~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/ptrace.h

Version: ~ [ linux-6.3-rc1 ] ~ [ linux-6.2.2 ] ~ [ linux-6.1.15 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.98 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.172 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.234 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.275 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.307 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_PTRACE_H
  2 #define _LINUX_PTRACE_H
  3 
  4 #include <linux/compiler.h>             /* For unlikely.  */
  5 #include <linux/sched.h>                /* For struct task_struct.  */
  6 #include <linux/err.h>                  /* for IS_ERR_VALUE */
  7 #include <linux/bug.h>                  /* For BUG_ON.  */
  8 #include <linux/pid_namespace.h>        /* For task_active_pid_ns.  */
  9 #include <uapi/linux/ptrace.h>
 10 
 11 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
 12                             void *buf, int len, unsigned int gup_flags);
 13 
 14 /*
 15  * Ptrace flags
 16  *
 17  * The owner ship rules for task->ptrace which holds the ptrace
 18  * flags is simple.  When a task is running it owns it's task->ptrace
 19  * flags.  When the a task is stopped the ptracer owns task->ptrace.
 20  */
 21 
 22 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
 23 #define PT_PTRACED      0x00000001
 24 #define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
 25 
 26 #define PT_OPT_FLAG_SHIFT       3
 27 /* PT_TRACE_* event enable flags */
 28 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
 29 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
 30 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 31 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 32 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
 33 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
 34 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
 35 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
 36 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
 37 
 38 #define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
 39 #define PT_SUSPEND_SECCOMP      (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
 40 
 41 /* single stepping state bits (used on ARM and PA-RISC) */
 42 #define PT_SINGLESTEP_BIT       31
 43 #define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
 44 #define PT_BLOCKSTEP_BIT        30
 45 #define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
 46 
 47 extern long arch_ptrace(struct task_struct *child, long request,
 48                         unsigned long addr, unsigned long data);
 49 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
 50 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
 51 extern void ptrace_disable(struct task_struct *);
 52 extern int ptrace_request(struct task_struct *child, long request,
 53                           unsigned long addr, unsigned long data);
 54 extern void ptrace_notify(int exit_code);
 55 extern void __ptrace_link(struct task_struct *child,
 56                           struct task_struct *new_parent);
 57 extern void __ptrace_unlink(struct task_struct *child);
 58 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
 59 #define PTRACE_MODE_READ        0x01
 60 #define PTRACE_MODE_ATTACH      0x02
 61 #define PTRACE_MODE_NOAUDIT     0x04
 62 #define PTRACE_MODE_FSCREDS 0x08
 63 #define PTRACE_MODE_REALCREDS 0x10
 64 
 65 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
 66 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
 67 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
 68 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
 69 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
 70 
 71 /**
 72  * ptrace_may_access - check whether the caller is permitted to access
 73  * a target task.
 74  * @task: target task
 75  * @mode: selects type of access and caller credentials
 76  *
 77  * Returns true on success, false on denial.
 78  *
 79  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
 80  * be set in @mode to specify whether the access was requested through
 81  * a filesystem syscall (should use effective capabilities and fsuid
 82  * of the caller) or through an explicit syscall such as
 83  * process_vm_writev or ptrace (and should use the real credentials).
 84  */
 85 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
 86 
 87 static inline int ptrace_reparented(struct task_struct *child)
 88 {
 89         return !same_thread_group(child->real_parent, child->parent);
 90 }
 91 
 92 static inline void ptrace_unlink(struct task_struct *child)
 93 {
 94         if (unlikely(child->ptrace))
 95                 __ptrace_unlink(child);
 96 }
 97 
 98 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
 99                             unsigned long data);
100 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
101                             unsigned long data);
102 
103 /**
104  * ptrace_parent - return the task that is tracing the given task
105  * @task: task to consider
106  *
107  * Returns %NULL if no one is tracing @task, or the &struct task_struct
108  * pointer to its tracer.
109  *
110  * Must called under rcu_read_lock().  The pointer returned might be kept
111  * live only by RCU.  During exec, this may be called with task_lock() held
112  * on @task, still held from when check_unsafe_exec() was called.
113  */
114 static inline struct task_struct *ptrace_parent(struct task_struct *task)
115 {
116         if (unlikely(task->ptrace))
117                 return rcu_dereference(task->parent);
118         return NULL;
119 }
120 
121 /**
122  * ptrace_event_enabled - test whether a ptrace event is enabled
123  * @task: ptracee of interest
124  * @event: %PTRACE_EVENT_* to test
125  *
126  * Test whether @event is enabled for ptracee @task.
127  *
128  * Returns %true if @event is enabled, %false otherwise.
129  */
130 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
131 {
132         return task->ptrace & PT_EVENT_FLAG(event);
133 }
134 
135 /**
136  * ptrace_event - possibly stop for a ptrace event notification
137  * @event:      %PTRACE_EVENT_* value to report
138  * @message:    value for %PTRACE_GETEVENTMSG to return
139  *
140  * Check whether @event is enabled and, if so, report @event and @message
141  * to the ptrace parent.
142  *
143  * Called without locks.
144  */
145 static inline void ptrace_event(int event, unsigned long message)
146 {
147         if (unlikely(ptrace_event_enabled(current, event))) {
148                 current->ptrace_message = message;
149                 ptrace_notify((event << 8) | SIGTRAP);
150         } else if (event == PTRACE_EVENT_EXEC) {
151                 /* legacy EXEC report via SIGTRAP */
152                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
153                         send_sig(SIGTRAP, current, 0);
154         }
155 }
156 
157 /**
158  * ptrace_event_pid - possibly stop for a ptrace event notification
159  * @event:      %PTRACE_EVENT_* value to report
160  * @pid:        process identifier for %PTRACE_GETEVENTMSG to return
161  *
162  * Check whether @event is enabled and, if so, report @event and @pid
163  * to the ptrace parent.  @pid is reported as the pid_t seen from the
164  * the ptrace parent's pid namespace.
165  *
166  * Called without locks.
167  */
168 static inline void ptrace_event_pid(int event, struct pid *pid)
169 {
170         /*
171          * FIXME: There's a potential race if a ptracer in a different pid
172          * namespace than parent attaches between computing message below and
173          * when we acquire tasklist_lock in ptrace_stop().  If this happens,
174          * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
175          */
176         unsigned long message = 0;
177         struct pid_namespace *ns;
178 
179         rcu_read_lock();
180         ns = task_active_pid_ns(rcu_dereference(current->parent));
181         if (ns)
182                 message = pid_nr_ns(pid, ns);
183         rcu_read_unlock();
184 
185         ptrace_event(event, message);
186 }
187 
188 /**
189  * ptrace_init_task - initialize ptrace state for a new child
190  * @child:              new child task
191  * @ptrace:             true if child should be ptrace'd by parent's tracer
192  *
193  * This is called immediately after adding @child to its parent's children
194  * list.  @ptrace is false in the normal case, and true to ptrace @child.
195  *
196  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
197  */
198 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
199 {
200         INIT_LIST_HEAD(&child->ptrace_entry);
201         INIT_LIST_HEAD(&child->ptraced);
202         child->jobctl = 0;
203         child->ptrace = 0;
204         child->parent = child->real_parent;
205 
206         if (unlikely(ptrace) && current->ptrace) {
207                 child->ptrace = current->ptrace;
208                 __ptrace_link(child, current->parent);
209 
210                 if (child->ptrace & PT_SEIZED)
211                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
212                 else
213                         sigaddset(&child->pending.signal, SIGSTOP);
214 
215                 set_tsk_thread_flag(child, TIF_SIGPENDING);
216         }
217 }
218 
219 /**
220  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
221  * @task:       task in %EXIT_DEAD state
222  *
223  * Called with write_lock(&tasklist_lock) held.
224  */
225 static inline void ptrace_release_task(struct task_struct *task)
226 {
227         BUG_ON(!list_empty(&task->ptraced));
228         ptrace_unlink(task);
229         BUG_ON(!list_empty(&task->ptrace_entry));
230 }
231 
232 #ifndef force_successful_syscall_return
233 /*
234  * System call handlers that, upon successful completion, need to return a
235  * negative value should call force_successful_syscall_return() right before
236  * returning.  On architectures where the syscall convention provides for a
237  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
238  * others), this macro can be used to ensure that the error flag will not get
239  * set.  On architectures which do not support a separate error flag, the macro
240  * is a no-op and the spurious error condition needs to be filtered out by some
241  * other means (e.g., in user-level, by passing an extra argument to the
242  * syscall handler, or something along those lines).
243  */
244 #define force_successful_syscall_return() do { } while (0)
245 #endif
246 
247 #ifndef is_syscall_success
248 /*
249  * On most systems we can tell if a syscall is a success based on if the retval
250  * is an error value.  On some systems like ia64 and powerpc they have different
251  * indicators of success/failure and must define their own.
252  */
253 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
254 #endif
255 
256 /*
257  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
258  *
259  * These do-nothing inlines are used when the arch does not
260  * implement single-step.  The kerneldoc comments are here
261  * to document the interface for all arch definitions.
262  */
263 
264 #ifndef arch_has_single_step
265 /**
266  * arch_has_single_step - does this CPU support user-mode single-step?
267  *
268  * If this is defined, then there must be function declarations or
269  * inlines for user_enable_single_step() and user_disable_single_step().
270  * arch_has_single_step() should evaluate to nonzero iff the machine
271  * supports instruction single-step for user mode.
272  * It can be a constant or it can test a CPU feature bit.
273  */
274 #define arch_has_single_step()          (0)
275 
276 /**
277  * user_enable_single_step - single-step in user-mode task
278  * @task: either current or a task stopped in %TASK_TRACED
279  *
280  * This can only be called when arch_has_single_step() has returned nonzero.
281  * Set @task so that when it returns to user mode, it will trap after the
282  * next single instruction executes.  If arch_has_block_step() is defined,
283  * this must clear the effects of user_enable_block_step() too.
284  */
285 static inline void user_enable_single_step(struct task_struct *task)
286 {
287         BUG();                  /* This can never be called.  */
288 }
289 
290 /**
291  * user_disable_single_step - cancel user-mode single-step
292  * @task: either current or a task stopped in %TASK_TRACED
293  *
294  * Clear @task of the effects of user_enable_single_step() and
295  * user_enable_block_step().  This can be called whether or not either
296  * of those was ever called on @task, and even if arch_has_single_step()
297  * returned zero.
298  */
299 static inline void user_disable_single_step(struct task_struct *task)
300 {
301 }
302 #else
303 extern void user_enable_single_step(struct task_struct *);
304 extern void user_disable_single_step(struct task_struct *);
305 #endif  /* arch_has_single_step */
306 
307 #ifndef arch_has_block_step
308 /**
309  * arch_has_block_step - does this CPU support user-mode block-step?
310  *
311  * If this is defined, then there must be a function declaration or inline
312  * for user_enable_block_step(), and arch_has_single_step() must be defined
313  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
314  * supports step-until-branch for user mode.  It can be a constant or it
315  * can test a CPU feature bit.
316  */
317 #define arch_has_block_step()           (0)
318 
319 /**
320  * user_enable_block_step - step until branch in user-mode task
321  * @task: either current or a task stopped in %TASK_TRACED
322  *
323  * This can only be called when arch_has_block_step() has returned nonzero,
324  * and will never be called when single-instruction stepping is being used.
325  * Set @task so that when it returns to user mode, it will trap after the
326  * next branch or trap taken.
327  */
328 static inline void user_enable_block_step(struct task_struct *task)
329 {
330         BUG();                  /* This can never be called.  */
331 }
332 #else
333 extern void user_enable_block_step(struct task_struct *);
334 #endif  /* arch_has_block_step */
335 
336 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
337 extern void user_single_step_siginfo(struct task_struct *tsk,
338                                 struct pt_regs *regs, siginfo_t *info);
339 #else
340 static inline void user_single_step_siginfo(struct task_struct *tsk,
341                                 struct pt_regs *regs, siginfo_t *info)
342 {
343         memset(info, 0, sizeof(*info));
344         info->si_signo = SIGTRAP;
345 }
346 #endif
347 
348 #ifndef arch_ptrace_stop_needed
349 /**
350  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
351  * @code:       current->exit_code value ptrace will stop with
352  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
353  *
354  * This is called with the siglock held, to decide whether or not it's
355  * necessary to release the siglock and call arch_ptrace_stop() with the
356  * same @code and @info arguments.  It can be defined to a constant if
357  * arch_ptrace_stop() is never required, or always is.  On machines where
358  * this makes sense, it should be defined to a quick test to optimize out
359  * calling arch_ptrace_stop() when it would be superfluous.  For example,
360  * if the thread has not been back to user mode since the last stop, the
361  * thread state might indicate that nothing needs to be done.
362  *
363  * This is guaranteed to be invoked once before a task stops for ptrace and
364  * may include arch-specific operations necessary prior to a ptrace stop.
365  */
366 #define arch_ptrace_stop_needed(code, info)     (0)
367 #endif
368 
369 #ifndef arch_ptrace_stop
370 /**
371  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
372  * @code:       current->exit_code value ptrace will stop with
373  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
374  *
375  * This is called with no locks held when arch_ptrace_stop_needed() has
376  * just returned nonzero.  It is allowed to block, e.g. for user memory
377  * access.  The arch can have machine-specific work to be done before
378  * ptrace stops.  On ia64, register backing store gets written back to user
379  * memory here.  Since this can be costly (requires dropping the siglock),
380  * we only do it when the arch requires it for this particular stop, as
381  * indicated by arch_ptrace_stop_needed().
382  */
383 #define arch_ptrace_stop(code, info)            do { } while (0)
384 #endif
385 
386 #ifndef current_pt_regs
387 #define current_pt_regs() task_pt_regs(current)
388 #endif
389 
390 #ifndef ptrace_signal_deliver
391 #define ptrace_signal_deliver() ((void)0)
392 #endif
393 
394 /*
395  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
396  * on *all* architectures; the only reason to have a per-arch definition
397  * is optimisation.
398  */
399 #ifndef signal_pt_regs
400 #define signal_pt_regs() task_pt_regs(current)
401 #endif
402 
403 #ifndef current_user_stack_pointer
404 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
405 #endif
406 
407 extern int task_current_syscall(struct task_struct *target, long *callno,
408                                 unsigned long args[6], unsigned int maxargs,
409                                 unsigned long *sp, unsigned long *pc);
410 
411 #endif
412 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp