~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.15-rc5 ] ~ [ linux-5.14.11 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.72 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.152 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.210 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.250 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.286 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.288 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_H
  2 #define _LINUX_SCHED_H
  3 
  4 /*
  5  * cloning flags:
  6  */
  7 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
  8 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
  9 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
 10 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
 11 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
 12 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
 13 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
 14 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
 15 #define CLONE_THREAD    0x00010000      /* Same thread group? */
 16 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
 17 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
 18 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
 19 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
 20 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
 21 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
 22 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
 23 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
 24 #define CLONE_STOPPED           0x02000000      /* Start in stopped state */
 25 #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
 26 #define CLONE_NEWIPC            0x08000000      /* New ipcs */
 27 #define CLONE_NEWUSER           0x10000000      /* New user namespace */
 28 #define CLONE_NEWPID            0x20000000      /* New pid namespace */
 29 #define CLONE_NEWNET            0x40000000      /* New network namespace */
 30 #define CLONE_IO                0x80000000      /* Clone io context */
 31 
 32 /*
 33  * Scheduling policies
 34  */
 35 #define SCHED_NORMAL            0
 36 #define SCHED_FIFO              1
 37 #define SCHED_RR                2
 38 #define SCHED_BATCH             3
 39 /* SCHED_ISO: reserved but not implemented yet */
 40 #define SCHED_IDLE              5
 41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
 42 #define SCHED_RESET_ON_FORK     0x40000000
 43 
 44 #ifdef __KERNEL__
 45 
 46 struct ccs_domain_info;
 47 
 48 struct sched_param {
 49         int sched_priority;
 50 };
 51 
 52 #include <asm/param.h>  /* for HZ */
 53 
 54 #include <linux/capability.h>
 55 #include <linux/threads.h>
 56 #include <linux/kernel.h>
 57 #include <linux/types.h>
 58 #include <linux/timex.h>
 59 #include <linux/jiffies.h>
 60 #include <linux/rbtree.h>
 61 #include <linux/thread_info.h>
 62 #include <linux/cpumask.h>
 63 #include <linux/errno.h>
 64 #include <linux/nodemask.h>
 65 #include <linux/mm_types.h>
 66 
 67 #include <asm/system.h>
 68 #include <asm/page.h>
 69 #include <asm/ptrace.h>
 70 #include <asm/cputime.h>
 71 
 72 #include <linux/smp.h>
 73 #include <linux/sem.h>
 74 #include <linux/signal.h>
 75 #include <linux/path.h>
 76 #include <linux/compiler.h>
 77 #include <linux/completion.h>
 78 #include <linux/pid.h>
 79 #include <linux/percpu.h>
 80 #include <linux/topology.h>
 81 #include <linux/proportions.h>
 82 #include <linux/seccomp.h>
 83 #include <linux/rcupdate.h>
 84 #include <linux/rculist.h>
 85 #include <linux/rtmutex.h>
 86 
 87 #include <linux/time.h>
 88 #include <linux/param.h>
 89 #include <linux/resource.h>
 90 #include <linux/timer.h>
 91 #include <linux/hrtimer.h>
 92 #include <linux/task_io_accounting.h>
 93 #include <linux/kobject.h>
 94 #include <linux/latencytop.h>
 95 #include <linux/cred.h>
 96 
 97 #include <asm/processor.h>
 98 
 99 struct exec_domain;
100 struct futex_pi_state;
101 struct robust_list_head;
102 struct bio;
103 struct fs_struct;
104 struct bts_context;
105 struct perf_event_context;
106 
107 /*
108  * List of flags we want to share for kernel threads,
109  * if only because they are not used by them anyway.
110  */
111 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 
113 /*
114  * These are the constant used to fake the fixed-point load-average
115  * counting. Some notes:
116  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
117  *    a load-average precision of 10 bits integer + 11 bits fractional
118  *  - if you want to count load-averages more often, you need more
119  *    precision, or rounding will get you. With 2-second counting freq,
120  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
121  *    11 bit fractions.
122  */
123 extern unsigned long avenrun[];         /* Load averages */
124 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
125 
126 #define FSHIFT          11              /* nr of bits of precision */
127 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
128 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
129 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
130 #define EXP_5           2014            /* 1/exp(5sec/5min) */
131 #define EXP_15          2037            /* 1/exp(5sec/15min) */
132 
133 #define CALC_LOAD(load,exp,n) \
134         load *= exp; \
135         load += n*(FIXED_1-exp); \
136         load >>= FSHIFT;
137 
138 extern unsigned long total_forks;
139 extern int nr_threads;
140 DECLARE_PER_CPU(unsigned long, process_counts);
141 extern int nr_processes(void);
142 extern unsigned long nr_running(void);
143 extern unsigned long nr_uninterruptible(void);
144 extern unsigned long nr_iowait(void);
145 extern unsigned long nr_iowait_cpu(void);
146 extern unsigned long this_cpu_load(void);
147 
148 
149 extern void calc_global_load(void);
150 
151 extern unsigned long get_parent_ip(unsigned long addr);
152 
153 struct seq_file;
154 struct cfs_rq;
155 struct task_group;
156 #ifdef CONFIG_SCHED_DEBUG
157 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
158 extern void proc_sched_set_task(struct task_struct *p);
159 extern void
160 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
161 #else
162 static inline void
163 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
164 {
165 }
166 static inline void proc_sched_set_task(struct task_struct *p)
167 {
168 }
169 static inline void
170 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
171 {
172 }
173 #endif
174 
175 extern unsigned long long time_sync_thresh;
176 
177 /*
178  * Task state bitmask. NOTE! These bits are also
179  * encoded in fs/proc/array.c: get_task_state().
180  *
181  * We have two separate sets of flags: task->state
182  * is about runnability, while task->exit_state are
183  * about the task exiting. Confusing, but this way
184  * modifying one set can't modify the other one by
185  * mistake.
186  */
187 #define TASK_RUNNING            0
188 #define TASK_INTERRUPTIBLE      1
189 #define TASK_UNINTERRUPTIBLE    2
190 #define __TASK_STOPPED          4
191 #define __TASK_TRACED           8
192 /* in tsk->exit_state */
193 #define EXIT_ZOMBIE             16
194 #define EXIT_DEAD               32
195 /* in tsk->state again */
196 #define TASK_DEAD               64
197 #define TASK_WAKEKILL           128
198 #define TASK_WAKING             256
199 
200 /* Convenience macros for the sake of set_task_state */
201 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
202 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
203 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
204 
205 /* Convenience macros for the sake of wake_up */
206 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
207 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
208 
209 /* get_task_state() */
210 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
211                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
212                                  __TASK_TRACED)
213 
214 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
215 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
216 #define task_is_stopped_or_traced(task) \
217                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
218 #define task_contributes_to_load(task)  \
219                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
220                                  (task->flags & PF_FREEZING) == 0)
221 
222 #define __set_task_state(tsk, state_value)              \
223         do { (tsk)->state = (state_value); } while (0)
224 #define set_task_state(tsk, state_value)                \
225         set_mb((tsk)->state, (state_value))
226 
227 /*
228  * set_current_state() includes a barrier so that the write of current->state
229  * is correctly serialised wrt the caller's subsequent test of whether to
230  * actually sleep:
231  *
232  *      set_current_state(TASK_UNINTERRUPTIBLE);
233  *      if (do_i_need_to_sleep())
234  *              schedule();
235  *
236  * If the caller does not need such serialisation then use __set_current_state()
237  */
238 #define __set_current_state(state_value)                        \
239         do { current->state = (state_value); } while (0)
240 #define set_current_state(state_value)          \
241         set_mb(current->state, (state_value))
242 
243 /* Task command name length */
244 #define TASK_COMM_LEN 16
245 
246 #include <linux/spinlock.h>
247 
248 /*
249  * This serializes "schedule()" and also protects
250  * the run-queue from deletions/modifications (but
251  * _adding_ to the beginning of the run-queue has
252  * a separate lock).
253  */
254 extern rwlock_t tasklist_lock;
255 extern spinlock_t mmlist_lock;
256 
257 struct task_struct;
258 
259 extern void sched_init(void);
260 extern void sched_init_smp(void);
261 extern asmlinkage void schedule_tail(struct task_struct *prev);
262 extern void init_idle(struct task_struct *idle, int cpu);
263 extern void init_idle_bootup_task(struct task_struct *idle);
264 
265 extern int runqueue_is_locked(int cpu);
266 extern void task_rq_unlock_wait(struct task_struct *p);
267 
268 extern cpumask_var_t nohz_cpu_mask;
269 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
270 extern int select_nohz_load_balancer(int cpu);
271 extern int get_nohz_load_balancer(void);
272 #else
273 static inline int select_nohz_load_balancer(int cpu)
274 {
275         return 0;
276 }
277 #endif
278 
279 /*
280  * Only dump TASK_* tasks. (0 for all tasks)
281  */
282 extern void show_state_filter(unsigned long state_filter);
283 
284 static inline void show_state(void)
285 {
286         show_state_filter(0);
287 }
288 
289 extern void show_regs(struct pt_regs *);
290 
291 /*
292  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
293  * task), SP is the stack pointer of the first frame that should be shown in the back
294  * trace (or NULL if the entire call-chain of the task should be shown).
295  */
296 extern void show_stack(struct task_struct *task, unsigned long *sp);
297 
298 void io_schedule(void);
299 long io_schedule_timeout(long timeout);
300 
301 extern void cpu_init (void);
302 extern void trap_init(void);
303 extern void update_process_times(int user);
304 extern void scheduler_tick(void);
305 
306 extern void sched_show_task(struct task_struct *p);
307 
308 #ifdef CONFIG_DETECT_SOFTLOCKUP
309 extern void softlockup_tick(void);
310 extern void touch_softlockup_watchdog(void);
311 extern void touch_all_softlockup_watchdogs(void);
312 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
313                                     void __user *buffer,
314                                     size_t *lenp, loff_t *ppos);
315 extern unsigned int  softlockup_panic;
316 extern int softlockup_thresh;
317 #else
318 static inline void softlockup_tick(void)
319 {
320 }
321 static inline void touch_softlockup_watchdog(void)
322 {
323 }
324 static inline void touch_all_softlockup_watchdogs(void)
325 {
326 }
327 #endif
328 
329 #ifdef CONFIG_DETECT_HUNG_TASK
330 extern unsigned int  sysctl_hung_task_panic;
331 extern unsigned long sysctl_hung_task_check_count;
332 extern unsigned long sysctl_hung_task_timeout_secs;
333 extern unsigned long sysctl_hung_task_warnings;
334 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
335                                          void __user *buffer,
336                                          size_t *lenp, loff_t *ppos);
337 #endif
338 
339 /* Attach to any functions which should be ignored in wchan output. */
340 #define __sched         __attribute__((__section__(".sched.text")))
341 
342 /* Linker adds these: start and end of __sched functions */
343 extern char __sched_text_start[], __sched_text_end[];
344 
345 /* Is this address in the __sched functions? */
346 extern int in_sched_functions(unsigned long addr);
347 
348 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
349 extern signed long schedule_timeout(signed long timeout);
350 extern signed long schedule_timeout_interruptible(signed long timeout);
351 extern signed long schedule_timeout_killable(signed long timeout);
352 extern signed long schedule_timeout_uninterruptible(signed long timeout);
353 asmlinkage void __schedule(void);
354 asmlinkage void schedule(void);
355 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
356 
357 struct nsproxy;
358 struct user_namespace;
359 
360 /*
361  * Default maximum number of active map areas, this limits the number of vmas
362  * per mm struct. Users can overwrite this number by sysctl but there is a
363  * problem.
364  *
365  * When a program's coredump is generated as ELF format, a section is created
366  * per a vma. In ELF, the number of sections is represented in unsigned short.
367  * This means the number of sections should be smaller than 65535 at coredump.
368  * Because the kernel adds some informative sections to a image of program at
369  * generating coredump, we need some margin. The number of extra sections is
370  * 1-3 now and depends on arch. We use "5" as safe margin, here.
371  */
372 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
373 #define DEFAULT_MAX_MAP_COUNT   (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
374 
375 extern int sysctl_max_map_count;
376 
377 #include <linux/aio.h>
378 
379 extern unsigned long
380 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
381                        unsigned long, unsigned long);
382 extern unsigned long
383 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
384                           unsigned long len, unsigned long pgoff,
385                           unsigned long flags);
386 extern void arch_unmap_area(struct mm_struct *, unsigned long);
387 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
388 
389 #if USE_SPLIT_PTLOCKS
390 /*
391  * The mm counters are not protected by its page_table_lock,
392  * so must be incremented atomically.
393  */
394 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
395 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
396 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
397 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
398 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
399 
400 #else  /* !USE_SPLIT_PTLOCKS */
401 /*
402  * The mm counters are protected by its page_table_lock,
403  * so can be incremented directly.
404  */
405 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
406 #define get_mm_counter(mm, member) ((mm)->_##member)
407 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
408 #define inc_mm_counter(mm, member) (mm)->_##member++
409 #define dec_mm_counter(mm, member) (mm)->_##member--
410 
411 #endif /* !USE_SPLIT_PTLOCKS */
412 
413 #define get_mm_rss(mm)                                  \
414         (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
415 #define update_hiwater_rss(mm)  do {                    \
416         unsigned long _rss = get_mm_rss(mm);            \
417         if ((mm)->hiwater_rss < _rss)                   \
418                 (mm)->hiwater_rss = _rss;               \
419 } while (0)
420 #define update_hiwater_vm(mm)   do {                    \
421         if ((mm)->hiwater_vm < (mm)->total_vm)          \
422                 (mm)->hiwater_vm = (mm)->total_vm;      \
423 } while (0)
424 
425 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
426 {
427         return max(mm->hiwater_rss, get_mm_rss(mm));
428 }
429 
430 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
431                                          struct mm_struct *mm)
432 {
433         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
434 
435         if (*maxrss < hiwater_rss)
436                 *maxrss = hiwater_rss;
437 }
438 
439 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
440 {
441         return max(mm->hiwater_vm, mm->total_vm);
442 }
443 
444 extern void set_dumpable(struct mm_struct *mm, int value);
445 extern int get_dumpable(struct mm_struct *mm);
446 
447 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
448 #define SUID_DUMP_USER          1       /* Dump as user of process */
449 #define SUID_DUMP_ROOT          2       /* Dump as root */
450 
451 /* mm flags */
452 /* dumpable bits */
453 #define MMF_DUMPABLE      0  /* core dump is permitted */
454 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
455 
456 #define MMF_DUMPABLE_BITS 2
457 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
458 
459 /* coredump filter bits */
460 #define MMF_DUMP_ANON_PRIVATE   2
461 #define MMF_DUMP_ANON_SHARED    3
462 #define MMF_DUMP_MAPPED_PRIVATE 4
463 #define MMF_DUMP_MAPPED_SHARED  5
464 #define MMF_DUMP_ELF_HEADERS    6
465 #define MMF_DUMP_HUGETLB_PRIVATE 7
466 #define MMF_DUMP_HUGETLB_SHARED  8
467 
468 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
469 #define MMF_DUMP_FILTER_BITS    7
470 #define MMF_DUMP_FILTER_MASK \
471         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
472 #define MMF_DUMP_FILTER_DEFAULT \
473         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
474          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
475 
476 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
477 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
478 #else
479 # define MMF_DUMP_MASK_DEFAULT_ELF      0
480 #endif
481                                         /* leave room for more dump flags */
482 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
483 
484 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
485 
486 struct sighand_struct {
487         atomic_t                count;
488         struct k_sigaction      action[_NSIG];
489         spinlock_t              siglock;
490         wait_queue_head_t       signalfd_wqh;
491 };
492 
493 struct pacct_struct {
494         int                     ac_flag;
495         long                    ac_exitcode;
496         unsigned long           ac_mem;
497         cputime_t               ac_utime, ac_stime;
498         unsigned long           ac_minflt, ac_majflt;
499 };
500 
501 struct cpu_itimer {
502         cputime_t expires;
503         cputime_t incr;
504         u32 error;
505         u32 incr_error;
506 };
507 
508 /**
509  * struct task_cputime - collected CPU time counts
510  * @utime:              time spent in user mode, in &cputime_t units
511  * @stime:              time spent in kernel mode, in &cputime_t units
512  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
513  *
514  * This structure groups together three kinds of CPU time that are
515  * tracked for threads and thread groups.  Most things considering
516  * CPU time want to group these counts together and treat all three
517  * of them in parallel.
518  */
519 struct task_cputime {
520         cputime_t utime;
521         cputime_t stime;
522         unsigned long long sum_exec_runtime;
523 };
524 /* Alternate field names when used to cache expirations. */
525 #define prof_exp        stime
526 #define virt_exp        utime
527 #define sched_exp       sum_exec_runtime
528 
529 #define INIT_CPUTIME    \
530         (struct task_cputime) {                                 \
531                 .utime = cputime_zero,                          \
532                 .stime = cputime_zero,                          \
533                 .sum_exec_runtime = 0,                          \
534         }
535 
536 /*
537  * Disable preemption until the scheduler is running.
538  * Reset by start_kernel()->sched_init()->init_idle().
539  *
540  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
541  * before the scheduler is active -- see should_resched().
542  */
543 #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
544 
545 /**
546  * struct thread_group_cputimer - thread group interval timer counts
547  * @cputime:            thread group interval timers.
548  * @running:            non-zero when there are timers running and
549  *                      @cputime receives updates.
550  * @lock:               lock for fields in this struct.
551  *
552  * This structure contains the version of task_cputime, above, that is
553  * used for thread group CPU timer calculations.
554  */
555 struct thread_group_cputimer {
556         struct task_cputime cputime;
557         int running;
558         spinlock_t lock;
559 };
560 
561 /*
562  * NOTE! "signal_struct" does not have it's own
563  * locking, because a shared signal_struct always
564  * implies a shared sighand_struct, so locking
565  * sighand_struct is always a proper superset of
566  * the locking of signal_struct.
567  */
568 struct signal_struct {
569         atomic_t                count;
570         atomic_t                live;
571 
572         wait_queue_head_t       wait_chldexit;  /* for wait4() */
573 
574         /* current thread group signal load-balancing target: */
575         struct task_struct      *curr_target;
576 
577         /* shared signal handling: */
578         struct sigpending       shared_pending;
579 
580         /* thread group exit support */
581         int                     group_exit_code;
582         /* overloaded:
583          * - notify group_exit_task when ->count is equal to notify_count
584          * - everyone except group_exit_task is stopped during signal delivery
585          *   of fatal signals, group_exit_task processes the signal.
586          */
587         int                     notify_count;
588         struct task_struct      *group_exit_task;
589 
590         /* thread group stop support, overloads group_exit_code too */
591         int                     group_stop_count;
592         unsigned int            flags; /* see SIGNAL_* flags below */
593 
594         /* POSIX.1b Interval Timers */
595         struct list_head posix_timers;
596 
597         /* ITIMER_REAL timer for the process */
598         struct hrtimer real_timer;
599         struct pid *leader_pid;
600         ktime_t it_real_incr;
601 
602         /*
603          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
604          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
605          * values are defined to 0 and 1 respectively
606          */
607         struct cpu_itimer it[2];
608 
609         /*
610          * Thread group totals for process CPU timers.
611          * See thread_group_cputimer(), et al, for details.
612          */
613         struct thread_group_cputimer cputimer;
614 
615         /* Earliest-expiration cache. */
616         struct task_cputime cputime_expires;
617 
618         struct list_head cpu_timers[3];
619 
620         struct pid *tty_old_pgrp;
621 
622         /* boolean value for session group leader */
623         int leader;
624 
625         struct tty_struct *tty; /* NULL if no tty */
626 
627         /*
628          * Cumulative resource counters for dead threads in the group,
629          * and for reaped dead child processes forked by this group.
630          * Live threads maintain their own counters and add to these
631          * in __exit_signal, except for the group leader.
632          */
633         cputime_t utime, stime, cutime, cstime;
634         cputime_t gtime;
635         cputime_t cgtime;
636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
637         cputime_t prev_utime, prev_stime;
638 #endif
639         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
640         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
641         unsigned long inblock, oublock, cinblock, coublock;
642         unsigned long maxrss, cmaxrss;
643         struct task_io_accounting ioac;
644 
645         /*
646          * Cumulative ns of schedule CPU time fo dead threads in the
647          * group, not including a zombie group leader, (This only differs
648          * from jiffies_to_ns(utime + stime) if sched_clock uses something
649          * other than jiffies.)
650          */
651         unsigned long long sum_sched_runtime;
652 
653         /*
654          * We don't bother to synchronize most readers of this at all,
655          * because there is no reader checking a limit that actually needs
656          * to get both rlim_cur and rlim_max atomically, and either one
657          * alone is a single word that can safely be read normally.
658          * getrlimit/setrlimit use task_lock(current->group_leader) to
659          * protect this instead of the siglock, because they really
660          * have no need to disable irqs.
661          */
662         struct rlimit rlim[RLIM_NLIMITS];
663 
664 #ifdef CONFIG_BSD_PROCESS_ACCT
665         struct pacct_struct pacct;      /* per-process accounting information */
666 #endif
667 #ifdef CONFIG_TASKSTATS
668         struct taskstats *stats;
669 #endif
670 #ifdef CONFIG_AUDIT
671         unsigned audit_tty;
672         struct tty_audit_buf *tty_audit_buf;
673 #endif
674 
675         int oom_adj;    /* OOM kill score adjustment (bit shift) */
676 };
677 
678 /* Context switch must be unlocked if interrupts are to be enabled */
679 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
680 # define __ARCH_WANT_UNLOCKED_CTXSW
681 #endif
682 
683 /*
684  * Bits in flags field of signal_struct.
685  */
686 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
687 #define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
688 #define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
689 #define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */
690 /*
691  * Pending notifications to parent.
692  */
693 #define SIGNAL_CLD_STOPPED      0x00000010
694 #define SIGNAL_CLD_CONTINUED    0x00000020
695 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
696 
697 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
698 
699 /* If true, all threads except ->group_exit_task have pending SIGKILL */
700 static inline int signal_group_exit(const struct signal_struct *sig)
701 {
702         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
703                 (sig->group_exit_task != NULL);
704 }
705 
706 /*
707  * Some day this will be a full-fledged user tracking system..
708  */
709 struct user_struct {
710         atomic_t __count;       /* reference count */
711         atomic_t processes;     /* How many processes does this user have? */
712         atomic_t files;         /* How many open files does this user have? */
713         atomic_t sigpending;    /* How many pending signals does this user have? */
714 #ifdef CONFIG_INOTIFY_USER
715         atomic_t inotify_watches; /* How many inotify watches does this user have? */
716         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
717 #endif
718 #ifdef CONFIG_EPOLL
719         atomic_t epoll_watches; /* The number of file descriptors currently watched */
720 #endif
721 #ifdef CONFIG_POSIX_MQUEUE
722         /* protected by mq_lock */
723         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
724 #endif
725         unsigned long locked_shm; /* How many pages of mlocked shm ? */
726 
727 #ifdef CONFIG_KEYS
728         struct key *uid_keyring;        /* UID specific keyring */
729         struct key *session_keyring;    /* UID's default session keyring */
730 #endif
731 
732         /* Hash table maintenance information */
733         struct hlist_node uidhash_node;
734         uid_t uid;
735         struct user_namespace *user_ns;
736 
737 #ifdef CONFIG_PERF_EVENTS
738         atomic_long_t locked_vm;
739 #endif
740 };
741 
742 extern int uids_sysfs_init(void);
743 
744 extern struct user_struct *find_user(uid_t);
745 
746 extern struct user_struct root_user;
747 #define INIT_USER (&root_user)
748 
749 
750 struct backing_dev_info;
751 struct reclaim_state;
752 
753 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
754 struct sched_info {
755         /* cumulative counters */
756         unsigned long pcount;         /* # of times run on this cpu */
757         unsigned long long run_delay; /* time spent waiting on a runqueue */
758 
759         /* timestamps */
760         unsigned long long last_arrival,/* when we last ran on a cpu */
761                            last_queued; /* when we were last queued to run */
762 #ifdef CONFIG_SCHEDSTATS
763         /* BKL stats */
764         unsigned int bkl_count;
765 #endif
766 };
767 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
768 
769 #ifdef CONFIG_TASK_DELAY_ACCT
770 struct task_delay_info {
771         spinlock_t      lock;
772         unsigned int    flags;  /* Private per-task flags */
773 
774         /* For each stat XXX, add following, aligned appropriately
775          *
776          * struct timespec XXX_start, XXX_end;
777          * u64 XXX_delay;
778          * u32 XXX_count;
779          *
780          * Atomicity of updates to XXX_delay, XXX_count protected by
781          * single lock above (split into XXX_lock if contention is an issue).
782          */
783 
784         /*
785          * XXX_count is incremented on every XXX operation, the delay
786          * associated with the operation is added to XXX_delay.
787          * XXX_delay contains the accumulated delay time in nanoseconds.
788          */
789         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
790         u64 blkio_delay;        /* wait for sync block io completion */
791         u64 swapin_delay;       /* wait for swapin block io completion */
792         u32 blkio_count;        /* total count of the number of sync block */
793                                 /* io operations performed */
794         u32 swapin_count;       /* total count of the number of swapin block */
795                                 /* io operations performed */
796 
797         struct timespec freepages_start, freepages_end;
798         u64 freepages_delay;    /* wait for memory reclaim */
799         u32 freepages_count;    /* total count of memory reclaim */
800 };
801 #endif  /* CONFIG_TASK_DELAY_ACCT */
802 
803 static inline int sched_info_on(void)
804 {
805 #ifdef CONFIG_SCHEDSTATS
806         return 1;
807 #elif defined(CONFIG_TASK_DELAY_ACCT)
808         extern int delayacct_on;
809         return delayacct_on;
810 #else
811         return 0;
812 #endif
813 }
814 
815 enum cpu_idle_type {
816         CPU_IDLE,
817         CPU_NOT_IDLE,
818         CPU_NEWLY_IDLE,
819         CPU_MAX_IDLE_TYPES
820 };
821 
822 /*
823  * sched-domains (multiprocessor balancing) declarations:
824  */
825 
826 /*
827  * Increase resolution of nice-level calculations:
828  */
829 #define SCHED_LOAD_SHIFT        10
830 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
831 
832 #define SCHED_LOAD_SCALE_FUZZ   SCHED_LOAD_SCALE
833 
834 #ifdef CONFIG_SMP
835 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
836 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
837 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
838 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
839 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
840 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
841 #define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
842 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
843 #define SD_POWERSAVINGS_BALANCE 0x0100  /* Balance for power savings */
844 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
845 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
846 
847 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
848 
849 enum powersavings_balance_level {
850         POWERSAVINGS_BALANCE_NONE = 0,  /* No power saving load balance */
851         POWERSAVINGS_BALANCE_BASIC,     /* Fill one thread/core/package
852                                          * first for long running threads
853                                          */
854         POWERSAVINGS_BALANCE_WAKEUP,    /* Also bias task wakeups to semi-idle
855                                          * cpu package for power savings
856                                          */
857         MAX_POWERSAVINGS_BALANCE_LEVELS
858 };
859 
860 extern int sched_mc_power_savings, sched_smt_power_savings;
861 
862 static inline int sd_balance_for_mc_power(void)
863 {
864         if (sched_smt_power_savings)
865                 return SD_POWERSAVINGS_BALANCE;
866 
867         if (!sched_mc_power_savings)
868                 return SD_PREFER_SIBLING;
869 
870         return 0;
871 }
872 
873 static inline int sd_balance_for_package_power(void)
874 {
875         if (sched_mc_power_savings | sched_smt_power_savings)
876                 return SD_POWERSAVINGS_BALANCE;
877 
878         return SD_PREFER_SIBLING;
879 }
880 
881 /*
882  * Optimise SD flags for power savings:
883  * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
884  * Keep default SD flags if sched_{smt,mc}_power_saving=0
885  */
886 
887 static inline int sd_power_saving_flags(void)
888 {
889         if (sched_mc_power_savings | sched_smt_power_savings)
890                 return SD_BALANCE_NEWIDLE;
891 
892         return 0;
893 }
894 
895 struct sched_group {
896         struct sched_group *next;       /* Must be a circular list */
897 
898         /*
899          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
900          * single CPU.
901          */
902         unsigned int cpu_power;
903         unsigned int group_weight;
904 
905         /*
906          * The CPUs this group covers.
907          *
908          * NOTE: this field is variable length. (Allocated dynamically
909          * by attaching extra space to the end of the structure,
910          * depending on how many CPUs the kernel has booted up with)
911          *
912          * It is also be embedded into static data structures at build
913          * time. (See 'struct static_sched_group' in kernel/sched.c)
914          */
915         unsigned long cpumask[0];
916 };
917 
918 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
919 {
920         return to_cpumask(sg->cpumask);
921 }
922 
923 enum sched_domain_level {
924         SD_LV_NONE = 0,
925         SD_LV_SIBLING,
926         SD_LV_MC,
927         SD_LV_CPU,
928         SD_LV_NODE,
929         SD_LV_ALLNODES,
930         SD_LV_MAX
931 };
932 
933 struct sched_domain_attr {
934         int relax_domain_level;
935 };
936 
937 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
938         .relax_domain_level = -1,                       \
939 }
940 
941 struct sched_domain {
942         /* These fields must be setup */
943         struct sched_domain *parent;    /* top domain must be null terminated */
944         struct sched_domain *child;     /* bottom domain must be null terminated */
945         struct sched_group *groups;     /* the balancing groups of the domain */
946         unsigned long min_interval;     /* Minimum balance interval ms */
947         unsigned long max_interval;     /* Maximum balance interval ms */
948         unsigned int busy_factor;       /* less balancing by factor if busy */
949         unsigned int imbalance_pct;     /* No balance until over watermark */
950         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
951         unsigned int busy_idx;
952         unsigned int idle_idx;
953         unsigned int newidle_idx;
954         unsigned int wake_idx;
955         unsigned int forkexec_idx;
956         unsigned int smt_gain;
957         int flags;                      /* See SD_* */
958         enum sched_domain_level level;
959 
960         /* Runtime fields. */
961         unsigned long last_balance;     /* init to jiffies. units in jiffies */
962         unsigned int balance_interval;  /* initialise to 1. units in ms. */
963         unsigned int nr_balance_failed; /* initialise to 0 */
964 
965         u64 last_update;
966 
967 #ifdef CONFIG_SCHEDSTATS
968         /* load_balance() stats */
969         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
970         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
971         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
972         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
973         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
974         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
975         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
976         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
977 
978         /* Active load balancing */
979         unsigned int alb_count;
980         unsigned int alb_failed;
981         unsigned int alb_pushed;
982 
983         /* SD_BALANCE_EXEC stats */
984         unsigned int sbe_count;
985         unsigned int sbe_balanced;
986         unsigned int sbe_pushed;
987 
988         /* SD_BALANCE_FORK stats */
989         unsigned int sbf_count;
990         unsigned int sbf_balanced;
991         unsigned int sbf_pushed;
992 
993         /* try_to_wake_up() stats */
994         unsigned int ttwu_wake_remote;
995         unsigned int ttwu_move_affine;
996         unsigned int ttwu_move_balance;
997 #endif
998 #ifdef CONFIG_SCHED_DEBUG
999         char *name;
1000 #endif
1001 
1002         unsigned int span_weight;
1003         /*
1004          * Span of all CPUs in this domain.
1005          *
1006          * NOTE: this field is variable length. (Allocated dynamically
1007          * by attaching extra space to the end of the structure,
1008          * depending on how many CPUs the kernel has booted up with)
1009          *
1010          * It is also be embedded into static data structures at build
1011          * time. (See 'struct static_sched_domain' in kernel/sched.c)
1012          */
1013         unsigned long span[0];
1014 };
1015 
1016 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1017 {
1018         return to_cpumask(sd->span);
1019 }
1020 
1021 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1022                                     struct sched_domain_attr *dattr_new);
1023 
1024 /* Test a flag in parent sched domain */
1025 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1026 {
1027         if (sd->parent && (sd->parent->flags & flag))
1028                 return 1;
1029 
1030         return 0;
1031 }
1032 
1033 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1034 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1035 
1036 #else /* CONFIG_SMP */
1037 
1038 struct sched_domain_attr;
1039 
1040 static inline void
1041 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1042                         struct sched_domain_attr *dattr_new)
1043 {
1044 }
1045 #endif  /* !CONFIG_SMP */
1046 
1047 
1048 struct io_context;                      /* See blkdev.h */
1049 
1050 
1051 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1052 extern void prefetch_stack(struct task_struct *t);
1053 #else
1054 static inline void prefetch_stack(struct task_struct *t) { }
1055 #endif
1056 
1057 struct audit_context;           /* See audit.c */
1058 struct mempolicy;
1059 struct pipe_inode_info;
1060 struct uts_namespace;
1061 
1062 struct rq;
1063 struct sched_domain;
1064 
1065 /*
1066  * wake flags
1067  */
1068 #define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1069 #define WF_FORK         0x02            /* child wakeup after fork */
1070 
1071 struct sched_class {
1072         const struct sched_class *next;
1073 
1074         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup,
1075                               bool head);
1076         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1077         void (*yield_task) (struct rq *rq);
1078 
1079         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1080 
1081         struct task_struct * (*pick_next_task) (struct rq *rq);
1082         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1083 
1084 #ifdef CONFIG_SMP
1085         int  (*select_task_rq)(struct rq *rq, struct task_struct *p,
1086                                int sd_flag, int flags);
1087 
1088         unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1089                         struct rq *busiest, unsigned long max_load_move,
1090                         struct sched_domain *sd, enum cpu_idle_type idle,
1091                         int *all_pinned, int *this_best_prio);
1092 
1093         int (*move_one_task) (struct rq *this_rq, int this_cpu,
1094                               struct rq *busiest, struct sched_domain *sd,
1095                               enum cpu_idle_type idle);
1096         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1097         void (*post_schedule) (struct rq *this_rq);
1098         void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1099         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1100 
1101         void (*set_cpus_allowed)(struct task_struct *p,
1102                                  const struct cpumask *newmask);
1103 
1104         void (*rq_online)(struct rq *rq);
1105         void (*rq_offline)(struct rq *rq);
1106 #endif
1107 
1108         void (*set_curr_task) (struct rq *rq);
1109         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1110         void (*task_fork) (struct task_struct *p);
1111 
1112         void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1113                                int running);
1114         void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1115                              int running);
1116         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1117                              int oldprio, int running);
1118 
1119         unsigned int (*get_rr_interval) (struct rq *rq,
1120                                          struct task_struct *task);
1121 
1122 #ifdef CONFIG_FAIR_GROUP_SCHED
1123         void (*task_move_group) (struct task_struct *p, int on_rq);
1124 #endif
1125 };
1126 
1127 struct load_weight {
1128         unsigned long weight, inv_weight;
1129 };
1130 
1131 /*
1132  * CFS stats for a schedulable entity (task, task-group etc)
1133  *
1134  * Current field usage histogram:
1135  *
1136  *     4 se->block_start
1137  *     4 se->run_node
1138  *     4 se->sleep_start
1139  *     6 se->load.weight
1140  */
1141 struct sched_entity {
1142         struct load_weight      load;           /* for load-balancing */
1143         struct rb_node          run_node;
1144         struct list_head        group_node;
1145         unsigned int            on_rq;
1146 
1147         u64                     exec_start;
1148         u64                     sum_exec_runtime;
1149         u64                     vruntime;
1150         u64                     prev_sum_exec_runtime;
1151 
1152         u64                     last_wakeup;
1153         u64                     avg_overlap;
1154 
1155         u64                     nr_migrations;
1156 
1157         u64                     start_runtime;
1158         u64                     avg_wakeup;
1159 
1160         u64                     avg_running;
1161 
1162 #ifdef CONFIG_SCHEDSTATS
1163         u64                     wait_start;
1164         u64                     wait_max;
1165         u64                     wait_count;
1166         u64                     wait_sum;
1167         u64                     iowait_count;
1168         u64                     iowait_sum;
1169 
1170         u64                     sleep_start;
1171         u64                     sleep_max;
1172         s64                     sum_sleep_runtime;
1173 
1174         u64                     block_start;
1175         u64                     block_max;
1176         u64                     exec_max;
1177         u64                     slice_max;
1178 
1179         u64                     nr_migrations_cold;
1180         u64                     nr_failed_migrations_affine;
1181         u64                     nr_failed_migrations_running;
1182         u64                     nr_failed_migrations_hot;
1183         u64                     nr_forced_migrations;
1184 
1185         u64                     nr_wakeups;
1186         u64                     nr_wakeups_sync;
1187         u64                     nr_wakeups_migrate;
1188         u64                     nr_wakeups_local;
1189         u64                     nr_wakeups_remote;
1190         u64                     nr_wakeups_affine;
1191         u64                     nr_wakeups_affine_attempts;
1192         u64                     nr_wakeups_passive;
1193         u64                     nr_wakeups_idle;
1194 #endif
1195 
1196 #ifdef CONFIG_FAIR_GROUP_SCHED
1197         struct sched_entity     *parent;
1198         /* rq on which this entity is (to be) queued: */
1199         struct cfs_rq           *cfs_rq;
1200         /* rq "owned" by this entity/group: */
1201         struct cfs_rq           *my_q;
1202 #endif
1203 };
1204 
1205 struct sched_rt_entity {
1206         struct list_head run_list;
1207         unsigned long timeout;
1208         unsigned int time_slice;
1209         int nr_cpus_allowed;
1210 
1211         struct sched_rt_entity *back;
1212 #ifdef CONFIG_RT_GROUP_SCHED
1213         struct sched_rt_entity  *parent;
1214         /* rq on which this entity is (to be) queued: */
1215         struct rt_rq            *rt_rq;
1216         /* rq "owned" by this entity/group: */
1217         struct rt_rq            *my_q;
1218 #endif
1219 };
1220 
1221 struct rcu_node;
1222 
1223 struct task_struct {
1224         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1225         void *stack;
1226         atomic_t usage;
1227         unsigned int flags;     /* per process flags, defined below */
1228         unsigned int ptrace;
1229 
1230         int lock_depth;         /* BKL lock depth */
1231 
1232 #ifdef CONFIG_SMP
1233 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1234         int oncpu;
1235 #endif
1236 #endif
1237 
1238         int prio, static_prio, normal_prio;
1239         unsigned int rt_priority;
1240         const struct sched_class *sched_class;
1241         struct sched_entity se;
1242         struct sched_rt_entity rt;
1243 
1244 #ifdef CONFIG_PREEMPT_NOTIFIERS
1245         /* list of struct preempt_notifier: */
1246         struct hlist_head preempt_notifiers;
1247 #endif
1248 
1249         /*
1250          * fpu_counter contains the number of consecutive context switches
1251          * that the FPU is used. If this is over a threshold, the lazy fpu
1252          * saving becomes unlazy to save the trap. This is an unsigned char
1253          * so that after 256 times the counter wraps and the behavior turns
1254          * lazy again; this to deal with bursty apps that only use FPU for
1255          * a short time
1256          */
1257         unsigned char fpu_counter;
1258 #ifdef CONFIG_BLK_DEV_IO_TRACE
1259         unsigned int btrace_seq;
1260 #endif
1261 
1262         unsigned int policy;
1263         cpumask_t cpus_allowed;
1264 
1265 #ifdef CONFIG_TREE_PREEMPT_RCU
1266         int rcu_read_lock_nesting;
1267         char rcu_read_unlock_special;
1268         struct rcu_node *rcu_blocked_node;
1269         struct list_head rcu_node_entry;
1270 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1271 
1272 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1273         struct sched_info sched_info;
1274 #endif
1275 
1276         struct list_head tasks;
1277         struct plist_node pushable_tasks;
1278 
1279         struct mm_struct *mm, *active_mm;
1280 
1281 /* task state */
1282         int exit_state;
1283         int exit_code, exit_signal;
1284         int pdeath_signal;  /*  The signal sent when the parent dies  */
1285         /* ??? */
1286         unsigned int personality;
1287         unsigned did_exec:1;
1288         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1289                                  * execve */
1290         unsigned in_iowait:1;
1291 
1292 
1293         /* Revert to default priority/policy when forking */
1294         unsigned sched_reset_on_fork:1;
1295 
1296         pid_t pid;
1297         pid_t tgid;
1298 
1299 #ifdef CONFIG_CC_STACKPROTECTOR
1300         /* Canary value for the -fstack-protector gcc feature */
1301         unsigned long stack_canary;
1302 #endif
1303 
1304         /* 
1305          * pointers to (original) parent process, youngest child, younger sibling,
1306          * older sibling, respectively.  (p->father can be replaced with 
1307          * p->real_parent->pid)
1308          */
1309         struct task_struct *real_parent; /* real parent process */
1310         struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1311         /*
1312          * children/sibling forms the list of my natural children
1313          */
1314         struct list_head children;      /* list of my children */
1315         struct list_head sibling;       /* linkage in my parent's children list */
1316         struct task_struct *group_leader;       /* threadgroup leader */
1317 
1318         /*
1319          * ptraced is the list of tasks this task is using ptrace on.
1320          * This includes both natural children and PTRACE_ATTACH targets.
1321          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1322          */
1323         struct list_head ptraced;
1324         struct list_head ptrace_entry;
1325 
1326         /*
1327          * This is the tracer handle for the ptrace BTS extension.
1328          * This field actually belongs to the ptracer task.
1329          */
1330         struct bts_context *bts;
1331 
1332         /* PID/PID hash table linkage. */
1333         struct pid_link pids[PIDTYPE_MAX];
1334         struct list_head thread_group;
1335 
1336         struct completion *vfork_done;          /* for vfork() */
1337         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1338         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1339 
1340         cputime_t utime, stime, utimescaled, stimescaled;
1341         cputime_t gtime;
1342         cputime_t prev_utime, prev_stime;
1343         unsigned long nvcsw, nivcsw; /* context switch counts */
1344         struct timespec start_time;             /* monotonic time */
1345         struct timespec real_start_time;        /* boot based time */
1346 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1347         unsigned long min_flt, maj_flt;
1348 
1349         struct task_cputime cputime_expires;
1350         struct list_head cpu_timers[3];
1351 
1352 /* process credentials */
1353         const struct cred *real_cred;   /* objective and real subjective task
1354                                          * credentials (COW) */
1355         const struct cred *cred;        /* effective (overridable) subjective task
1356                                          * credentials (COW) */
1357         struct mutex cred_guard_mutex;  /* guard against foreign influences on
1358                                          * credential calculations
1359                                          * (notably. ptrace) */
1360         struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1361 
1362         char comm[TASK_COMM_LEN]; /* executable name excluding path
1363                                      - access with [gs]et_task_comm (which lock
1364                                        it with task_lock())
1365                                      - initialized normally by setup_new_exec */
1366 /* file system info */
1367         int link_count, total_link_count;
1368 #ifdef CONFIG_SYSVIPC
1369 /* ipc stuff */
1370         struct sysv_sem sysvsem;
1371 #endif
1372 #ifdef CONFIG_DETECT_HUNG_TASK
1373 /* hung task detection */
1374         unsigned long last_switch_count;
1375 #endif
1376 /* CPU-specific state of this task */
1377         struct thread_struct thread;
1378 /* filesystem information */
1379         struct fs_struct *fs;
1380 /* open file information */
1381         struct files_struct *files;
1382 /* namespaces */
1383         struct nsproxy *nsproxy;
1384 /* signal handlers */
1385         struct signal_struct *signal;
1386         struct sighand_struct *sighand;
1387 
1388         sigset_t blocked, real_blocked;
1389         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1390         struct sigpending pending;
1391 
1392         unsigned long sas_ss_sp;
1393         size_t sas_ss_size;
1394         int (*notifier)(void *priv);
1395         void *notifier_data;
1396         sigset_t *notifier_mask;
1397         struct audit_context *audit_context;
1398 #ifdef CONFIG_AUDITSYSCALL
1399         uid_t loginuid;
1400         unsigned int sessionid;
1401 #endif
1402         seccomp_t seccomp;
1403 
1404 /* Thread group tracking */
1405         u32 parent_exec_id;
1406         u32 self_exec_id;
1407 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1408  * mempolicy */
1409         spinlock_t alloc_lock;
1410 
1411 #ifdef CONFIG_GENERIC_HARDIRQS
1412         /* IRQ handler threads */
1413         struct irqaction *irqaction;
1414 #endif
1415 
1416         /* Protection of the PI data structures: */
1417         spinlock_t pi_lock;
1418 
1419 #ifdef CONFIG_RT_MUTEXES
1420         /* PI waiters blocked on a rt_mutex held by this task */
1421         struct plist_head pi_waiters;
1422         /* Deadlock detection and priority inheritance handling */
1423         struct rt_mutex_waiter *pi_blocked_on;
1424 #endif
1425 
1426 #ifdef CONFIG_DEBUG_MUTEXES
1427         /* mutex deadlock detection */
1428         struct mutex_waiter *blocked_on;
1429 #endif
1430 #ifdef CONFIG_TRACE_IRQFLAGS
1431         unsigned int irq_events;
1432         int hardirqs_enabled;
1433         unsigned long hardirq_enable_ip;
1434         unsigned int hardirq_enable_event;
1435         unsigned long hardirq_disable_ip;
1436         unsigned int hardirq_disable_event;
1437         int softirqs_enabled;
1438         unsigned long softirq_disable_ip;
1439         unsigned int softirq_disable_event;
1440         unsigned long softirq_enable_ip;
1441         unsigned int softirq_enable_event;
1442         int hardirq_context;
1443         int softirq_context;
1444 #endif
1445 #ifdef CONFIG_LOCKDEP
1446 # define MAX_LOCK_DEPTH 48UL
1447         u64 curr_chain_key;
1448         int lockdep_depth;
1449         unsigned int lockdep_recursion;
1450         struct held_lock held_locks[MAX_LOCK_DEPTH];
1451         gfp_t lockdep_reclaim_gfp;
1452 #endif
1453 
1454 /* journalling filesystem info */
1455         void *journal_info;
1456 
1457 /* stacked block device info */
1458         struct bio *bio_list, **bio_tail;
1459 
1460 /* VM state */
1461         struct reclaim_state *reclaim_state;
1462 
1463         struct backing_dev_info *backing_dev_info;
1464 
1465         struct io_context *io_context;
1466 
1467         unsigned long ptrace_message;
1468         siginfo_t *last_siginfo; /* For ptrace use.  */
1469         struct task_io_accounting ioac;
1470 #if defined(CONFIG_TASK_XACCT)
1471         u64 acct_rss_mem1;      /* accumulated rss usage */
1472         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1473         cputime_t acct_timexpd; /* stime + utime since last update */
1474 #endif
1475 #ifdef CONFIG_CPUSETS
1476         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1477         int cpuset_mem_spread_rotor;
1478 #endif
1479 #ifdef CONFIG_CGROUPS
1480         /* Control Group info protected by css_set_lock */
1481         struct css_set *cgroups;
1482         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1483         struct list_head cg_list;
1484 #endif
1485 #ifdef CONFIG_FUTEX
1486         struct robust_list_head __user *robust_list;
1487 #ifdef CONFIG_COMPAT
1488         struct compat_robust_list_head __user *compat_robust_list;
1489 #endif
1490         struct list_head pi_state_list;
1491         struct futex_pi_state *pi_state_cache;
1492 #endif
1493 #ifdef CONFIG_PERF_EVENTS
1494         struct perf_event_context *perf_event_ctxp;
1495         struct mutex perf_event_mutex;
1496         struct list_head perf_event_list;
1497 #endif
1498 #ifdef CONFIG_NUMA
1499         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1500         short il_next;
1501 #endif
1502         atomic_t fs_excl;       /* holding fs exclusive resources */
1503         struct rcu_head rcu;
1504 
1505         /*
1506          * cache last used pipe for splice
1507          */
1508         struct pipe_inode_info *splice_pipe;
1509 #ifdef  CONFIG_TASK_DELAY_ACCT
1510         struct task_delay_info *delays;
1511 #endif
1512 #ifdef CONFIG_FAULT_INJECTION
1513         int make_it_fail;
1514 #endif
1515         struct prop_local_single dirties;
1516 #ifdef CONFIG_LATENCYTOP
1517         int latency_record_count;
1518         struct latency_record latency_record[LT_SAVECOUNT];
1519 #endif
1520         /*
1521          * time slack values; these are used to round up poll() and
1522          * select() etc timeout values. These are in nanoseconds.
1523          */
1524         unsigned long timer_slack_ns;
1525         unsigned long default_timer_slack_ns;
1526 
1527         struct list_head        *scm_work_list;
1528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1529         /* Index of current stored adress in ret_stack */
1530         int curr_ret_stack;
1531         /* Stack of return addresses for return function tracing */
1532         struct ftrace_ret_stack *ret_stack;
1533         /* time stamp for last schedule */
1534         unsigned long long ftrace_timestamp;
1535         /*
1536          * Number of functions that haven't been traced
1537          * because of depth overrun.
1538          */
1539         atomic_t trace_overrun;
1540         /* Pause for the tracing */
1541         atomic_t tracing_graph_pause;
1542 #endif
1543 #ifdef CONFIG_TRACING
1544         /* state flags for use by tracers */
1545         unsigned long trace;
1546         /* bitmask of trace recursion */
1547         unsigned long trace_recursion;
1548 #endif /* CONFIG_TRACING */
1549 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1550         struct ccs_domain_info *ccs_domain_info;
1551         u32 ccs_flags;
1552 #endif
1553 };
1554 
1555 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1556 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1557 
1558 /*
1559  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1560  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1561  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1562  * values are inverted: lower p->prio value means higher priority.
1563  *
1564  * The MAX_USER_RT_PRIO value allows the actual maximum
1565  * RT priority to be separate from the value exported to
1566  * user-space.  This allows kernel threads to set their
1567  * priority to a value higher than any user task. Note:
1568  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1569  */
1570 
1571 #define MAX_USER_RT_PRIO        100
1572 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1573 
1574 #define MAX_PRIO                (MAX_RT_PRIO + 40)
1575 #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1576 
1577 static inline int rt_prio(int prio)
1578 {
1579         if (unlikely(prio < MAX_RT_PRIO))
1580                 return 1;
1581         return 0;
1582 }
1583 
1584 static inline int rt_task(struct task_struct *p)
1585 {
1586         return rt_prio(p->prio);
1587 }
1588 
1589 static inline struct pid *task_pid(struct task_struct *task)
1590 {
1591         return task->pids[PIDTYPE_PID].pid;
1592 }
1593 
1594 static inline struct pid *task_tgid(struct task_struct *task)
1595 {
1596         return task->group_leader->pids[PIDTYPE_PID].pid;
1597 }
1598 
1599 /*
1600  * Without tasklist or rcu lock it is not safe to dereference
1601  * the result of task_pgrp/task_session even if task == current,
1602  * we can race with another thread doing sys_setsid/sys_setpgid.
1603  */
1604 static inline struct pid *task_pgrp(struct task_struct *task)
1605 {
1606         return task->group_leader->pids[PIDTYPE_PGID].pid;
1607 }
1608 
1609 static inline struct pid *task_session(struct task_struct *task)
1610 {
1611         return task->group_leader->pids[PIDTYPE_SID].pid;
1612 }
1613 
1614 struct pid_namespace;
1615 
1616 /*
1617  * the helpers to get the task's different pids as they are seen
1618  * from various namespaces
1619  *
1620  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1621  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1622  *                     current.
1623  * task_xid_nr_ns()  : id seen from the ns specified;
1624  *
1625  * set_task_vxid()   : assigns a virtual id to a task;
1626  *
1627  * see also pid_nr() etc in include/linux/pid.h
1628  */
1629 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1630                         struct pid_namespace *ns);
1631 
1632 static inline pid_t task_pid_nr(struct task_struct *tsk)
1633 {
1634         return tsk->pid;
1635 }
1636 
1637 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1638                                         struct pid_namespace *ns)
1639 {
1640         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1641 }
1642 
1643 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1644 {
1645         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1646 }
1647 
1648 
1649 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1650 {
1651         return tsk->tgid;
1652 }
1653 
1654 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1655 
1656 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1657 {
1658         return pid_vnr(task_tgid(tsk));
1659 }
1660 
1661 
1662 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1663                                         struct pid_namespace *ns)
1664 {
1665         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1666 }
1667 
1668 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1669 {
1670         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1671 }
1672 
1673 
1674 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1675                                         struct pid_namespace *ns)
1676 {
1677         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1678 }
1679 
1680 static inline pid_t task_session_vnr(struct task_struct *tsk)
1681 {
1682         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1683 }
1684 
1685 /* obsolete, do not use */
1686 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1687 {
1688         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1689 }
1690 
1691 /**
1692  * pid_alive - check that a task structure is not stale
1693  * @p: Task structure to be checked.
1694  *
1695  * Test if a process is not yet dead (at most zombie state)
1696  * If pid_alive fails, then pointers within the task structure
1697  * can be stale and must not be dereferenced.
1698  */
1699 static inline int pid_alive(struct task_struct *p)
1700 {
1701         return p->pids[PIDTYPE_PID].pid != NULL;
1702 }
1703 
1704 /**
1705  * is_global_init - check if a task structure is init
1706  * @tsk: Task structure to be checked.
1707  *
1708  * Check if a task structure is the first user space task the kernel created.
1709  */
1710 static inline int is_global_init(struct task_struct *tsk)
1711 {
1712         return tsk->pid == 1;
1713 }
1714 
1715 /*
1716  * is_container_init:
1717  * check whether in the task is init in its own pid namespace.
1718  */
1719 extern int is_container_init(struct task_struct *tsk);
1720 
1721 extern struct pid *cad_pid;
1722 
1723 extern void free_task(struct task_struct *tsk);
1724 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1725 
1726 extern void __put_task_struct(struct task_struct *t);
1727 
1728 static inline void put_task_struct(struct task_struct *t)
1729 {
1730         if (atomic_dec_and_test(&t->usage))
1731                 __put_task_struct(t);
1732 }
1733 
1734 extern cputime_t task_utime(struct task_struct *p);
1735 extern cputime_t task_stime(struct task_struct *p);
1736 extern cputime_t task_gtime(struct task_struct *p);
1737 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1738 
1739 /*
1740  * Per process flags
1741  */
1742 #define PF_KSOFTIRQD    0x00000001      /* I am ksoftirqd */
1743 #define PF_STARTING     0x00000002      /* being created */
1744 #define PF_EXITING      0x00000004      /* getting shut down */
1745 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1746 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1747 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1748 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1749 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1750 #define PF_DUMPCORE     0x00000200      /* dumped core */
1751 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1752 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1753 #define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
1754 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1755 #define PF_FREEZING     0x00004000      /* freeze in progress. do not account to load */
1756 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1757 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1758 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1759 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1760 #define PF_OOM_ORIGIN   0x00080000      /* Allocating much memory to others */
1761 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1762 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1763 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1764 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1765 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1766 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1767 #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1768 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1769 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1770 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1771 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezeable */
1772 #define PF_FREEZER_NOSIG 0x80000000     /* Freezer won't send signals to it */
1773 
1774 /*
1775  * Only the _current_ task can read/write to tsk->flags, but other
1776  * tasks can access tsk->flags in readonly mode for example
1777  * with tsk_used_math (like during threaded core dumping).
1778  * There is however an exception to this rule during ptrace
1779  * or during fork: the ptracer task is allowed to write to the
1780  * child->flags of its traced child (same goes for fork, the parent
1781  * can write to the child->flags), because we're guaranteed the
1782  * child is not running and in turn not changing child->flags
1783  * at the same time the parent does it.
1784  */
1785 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1786 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1787 #define clear_used_math() clear_stopped_child_used_math(current)
1788 #define set_used_math() set_stopped_child_used_math(current)
1789 #define conditional_stopped_child_used_math(condition, child) \
1790         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1791 #define conditional_used_math(condition) \
1792         conditional_stopped_child_used_math(condition, current)
1793 #define copy_to_stopped_child_used_math(child) \
1794         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1795 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1796 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1797 #define used_math() tsk_used_math(current)
1798 
1799 #ifdef CONFIG_TREE_PREEMPT_RCU
1800 
1801 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1802 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1803 
1804 static inline void rcu_copy_process(struct task_struct *p)
1805 {
1806         p->rcu_read_lock_nesting = 0;
1807         p->rcu_read_unlock_special = 0;
1808         p->rcu_blocked_node = NULL;
1809         INIT_LIST_HEAD(&p->rcu_node_entry);
1810 }
1811 
1812 #else
1813 
1814 static inline void rcu_copy_process(struct task_struct *p)
1815 {
1816 }
1817 
1818 #endif
1819 
1820 #ifdef CONFIG_SMP
1821 extern int set_cpus_allowed_ptr(struct task_struct *p,
1822                                 const struct cpumask *new_mask);
1823 #else
1824 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1825                                        const struct cpumask *new_mask)
1826 {
1827         if (!cpumask_test_cpu(0, new_mask))
1828                 return -EINVAL;
1829         return 0;
1830 }
1831 #endif
1832 
1833 #ifndef CONFIG_CPUMASK_OFFSTACK
1834 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1835 {
1836         return set_cpus_allowed_ptr(p, &new_mask);
1837 }
1838 #endif
1839 
1840 /*
1841  * Architectures can set this to 1 if they have specified
1842  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1843  * but then during bootup it turns out that sched_clock()
1844  * is reliable after all:
1845  */
1846 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1847 extern int sched_clock_stable;
1848 #endif
1849 
1850 extern unsigned long long sched_clock(void);
1851 
1852 extern void sched_clock_init(void);
1853 extern u64 sched_clock_cpu(int cpu);
1854 
1855 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1856 static inline void sched_clock_tick(void)
1857 {
1858 }
1859 
1860 static inline void sched_clock_idle_sleep_event(void)
1861 {
1862 }
1863 
1864 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1865 {
1866 }
1867 #else
1868 extern void sched_clock_tick(void);
1869 extern void sched_clock_idle_sleep_event(void);
1870 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1871 #endif
1872 
1873 /*
1874  * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1875  * clock constructed from sched_clock():
1876  */
1877 extern unsigned long long cpu_clock(int cpu);
1878 
1879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1880 /*
1881  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1882  * The reason for this explicit opt-in is not to have perf penalty with
1883  * slow sched_clocks.
1884  */
1885 extern void enable_sched_clock_irqtime(void);
1886 extern void disable_sched_clock_irqtime(void);
1887 #else
1888 static inline void enable_sched_clock_irqtime(void) {}
1889 static inline void disable_sched_clock_irqtime(void) {}
1890 #endif
1891 
1892 extern unsigned long long
1893 task_sched_runtime(struct task_struct *task);
1894 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1895 
1896 /* sched_exec is called by processes performing an exec */
1897 #ifdef CONFIG_SMP
1898 extern void sched_exec(void);
1899 #else
1900 #define sched_exec()   {}
1901 #endif
1902 
1903 extern void sched_clock_idle_sleep_event(void);
1904 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1905 
1906 #ifdef CONFIG_HOTPLUG_CPU
1907 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1908 extern void idle_task_exit(void);
1909 #else
1910 static inline void idle_task_exit(void) {}
1911 #endif
1912 
1913 extern void sched_idle_next(void);
1914 
1915 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1916 extern void wake_up_idle_cpu(int cpu);
1917 #else
1918 static inline void wake_up_idle_cpu(int cpu) { }
1919 #endif
1920 
1921 extern unsigned int sysctl_sched_latency;
1922 extern unsigned int sysctl_sched_min_granularity;
1923 extern unsigned int sysctl_sched_wakeup_granularity;
1924 extern unsigned int sysctl_sched_shares_ratelimit;
1925 extern unsigned int sysctl_sched_shares_thresh;
1926 extern unsigned int sysctl_sched_child_runs_first;
1927 #ifdef CONFIG_SCHED_DEBUG
1928 extern unsigned int sysctl_sched_features;
1929 extern unsigned int sysctl_sched_migration_cost;
1930 extern unsigned int sysctl_sched_nr_migrate;
1931 extern unsigned int sysctl_sched_time_avg;
1932 extern unsigned int sysctl_timer_migration;
1933 
1934 int sched_nr_latency_handler(struct ctl_table *table, int write,
1935                 void __user *buffer, size_t *length,
1936                 loff_t *ppos);
1937 #endif
1938 #ifdef CONFIG_SCHED_DEBUG
1939 static inline unsigned int get_sysctl_timer_migration(void)
1940 {
1941         return sysctl_timer_migration;
1942 }
1943 #else
1944 static inline unsigned int get_sysctl_timer_migration(void)
1945 {
1946         return 1;
1947 }
1948 #endif
1949 extern unsigned int sysctl_sched_rt_period;
1950 extern int sysctl_sched_rt_runtime;
1951 
1952 int sched_rt_handler(struct ctl_table *table, int write,
1953                 void __user *buffer, size_t *lenp,
1954                 loff_t *ppos);
1955 
1956 extern unsigned int sysctl_sched_compat_yield;
1957 
1958 #ifdef CONFIG_RT_MUTEXES
1959 extern int rt_mutex_getprio(struct task_struct *p);
1960 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1961 extern void rt_mutex_adjust_pi(struct task_struct *p);
1962 #else
1963 static inline int rt_mutex_getprio(struct task_struct *p)
1964 {
1965         return p->normal_prio;
1966 }
1967 # define rt_mutex_adjust_pi(p)          do { } while (0)
1968 #endif
1969 
1970 extern void set_user_nice(struct task_struct *p, long nice);
1971 extern int task_prio(const struct task_struct *p);
1972 extern int task_nice(const struct task_struct *p);
1973 extern int can_nice(const struct task_struct *p, const int nice);
1974 extern int task_curr(const struct task_struct *p);
1975 extern int idle_cpu(int cpu);
1976 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1977 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1978                                       struct sched_param *);
1979 extern struct task_struct *idle_task(int cpu);
1980 extern struct task_struct *curr_task(int cpu);
1981 extern void set_curr_task(int cpu, struct task_struct *p);
1982 
1983 void yield(void);
1984 
1985 /*
1986  * The default (Linux) execution domain.
1987  */
1988 extern struct exec_domain       default_exec_domain;
1989 
1990 union thread_union {
1991         struct thread_info thread_info;
1992         unsigned long stack[THREAD_SIZE/sizeof(long)];
1993 };
1994 
1995 #ifndef __HAVE_ARCH_KSTACK_END
1996 static inline int kstack_end(void *addr)
1997 {
1998         /* Reliable end of stack detection:
1999          * Some APM bios versions misalign the stack
2000          */
2001         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2002 }
2003 #endif
2004 
2005 extern union thread_union init_thread_union;
2006 extern struct task_struct init_task;
2007 
2008 extern struct   mm_struct init_mm;
2009 
2010 extern struct pid_namespace init_pid_ns;
2011 
2012 /*
2013  * find a task by one of its numerical ids
2014  *
2015  * find_task_by_pid_ns():
2016  *      finds a task by its pid in the specified namespace
2017  * find_task_by_vpid():
2018  *      finds a task by its virtual pid
2019  *
2020  * see also find_vpid() etc in include/linux/pid.h
2021  */
2022 
2023 extern struct task_struct *find_task_by_vpid(pid_t nr);
2024 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2025                 struct pid_namespace *ns);
2026 
2027 extern void __set_special_pids(struct pid *pid);
2028 
2029 /* per-UID process charging. */
2030 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2031 static inline struct user_struct *get_uid(struct user_struct *u)
2032 {
2033         atomic_inc(&u->__count);
2034         return u;
2035 }
2036 extern void free_uid(struct user_struct *);
2037 extern void release_uids(struct user_namespace *ns);
2038 
2039 #include <asm/current.h>
2040 
2041 extern void do_timer(unsigned long ticks);
2042 
2043 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2044 extern int wake_up_process(struct task_struct *tsk);
2045 extern void wake_up_new_task(struct task_struct *tsk,
2046                                 unsigned long clone_flags);
2047 #ifdef CONFIG_SMP
2048  extern void kick_process(struct task_struct *tsk);
2049 #else
2050  static inline void kick_process(struct task_struct *tsk) { }
2051 #endif
2052 extern void sched_fork(struct task_struct *p, int clone_flags);
2053 extern void sched_dead(struct task_struct *p);
2054 
2055 extern void proc_caches_init(void);
2056 extern void flush_signals(struct task_struct *);
2057 extern void __flush_signals(struct task_struct *);
2058 extern void ignore_signals(struct task_struct *);
2059 extern void flush_signal_handlers(struct task_struct *, int force_default);
2060 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2061 
2062 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2063 {
2064         unsigned long flags;
2065         int ret;
2066 
2067         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2068         ret = dequeue_signal(tsk, mask, info);
2069         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2070 
2071         return ret;
2072 }       
2073 
2074 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2075                               sigset_t *mask);
2076 extern void unblock_all_signals(void);
2077 extern void release_task(struct task_struct * p);
2078 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2079 extern int force_sigsegv(int, struct task_struct *);
2080 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2081 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2082 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2083 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2084 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2085 extern int kill_pid(struct pid *pid, int sig, int priv);
2086 extern int kill_proc_info(int, struct siginfo *, pid_t);
2087 extern int do_notify_parent(struct task_struct *, int);
2088 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2089 extern void force_sig(int, struct task_struct *);
2090 extern void force_sig_specific(int, struct task_struct *);
2091 extern int send_sig(int, struct task_struct *, int);
2092 extern void zap_other_threads(struct task_struct *p);
2093 extern struct sigqueue *sigqueue_alloc(void);
2094 extern void sigqueue_free(struct sigqueue *);
2095 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2096 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2097 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2098 
2099 static inline int kill_cad_pid(int sig, int priv)
2100 {
2101         return kill_pid(cad_pid, sig, priv);
2102 }
2103 
2104 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2105 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2106 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2107 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2108 
2109 static inline int is_si_special(const struct siginfo *info)
2110 {
2111         return info <= SEND_SIG_FORCED;
2112 }
2113 
2114 /*
2115  * True if we are on the alternate signal stack.
2116  */
2117 static inline int on_sig_stack(unsigned long sp)
2118 {
2119 #ifdef CONFIG_STACK_GROWSUP
2120         return sp >= current->sas_ss_sp &&
2121                 sp - current->sas_ss_sp < current->sas_ss_size;
2122 #else
2123         return sp > current->sas_ss_sp &&
2124                 sp - current->sas_ss_sp <= current->sas_ss_size;
2125 #endif
2126 }
2127 
2128 static inline int sas_ss_flags(unsigned long sp)
2129 {
2130         return (current->sas_ss_size == 0 ? SS_DISABLE
2131                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2132 }
2133 
2134 /*
2135  * Routines for handling mm_structs
2136  */
2137 extern struct mm_struct * mm_alloc(void);
2138 
2139 /* mmdrop drops the mm and the page tables */
2140 extern void __mmdrop(struct mm_struct *);
2141 static inline void mmdrop(struct mm_struct * mm)
2142 {
2143         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2144                 __mmdrop(mm);
2145 }
2146 
2147 /* mmput gets rid of the mappings and all user-space */
2148 extern void mmput(struct mm_struct *);
2149 /* Grab a reference to a task's mm, if it is not already going away */
2150 extern struct mm_struct *get_task_mm(struct task_struct *task);
2151 /* Remove the current tasks stale references to the old mm_struct */
2152 extern void mm_release(struct task_struct *, struct mm_struct *);
2153 /* Allocate a new mm structure and copy contents from tsk->mm */
2154 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2155 
2156 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2157                         struct task_struct *, struct pt_regs *);
2158 extern void flush_thread(void);
2159 extern void exit_thread(void);
2160 
2161 extern void exit_files(struct task_struct *);
2162 extern void __cleanup_signal(struct signal_struct *);
2163 extern void __cleanup_sighand(struct sighand_struct *);
2164 
2165 extern void exit_itimers(struct signal_struct *);
2166 extern void flush_itimer_signals(void);
2167 
2168 extern NORET_TYPE void do_group_exit(int);
2169 
2170 extern void daemonize(const char *, ...);
2171 extern int allow_signal(int);
2172 extern int disallow_signal(int);
2173 
2174 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2175 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2176 struct task_struct *fork_idle(int);
2177 
2178 extern void set_task_comm(struct task_struct *tsk, char *from);
2179 extern char *get_task_comm(char *to, struct task_struct *tsk);
2180 
2181 #ifdef CONFIG_SMP
2182 extern void wait_task_context_switch(struct task_struct *p);
2183 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2184 #else
2185 static inline void wait_task_context_switch(struct task_struct *p) {}
2186 static inline unsigned long wait_task_inactive(struct task_struct *p,
2187                                                long match_state)
2188 {
2189         return 1;
2190 }
2191 #endif
2192 
2193 #define next_task(p) \
2194         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2195 
2196 #define for_each_process(p) \
2197         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2198 
2199 extern bool current_is_single_threaded(void);
2200 
2201 /*
2202  * Careful: do_each_thread/while_each_thread is a double loop so
2203  *          'break' will not work as expected - use goto instead.
2204  */
2205 #define do_each_thread(g, t) \
2206         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2207 
2208 #define while_each_thread(g, t) \
2209         while ((t = next_thread(t)) != g)
2210 
2211 /* de_thread depends on thread_group_leader not being a pid based check */
2212 #define thread_group_leader(p)  (p == p->group_leader)
2213 
2214 /* Do to the insanities of de_thread it is possible for a process
2215  * to have the pid of the thread group leader without actually being
2216  * the thread group leader.  For iteration through the pids in proc
2217  * all we care about is that we have a task with the appropriate
2218  * pid, we don't actually care if we have the right task.
2219  */
2220 static inline bool has_group_leader_pid(struct task_struct *p)
2221 {
2222         return task_pid(p) == p->signal->leader_pid;
2223 }
2224 
2225 static inline
2226 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2227 {
2228         return p1->signal == p2->signal;
2229 }
2230 
2231 static inline struct task_struct *next_thread(const struct task_struct *p)
2232 {
2233         return list_entry_rcu(p->thread_group.next,
2234                               struct task_struct, thread_group);
2235 }
2236 
2237 static inline int thread_group_empty(struct task_struct *p)
2238 {
2239         return list_empty(&p->thread_group);
2240 }
2241 
2242 #define delay_group_leader(p) \
2243                 (thread_group_leader(p) && !thread_group_empty(p))
2244 
2245 static inline int task_detached(struct task_struct *p)
2246 {
2247         return p->exit_signal == -1;
2248 }
2249 
2250 /*
2251  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2252  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2253  * pins the final release of task.io_context.  Also protects ->cpuset and
2254  * ->cgroup.subsys[].
2255  *
2256  * Nests both inside and outside of read_lock(&tasklist_lock).
2257  * It must not be nested with write_lock_irq(&tasklist_lock),
2258  * neither inside nor outside.
2259  */
2260 static inline void task_lock(struct task_struct *p)
2261 {
2262         spin_lock(&p->alloc_lock);
2263 }
2264 
2265 static inline void task_unlock(struct task_struct *p)
2266 {
2267         spin_unlock(&p->alloc_lock);
2268 }
2269 
2270 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2271                                                         unsigned long *flags);
2272 
2273 static inline void unlock_task_sighand(struct task_struct *tsk,
2274                                                 unsigned long *flags)
2275 {
2276         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2277 }
2278 
2279 #ifndef __HAVE_THREAD_FUNCTIONS
2280 
2281 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2282 #define task_stack_page(task)   ((task)->stack)
2283 
2284 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2285 {
2286         *task_thread_info(p) = *task_thread_info(org);
2287         task_thread_info(p)->task = p;
2288 }
2289 
2290 static inline unsigned long *end_of_stack(struct task_struct *p)
2291 {
2292         return (unsigned long *)(task_thread_info(p) + 1);
2293 }
2294 
2295 #endif
2296 
2297 static inline int object_is_on_stack(void *obj)
2298 {
2299         void *stack = task_stack_page(current);
2300 
2301         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2302 }
2303 
2304 extern void thread_info_cache_init(void);
2305 
2306 #ifdef CONFIG_DEBUG_STACK_USAGE
2307 static inline unsigned long stack_not_used(struct task_struct *p)
2308 {
2309         unsigned long *n = end_of_stack(p);
2310 
2311         do {    /* Skip over canary */
2312                 n++;
2313         } while (!*n);
2314 
2315         return (unsigned long)n - (unsigned long)end_of_stack(p);
2316 }
2317 #endif
2318 
2319 /* set thread flags in other task's structures
2320  * - see asm/thread_info.h for TIF_xxxx flags available
2321  */
2322 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2323 {
2324         set_ti_thread_flag(task_thread_info(tsk), flag);
2325 }
2326 
2327 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2328 {
2329         clear_ti_thread_flag(task_thread_info(tsk), flag);
2330 }
2331 
2332 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336 
2337 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341 
2342 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344         return test_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346 
2347 static inline void set_tsk_need_resched(struct task_struct *tsk)
2348 {
2349         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2350 }
2351 
2352 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2353 {
2354         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355 }
2356 
2357 static inline int test_tsk_need_resched(struct task_struct *tsk)
2358 {
2359         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2360 }
2361 
2362 static inline int restart_syscall(void)
2363 {
2364         set_tsk_thread_flag(current, TIF_SIGPENDING);
2365         return -ERESTARTNOINTR;
2366 }
2367 
2368 static inline int signal_pending(struct task_struct *p)
2369 {
2370         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2371 }
2372 
2373 static inline int __fatal_signal_pending(struct task_struct *p)
2374 {
2375         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2376 }
2377 
2378 static inline int fatal_signal_pending(struct task_struct *p)
2379 {
2380         return signal_pending(p) && __fatal_signal_pending(p);
2381 }
2382 
2383 static inline int signal_pending_state(long state, struct task_struct *p)
2384 {
2385         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2386                 return 0;
2387         if (!signal_pending(p))
2388                 return 0;
2389 
2390         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2391 }
2392 
2393 static inline int need_resched(void)
2394 {
2395         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2396 }
2397 
2398 /*
2399  * cond_resched() and cond_resched_lock(): latency reduction via
2400  * explicit rescheduling in places that are safe. The return
2401  * value indicates whether a reschedule was done in fact.
2402  * cond_resched_lock() will drop the spinlock before scheduling,
2403  * cond_resched_softirq() will enable bhs before scheduling.
2404  */
2405 extern int _cond_resched(void);
2406 
2407 #define cond_resched() ({                       \
2408         __might_sleep(__FILE__, __LINE__, 0);   \
2409         _cond_resched();                        \
2410 })
2411 
2412 extern int __cond_resched_lock(spinlock_t *lock);
2413 
2414 #ifdef CONFIG_PREEMPT
2415 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2416 #else
2417 #define PREEMPT_LOCK_OFFSET     0
2418 #endif
2419 
2420 #define cond_resched_lock(lock) ({                              \
2421         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2422         __cond_resched_lock(lock);                              \
2423 })
2424 
2425 extern int __cond_resched_softirq(void);
2426 
2427 #define cond_resched_softirq() ({                                       \
2428         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2429         __cond_resched_softirq();                                       \
2430 })
2431 
2432 /*
2433  * Does a critical section need to be broken due to another
2434  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2435  * but a general need for low latency)
2436  */
2437 static inline int spin_needbreak(spinlock_t *lock)
2438 {
2439 #ifdef CONFIG_PREEMPT
2440         return spin_is_contended(lock);
2441 #else
2442         return 0;
2443 #endif
2444 }
2445 
2446 /*
2447  * Thread group CPU time accounting.
2448  */
2449 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2450 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2451 
2452 static inline void thread_group_cputime_init(struct signal_struct *sig)
2453 {
2454         sig->cputimer.cputime = INIT_CPUTIME;
2455         spin_lock_init(&sig->cputimer.lock);
2456         sig->cputimer.running = 0;
2457 }
2458 
2459 static inline void thread_group_cputime_free(struct signal_struct *sig)
2460 {
2461 }
2462 
2463 /*
2464  * Reevaluate whether the task has signals pending delivery.
2465  * Wake the task if so.
2466  * This is required every time the blocked sigset_t changes.
2467  * callers must hold sighand->siglock.
2468  */
2469 extern void recalc_sigpending_and_wake(struct task_struct *t);
2470 extern void recalc_sigpending(void);
2471 
2472 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2473 
2474 static inline void signal_wake_up(struct task_struct *t, bool resume)
2475 {
2476         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2477 }
2478 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2479 {
2480         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2481 }
2482 
2483 /*
2484  * Wrappers for p->thread_info->cpu access. No-op on UP.
2485  */
2486 #ifdef CONFIG_SMP
2487 
2488 static inline unsigned int task_cpu(const struct task_struct *p)
2489 {
2490         return task_thread_info(p)->cpu;
2491 }
2492 
2493 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2494 
2495 #else
2496 
2497 static inline unsigned int task_cpu(const struct task_struct *p)
2498 {
2499         return 0;
2500 }
2501 
2502 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2503 {
2504 }
2505 
2506 #endif /* CONFIG_SMP */
2507 
2508 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2509 
2510 #ifdef CONFIG_TRACING
2511 extern void
2512 __trace_special(void *__tr, void *__data,
2513                 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2514 #else
2515 static inline void
2516 __trace_special(void *__tr, void *__data,
2517                 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2518 {
2519 }
2520 #endif
2521 
2522 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2523 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2524 
2525 extern void normalize_rt_tasks(void);
2526 
2527 #ifdef CONFIG_CGROUP_SCHED
2528 
2529 extern struct task_group init_task_group;
2530 
2531 extern struct task_group *sched_create_group(struct task_group *parent);
2532 extern void sched_destroy_group(struct task_group *tg);
2533 extern void sched_move_task(struct task_struct *tsk);
2534 #ifdef CONFIG_FAIR_GROUP_SCHED
2535 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2536 extern unsigned long sched_group_shares(struct task_group *tg);
2537 #endif
2538 #ifdef CONFIG_RT_GROUP_SCHED
2539 extern int sched_group_set_rt_runtime(struct task_group *tg,
2540                                       long rt_runtime_us);
2541 extern long sched_group_rt_runtime(struct task_group *tg);
2542 extern int sched_group_set_rt_period(struct task_group *tg,
2543                                       long rt_period_us);
2544 extern long sched_group_rt_period(struct task_group *tg);
2545 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2546 #endif
2547 #endif
2548 
2549 extern int task_can_switch_user(struct user_struct *up,
2550                                         struct task_struct *tsk);
2551 
2552 #ifdef CONFIG_TASK_XACCT
2553 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2554 {
2555         tsk->ioac.rchar += amt;
2556 }
2557 
2558 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560         tsk->ioac.wchar += amt;
2561 }
2562 
2563 static inline void inc_syscr(struct task_struct *tsk)
2564 {
2565         tsk->ioac.syscr++;
2566 }
2567 
2568 static inline void inc_syscw(struct task_struct *tsk)
2569 {
2570         tsk->ioac.syscw++;
2571 }
2572 #else
2573 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 }
2576 
2577 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2578 {
2579 }
2580 
2581 static inline void inc_syscr(struct task_struct *tsk)
2582 {
2583 }
2584 
2585 static inline void inc_syscw(struct task_struct *tsk)
2586 {
2587 }
2588 #endif
2589 
2590 #ifndef TASK_SIZE_OF
2591 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2592 #endif
2593 
2594 /*
2595  * Call the function if the target task is executing on a CPU right now:
2596  */
2597 extern void task_oncpu_function_call(struct task_struct *p,
2598                                      void (*func) (void *info), void *info);
2599 
2600 
2601 #ifdef CONFIG_MM_OWNER
2602 extern void mm_update_next_owner(struct mm_struct *mm);
2603 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2604 #else
2605 static inline void mm_update_next_owner(struct mm_struct *mm)
2606 {
2607 }
2608 
2609 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2610 {
2611 }
2612 #endif /* CONFIG_MM_OWNER */
2613 
2614 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2615 
2616 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2617                 unsigned int limit)
2618 {
2619         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2620 }
2621 
2622 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2623                 unsigned int limit)
2624 {
2625         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2626 }
2627 
2628 static inline unsigned long rlimit(unsigned int limit)
2629 {
2630         return task_rlimit(current, limit);
2631 }
2632 
2633 static inline unsigned long rlimit_max(unsigned int limit)
2634 {
2635         return task_rlimit_max(current, limit);
2636 }
2637 
2638 #endif /* __KERNEL__ */
2639 
2640 #endif
2641 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp