1 #ifndef _LINUX_PTRACE_H 2 #define _LINUX_PTRACE_H 3 4 #include <linux/compiler.h> /* For unlikely. */ 5 #include <linux/sched.h> /* For struct task_struct. */ 6 #include <linux/err.h> /* for IS_ERR_VALUE */ 7 #include <linux/bug.h> /* For BUG_ON. */ 8 #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ 9 #include <uapi/linux/ptrace.h> 10 11 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, 12 void *buf, int len, unsigned int gup_flags); 13 14 /* 15 * Ptrace flags 16 * 17 * The owner ship rules for task->ptrace which holds the ptrace 18 * flags is simple. When a task is running it owns it's task->ptrace 19 * flags. When the a task is stopped the ptracer owns task->ptrace. 20 */ 21 22 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ 23 #define PT_PTRACED 0x00000001 24 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ 25 26 #define PT_OPT_FLAG_SHIFT 3 27 /* PT_TRACE_* event enable flags */ 28 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) 29 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) 30 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) 31 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) 32 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) 33 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) 34 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) 35 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) 36 #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) 37 38 #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) 39 #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) 40 41 /* single stepping state bits (used on ARM and PA-RISC) */ 42 #define PT_SINGLESTEP_BIT 31 43 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) 44 #define PT_BLOCKSTEP_BIT 30 45 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) 46 47 extern long arch_ptrace(struct task_struct *child, long request, 48 unsigned long addr, unsigned long data); 49 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); 50 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); 51 extern void ptrace_disable(struct task_struct *); 52 extern int ptrace_request(struct task_struct *child, long request, 53 unsigned long addr, unsigned long data); 54 extern void ptrace_notify(int exit_code); 55 extern void __ptrace_link(struct task_struct *child, 56 struct task_struct *new_parent); 57 extern void __ptrace_unlink(struct task_struct *child); 58 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); 59 #define PTRACE_MODE_READ 0x01 60 #define PTRACE_MODE_ATTACH 0x02 61 #define PTRACE_MODE_NOAUDIT 0x04 62 #define PTRACE_MODE_FSCREDS 0x08 63 #define PTRACE_MODE_REALCREDS 0x10 64 65 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ 66 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) 67 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) 68 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) 69 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) 70 71 /** 72 * ptrace_may_access - check whether the caller is permitted to access 73 * a target task. 74 * @task: target task 75 * @mode: selects type of access and caller credentials 76 * 77 * Returns true on success, false on denial. 78 * 79 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must 80 * be set in @mode to specify whether the access was requested through 81 * a filesystem syscall (should use effective capabilities and fsuid 82 * of the caller) or through an explicit syscall such as 83 * process_vm_writev or ptrace (and should use the real credentials). 84 */ 85 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); 86 87 static inline int ptrace_reparented(struct task_struct *child) 88 { 89 return !same_thread_group(child->real_parent, child->parent); 90 } 91 92 static inline void ptrace_unlink(struct task_struct *child) 93 { 94 if (unlikely(child->ptrace)) 95 __ptrace_unlink(child); 96 } 97 98 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, 99 unsigned long data); 100 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, 101 unsigned long data); 102 103 /** 104 * ptrace_parent - return the task that is tracing the given task 105 * @task: task to consider 106 * 107 * Returns %NULL if no one is tracing @task, or the &struct task_struct 108 * pointer to its tracer. 109 * 110 * Must called under rcu_read_lock(). The pointer returned might be kept 111 * live only by RCU. During exec, this may be called with task_lock() held 112 * on @task, still held from when check_unsafe_exec() was called. 113 */ 114 static inline struct task_struct *ptrace_parent(struct task_struct *task) 115 { 116 if (unlikely(task->ptrace)) 117 return rcu_dereference(task->parent); 118 return NULL; 119 } 120 121 /** 122 * ptrace_event_enabled - test whether a ptrace event is enabled 123 * @task: ptracee of interest 124 * @event: %PTRACE_EVENT_* to test 125 * 126 * Test whether @event is enabled for ptracee @task. 127 * 128 * Returns %true if @event is enabled, %false otherwise. 129 */ 130 static inline bool ptrace_event_enabled(struct task_struct *task, int event) 131 { 132 return task->ptrace & PT_EVENT_FLAG(event); 133 } 134 135 /** 136 * ptrace_event - possibly stop for a ptrace event notification 137 * @event: %PTRACE_EVENT_* value to report 138 * @message: value for %PTRACE_GETEVENTMSG to return 139 * 140 * Check whether @event is enabled and, if so, report @event and @message 141 * to the ptrace parent. 142 * 143 * Called without locks. 144 */ 145 static inline void ptrace_event(int event, unsigned long message) 146 { 147 if (unlikely(ptrace_event_enabled(current, event))) { 148 current->ptrace_message = message; 149 ptrace_notify((event << 8) | SIGTRAP); 150 } else if (event == PTRACE_EVENT_EXEC) { 151 /* legacy EXEC report via SIGTRAP */ 152 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) 153 send_sig(SIGTRAP, current, 0); 154 } 155 } 156 157 /** 158 * ptrace_event_pid - possibly stop for a ptrace event notification 159 * @event: %PTRACE_EVENT_* value to report 160 * @pid: process identifier for %PTRACE_GETEVENTMSG to return 161 * 162 * Check whether @event is enabled and, if so, report @event and @pid 163 * to the ptrace parent. @pid is reported as the pid_t seen from the 164 * the ptrace parent's pid namespace. 165 * 166 * Called without locks. 167 */ 168 static inline void ptrace_event_pid(int event, struct pid *pid) 169 { 170 /* 171 * FIXME: There's a potential race if a ptracer in a different pid 172 * namespace than parent attaches between computing message below and 173 * when we acquire tasklist_lock in ptrace_stop(). If this happens, 174 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. 175 */ 176 unsigned long message = 0; 177 struct pid_namespace *ns; 178 179 rcu_read_lock(); 180 ns = task_active_pid_ns(rcu_dereference(current->parent)); 181 if (ns) 182 message = pid_nr_ns(pid, ns); 183 rcu_read_unlock(); 184 185 ptrace_event(event, message); 186 } 187 188 /** 189 * ptrace_init_task - initialize ptrace state for a new child 190 * @child: new child task 191 * @ptrace: true if child should be ptrace'd by parent's tracer 192 * 193 * This is called immediately after adding @child to its parent's children 194 * list. @ptrace is false in the normal case, and true to ptrace @child. 195 * 196 * Called with current's siglock and write_lock_irq(&tasklist_lock) held. 197 */ 198 static inline void ptrace_init_task(struct task_struct *child, bool ptrace) 199 { 200 INIT_LIST_HEAD(&child->ptrace_entry); 201 INIT_LIST_HEAD(&child->ptraced); 202 child->jobctl = 0; 203 child->ptrace = 0; 204 child->parent = child->real_parent; 205 206 if (unlikely(ptrace) && current->ptrace) { 207 child->ptrace = current->ptrace; 208 __ptrace_link(child, current->parent); 209 210 if (child->ptrace & PT_SEIZED) 211 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); 212 else 213 sigaddset(&child->pending.signal, SIGSTOP); 214 215 set_tsk_thread_flag(child, TIF_SIGPENDING); 216 } 217 } 218 219 /** 220 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped 221 * @task: task in %EXIT_DEAD state 222 * 223 * Called with write_lock(&tasklist_lock) held. 224 */ 225 static inline void ptrace_release_task(struct task_struct *task) 226 { 227 BUG_ON(!list_empty(&task->ptraced)); 228 ptrace_unlink(task); 229 BUG_ON(!list_empty(&task->ptrace_entry)); 230 } 231 232 #ifndef force_successful_syscall_return 233 /* 234 * System call handlers that, upon successful completion, need to return a 235 * negative value should call force_successful_syscall_return() right before 236 * returning. On architectures where the syscall convention provides for a 237 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly 238 * others), this macro can be used to ensure that the error flag will not get 239 * set. On architectures which do not support a separate error flag, the macro 240 * is a no-op and the spurious error condition needs to be filtered out by some 241 * other means (e.g., in user-level, by passing an extra argument to the 242 * syscall handler, or something along those lines). 243 */ 244 #define force_successful_syscall_return() do { } while (0) 245 #endif 246 247 #ifndef is_syscall_success 248 /* 249 * On most systems we can tell if a syscall is a success based on if the retval 250 * is an error value. On some systems like ia64 and powerpc they have different 251 * indicators of success/failure and must define their own. 252 */ 253 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) 254 #endif 255 256 /* 257 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. 258 * 259 * These do-nothing inlines are used when the arch does not 260 * implement single-step. The kerneldoc comments are here 261 * to document the interface for all arch definitions. 262 */ 263 264 #ifndef arch_has_single_step 265 /** 266 * arch_has_single_step - does this CPU support user-mode single-step? 267 * 268 * If this is defined, then there must be function declarations or 269 * inlines for user_enable_single_step() and user_disable_single_step(). 270 * arch_has_single_step() should evaluate to nonzero iff the machine 271 * supports instruction single-step for user mode. 272 * It can be a constant or it can test a CPU feature bit. 273 */ 274 #define arch_has_single_step() (0) 275 276 /** 277 * user_enable_single_step - single-step in user-mode task 278 * @task: either current or a task stopped in %TASK_TRACED 279 * 280 * This can only be called when arch_has_single_step() has returned nonzero. 281 * Set @task so that when it returns to user mode, it will trap after the 282 * next single instruction executes. If arch_has_block_step() is defined, 283 * this must clear the effects of user_enable_block_step() too. 284 */ 285 static inline void user_enable_single_step(struct task_struct *task) 286 { 287 BUG(); /* This can never be called. */ 288 } 289 290 /** 291 * user_disable_single_step - cancel user-mode single-step 292 * @task: either current or a task stopped in %TASK_TRACED 293 * 294 * Clear @task of the effects of user_enable_single_step() and 295 * user_enable_block_step(). This can be called whether or not either 296 * of those was ever called on @task, and even if arch_has_single_step() 297 * returned zero. 298 */ 299 static inline void user_disable_single_step(struct task_struct *task) 300 { 301 } 302 #else 303 extern void user_enable_single_step(struct task_struct *); 304 extern void user_disable_single_step(struct task_struct *); 305 #endif /* arch_has_single_step */ 306 307 #ifndef arch_has_block_step 308 /** 309 * arch_has_block_step - does this CPU support user-mode block-step? 310 * 311 * If this is defined, then there must be a function declaration or inline 312 * for user_enable_block_step(), and arch_has_single_step() must be defined 313 * too. arch_has_block_step() should evaluate to nonzero iff the machine 314 * supports step-until-branch for user mode. It can be a constant or it 315 * can test a CPU feature bit. 316 */ 317 #define arch_has_block_step() (0) 318 319 /** 320 * user_enable_block_step - step until branch in user-mode task 321 * @task: either current or a task stopped in %TASK_TRACED 322 * 323 * This can only be called when arch_has_block_step() has returned nonzero, 324 * and will never be called when single-instruction stepping is being used. 325 * Set @task so that when it returns to user mode, it will trap after the 326 * next branch or trap taken. 327 */ 328 static inline void user_enable_block_step(struct task_struct *task) 329 { 330 BUG(); /* This can never be called. */ 331 } 332 #else 333 extern void user_enable_block_step(struct task_struct *); 334 #endif /* arch_has_block_step */ 335 336 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO 337 extern void user_single_step_siginfo(struct task_struct *tsk, 338 struct pt_regs *regs, siginfo_t *info); 339 #else 340 static inline void user_single_step_siginfo(struct task_struct *tsk, 341 struct pt_regs *regs, siginfo_t *info) 342 { 343 memset(info, 0, sizeof(*info)); 344 info->si_signo = SIGTRAP; 345 } 346 #endif 347 348 #ifndef arch_ptrace_stop_needed 349 /** 350 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called 351 * @code: current->exit_code value ptrace will stop with 352 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 353 * 354 * This is called with the siglock held, to decide whether or not it's 355 * necessary to release the siglock and call arch_ptrace_stop() with the 356 * same @code and @info arguments. It can be defined to a constant if 357 * arch_ptrace_stop() is never required, or always is. On machines where 358 * this makes sense, it should be defined to a quick test to optimize out 359 * calling arch_ptrace_stop() when it would be superfluous. For example, 360 * if the thread has not been back to user mode since the last stop, the 361 * thread state might indicate that nothing needs to be done. 362 * 363 * This is guaranteed to be invoked once before a task stops for ptrace and 364 * may include arch-specific operations necessary prior to a ptrace stop. 365 */ 366 #define arch_ptrace_stop_needed(code, info) (0) 367 #endif 368 369 #ifndef arch_ptrace_stop 370 /** 371 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace 372 * @code: current->exit_code value ptrace will stop with 373 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with 374 * 375 * This is called with no locks held when arch_ptrace_stop_needed() has 376 * just returned nonzero. It is allowed to block, e.g. for user memory 377 * access. The arch can have machine-specific work to be done before 378 * ptrace stops. On ia64, register backing store gets written back to user 379 * memory here. Since this can be costly (requires dropping the siglock), 380 * we only do it when the arch requires it for this particular stop, as 381 * indicated by arch_ptrace_stop_needed(). 382 */ 383 #define arch_ptrace_stop(code, info) do { } while (0) 384 #endif 385 386 #ifndef current_pt_regs 387 #define current_pt_regs() task_pt_regs(current) 388 #endif 389 390 #ifndef ptrace_signal_deliver 391 #define ptrace_signal_deliver() ((void)0) 392 #endif 393 394 /* 395 * unlike current_pt_regs(), this one is equal to task_pt_regs(current) 396 * on *all* architectures; the only reason to have a per-arch definition 397 * is optimisation. 398 */ 399 #ifndef signal_pt_regs 400 #define signal_pt_regs() task_pt_regs(current) 401 #endif 402 403 #ifndef current_user_stack_pointer 404 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) 405 #endif 406 407 extern int task_current_syscall(struct task_struct *target, long *callno, 408 unsigned long args[6], unsigned int maxargs, 409 unsigned long *sp, unsigned long *pc); 410 411 #endif 412
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.