFIG_HAVE_HW_BREAKPOINT
692                 struct { /* breakpoint */
693                         struct arch_hw_breakpoint       info;
694                         struct list_head                bp_list;
695                         /*
696                          * Crufty hack to avoid the chicken and egg
697                          * problem hw_breakpoint has with context
698                          * creation and event initalization.
699                          */
700                         struct task_struct              *bp_target;
701                 };
702 #endif
703         };
704         int                             state;
705         local64_t                       prev_count;
706         u64                             sample_period;
707         u64                             last_period;
708         local64_t                       period_left;
709         u64                             interrupts_seq;
710         u64                             interrupts;
711 
712         u64                             freq_time_stamp;
713         u64                             freq_count_stamp;
714 #endif
715 };
716 
717 /*
718  * hw_perf_event::state flags
719  */
720 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
721 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
722 #define PERF_HES_ARCH           0x04
723 
724 struct perf_event;
725 
726 /*
727  * Common implementation detail of pmu::{start,commit,cancel}_txn
728  */
729 #define PERF_EVENT_TXN 0x1
730 
731 /**
732  * struct pmu - generic performance monitoring unit
733  */
734 struct pmu {
735         struct list_head                entry;
736 
737         struct device                   *dev;
738         const struct attribute_group    **attr_groups;
739         char                            *name;
740         int                             type;
741 
742         int * __percpu                  pmu_disable_count;
743         struct perf_cpu_context * __percpu pmu_cpu_context;
744         int                             task_ctx_nr;
745 
746         /*
747          * Fully disable/enable this PMU, can be used to protect from the PMI
748          * as well as for lazy/batch writing of the MSRs.
749          */
750         void (*pmu_enable)              (struct pmu *pmu); /* optional */
751         void (*pmu_disable)             (struct pmu *pmu); /* optional */
752 
753         /*
754          * Try and initialize the event for this PMU.
755          * Should return -ENOENT when the @event doesn't match this PMU.
756          */
757         int (*event_init)               (struct perf_event *event);
758 
759 #define PERF_EF_START   0x01            /* start the counter when adding    */
760 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
761 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
762 
763         /*
764          * Adds/Removes a counter to/from the PMU, can be done inside
765          * a transaction, see the ->*_txn() methods.
766          */
767         int  (*add)                     (struct perf_event *event, int flags);
768         void (*del)                     (struct perf_event *event, int flags);
769 
770         /*
771          * Starts/Stops a counter present on the PMU. The PMI handler
772          * should stop the counter when perf_event_overflow() returns
773          * !0. ->start() will be used to continue.
774          */
775         void (*start)                   (struct perf_event *event, int flags);
776         void (*stop)                    (struct perf_event *event, int flags);
777 
778         /*
779          * Updates the counter value of the event.
780          */
781         void (*read)                    (struct perf_event *event);
782 
783         /*
784          * Group events scheduling is treated as a transaction, add
785          * group events as a whole and perform one schedulability test.
786          * If the test fails, roll back the whole group
787          *
788          * Start the transaction, after this ->add() doesn't need to
789          * do schedulability tests.
790          */
791         void (*start_txn)               (struct pmu *pmu); /* optional */
792         /*
793          * If ->start_txn() disabled the ->add() schedulability test
794          * then ->commit_txn() is required to perform one. On success
795          * the transaction is closed. On error the transaction is kept
796          * open until ->cancel_txn() is called.
797          */
798         int  (*commit_txn)              (struct pmu *pmu); /* optional */
799         /*
800          * Will cancel the transaction, assumes ->del() is called
801          * for each successful ->add() during the transaction.
802          */
803         void (*cancel_txn)              (struct pmu *pmu); /* optional */
804 
805         /*
806          * Will return the value for perf_event_mmap_page::index for this event,
807          * if no implementation is provided it will default to: event->hw.idx + 1.
808          */
809         int (*event_idx)                (struct perf_event *event); /*optional */
810 
811         /*
812          * flush branch stack on context-switches (needed in cpu-wide mode)
813          */
814         void (*flush_branch_stack)      (void);
815 };
816 
817 /**
818  * enum perf_event_active_state - the states of a event
819  */
820 enum perf_event_active_state {
821         PERF_EVENT_STATE_ERROR          = -2,
822         PERF_EVENT_STATE_OFF            = -1,
823         PERF_EVENT_STATE_INACTIVE       =  0,
824         PERF_EVENT_STATE_ACTIVE         =  1,
825 };
826 
827 struct file;
828 struct perf_sample_data;
829 
830 typedef void (*perf_overflow_handler_t)(struct perf_event *,
831                                         struct perf_sample_data *,
832                                         struct pt_regs *regs);
833 
834 enum perf_group_flag {
835         PERF_GROUP_SOFTWARE             = 0x1,
836 };
837 
838 #define SWEVENT_HLIST_BITS              8
839 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
840 
841 struct swevent_hlist {
842         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
843         struct rcu_head                 rcu_head;
844 };
845 
846 #define PERF_ATTACH_CONTEXT     0x01
847 #define PERF_ATTACH_GROUP       0x02
848 #define PERF_ATTACH_TASK        0x04
849 
850 #ifdef CONFIG_CGROUP_PERF
851 /*
852  * perf_cgroup_info keeps track of time_enabled for a cgroup.
853  * This is a per-cpu dynamically allocated data structure.
854  */
855 struct perf_cgroup_info {
856         u64                             time;
857         u64                             timestamp;
858 };
859 
860 struct perf_cgroup {
861         struct                          cgroup_subsys_state css;
862         struct                          perf_cgroup_info *info; /* timing info, one per cpu */
863 };
864 #endif
865 
866 struct ring_buffer;
867 
868 /**
869  * struct perf_event - performance event kernel representation:
870  */
871 struct perf_event {
872 #ifdef CONFIG_PERF_EVENTS
873         struct list_head                group_entry;
874         struct list_head                event_entry;
875         struct list_head                sibling_list;
876         struct hlist_node               hlist_entry;
877         int                             nr_siblings;
878         int                             group_flags;
879         struct perf_event               *group_leader;
880         struct pmu                      *pmu;
881 
882         enum perf_event_active_state    state;
883         unsigned int                    attach_state;
884         local64_t                       count;
885         atomic64_t                      child_count;
886 
887         /*
888          * These are the total time in nanoseconds that the event
889          * has been enabled (i.e. eligible to run, and the task has
890          * been scheduled in, if this is a per-task event)
891          * and running (scheduled onto the CPU), respectively.
892          *
893          * They are computed from tstamp_enabled, tstamp_running and
894          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
895          */
896         u64                             total_time_enabled;
897         u64                             total_time_running;
898 
899         /*
900          * These are timestamps used for computing total_time_enabled
901          * and total_time_running when the event is in INACTIVE or
902          * ACTIVE state, measured in nanoseconds from an arbitrary point
903          * in time.
904          * tstamp_enabled: the notional time when the event was enabled
905          * tstamp_running: the notional time when the event was scheduled on
906          * tstamp_stopped: in INACTIVE state, the notional time when the
907          *      event was scheduled off.
908          */
909         u64                             tstamp_enabled;
910         u64                             tstamp_running;
911         u64                             tstamp_stopped;
912 
913         /*
914          * timestamp shadows the actual context timing but it can
915          * be safely used in NMI interrupt context. It reflects the
916          * context time as it was when the event was last scheduled in.
917          *
918          * ctx_time already accounts for ctx->timestamp. Therefore to
919          * compute ctx_time for a sample, simply add perf_clock().
920          */
921         u64                             shadow_ctx_time;
922 
923         struct perf_event_attr          attr;
924         u16                             header_size;
925         u16                             id_header_size;
926         u16                             read_size;
927         struct hw_perf_event            hw;
928 
929         struct perf_event_context       *ctx;
930         atomic_long_t                   refcount;
931 
932         /*
933          * These accumulate total time (in nanoseconds) that children
934          * events have been enabled and running, respectively.
935          */
936         atomic64_t                      child_total_time_enabled;
937         atomic64_t                      child_total_time_running;
938 
939         /*
940          * Protect attach/detach and child_list:
941          */
942         struct mutex                    child_mutex;
943         struct list_head                child_list;
944         struct perf_event               *parent;
945 
946         int                             oncpu;
947         int                             cpu;
948 
949         struct list_head                owner_entry;
950         struct task_struct              *owner;
951 
952         /* mmap bits */
953         struct mutex                    mmap_mutex;
954         atomic_t                        mmap_count;
955         int                             mmap_locked;
956         struct user_struct              *mmap_user;
957         struct ring_buffer              *rb;
958         struct list_head                rb_entry;
959 
960         /* poll related */
961         wait_queue_head_t               waitq;
962         struct fasync_struct            *fasync;
963 
964         /* delayed work for NMIs and such */
965         int                             pending_wakeup;
966         int                             pending_kill;
967         int                             pending_disable;
968         struct irq_work                 pending;
969 
970         atomic_t                        event_limit;
971 
972         void (*destroy)(struct perf_event *);
973         struct rcu_head                 rcu_head;
974 
975         struct pid_namespace            *ns;
976         u64                             id;
977 
978         perf_overflow_handler_t         overflow_handler;
979         void                            *overflow_handler_context;
980 
981 #ifdef CONFIG_EVENT_TRACING
982         struct ftrace_event_call        *tp_event;
983         struct event_filter             *filter;
984 #ifdef CONFIG_FUNCTION_TRACER
985         struct ftrace_ops               ftrace_ops;
986 #endif
987 #endif
988 
989 #ifdef CONFIG_CGROUP_PERF
990         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
991         int                             cgrp_defer_enabled;
992 #endif
993 
994 #endif /* CONFIG_PERF_EVENTS */
995 };
996 
997 enum perf_event_context_type {
998         task_context,
999         cpu_context,
1000 };
1001 
1002 /**
1003  * struct perf_event_context - event context structure
1004  *
1005  * Used as a container for task events and CPU events as well:
1006  */
1007 struct perf_event_context {
1008         struct pmu                      *pmu;
1009         enum perf_event_context_type    type;
1010         /*
1011          * Protect the states of the events in the list,
1012          * nr_active, and the list:
1013          */
1014         raw_spinlock_t                  lock;
1015         /*
1016          * Protect the list of events.  Locking either mutex or lock
1017          * is sufficient to ensure the list doesn't change; to change
1018          * the list you need to lock both the mutex and the spinlock.
1019          */
1020         struct mutex                    mutex;
1021 
1022         struct list_head                pinned_groups;
1023         struct list_head                flexible_groups;
1024         struct list_head                event_list;
1025         int                             nr_events;
1026         int                             nr_active;
1027         int                             is_active;
1028         int                             nr_stat;
1029         int                             nr_freq;
1030         int                             rotate_disable;
1031         atomic_t                        refcount;
1032         struct task_struct              *task;
1033 
1034         /*
1035          * Context clock, runs when context enabled.
1036          */
1037         u64                             time;
1038         u64                             timestamp;
1039 
1040         /*
1041          * These fields let us detect when two contexts have both
1042          * been cloned (inherited) from a common ancestor.
1043          */
1044         struct perf_event_context       *parent_ctx;
1045         u64                             parent_gen;
1046         u64                             generation;
1047         int                             pin_count;
1048         int                             nr_cgroups;      /* cgroup evts */
1049         int                             nr_branch_stack; /* branch_stack evt */
1050         struct rcu_head                 rcu_head;
1051 };
1052 
1053 /*
1054  * Number of contexts where an event can trigger:
1055  *      task, softirq, hardirq, nmi.
1056  */
1057 #define PERF_NR_CONTEXTS        4
1058 
1059 /**
1060  * struct perf_event_cpu_context - per cpu event context structure
1061  */
1062 struct perf_cpu_context {
1063         struct perf_event_context       ctx;
1064         struct perf_event_context       *task_ctx;
1065         int                             active_oncpu;
1066         int                             exclusive;
1067         struct list_head                rotation_list;
1068         int                             jiffies_interval;
1069         struct pmu                      *active_pmu;
1070         struct perf_cgroup              *cgrp;
1071 };
1072 
1073 struct perf_output_handle {
1074         struct perf_event               *event;
1075         struct ring_buffer              *rb;
1076         unsigned long                   wakeup;
1077         unsigned long                   size;
1078         void                            *addr;
1079         int                             page;
1080 };
1081 
1082 #ifdef CONFIG_PERF_EVENTS
1083 
1084 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1085 extern void perf_pmu_unregister(struct pmu *pmu);
1086 
1087 extern int perf_num_counters(void);
1088 extern const char *perf_pmu_name(void);
1089 extern void __perf_event_task_sched_in(struct task_struct *prev,
1090                                        struct task_struct *task);
1091 extern void __perf_event_task_sched_out(struct task_struct *prev,
1092                                         struct task_struct *next);
1093 extern int perf_event_init_task(struct task_struct *child);
1094 extern void perf_event_exit_task(struct task_struct *child);
1095 extern void perf_event_free_task(struct task_struct *task);
1096 extern void perf_event_delayed_put(struct task_struct *task);
1097 extern void perf_event_print_debug(void);
1098 extern void perf_pmu_disable(struct pmu *pmu);
1099 extern void perf_pmu_enable(struct pmu *pmu);
1100 extern int perf_event_task_disable(void);
1101 extern int perf_event_task_enable(void);
1102 extern int perf_event_refresh(struct perf_event *event, int refresh);
1103 extern void perf_event_update_userpage(struct perf_event *event);
1104 extern int perf_event_release_kernel(struct perf_event *event);
1105 extern struct perf_event *
1106 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1107                                 int cpu,
1108                                 struct task_struct *task,
1109                                 perf_overflow_handler_t callback,
1110                                 void *context);
1111 extern u64 perf_event_read_value(struct perf_event *event,
1112                                  u64 *enabled, u64 *running);
1113 
1114 
1115 struct perf_sample_data {
1116         u64                             type;
1117 
1118         u64                             ip;
1119         struct {
1120                 u32     pid;
1121                 u32     tid;
1122         }                               tid_entry;
1123         u64                             time;
1124         u64                             addr;
1125         u64                             id;
1126         u64                             stream_id;
1127         struct {
1128                 u32     cpu;
1129                 u32     reserved;
1130         }                               cpu_entry;
1131         u64                             period;
1132         struct perf_callchain_entry     *callchain;
1133         struct perf_raw_record          *raw;
1134         struct perf_branch_stack        *br_stack;
1135 };
1136 
1137 static inline void perf_sample_data_init(struct perf_sample_data *data,
1138                                          u64 addr, u64 period)
1139 {
1140         /* remaining struct members initialized in perf_prepare_sample() */
1141         data->addr = addr;
1142         data->raw  = NULL;
1143         data->br_stack = NULL;
1144         data->period    = period;
1145 }
1146 
1147 extern void perf_output_sample(struct perf_output_handle *handle,
1148                                struct perf_event_header *header,
1149                                struct perf_sample_data *data,
1150                                struct perf_event *event);
1151 extern void perf_prepare_sample(struct perf_event_header *header,
1152                                 struct perf_sample_data *data,
1153                                 struct perf_event *event,
1154                                 struct pt_regs *regs);
1155 
1156 extern int perf_event_overflow(struct perf_event *event,
1157                                  struct perf_sample_data *data,
1158                                  struct pt_regs *regs);
1159 
1160 static inline bool is_sampling_event(struct perf_event *event)
1161 {
1162         return event->attr.sample_period != 0;
1163 }
1164 
1165 /*
1166  * Return 1 for a software event, 0 for a hardware event
1167  */
1168 static inline int is_software_event(struct perf_event *event)
1169 {
1170         return event->pmu->task_ctx_nr == perf_sw_context;
1171 }
1172 
1173 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1174 
1175 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1176 
1177 #ifndef perf_arch_fetch_caller_regs
1178 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1179 #endif
1180 
1181 /*
1182  * Take a snapshot of the regs. Skip ip and frame pointer to
1183  * the nth caller. We only need a few of the regs:
1184  * - ip for PERF_SAMPLE_IP
1185  * - cs for user_mode() tests
1186  * - bp for callchains
1187  * - eflags, for future purposes, just in case
1188  */
1189 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1190 {
1191         memset(regs, 0, sizeof(*regs));
1192 
1193         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1194 }
1195 
1196 static __always_inline void
1197 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1198 {
1199         struct pt_regs hot_regs;
1200 
1201         if (static_key_false(&perf_swevent_enabled[event_id])) {
1202                 if (!regs) {
1203                         perf_fetch_caller_regs(&hot_regs);
1204                         regs = &hot_regs;
1205                 }
1206                 __perf_sw_event(event_id, nr, regs, addr);
1207         }
1208 }
1209 
1210 extern struct static_key_deferred perf_sched_events;
1211 
1212 static inline void perf_event_task_sched_in(struct task_struct *prev,
1213                                             struct task_struct *task)
1214 {
1215         if (static_key_false(&perf_sched_events.key))
1216                 __perf_event_task_sched_in(prev, task);
1217 }
1218 
1219 static inline void perf_event_task_sched_out(struct task_struct *prev,
1220                                              struct task_struct *next)
1221 {
1222         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1223 
1224         if (static_key_false(&perf_sched_events.key))
1225                 __perf_event_task_sched_out(prev, next);
1226 }
1227 
1228 extern void perf_event_mmap(struct vm_area_struct *vma);
1229 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1230 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1231 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1232 
1233 extern void perf_event_comm(struct task_struct *tsk);
1234 extern void perf_event_fork(struct task_struct *tsk);
1235 
1236 /* Callchains */
1237 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1238 
1239 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1240 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1241 
1242 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1243 {
1244         if (entry->nr < PERF_MAX_STACK_DEPTH)
1245                 entry->ip[entry->nr++] = ip;
1246 }
1247 
1248 extern int sysctl_perf_event_paranoid;
1249 extern int sysctl_perf_event_mlock;
1250 extern int sysctl_perf_event_sample_rate;
1251 
1252 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1253                 void __user *buffer, size_t *lenp,
1254                 loff_t *ppos);
1255 
1256 static inline bool perf_paranoid_tracepoint_raw(void)
1257 {
1258         return sysctl_perf_event_paranoid > -1;
1259 }
1260 
1261 static inline bool perf_paranoid_cpu(void)
1262 {
1263         return sysctl_perf_event_paranoid > 0;
1264 }
1265 
1266 static inline bool perf_paranoid_kernel(void)
1267 {
1268         return sysctl_perf_event_paranoid > 1;
1269 }
1270 
1271 extern void perf_event_init(void);
1272 extern void perf_tp_event(u64 addr, u64 count, void *record,
1273                           int entry_size, struct pt_regs *regs,
1274                           struct hlist_head *head, int rctx);
1275 extern void perf_bp_event(struct perf_event *event, void *data);
1276 
1277 #ifndef perf_misc_flags
1278 # define perf_misc_flags(regs) \
1279                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1280 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1281 #endif
1282 
1283 static inline bool has_branch_stack(struct perf_event *event)
1284 {
1285         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1286 }
1287 
1288 extern int perf_output_begin(struct perf_output_handle *handle,
1289                              struct perf_event *event, unsigned int size);
1290 extern void perf_output_end(struct perf_output_handle *handle);
1291 extern void perf_output_copy(struct perf_output_handle *handle,
1292                              const void *buf, unsigned int len);
1293 extern int perf_swevent_get_recursion_context(void);
1294 extern void perf_swevent_put_recursion_context(int rctx);
1295 extern void perf_event_enable(struct perf_event *event);
1296 extern void perf_event_disable(struct perf_event *event);
1297 extern void perf_event_task_tick(void);
1298 #else
1299 static inline void
1300 perf_event_task_sched_in(struct task_struct *prev,
1301                          struct task_struct *task)                      { }
1302 static inline void
1303 perf_event_task_sched_out(struct task_struct *prev,
1304                           struct task_struct *next)                     { }
1305 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1306 static inline void perf_event_exit_task(struct task_struct *child)      { }
1307 static inline void perf_event_free_task(struct task_struct *task)       { }
1308 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1309 static inline void perf_event_print_debug(void)                         { }
1310 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1311 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1312 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1313 {
1314         return -EINVAL;
1315 }
1316 
1317 static inline void
1318 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1319 static inline void
1320 perf_bp_event(struct perf_event *event, void *data)                     { }
1321 
1322 static inline int perf_register_guest_info_callbacks
1323 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1324 static inline int perf_unregister_guest_info_callbacks
1325 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1326 
1327 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1328 static inline void perf_event_comm(struct task_struct *tsk)             { }
1329 static inline void perf_event_fork(struct task_struct *tsk)             { }
1330 static inline void perf_event_init(void)                                { }
1331 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1332 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1333 static inline void perf_event_enable(struct perf_event *event)          { }
1334 static inline void perf_event_disable(struct perf_event *event)         { }
1335 static inline void perf_event_task_tick(void)                           { }
1336 #endif
1337 
1338 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1339 
1340 /*
1341  * This has to have a higher priority than migration_notifier in sched.c.
1342  */
1343 #define perf_cpu_notifier(fn)                                           \
1344 do {                                                                    \
1345         static struct notifier_block fn##_nb __cpuinitdata =            \
1346                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1347         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1348                 (void *)(unsigned long)smp_processor_id());             \
1349         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1350                 (void *)(unsigned long)smp_processor_id());             \
1351         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1352                 (void *)(unsigned long)smp_processor_id());             \
1353         register_cpu_notifier(&fn##_nb);                                \
1354 } while (0)
1355 
1356 
1357 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1358 static ssize_t                                                          \
1359 _name##_show(struct device *dev,                                        \
1360                                struct device_attribute *attr,           \
1361                                char *page)                              \
1362 {                                                                       \
1363         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1364         return sprintf(page, _format "\n");                             \
1365 }                                                                       \
1366                                                                         \
1367 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1368 
1369 #endif /* __KERNEL__ */
1370 #endif /* _LINUX_PERF_EVENT_H */
1371 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp