1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct ccs_domain_info; 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/rbtree.h> 22 #include <linux/thread_info.h> 23 #include <linux/cpumask.h> 24 #include <linux/errno.h> 25 #include <linux/nodemask.h> 26 #include <linux/mm_types.h> 27 28 #include <asm/page.h> 29 #include <asm/ptrace.h> 30 #include <asm/cputime.h> 31 32 #include <linux/smp.h> 33 #include <linux/sem.h> 34 #include <linux/signal.h> 35 #include <linux/compiler.h> 36 #include <linux/completion.h> 37 #include <linux/pid.h> 38 #include <linux/percpu.h> 39 #include <linux/topology.h> 40 #include <linux/proportions.h> 41 #include <linux/seccomp.h> 42 #include <linux/rcupdate.h> 43 #include <linux/rculist.h> 44 #include <linux/rtmutex.h> 45 46 #include <linux/time.h> 47 #include <linux/param.h> 48 #include <linux/resource.h> 49 #include <linux/timer.h> 50 #include <linux/hrtimer.h> 51 #include <linux/task_io_accounting.h> 52 #include <linux/latencytop.h> 53 #include <linux/cred.h> 54 #include <linux/llist.h> 55 #include <linux/uidgid.h> 56 #include <linux/gfp.h> 57 58 #include <asm/processor.h> 59 60 struct exec_domain; 61 struct futex_pi_state; 62 struct robust_list_head; 63 struct bio_list; 64 struct fs_struct; 65 struct perf_event_context; 66 struct blk_plug; 67 68 /* 69 * List of flags we want to share for kernel threads, 70 * if only because they are not used by them anyway. 71 */ 72 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 73 74 /* 75 * These are the constant used to fake the fixed-point load-average 76 * counting. Some notes: 77 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 78 * a load-average precision of 10 bits integer + 11 bits fractional 79 * - if you want to count load-averages more often, you need more 80 * precision, or rounding will get you. With 2-second counting freq, 81 * the EXP_n values would be 1981, 2034 and 2043 if still using only 82 * 11 bit fractions. 83 */ 84 extern unsigned long avenrun[]; /* Load averages */ 85 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 86 87 #define FSHIFT 11 /* nr of bits of precision */ 88 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 89 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 90 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 91 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 92 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 93 94 #define CALC_LOAD(load,exp,n) \ 95 load *= exp; \ 96 load += n*(FIXED_1-exp); \ 97 load >>= FSHIFT; 98 99 extern unsigned long total_forks; 100 extern int nr_threads; 101 DECLARE_PER_CPU(unsigned long, process_counts); 102 extern int nr_processes(void); 103 extern unsigned long nr_running(void); 104 extern unsigned long nr_iowait(void); 105 extern unsigned long nr_iowait_cpu(int cpu); 106 extern unsigned long this_cpu_load(void); 107 108 109 extern void calc_global_load(unsigned long ticks); 110 extern void update_cpu_load_nohz(void); 111 112 /* Notifier for when a task gets migrated to a new CPU */ 113 struct task_migration_notifier { 114 struct task_struct *task; 115 int from_cpu; 116 int to_cpu; 117 }; 118 extern void register_task_migration_notifier(struct notifier_block *n); 119 120 extern unsigned long get_parent_ip(unsigned long addr); 121 122 extern void dump_cpu_task(int cpu); 123 124 struct seq_file; 125 struct cfs_rq; 126 struct task_group; 127 #ifdef CONFIG_SCHED_DEBUG 128 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 129 extern void proc_sched_set_task(struct task_struct *p); 130 extern void 131 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 132 #endif 133 134 /* 135 * Task state bitmask. NOTE! These bits are also 136 * encoded in fs/proc/array.c: get_task_state(). 137 * 138 * We have two separate sets of flags: task->state 139 * is about runnability, while task->exit_state are 140 * about the task exiting. Confusing, but this way 141 * modifying one set can't modify the other one by 142 * mistake. 143 */ 144 #define TASK_RUNNING 0 145 #define TASK_INTERRUPTIBLE 1 146 #define TASK_UNINTERRUPTIBLE 2 147 #define __TASK_STOPPED 4 148 #define __TASK_TRACED 8 149 /* in tsk->exit_state */ 150 #define EXIT_ZOMBIE 16 151 #define EXIT_DEAD 32 152 /* in tsk->state again */ 153 #define TASK_DEAD 64 154 #define TASK_WAKEKILL 128 155 #define TASK_WAKING 256 156 #define TASK_PARKED 512 157 #define TASK_STATE_MAX 1024 158 159 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 160 161 extern char ___assert_task_state[1 - 2*!!( 162 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 163 164 /* Convenience macros for the sake of set_task_state */ 165 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 166 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 167 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 168 169 /* Convenience macros for the sake of wake_up */ 170 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 171 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 172 173 /* get_task_state() */ 174 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 175 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 176 __TASK_TRACED) 177 178 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 179 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 180 #define task_is_dead(task) ((task)->exit_state != 0) 181 #define task_is_stopped_or_traced(task) \ 182 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 183 #define task_contributes_to_load(task) \ 184 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 185 (task->flags & PF_FROZEN) == 0) 186 187 #define __set_task_state(tsk, state_value) \ 188 do { (tsk)->state = (state_value); } while (0) 189 #define set_task_state(tsk, state_value) \ 190 set_mb((tsk)->state, (state_value)) 191 192 /* 193 * set_current_state() includes a barrier so that the write of current->state 194 * is correctly serialised wrt the caller's subsequent test of whether to 195 * actually sleep: 196 * 197 * set_current_state(TASK_UNINTERRUPTIBLE); 198 * if (do_i_need_to_sleep()) 199 * schedule(); 200 * 201 * If the caller does not need such serialisation then use __set_current_state() 202 */ 203 #define __set_current_state(state_value) \ 204 do { current->state = (state_value); } while (0) 205 #define set_current_state(state_value) \ 206 set_mb(current->state, (state_value)) 207 208 /* Task command name length */ 209 #define TASK_COMM_LEN 16 210 211 #include <linux/spinlock.h> 212 213 /* 214 * This serializes "schedule()" and also protects 215 * the run-queue from deletions/modifications (but 216 * _adding_ to the beginning of the run-queue has 217 * a separate lock). 218 */ 219 extern rwlock_t tasklist_lock; 220 extern spinlock_t mmlist_lock; 221 222 struct task_struct; 223 224 #ifdef CONFIG_PROVE_RCU 225 extern int lockdep_tasklist_lock_is_held(void); 226 #endif /* #ifdef CONFIG_PROVE_RCU */ 227 228 extern void sched_init(void); 229 extern void sched_init_smp(void); 230 extern asmlinkage void schedule_tail(struct task_struct *prev); 231 extern void init_idle(struct task_struct *idle, int cpu); 232 extern void init_idle_bootup_task(struct task_struct *idle); 233 234 extern int runqueue_is_locked(int cpu); 235 236 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 237 extern void nohz_balance_enter_idle(int cpu); 238 extern void set_cpu_sd_state_idle(void); 239 extern int get_nohz_timer_target(void); 240 #else 241 static inline void nohz_balance_enter_idle(int cpu) { } 242 static inline void set_cpu_sd_state_idle(void) { } 243 #endif 244 245 /* 246 * Only dump TASK_* tasks. (0 for all tasks) 247 */ 248 extern void show_state_filter(unsigned long state_filter); 249 250 static inline void show_state(void) 251 { 252 show_state_filter(0); 253 } 254 255 extern void show_regs(struct pt_regs *); 256 257 /* 258 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 259 * task), SP is the stack pointer of the first frame that should be shown in the back 260 * trace (or NULL if the entire call-chain of the task should be shown). 261 */ 262 extern void show_stack(struct task_struct *task, unsigned long *sp); 263 264 void io_schedule(void); 265 long io_schedule_timeout(long timeout); 266 267 extern void cpu_init (void); 268 extern void trap_init(void); 269 extern void update_process_times(int user); 270 extern void scheduler_tick(void); 271 272 extern void sched_show_task(struct task_struct *p); 273 274 #ifdef CONFIG_LOCKUP_DETECTOR 275 extern void touch_softlockup_watchdog(void); 276 extern void touch_softlockup_watchdog_sync(void); 277 extern void touch_all_softlockup_watchdogs(void); 278 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 279 void __user *buffer, 280 size_t *lenp, loff_t *ppos); 281 extern unsigned int softlockup_panic; 282 void lockup_detector_init(void); 283 #else 284 static inline void touch_softlockup_watchdog(void) 285 { 286 } 287 static inline void touch_softlockup_watchdog_sync(void) 288 { 289 } 290 static inline void touch_all_softlockup_watchdogs(void) 291 { 292 } 293 static inline void lockup_detector_init(void) 294 { 295 } 296 #endif 297 298 /* Attach to any functions which should be ignored in wchan output. */ 299 #define __sched __attribute__((__section__(".sched.text"))) 300 301 /* Linker adds these: start and end of __sched functions */ 302 extern char __sched_text_start[], __sched_text_end[]; 303 304 /* Is this address in the __sched functions? */ 305 extern int in_sched_functions(unsigned long addr); 306 307 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 308 extern signed long schedule_timeout(signed long timeout); 309 extern signed long schedule_timeout_interruptible(signed long timeout); 310 extern signed long schedule_timeout_killable(signed long timeout); 311 extern signed long schedule_timeout_uninterruptible(signed long timeout); 312 asmlinkage void schedule(void); 313 extern void schedule_preempt_disabled(void); 314 315 struct nsproxy; 316 struct user_namespace; 317 318 #ifdef CONFIG_MMU 319 extern void arch_pick_mmap_layout(struct mm_struct *mm); 320 extern unsigned long 321 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 322 unsigned long, unsigned long); 323 extern unsigned long 324 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 325 unsigned long len, unsigned long pgoff, 326 unsigned long flags); 327 extern void arch_unmap_area(struct mm_struct *, unsigned long); 328 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 329 #else 330 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 331 #endif 332 333 334 extern void set_dumpable(struct mm_struct *mm, int value); 335 extern int get_dumpable(struct mm_struct *mm); 336 337 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 338 #define SUID_DUMP_USER 1 /* Dump as user of process */ 339 #define SUID_DUMP_ROOT 2 /* Dump as root */ 340 341 /* mm flags */ 342 /* dumpable bits */ 343 #define MMF_DUMPABLE 0 /* core dump is permitted */ 344 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 345 346 #define MMF_DUMPABLE_BITS 2 347 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 348 349 /* coredump filter bits */ 350 #define MMF_DUMP_ANON_PRIVATE 2 351 #define MMF_DUMP_ANON_SHARED 3 352 #define MMF_DUMP_MAPPED_PRIVATE 4 353 #define MMF_DUMP_MAPPED_SHARED 5 354 #define MMF_DUMP_ELF_HEADERS 6 355 #define MMF_DUMP_HUGETLB_PRIVATE 7 356 #define MMF_DUMP_HUGETLB_SHARED 8 357 358 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 359 #define MMF_DUMP_FILTER_BITS 7 360 #define MMF_DUMP_FILTER_MASK \ 361 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 362 #define MMF_DUMP_FILTER_DEFAULT \ 363 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 364 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 365 366 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 367 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 368 #else 369 # define MMF_DUMP_MASK_DEFAULT_ELF 0 370 #endif 371 /* leave room for more dump flags */ 372 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 373 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 374 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 375 376 #define MMF_HAS_UPROBES 19 /* has uprobes */ 377 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 378 379 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 380 381 struct sighand_struct { 382 atomic_t count; 383 struct k_sigaction action[_NSIG]; 384 spinlock_t siglock; 385 wait_queue_head_t signalfd_wqh; 386 }; 387 388 struct pacct_struct { 389 int ac_flag; 390 long ac_exitcode; 391 unsigned long ac_mem; 392 cputime_t ac_utime, ac_stime; 393 unsigned long ac_minflt, ac_majflt; 394 }; 395 396 struct cpu_itimer { 397 cputime_t expires; 398 cputime_t incr; 399 u32 error; 400 u32 incr_error; 401 }; 402 403 /** 404 * struct cputime - snaphsot of system and user cputime 405 * @utime: time spent in user mode 406 * @stime: time spent in system mode 407 * 408 * Gathers a generic snapshot of user and system time. 409 */ 410 struct cputime { 411 cputime_t utime; 412 cputime_t stime; 413 }; 414 415 /** 416 * struct task_cputime - collected CPU time counts 417 * @utime: time spent in user mode, in &cputime_t units 418 * @stime: time spent in kernel mode, in &cputime_t units 419 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 420 * 421 * This is an extension of struct cputime that includes the total runtime 422 * spent by the task from the scheduler point of view. 423 * 424 * As a result, this structure groups together three kinds of CPU time 425 * that are tracked for threads and thread groups. Most things considering 426 * CPU time want to group these counts together and treat all three 427 * of them in parallel. 428 */ 429 struct task_cputime { 430 cputime_t utime; 431 cputime_t stime; 432 unsigned long long sum_exec_runtime; 433 }; 434 /* Alternate field names when used to cache expirations. */ 435 #define prof_exp stime 436 #define virt_exp utime 437 #define sched_exp sum_exec_runtime 438 439 #define INIT_CPUTIME \ 440 (struct task_cputime) { \ 441 .utime = 0, \ 442 .stime = 0, \ 443 .sum_exec_runtime = 0, \ 444 } 445 446 /* 447 * Disable preemption until the scheduler is running. 448 * Reset by start_kernel()->sched_init()->init_idle(). 449 * 450 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 451 * before the scheduler is active -- see should_resched(). 452 */ 453 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 454 455 /** 456 * struct thread_group_cputimer - thread group interval timer counts 457 * @cputime: thread group interval timers. 458 * @running: non-zero when there are timers running and 459 * @cputime receives updates. 460 * @lock: lock for fields in this struct. 461 * 462 * This structure contains the version of task_cputime, above, that is 463 * used for thread group CPU timer calculations. 464 */ 465 struct thread_group_cputimer { 466 struct task_cputime cputime; 467 int running; 468 raw_spinlock_t lock; 469 }; 470 471 #include <linux/rwsem.h> 472 struct autogroup; 473 474 /* 475 * NOTE! "signal_struct" does not have its own 476 * locking, because a shared signal_struct always 477 * implies a shared sighand_struct, so locking 478 * sighand_struct is always a proper superset of 479 * the locking of signal_struct. 480 */ 481 struct signal_struct { 482 atomic_t sigcnt; 483 atomic_t live; 484 int nr_threads; 485 struct list_head thread_head; 486 487 wait_queue_head_t wait_chldexit; /* for wait4() */ 488 489 /* current thread group signal load-balancing target: */ 490 struct task_struct *curr_target; 491 492 /* shared signal handling: */ 493 struct sigpending shared_pending; 494 495 /* thread group exit support */ 496 int group_exit_code; 497 /* overloaded: 498 * - notify group_exit_task when ->count is equal to notify_count 499 * - everyone except group_exit_task is stopped during signal delivery 500 * of fatal signals, group_exit_task processes the signal. 501 */ 502 int notify_count; 503 struct task_struct *group_exit_task; 504 505 /* thread group stop support, overloads group_exit_code too */ 506 int group_stop_count; 507 unsigned int flags; /* see SIGNAL_* flags below */ 508 509 /* 510 * PR_SET_CHILD_SUBREAPER marks a process, like a service 511 * manager, to re-parent orphan (double-forking) child processes 512 * to this process instead of 'init'. The service manager is 513 * able to receive SIGCHLD signals and is able to investigate 514 * the process until it calls wait(). All children of this 515 * process will inherit a flag if they should look for a 516 * child_subreaper process at exit. 517 */ 518 unsigned int is_child_subreaper:1; 519 unsigned int has_child_subreaper:1; 520 521 /* POSIX.1b Interval Timers */ 522 int posix_timer_id; 523 struct list_head posix_timers; 524 525 /* ITIMER_REAL timer for the process */ 526 struct hrtimer real_timer; 527 struct pid *leader_pid; 528 ktime_t it_real_incr; 529 530 /* 531 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 532 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 533 * values are defined to 0 and 1 respectively 534 */ 535 struct cpu_itimer it[2]; 536 537 /* 538 * Thread group totals for process CPU timers. 539 * See thread_group_cputimer(), et al, for details. 540 */ 541 struct thread_group_cputimer cputimer; 542 543 /* Earliest-expiration cache. */ 544 struct task_cputime cputime_expires; 545 546 struct list_head cpu_timers[3]; 547 548 struct pid *tty_old_pgrp; 549 550 /* boolean value for session group leader */ 551 int leader; 552 553 struct tty_struct *tty; /* NULL if no tty */ 554 555 #ifdef CONFIG_SCHED_AUTOGROUP 556 struct autogroup *autogroup; 557 #endif 558 /* 559 * Cumulative resource counters for dead threads in the group, 560 * and for reaped dead child processes forked by this group. 561 * Live threads maintain their own counters and add to these 562 * in __exit_signal, except for the group leader. 563 */ 564 cputime_t utime, stime, cutime, cstime; 565 cputime_t gtime; 566 cputime_t cgtime; 567 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 568 struct cputime prev_cputime; 569 #endif 570 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 571 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 572 unsigned long inblock, oublock, cinblock, coublock; 573 unsigned long maxrss, cmaxrss; 574 struct task_io_accounting ioac; 575 576 /* 577 * Cumulative ns of schedule CPU time fo dead threads in the 578 * group, not including a zombie group leader, (This only differs 579 * from jiffies_to_ns(utime + stime) if sched_clock uses something 580 * other than jiffies.) 581 */ 582 unsigned long long sum_sched_runtime; 583 584 /* 585 * We don't bother to synchronize most readers of this at all, 586 * because there is no reader checking a limit that actually needs 587 * to get both rlim_cur and rlim_max atomically, and either one 588 * alone is a single word that can safely be read normally. 589 * getrlimit/setrlimit use task_lock(current->group_leader) to 590 * protect this instead of the siglock, because they really 591 * have no need to disable irqs. 592 */ 593 struct rlimit rlim[RLIM_NLIMITS]; 594 595 #ifdef CONFIG_BSD_PROCESS_ACCT 596 struct pacct_struct pacct; /* per-process accounting information */ 597 #endif 598 #ifdef CONFIG_TASKSTATS 599 struct taskstats *stats; 600 #endif 601 #ifdef CONFIG_AUDIT 602 unsigned audit_tty; 603 unsigned audit_tty_log_passwd; 604 struct tty_audit_buf *tty_audit_buf; 605 #endif 606 #ifdef CONFIG_CGROUPS 607 /* 608 * group_rwsem prevents new tasks from entering the threadgroup and 609 * member tasks from exiting,a more specifically, setting of 610 * PF_EXITING. fork and exit paths are protected with this rwsem 611 * using threadgroup_change_begin/end(). Users which require 612 * threadgroup to remain stable should use threadgroup_[un]lock() 613 * which also takes care of exec path. Currently, cgroup is the 614 * only user. 615 */ 616 struct rw_semaphore group_rwsem; 617 #endif 618 619 oom_flags_t oom_flags; 620 short oom_score_adj; /* OOM kill score adjustment */ 621 short oom_score_adj_min; /* OOM kill score adjustment min value. 622 * Only settable by CAP_SYS_RESOURCE. */ 623 624 struct mutex cred_guard_mutex; /* guard against foreign influences on 625 * credential calculations 626 * (notably. ptrace) */ 627 }; 628 629 /* 630 * Bits in flags field of signal_struct. 631 */ 632 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 633 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 634 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 635 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 636 /* 637 * Pending notifications to parent. 638 */ 639 #define SIGNAL_CLD_STOPPED 0x00000010 640 #define SIGNAL_CLD_CONTINUED 0x00000020 641 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 642 643 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 644 645 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 646 static inline int signal_group_exit(const struct signal_struct *sig) 647 { 648 return (sig->flags & SIGNAL_GROUP_EXIT) || 649 (sig->group_exit_task != NULL); 650 } 651 652 /* 653 * Some day this will be a full-fledged user tracking system.. 654 */ 655 struct user_struct { 656 atomic_t __count; /* reference count */ 657 atomic_t processes; /* How many processes does this user have? */ 658 atomic_t files; /* How many open files does this user have? */ 659 atomic_t sigpending; /* How many pending signals does this user have? */ 660 #ifdef CONFIG_INOTIFY_USER 661 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 662 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 663 #endif 664 #ifdef CONFIG_FANOTIFY 665 atomic_t fanotify_listeners; 666 #endif 667 #ifdef CONFIG_EPOLL 668 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 669 #endif 670 #ifdef CONFIG_POSIX_MQUEUE 671 /* protected by mq_lock */ 672 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 673 #endif 674 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 675 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 676 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 677 678 #ifdef CONFIG_KEYS 679 struct key *uid_keyring; /* UID specific keyring */ 680 struct key *session_keyring; /* UID's default session keyring */ 681 #endif 682 683 /* Hash table maintenance information */ 684 struct hlist_node uidhash_node; 685 kuid_t uid; 686 687 #ifdef CONFIG_PERF_EVENTS 688 atomic_long_t locked_vm; 689 #endif 690 }; 691 692 extern int uids_sysfs_init(void); 693 694 extern struct user_struct *find_user(kuid_t); 695 696 extern struct user_struct root_user; 697 #define INIT_USER (&root_user) 698 699 700 struct backing_dev_info; 701 struct reclaim_state; 702 703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 704 struct sched_info { 705 /* cumulative counters */ 706 unsigned long pcount; /* # of times run on this cpu */ 707 unsigned long long run_delay; /* time spent waiting on a runqueue */ 708 709 /* timestamps */ 710 unsigned long long last_arrival,/* when we last ran on a cpu */ 711 last_queued; /* when we were last queued to run */ 712 }; 713 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 714 715 #ifdef CONFIG_TASK_DELAY_ACCT 716 struct task_delay_info { 717 spinlock_t lock; 718 unsigned int flags; /* Private per-task flags */ 719 720 /* For each stat XXX, add following, aligned appropriately 721 * 722 * struct timespec XXX_start, XXX_end; 723 * u64 XXX_delay; 724 * u32 XXX_count; 725 * 726 * Atomicity of updates to XXX_delay, XXX_count protected by 727 * single lock above (split into XXX_lock if contention is an issue). 728 */ 729 730 /* 731 * XXX_count is incremented on every XXX operation, the delay 732 * associated with the operation is added to XXX_delay. 733 * XXX_delay contains the accumulated delay time in nanoseconds. 734 */ 735 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 736 u64 blkio_delay; /* wait for sync block io completion */ 737 u64 swapin_delay; /* wait for swapin block io completion */ 738 u32 blkio_count; /* total count of the number of sync block */ 739 /* io operations performed */ 740 u32 swapin_count; /* total count of the number of swapin block */ 741 /* io operations performed */ 742 743 struct timespec freepages_start, freepages_end; 744 u64 freepages_delay; /* wait for memory reclaim */ 745 u32 freepages_count; /* total count of memory reclaim */ 746 }; 747 #endif /* CONFIG_TASK_DELAY_ACCT */ 748 749 static inline int sched_info_on(void) 750 { 751 #ifdef CONFIG_SCHEDSTATS 752 return 1; 753 #elif defined(CONFIG_TASK_DELAY_ACCT) 754 extern int delayacct_on; 755 return delayacct_on; 756 #else 757 return 0; 758 #endif 759 } 760 761 enum cpu_idle_type { 762 CPU_IDLE, 763 CPU_NOT_IDLE, 764 CPU_NEWLY_IDLE, 765 CPU_MAX_IDLE_TYPES 766 }; 767 768 /* 769 * Increase resolution of cpu_power calculations 770 */ 771 #define SCHED_POWER_SHIFT 10 772 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 773 774 /* 775 * sched-domains (multiprocessor balancing) declarations: 776 */ 777 #ifdef CONFIG_SMP 778 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 779 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 780 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 781 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 782 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 783 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 784 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 785 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 786 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 787 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 788 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 789 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 790 791 extern int __weak arch_sd_sibiling_asym_packing(void); 792 793 struct sched_domain_attr { 794 int relax_domain_level; 795 }; 796 797 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 798 .relax_domain_level = -1, \ 799 } 800 801 extern int sched_domain_level_max; 802 803 struct sched_group; 804 805 struct sched_domain { 806 /* These fields must be setup */ 807 struct sched_domain *parent; /* top domain must be null terminated */ 808 struct sched_domain *child; /* bottom domain must be null terminated */ 809 struct sched_group *groups; /* the balancing groups of the domain */ 810 unsigned long min_interval; /* Minimum balance interval ms */ 811 unsigned long max_interval; /* Maximum balance interval ms */ 812 unsigned int busy_factor; /* less balancing by factor if busy */ 813 unsigned int imbalance_pct; /* No balance until over watermark */ 814 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 815 unsigned int busy_idx; 816 unsigned int idle_idx; 817 unsigned int newidle_idx; 818 unsigned int wake_idx; 819 unsigned int forkexec_idx; 820 unsigned int smt_gain; 821 822 int nohz_idle; /* NOHZ IDLE status */ 823 int flags; /* See SD_* */ 824 int level; 825 826 /* Runtime fields. */ 827 unsigned long last_balance; /* init to jiffies. units in jiffies */ 828 unsigned int balance_interval; /* initialise to 1. units in ms. */ 829 unsigned int nr_balance_failed; /* initialise to 0 */ 830 831 u64 last_update; 832 833 #ifdef CONFIG_SCHEDSTATS 834 /* load_balance() stats */ 835 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 836 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 837 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 838 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 839 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 840 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 841 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 842 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 843 844 /* Active load balancing */ 845 unsigned int alb_count; 846 unsigned int alb_failed; 847 unsigned int alb_pushed; 848 849 /* SD_BALANCE_EXEC stats */ 850 unsigned int sbe_count; 851 unsigned int sbe_balanced; 852 unsigned int sbe_pushed; 853 854 /* SD_BALANCE_FORK stats */ 855 unsigned int sbf_count; 856 unsigned int sbf_balanced; 857 unsigned int sbf_pushed; 858 859 /* try_to_wake_up() stats */ 860 unsigned int ttwu_wake_remote; 861 unsigned int ttwu_move_affine; 862 unsigned int ttwu_move_balance; 863 #endif 864 #ifdef CONFIG_SCHED_DEBUG 865 char *name; 866 #endif 867 union { 868 void *private; /* used during construction */ 869 struct rcu_head rcu; /* used during destruction */ 870 }; 871 872 unsigned int span_weight; 873 /* 874 * Span of all CPUs in this domain. 875 * 876 * NOTE: this field is variable length. (Allocated dynamically 877 * by attaching extra space to the end of the structure, 878 * depending on how many CPUs the kernel has booted up with) 879 */ 880 unsigned long span[0]; 881 }; 882 883 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 884 { 885 return to_cpumask(sd->span); 886 } 887 888 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 889 struct sched_domain_attr *dattr_new); 890 891 /* Allocate an array of sched domains, for partition_sched_domains(). */ 892 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 893 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 894 895 bool cpus_share_cache(int this_cpu, int that_cpu); 896 897 #else /* CONFIG_SMP */ 898 899 struct sched_domain_attr; 900 901 static inline void 902 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 903 struct sched_domain_attr *dattr_new) 904 { 905 } 906 907 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 908 { 909 return true; 910 } 911 912 #endif /* !CONFIG_SMP */ 913 914 915 struct io_context; /* See blkdev.h */ 916 917 918 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 919 extern void prefetch_stack(struct task_struct *t); 920 #else 921 static inline void prefetch_stack(struct task_struct *t) { } 922 #endif 923 924 struct audit_context; /* See audit.c */ 925 struct mempolicy; 926 struct pipe_inode_info; 927 struct uts_namespace; 928 929 struct load_weight { 930 unsigned long weight, inv_weight; 931 }; 932 933 struct sched_avg { 934 /* 935 * These sums represent an infinite geometric series and so are bound 936 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 937 * choices of y < 1-2^(-32)*1024. 938 */ 939 u32 runnable_avg_sum, runnable_avg_period; 940 u64 last_runnable_update; 941 s64 decay_count; 942 unsigned long load_avg_contrib; 943 }; 944 945 #ifdef CONFIG_SCHEDSTATS 946 struct sched_statistics { 947 u64 wait_start; 948 u64 wait_max; 949 u64 wait_count; 950 u64 wait_sum; 951 u64 iowait_count; 952 u64 iowait_sum; 953 954 u64 sleep_start; 955 u64 sleep_max; 956 s64 sum_sleep_runtime; 957 958 u64 block_start; 959 u64 block_max; 960 u64 exec_max; 961 u64 slice_max; 962 963 u64 nr_migrations_cold; 964 u64 nr_failed_migrations_affine; 965 u64 nr_failed_migrations_running; 966 u64 nr_failed_migrations_hot; 967 u64 nr_forced_migrations; 968 969 u64 nr_wakeups; 970 u64 nr_wakeups_sync; 971 u64 nr_wakeups_migrate; 972 u64 nr_wakeups_local; 973 u64 nr_wakeups_remote; 974 u64 nr_wakeups_affine; 975 u64 nr_wakeups_affine_attempts; 976 u64 nr_wakeups_passive; 977 u64 nr_wakeups_idle; 978 }; 979 #endif 980 981 struct sched_entity { 982 struct load_weight load; /* for load-balancing */ 983 struct rb_node run_node; 984 struct list_head group_node; 985 unsigned int on_rq; 986 987 u64 exec_start; 988 u64 sum_exec_runtime; 989 u64 vruntime; 990 u64 prev_sum_exec_runtime; 991 992 u64 nr_migrations; 993 994 #ifdef CONFIG_SCHEDSTATS 995 struct sched_statistics statistics; 996 #endif 997 998 #ifdef CONFIG_FAIR_GROUP_SCHED 999 struct sched_entity *parent; 1000 /* rq on which this entity is (to be) queued: */ 1001 struct cfs_rq *cfs_rq; 1002 /* rq "owned" by this entity/group: */ 1003 struct cfs_rq *my_q; 1004 #endif 1005 1006 /* 1007 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1008 * removed when useful for applications beyond shares distribution (e.g. 1009 * load-balance). 1010 */ 1011 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1012 /* Per-entity load-tracking */ 1013 struct sched_avg avg; 1014 #endif 1015 }; 1016 1017 struct sched_rt_entity { 1018 struct list_head run_list; 1019 unsigned long timeout; 1020 unsigned long watchdog_stamp; 1021 unsigned int time_slice; 1022 1023 struct sched_rt_entity *back; 1024 #ifdef CONFIG_RT_GROUP_SCHED 1025 struct sched_rt_entity *parent; 1026 /* rq on which this entity is (to be) queued: */ 1027 struct rt_rq *rt_rq; 1028 /* rq "owned" by this entity/group: */ 1029 struct rt_rq *my_q; 1030 #endif 1031 }; 1032 1033 1034 struct rcu_node; 1035 1036 enum perf_event_task_context { 1037 perf_invalid_context = -1, 1038 perf_hw_context = 0, 1039 perf_sw_context, 1040 perf_nr_task_contexts, 1041 }; 1042 1043 struct task_struct { 1044 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1045 void *stack; 1046 atomic_t usage; 1047 unsigned int flags; /* per process flags, defined below */ 1048 unsigned int ptrace; 1049 1050 #ifdef CONFIG_SMP 1051 struct llist_node wake_entry; 1052 int on_cpu; 1053 #endif 1054 int on_rq; 1055 1056 int prio, static_prio, normal_prio; 1057 unsigned int rt_priority; 1058 const struct sched_class *sched_class; 1059 struct sched_entity se; 1060 struct sched_rt_entity rt; 1061 #ifdef CONFIG_CGROUP_SCHED 1062 struct task_group *sched_task_group; 1063 #endif 1064 1065 #ifdef CONFIG_PREEMPT_NOTIFIERS 1066 /* list of struct preempt_notifier: */ 1067 struct hlist_head preempt_notifiers; 1068 #endif 1069 1070 /* 1071 * fpu_counter contains the number of consecutive context switches 1072 * that the FPU is used. If this is over a threshold, the lazy fpu 1073 * saving becomes unlazy to save the trap. This is an unsigned char 1074 * so that after 256 times the counter wraps and the behavior turns 1075 * lazy again; this to deal with bursty apps that only use FPU for 1076 * a short time 1077 */ 1078 unsigned char fpu_counter; 1079 #ifdef CONFIG_BLK_DEV_IO_TRACE 1080 unsigned int btrace_seq; 1081 #endif 1082 1083 unsigned int policy; 1084 int nr_cpus_allowed; 1085 cpumask_t cpus_allowed; 1086 1087 #ifdef CONFIG_PREEMPT_RCU 1088 int rcu_read_lock_nesting; 1089 char rcu_read_unlock_special; 1090 struct list_head rcu_node_entry; 1091 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1092 #ifdef CONFIG_TREE_PREEMPT_RCU 1093 struct rcu_node *rcu_blocked_node; 1094 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1095 #ifdef CONFIG_RCU_BOOST 1096 struct rt_mutex *rcu_boost_mutex; 1097 #endif /* #ifdef CONFIG_RCU_BOOST */ 1098 1099 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1100 struct sched_info sched_info; 1101 #endif 1102 1103 struct list_head tasks; 1104 #ifdef CONFIG_SMP 1105 struct plist_node pushable_tasks; 1106 #endif 1107 1108 struct mm_struct *mm, *active_mm; 1109 #ifdef CONFIG_COMPAT_BRK 1110 unsigned brk_randomized:1; 1111 #endif 1112 #if defined(SPLIT_RSS_COUNTING) 1113 struct task_rss_stat rss_stat; 1114 #endif 1115 /* task state */ 1116 int exit_state; 1117 int exit_code, exit_signal; 1118 int pdeath_signal; /* The signal sent when the parent dies */ 1119 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1120 1121 /* Used for emulating ABI behavior of previous Linux versions */ 1122 unsigned int personality; 1123 1124 unsigned did_exec:1; 1125 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1126 * execve */ 1127 unsigned in_iowait:1; 1128 1129 /* task may not gain privileges */ 1130 unsigned no_new_privs:1; 1131 1132 /* Revert to default priority/policy when forking */ 1133 unsigned sched_reset_on_fork:1; 1134 unsigned sched_contributes_to_load:1; 1135 1136 pid_t pid; 1137 pid_t tgid; 1138 1139 #ifdef CONFIG_CC_STACKPROTECTOR 1140 /* Canary value for the -fstack-protector gcc feature */ 1141 unsigned long stack_canary; 1142 #endif 1143 /* 1144 * pointers to (original) parent process, youngest child, younger sibling, 1145 * older sibling, respectively. (p->father can be replaced with 1146 * p->real_parent->pid) 1147 */ 1148 struct task_struct __rcu *real_parent; /* real parent process */ 1149 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1150 /* 1151 * children/sibling forms the list of my natural children 1152 */ 1153 struct list_head children; /* list of my children */ 1154 struct list_head sibling; /* linkage in my parent's children list */ 1155 struct task_struct *group_leader; /* threadgroup leader */ 1156 1157 /* 1158 * ptraced is the list of tasks this task is using ptrace on. 1159 * This includes both natural children and PTRACE_ATTACH targets. 1160 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1161 */ 1162 struct list_head ptraced; 1163 struct list_head ptrace_entry; 1164 1165 /* PID/PID hash table linkage. */ 1166 struct pid_link pids[PIDTYPE_MAX]; 1167 struct list_head thread_group; 1168 struct list_head thread_node; 1169 1170 struct completion *vfork_done; /* for vfork() */ 1171 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1172 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1173 1174 cputime_t utime, stime, utimescaled, stimescaled; 1175 cputime_t gtime; 1176 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1177 struct cputime prev_cputime; 1178 #endif 1179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1180 seqlock_t vtime_seqlock; 1181 unsigned long long vtime_snap; 1182 enum { 1183 VTIME_SLEEPING = 0, 1184 VTIME_USER, 1185 VTIME_SYS, 1186 } vtime_snap_whence; 1187 #endif 1188 unsigned long nvcsw, nivcsw; /* context switch counts */ 1189 struct timespec start_time; /* monotonic time */ 1190 struct timespec real_start_time; /* boot based time */ 1191 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1192 unsigned long min_flt, maj_flt; 1193 1194 struct task_cputime cputime_expires; 1195 struct list_head cpu_timers[3]; 1196 1197 /* process credentials */ 1198 const struct cred __rcu *real_cred; /* objective and real subjective task 1199 * credentials (COW) */ 1200 const struct cred __rcu *cred; /* effective (overridable) subjective task 1201 * credentials (COW) */ 1202 char comm[TASK_COMM_LEN]; /* executable name excluding path 1203 - access with [gs]et_task_comm (which lock 1204 it with task_lock()) 1205 - initialized normally by setup_new_exec */ 1206 /* file system info */ 1207 int link_count, total_link_count; 1208 #ifdef CONFIG_SYSVIPC 1209 /* ipc stuff */ 1210 struct sysv_sem sysvsem; 1211 #endif 1212 #ifdef CONFIG_DETECT_HUNG_TASK 1213 /* hung task detection */ 1214 unsigned long last_switch_count; 1215 #endif 1216 /* CPU-specific state of this task */ 1217 struct thread_struct thread; 1218 /* filesystem information */ 1219 struct fs_struct *fs; 1220 /* open file information */ 1221 struct files_struct *files; 1222 /* namespaces */ 1223 struct nsproxy *nsproxy; 1224 /* signal handlers */ 1225 struct signal_struct *signal; 1226 struct sighand_struct *sighand; 1227 1228 sigset_t blocked, real_blocked; 1229 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1230 struct sigpending pending; 1231 1232 unsigned long sas_ss_sp; 1233 size_t sas_ss_size; 1234 int (*notifier)(void *priv); 1235 void *notifier_data; 1236 sigset_t *notifier_mask; 1237 struct callback_head *task_works; 1238 1239 struct audit_context *audit_context; 1240 #ifdef CONFIG_AUDITSYSCALL 1241 kuid_t loginuid; 1242 unsigned int sessionid; 1243 #endif 1244 struct seccomp seccomp; 1245 1246 /* Thread group tracking */ 1247 u32 parent_exec_id; 1248 u32 self_exec_id; 1249 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1250 * mempolicy */ 1251 spinlock_t alloc_lock; 1252 1253 /* Protection of the PI data structures: */ 1254 raw_spinlock_t pi_lock; 1255 1256 #ifdef CONFIG_RT_MUTEXES 1257 /* PI waiters blocked on a rt_mutex held by this task */ 1258 struct plist_head pi_waiters; 1259 /* Deadlock detection and priority inheritance handling */ 1260 struct rt_mutex_waiter *pi_blocked_on; 1261 #endif 1262 1263 #ifdef CONFIG_DEBUG_MUTEXES 1264 /* mutex deadlock detection */ 1265 struct mutex_waiter *blocked_on; 1266 #endif 1267 #ifdef CONFIG_TRACE_IRQFLAGS 1268 unsigned int irq_events; 1269 unsigned long hardirq_enable_ip; 1270 unsigned long hardirq_disable_ip; 1271 unsigned int hardirq_enable_event; 1272 unsigned int hardirq_disable_event; 1273 int hardirqs_enabled; 1274 int hardirq_context; 1275 unsigned long softirq_disable_ip; 1276 unsigned long softirq_enable_ip; 1277 unsigned int softirq_disable_event; 1278 unsigned int softirq_enable_event; 1279 int softirqs_enabled; 1280 int softirq_context; 1281 #endif 1282 #ifdef CONFIG_LOCKDEP 1283 # define MAX_LOCK_DEPTH 48UL 1284 u64 curr_chain_key; 1285 int lockdep_depth; 1286 unsigned int lockdep_recursion; 1287 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1288 gfp_t lockdep_reclaim_gfp; 1289 #endif 1290 1291 /* journalling filesystem info */ 1292 void *journal_info; 1293 1294 /* stacked block device info */ 1295 struct bio_list *bio_list; 1296 1297 #ifdef CONFIG_BLOCK 1298 /* stack plugging */ 1299 struct blk_plug *plug; 1300 #endif 1301 1302 /* VM state */ 1303 struct reclaim_state *reclaim_state; 1304 1305 struct backing_dev_info *backing_dev_info; 1306 1307 struct io_context *io_context; 1308 1309 unsigned long ptrace_message; 1310 siginfo_t *last_siginfo; /* For ptrace use. */ 1311 struct task_io_accounting ioac; 1312 #if defined(CONFIG_TASK_XACCT) 1313 u64 acct_rss_mem1; /* accumulated rss usage */ 1314 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1315 cputime_t acct_timexpd; /* stime + utime since last update */ 1316 #endif 1317 #ifdef CONFIG_CPUSETS 1318 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1319 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1320 int cpuset_mem_spread_rotor; 1321 int cpuset_slab_spread_rotor; 1322 #endif 1323 #ifdef CONFIG_CGROUPS 1324 /* Control Group info protected by css_set_lock */ 1325 struct css_set __rcu *cgroups; 1326 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1327 struct list_head cg_list; 1328 #endif 1329 #ifdef CONFIG_FUTEX 1330 struct robust_list_head __user *robust_list; 1331 #ifdef CONFIG_COMPAT 1332 struct compat_robust_list_head __user *compat_robust_list; 1333 #endif 1334 struct list_head pi_state_list; 1335 struct futex_pi_state *pi_state_cache; 1336 #endif 1337 #ifdef CONFIG_PERF_EVENTS 1338 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1339 struct mutex perf_event_mutex; 1340 struct list_head perf_event_list; 1341 #endif 1342 #ifdef CONFIG_NUMA 1343 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1344 short il_next; 1345 short pref_node_fork; 1346 #endif 1347 #ifdef CONFIG_NUMA_BALANCING 1348 int numa_scan_seq; 1349 int numa_migrate_seq; 1350 unsigned int numa_scan_period; 1351 u64 node_stamp; /* migration stamp */ 1352 struct callback_head numa_work; 1353 #endif /* CONFIG_NUMA_BALANCING */ 1354 1355 struct rcu_head rcu; 1356 1357 /* 1358 * cache last used pipe for splice 1359 */ 1360 struct pipe_inode_info *splice_pipe; 1361 1362 struct page_frag task_frag; 1363 1364 #ifdef CONFIG_TASK_DELAY_ACCT 1365 struct task_delay_info *delays; 1366 #endif 1367 #ifdef CONFIG_FAULT_INJECTION 1368 int make_it_fail; 1369 #endif 1370 /* 1371 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1372 * balance_dirty_pages() for some dirty throttling pause 1373 */ 1374 int nr_dirtied; 1375 int nr_dirtied_pause; 1376 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1377 1378 #ifdef CONFIG_LATENCYTOP 1379 int latency_record_count; 1380 struct latency_record latency_record[LT_SAVECOUNT]; 1381 #endif 1382 /* 1383 * time slack values; these are used to round up poll() and 1384 * select() etc timeout values. These are in nanoseconds. 1385 */ 1386 unsigned long timer_slack_ns; 1387 unsigned long default_timer_slack_ns; 1388 1389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1390 /* Index of current stored address in ret_stack */ 1391 int curr_ret_stack; 1392 /* Stack of return addresses for return function tracing */ 1393 struct ftrace_ret_stack *ret_stack; 1394 /* time stamp for last schedule */ 1395 unsigned long long ftrace_timestamp; 1396 /* 1397 * Number of functions that haven't been traced 1398 * because of depth overrun. 1399 */ 1400 atomic_t trace_overrun; 1401 /* Pause for the tracing */ 1402 atomic_t tracing_graph_pause; 1403 #endif 1404 #ifdef CONFIG_TRACING 1405 /* state flags for use by tracers */ 1406 unsigned long trace; 1407 /* bitmask and counter of trace recursion */ 1408 unsigned long trace_recursion; 1409 #endif /* CONFIG_TRACING */ 1410 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1411 struct memcg_batch_info { 1412 int do_batch; /* incremented when batch uncharge started */ 1413 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1414 unsigned long nr_pages; /* uncharged usage */ 1415 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1416 } memcg_batch; 1417 unsigned int memcg_kmem_skip_account; 1418 struct memcg_oom_info { 1419 struct mem_cgroup *memcg; 1420 gfp_t gfp_mask; 1421 int order; 1422 unsigned int may_oom:1; 1423 } memcg_oom; 1424 #endif 1425 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1426 atomic_t ptrace_bp_refcnt; 1427 #endif 1428 #ifdef CONFIG_UPROBES 1429 struct uprobe_task *utask; 1430 #endif 1431 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1432 unsigned int sequential_io; 1433 unsigned int sequential_io_avg; 1434 #endif 1435 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY) 1436 struct ccs_domain_info *ccs_domain_info; 1437 u32 ccs_flags; 1438 #endif 1439 }; 1440 1441 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1442 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1443 1444 #ifdef CONFIG_NUMA_BALANCING 1445 extern void task_numa_fault(int node, int pages, bool migrated); 1446 extern void set_numabalancing_state(bool enabled); 1447 #else 1448 static inline void task_numa_fault(int node, int pages, bool migrated) 1449 { 1450 } 1451 static inline void set_numabalancing_state(bool enabled) 1452 { 1453 } 1454 #endif 1455 1456 static inline struct pid *task_pid(struct task_struct *task) 1457 { 1458 return task->pids[PIDTYPE_PID].pid; 1459 } 1460 1461 static inline struct pid *task_tgid(struct task_struct *task) 1462 { 1463 return task->group_leader->pids[PIDTYPE_PID].pid; 1464 } 1465 1466 /* 1467 * Without tasklist or rcu lock it is not safe to dereference 1468 * the result of task_pgrp/task_session even if task == current, 1469 * we can race with another thread doing sys_setsid/sys_setpgid. 1470 */ 1471 static inline struct pid *task_pgrp(struct task_struct *task) 1472 { 1473 return task->group_leader->pids[PIDTYPE_PGID].pid; 1474 } 1475 1476 static inline struct pid *task_session(struct task_struct *task) 1477 { 1478 return task->group_leader->pids[PIDTYPE_SID].pid; 1479 } 1480 1481 struct pid_namespace; 1482 1483 /* 1484 * the helpers to get the task's different pids as they are seen 1485 * from various namespaces 1486 * 1487 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1488 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1489 * current. 1490 * task_xid_nr_ns() : id seen from the ns specified; 1491 * 1492 * set_task_vxid() : assigns a virtual id to a task; 1493 * 1494 * see also pid_nr() etc in include/linux/pid.h 1495 */ 1496 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1497 struct pid_namespace *ns); 1498 1499 static inline pid_t task_pid_nr(struct task_struct *tsk) 1500 { 1501 return tsk->pid; 1502 } 1503 1504 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1505 struct pid_namespace *ns) 1506 { 1507 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1508 } 1509 1510 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1511 { 1512 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1513 } 1514 1515 1516 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1517 { 1518 return tsk->tgid; 1519 } 1520 1521 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1522 1523 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1524 { 1525 return pid_vnr(task_tgid(tsk)); 1526 } 1527 1528 1529 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1530 struct pid_namespace *ns) 1531 { 1532 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1533 } 1534 1535 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1536 { 1537 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1538 } 1539 1540 1541 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1542 struct pid_namespace *ns) 1543 { 1544 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1545 } 1546 1547 static inline pid_t task_session_vnr(struct task_struct *tsk) 1548 { 1549 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1550 } 1551 1552 /* obsolete, do not use */ 1553 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1554 { 1555 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1556 } 1557 1558 /** 1559 * pid_alive - check that a task structure is not stale 1560 * @p: Task structure to be checked. 1561 * 1562 * Test if a process is not yet dead (at most zombie state) 1563 * If pid_alive fails, then pointers within the task structure 1564 * can be stale and must not be dereferenced. 1565 */ 1566 static inline int pid_alive(struct task_struct *p) 1567 { 1568 return p->pids[PIDTYPE_PID].pid != NULL; 1569 } 1570 1571 /** 1572 * is_global_init - check if a task structure is init 1573 * @tsk: Task structure to be checked. 1574 * 1575 * Check if a task structure is the first user space task the kernel created. 1576 */ 1577 static inline int is_global_init(struct task_struct *tsk) 1578 { 1579 return tsk->pid == 1; 1580 } 1581 1582 extern struct pid *cad_pid; 1583 1584 extern void free_task(struct task_struct *tsk); 1585 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1586 1587 extern void __put_task_struct(struct task_struct *t); 1588 1589 static inline void put_task_struct(struct task_struct *t) 1590 { 1591 if (atomic_dec_and_test(&t->usage)) 1592 __put_task_struct(t); 1593 } 1594 1595 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1596 extern void task_cputime(struct task_struct *t, 1597 cputime_t *utime, cputime_t *stime); 1598 extern void task_cputime_scaled(struct task_struct *t, 1599 cputime_t *utimescaled, cputime_t *stimescaled); 1600 extern cputime_t task_gtime(struct task_struct *t); 1601 #else 1602 static inline void task_cputime(struct task_struct *t, 1603 cputime_t *utime, cputime_t *stime) 1604 { 1605 if (utime) 1606 *utime = t->utime; 1607 if (stime) 1608 *stime = t->stime; 1609 } 1610 1611 static inline void task_cputime_scaled(struct task_struct *t, 1612 cputime_t *utimescaled, 1613 cputime_t *stimescaled) 1614 { 1615 if (utimescaled) 1616 *utimescaled = t->utimescaled; 1617 if (stimescaled) 1618 *stimescaled = t->stimescaled; 1619 } 1620 1621 static inline cputime_t task_gtime(struct task_struct *t) 1622 { 1623 return t->gtime; 1624 } 1625 #endif 1626 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1627 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1628 1629 /* 1630 * Per process flags 1631 */ 1632 #define PF_EXITING 0x00000004 /* getting shut down */ 1633 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1634 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1635 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1636 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1637 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1638 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1639 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1640 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1641 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1642 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1643 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1644 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1645 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1646 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1647 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1648 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1649 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1650 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1651 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1652 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1653 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1654 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1655 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1656 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1657 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1658 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1659 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1660 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1661 1662 /* 1663 * Only the _current_ task can read/write to tsk->flags, but other 1664 * tasks can access tsk->flags in readonly mode for example 1665 * with tsk_used_math (like during threaded core dumping). 1666 * There is however an exception to this rule during ptrace 1667 * or during fork: the ptracer task is allowed to write to the 1668 * child->flags of its traced child (same goes for fork, the parent 1669 * can write to the child->flags), because we're guaranteed the 1670 * child is not running and in turn not changing child->flags 1671 * at the same time the parent does it. 1672 */ 1673 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1674 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1675 #define clear_used_math() clear_stopped_child_used_math(current) 1676 #define set_used_math() set_stopped_child_used_math(current) 1677 #define conditional_stopped_child_used_math(condition, child) \ 1678 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1679 #define conditional_used_math(condition) \ 1680 conditional_stopped_child_used_math(condition, current) 1681 #define copy_to_stopped_child_used_math(child) \ 1682 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1683 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1684 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1685 #define used_math() tsk_used_math(current) 1686 1687 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 1688 * __GFP_FS is also cleared as it implies __GFP_IO. 1689 */ 1690 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1691 { 1692 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1693 flags &= ~(__GFP_IO | __GFP_FS); 1694 return flags; 1695 } 1696 1697 static inline unsigned int memalloc_noio_save(void) 1698 { 1699 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1700 current->flags |= PF_MEMALLOC_NOIO; 1701 return flags; 1702 } 1703 1704 static inline void memalloc_noio_restore(unsigned int flags) 1705 { 1706 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1707 } 1708 1709 /* 1710 * task->jobctl flags 1711 */ 1712 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1713 1714 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1715 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1716 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1717 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1718 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1719 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1720 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1721 1722 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1723 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1724 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1725 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1726 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1727 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1728 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1729 1730 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1731 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1732 1733 extern bool task_set_jobctl_pending(struct task_struct *task, 1734 unsigned int mask); 1735 extern void task_clear_jobctl_trapping(struct task_struct *task); 1736 extern void task_clear_jobctl_pending(struct task_struct *task, 1737 unsigned int mask); 1738 1739 #ifdef CONFIG_PREEMPT_RCU 1740 1741 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1742 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1743 1744 static inline void rcu_copy_process(struct task_struct *p) 1745 { 1746 p->rcu_read_lock_nesting = 0; 1747 p->rcu_read_unlock_special = 0; 1748 #ifdef CONFIG_TREE_PREEMPT_RCU 1749 p->rcu_blocked_node = NULL; 1750 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1751 #ifdef CONFIG_RCU_BOOST 1752 p->rcu_boost_mutex = NULL; 1753 #endif /* #ifdef CONFIG_RCU_BOOST */ 1754 INIT_LIST_HEAD(&p->rcu_node_entry); 1755 } 1756 1757 #else 1758 1759 static inline void rcu_copy_process(struct task_struct *p) 1760 { 1761 } 1762 1763 #endif 1764 1765 static inline void tsk_restore_flags(struct task_struct *task, 1766 unsigned long orig_flags, unsigned long flags) 1767 { 1768 task->flags &= ~flags; 1769 task->flags |= orig_flags & flags; 1770 } 1771 1772 #ifdef CONFIG_SMP 1773 extern void do_set_cpus_allowed(struct task_struct *p, 1774 const struct cpumask *new_mask); 1775 1776 extern int set_cpus_allowed_ptr(struct task_struct *p, 1777 const struct cpumask *new_mask); 1778 #else 1779 static inline void do_set_cpus_allowed(struct task_struct *p, 1780 const struct cpumask *new_mask) 1781 { 1782 } 1783 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1784 const struct cpumask *new_mask) 1785 { 1786 if (!cpumask_test_cpu(0, new_mask)) 1787 return -EINVAL; 1788 return 0; 1789 } 1790 #endif 1791 1792 #ifdef CONFIG_NO_HZ_COMMON 1793 void calc_load_enter_idle(void); 1794 void calc_load_exit_idle(void); 1795 #else 1796 static inline void calc_load_enter_idle(void) { } 1797 static inline void calc_load_exit_idle(void) { } 1798 #endif /* CONFIG_NO_HZ_COMMON */ 1799 1800 #ifndef CONFIG_CPUMASK_OFFSTACK 1801 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1802 { 1803 return set_cpus_allowed_ptr(p, &new_mask); 1804 } 1805 #endif 1806 1807 /* 1808 * Do not use outside of architecture code which knows its limitations. 1809 * 1810 * sched_clock() has no promise of monotonicity or bounded drift between 1811 * CPUs, use (which you should not) requires disabling IRQs. 1812 * 1813 * Please use one of the three interfaces below. 1814 */ 1815 extern unsigned long long notrace sched_clock(void); 1816 /* 1817 * See the comment in kernel/sched/clock.c 1818 */ 1819 extern u64 cpu_clock(int cpu); 1820 extern u64 local_clock(void); 1821 extern u64 sched_clock_cpu(int cpu); 1822 1823 1824 extern void sched_clock_init(void); 1825 1826 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1827 static inline void sched_clock_tick(void) 1828 { 1829 } 1830 1831 static inline void sched_clock_idle_sleep_event(void) 1832 { 1833 } 1834 1835 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1836 { 1837 } 1838 #else 1839 /* 1840 * Architectures can set this to 1 if they have specified 1841 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1842 * but then during bootup it turns out that sched_clock() 1843 * is reliable after all: 1844 */ 1845 extern int sched_clock_stable; 1846 1847 extern void sched_clock_tick(void); 1848 extern void sched_clock_idle_sleep_event(void); 1849 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1850 #endif 1851 1852 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1853 /* 1854 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1855 * The reason for this explicit opt-in is not to have perf penalty with 1856 * slow sched_clocks. 1857 */ 1858 extern void enable_sched_clock_irqtime(void); 1859 extern void disable_sched_clock_irqtime(void); 1860 #else 1861 static inline void enable_sched_clock_irqtime(void) {} 1862 static inline void disable_sched_clock_irqtime(void) {} 1863 #endif 1864 1865 extern unsigned long long 1866 task_sched_runtime(struct task_struct *task); 1867 1868 /* sched_exec is called by processes performing an exec */ 1869 #ifdef CONFIG_SMP 1870 extern void sched_exec(void); 1871 #else 1872 #define sched_exec() {} 1873 #endif 1874 1875 extern void sched_clock_idle_sleep_event(void); 1876 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1877 1878 #ifdef CONFIG_HOTPLUG_CPU 1879 extern void idle_task_exit(void); 1880 #else 1881 static inline void idle_task_exit(void) {} 1882 #endif 1883 1884 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1885 extern void wake_up_nohz_cpu(int cpu); 1886 #else 1887 static inline void wake_up_nohz_cpu(int cpu) { } 1888 #endif 1889 1890 #ifdef CONFIG_NO_HZ_FULL 1891 extern bool sched_can_stop_tick(void); 1892 extern u64 scheduler_tick_max_deferment(void); 1893 #else 1894 static inline bool sched_can_stop_tick(void) { return false; } 1895 #endif 1896 1897 #ifdef CONFIG_SCHED_AUTOGROUP 1898 extern void sched_autogroup_create_attach(struct task_struct *p); 1899 extern void sched_autogroup_detach(struct task_struct *p); 1900 extern void sched_autogroup_fork(struct signal_struct *sig); 1901 extern void sched_autogroup_exit(struct signal_struct *sig); 1902 #ifdef CONFIG_PROC_FS 1903 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1904 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1905 #endif 1906 #else 1907 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1908 static inline void sched_autogroup_detach(struct task_struct *p) { } 1909 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1910 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1911 #endif 1912 1913 extern bool yield_to(struct task_struct *p, bool preempt); 1914 extern void set_user_nice(struct task_struct *p, long nice); 1915 extern int task_prio(const struct task_struct *p); 1916 extern int task_nice(const struct task_struct *p); 1917 extern int can_nice(const struct task_struct *p, const int nice); 1918 extern int task_curr(const struct task_struct *p); 1919 extern int idle_cpu(int cpu); 1920 extern int sched_setscheduler(struct task_struct *, int, 1921 const struct sched_param *); 1922 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1923 const struct sched_param *); 1924 extern struct task_struct *idle_task(int cpu); 1925 /** 1926 * is_idle_task - is the specified task an idle task? 1927 * @p: the task in question. 1928 */ 1929 static inline bool is_idle_task(const struct task_struct *p) 1930 { 1931 return p->pid == 0; 1932 } 1933 extern struct task_struct *curr_task(int cpu); 1934 extern void set_curr_task(int cpu, struct task_struct *p); 1935 1936 void yield(void); 1937 1938 /* 1939 * The default (Linux) execution domain. 1940 */ 1941 extern struct exec_domain default_exec_domain; 1942 1943 union thread_union { 1944 struct thread_info thread_info; 1945 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1946 }; 1947 1948 #ifndef __HAVE_ARCH_KSTACK_END 1949 static inline int kstack_end(void *addr) 1950 { 1951 /* Reliable end of stack detection: 1952 * Some APM bios versions misalign the stack 1953 */ 1954 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1955 } 1956 #endif 1957 1958 extern union thread_union init_thread_union; 1959 extern struct task_struct init_task; 1960 1961 extern struct mm_struct init_mm; 1962 1963 extern struct pid_namespace init_pid_ns; 1964 1965 /* 1966 * find a task by one of its numerical ids 1967 * 1968 * find_task_by_pid_ns(): 1969 * finds a task by its pid in the specified namespace 1970 * find_task_by_vpid(): 1971 * finds a task by its virtual pid 1972 * 1973 * see also find_vpid() etc in include/linux/pid.h 1974 */ 1975 1976 extern struct task_struct *find_task_by_vpid(pid_t nr); 1977 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1978 struct pid_namespace *ns); 1979 1980 extern void __set_special_pids(struct pid *pid); 1981 1982 /* per-UID process charging. */ 1983 extern struct user_struct * alloc_uid(kuid_t); 1984 static inline struct user_struct *get_uid(struct user_struct *u) 1985 { 1986 atomic_inc(&u->__count); 1987 return u; 1988 } 1989 extern void free_uid(struct user_struct *); 1990 1991 #include <asm/current.h> 1992 1993 extern void xtime_update(unsigned long ticks); 1994 1995 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1996 extern int wake_up_process(struct task_struct *tsk); 1997 extern void wake_up_new_task(struct task_struct *tsk); 1998 #ifdef CONFIG_SMP 1999 extern void kick_process(struct task_struct *tsk); 2000 #else 2001 static inline void kick_process(struct task_struct *tsk) { } 2002 #endif 2003 extern void sched_fork(struct task_struct *p); 2004 extern void sched_dead(struct task_struct *p); 2005 2006 extern void proc_caches_init(void); 2007 extern void flush_signals(struct task_struct *); 2008 extern void __flush_signals(struct task_struct *); 2009 extern void ignore_signals(struct task_struct *); 2010 extern void flush_signal_handlers(struct task_struct *, int force_default); 2011 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2012 2013 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2014 { 2015 unsigned long flags; 2016 int ret; 2017 2018 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2019 ret = dequeue_signal(tsk, mask, info); 2020 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2021 2022 return ret; 2023 } 2024 2025 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2026 sigset_t *mask); 2027 extern void unblock_all_signals(void); 2028 extern void release_task(struct task_struct * p); 2029 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2030 extern int force_sigsegv(int, struct task_struct *); 2031 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2032 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2033 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2034 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2035 const struct cred *, u32); 2036 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2037 extern int kill_pid(struct pid *pid, int sig, int priv); 2038 extern int kill_proc_info(int, struct siginfo *, pid_t); 2039 extern __must_check bool do_notify_parent(struct task_struct *, int); 2040 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2041 extern void force_sig(int, struct task_struct *); 2042 extern int send_sig(int, struct task_struct *, int); 2043 extern int zap_other_threads(struct task_struct *p); 2044 extern struct sigqueue *sigqueue_alloc(void); 2045 extern void sigqueue_free(struct sigqueue *); 2046 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2047 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2048 2049 static inline void restore_saved_sigmask(void) 2050 { 2051 if (test_and_clear_restore_sigmask()) 2052 __set_current_blocked(¤t->saved_sigmask); 2053 } 2054 2055 static inline sigset_t *sigmask_to_save(void) 2056 { 2057 sigset_t *res = ¤t->blocked; 2058 if (unlikely(test_restore_sigmask())) 2059 res = ¤t->saved_sigmask; 2060 return res; 2061 } 2062 2063 static inline int kill_cad_pid(int sig, int priv) 2064 { 2065 return kill_pid(cad_pid, sig, priv); 2066 } 2067 2068 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2069 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2070 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2071 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2072 2073 /* 2074 * True if we are on the alternate signal stack. 2075 */ 2076 static inline int on_sig_stack(unsigned long sp) 2077 { 2078 #ifdef CONFIG_STACK_GROWSUP 2079 return sp >= current->sas_ss_sp && 2080 sp - current->sas_ss_sp < current->sas_ss_size; 2081 #else 2082 return sp > current->sas_ss_sp && 2083 sp - current->sas_ss_sp <= current->sas_ss_size; 2084 #endif 2085 } 2086 2087 static inline int sas_ss_flags(unsigned long sp) 2088 { 2089 return (current->sas_ss_size == 0 ? SS_DISABLE 2090 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2091 } 2092 2093 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2094 { 2095 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2096 #ifdef CONFIG_STACK_GROWSUP 2097 return current->sas_ss_sp; 2098 #else 2099 return current->sas_ss_sp + current->sas_ss_size; 2100 #endif 2101 return sp; 2102 } 2103 2104 /* 2105 * Routines for handling mm_structs 2106 */ 2107 extern struct mm_struct * mm_alloc(void); 2108 2109 /* mmdrop drops the mm and the page tables */ 2110 extern void __mmdrop(struct mm_struct *); 2111 static inline void mmdrop(struct mm_struct * mm) 2112 { 2113 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2114 __mmdrop(mm); 2115 } 2116 2117 /* mmput gets rid of the mappings and all user-space */ 2118 extern void mmput(struct mm_struct *); 2119 /* Grab a reference to a task's mm, if it is not already going away */ 2120 extern struct mm_struct *get_task_mm(struct task_struct *task); 2121 /* 2122 * Grab a reference to a task's mm, if it is not already going away 2123 * and ptrace_may_access with the mode parameter passed to it 2124 * succeeds. 2125 */ 2126 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2127 /* Remove the current tasks stale references to the old mm_struct */ 2128 extern void mm_release(struct task_struct *, struct mm_struct *); 2129 /* Allocate a new mm structure and copy contents from tsk->mm */ 2130 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2131 2132 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2133 struct task_struct *); 2134 extern void flush_thread(void); 2135 extern void exit_thread(void); 2136 2137 extern void exit_files(struct task_struct *); 2138 extern void __cleanup_sighand(struct sighand_struct *); 2139 2140 extern void exit_itimers(struct signal_struct *); 2141 extern void flush_itimer_signals(void); 2142 2143 extern void do_group_exit(int); 2144 2145 extern int allow_signal(int); 2146 extern int disallow_signal(int); 2147 2148 extern int do_execve(const char *, 2149 const char __user * const __user *, 2150 const char __user * const __user *); 2151 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2152 struct task_struct *fork_idle(int); 2153 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2154 2155 extern void set_task_comm(struct task_struct *tsk, char *from); 2156 extern char *get_task_comm(char *to, struct task_struct *tsk); 2157 2158 #ifdef CONFIG_SMP 2159 void scheduler_ipi(void); 2160 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2161 #else 2162 static inline void scheduler_ipi(void) { } 2163 static inline unsigned long wait_task_inactive(struct task_struct *p, 2164 long match_state) 2165 { 2166 return 1; 2167 } 2168 #endif 2169 2170 #define next_task(p) \ 2171 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2172 2173 #define for_each_process(p) \ 2174 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2175 2176 extern bool current_is_single_threaded(void); 2177 2178 /* 2179 * Careful: do_each_thread/while_each_thread is a double loop so 2180 * 'break' will not work as expected - use goto instead. 2181 */ 2182 #define do_each_thread(g, t) \ 2183 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2184 2185 #define while_each_thread(g, t) \ 2186 while ((t = next_thread(t)) != g) 2187 2188 #define __for_each_thread(signal, t) \ 2189 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2190 2191 #define for_each_thread(p, t) \ 2192 __for_each_thread((p)->signal, t) 2193 2194 /* Careful: this is a double loop, 'break' won't work as expected. */ 2195 #define for_each_process_thread(p, t) \ 2196 for_each_process(p) for_each_thread(p, t) 2197 2198 static inline int get_nr_threads(struct task_struct *tsk) 2199 { 2200 return tsk->signal->nr_threads; 2201 } 2202 2203 static inline bool thread_group_leader(struct task_struct *p) 2204 { 2205 return p->exit_signal >= 0; 2206 } 2207 2208 /* Do to the insanities of de_thread it is possible for a process 2209 * to have the pid of the thread group leader without actually being 2210 * the thread group leader. For iteration through the pids in proc 2211 * all we care about is that we have a task with the appropriate 2212 * pid, we don't actually care if we have the right task. 2213 */ 2214 static inline bool has_group_leader_pid(struct task_struct *p) 2215 { 2216 return task_pid(p) == p->signal->leader_pid; 2217 } 2218 2219 static inline 2220 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2221 { 2222 return p1->signal == p2->signal; 2223 } 2224 2225 static inline struct task_struct *next_thread(const struct task_struct *p) 2226 { 2227 return list_entry_rcu(p->thread_group.next, 2228 struct task_struct, thread_group); 2229 } 2230 2231 static inline int thread_group_empty(struct task_struct *p) 2232 { 2233 return list_empty(&p->thread_group); 2234 } 2235 2236 #define delay_group_leader(p) \ 2237 (thread_group_leader(p) && !thread_group_empty(p)) 2238 2239 /* 2240 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2241 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2242 * pins the final release of task.io_context. Also protects ->cpuset and 2243 * ->cgroup.subsys[]. And ->vfork_done. 2244 * 2245 * Nests both inside and outside of read_lock(&tasklist_lock). 2246 * It must not be nested with write_lock_irq(&tasklist_lock), 2247 * neither inside nor outside. 2248 */ 2249 static inline void task_lock(struct task_struct *p) 2250 { 2251 spin_lock(&p->alloc_lock); 2252 } 2253 2254 static inline void task_unlock(struct task_struct *p) 2255 { 2256 spin_unlock(&p->alloc_lock); 2257 } 2258 2259 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2260 unsigned long *flags); 2261 2262 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2263 unsigned long *flags) 2264 { 2265 struct sighand_struct *ret; 2266 2267 ret = __lock_task_sighand(tsk, flags); 2268 (void)__cond_lock(&tsk->sighand->siglock, ret); 2269 return ret; 2270 } 2271 2272 static inline void unlock_task_sighand(struct task_struct *tsk, 2273 unsigned long *flags) 2274 { 2275 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2276 } 2277 2278 #ifdef CONFIG_CGROUPS 2279 static inline void threadgroup_change_begin(struct task_struct *tsk) 2280 { 2281 down_read(&tsk->signal->group_rwsem); 2282 } 2283 static inline void threadgroup_change_end(struct task_struct *tsk) 2284 { 2285 up_read(&tsk->signal->group_rwsem); 2286 } 2287 2288 /** 2289 * threadgroup_lock - lock threadgroup 2290 * @tsk: member task of the threadgroup to lock 2291 * 2292 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2293 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2294 * change ->group_leader/pid. This is useful for cases where the threadgroup 2295 * needs to stay stable across blockable operations. 2296 * 2297 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2298 * synchronization. While held, no new task will be added to threadgroup 2299 * and no existing live task will have its PF_EXITING set. 2300 * 2301 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2302 * sub-thread becomes a new leader. 2303 */ 2304 static inline void threadgroup_lock(struct task_struct *tsk) 2305 { 2306 down_write(&tsk->signal->group_rwsem); 2307 } 2308 2309 /** 2310 * threadgroup_unlock - unlock threadgroup 2311 * @tsk: member task of the threadgroup to unlock 2312 * 2313 * Reverse threadgroup_lock(). 2314 */ 2315 static inline void threadgroup_unlock(struct task_struct *tsk) 2316 { 2317 up_write(&tsk->signal->group_rwsem); 2318 } 2319 #else 2320 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2321 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2322 static inline void threadgroup_lock(struct task_struct *tsk) {} 2323 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2324 #endif 2325 2326 #ifndef __HAVE_THREAD_FUNCTIONS 2327 2328 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2329 #define task_stack_page(task) ((task)->stack) 2330 2331 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2332 { 2333 *task_thread_info(p) = *task_thread_info(org); 2334 task_thread_info(p)->task = p; 2335 } 2336 2337 static inline unsigned long *end_of_stack(struct task_struct *p) 2338 { 2339 return (unsigned long *)(task_thread_info(p) + 1); 2340 } 2341 2342 #endif 2343 2344 static inline int object_is_on_stack(void *obj) 2345 { 2346 void *stack = task_stack_page(current); 2347 2348 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2349 } 2350 2351 extern void thread_info_cache_init(void); 2352 2353 #ifdef CONFIG_DEBUG_STACK_USAGE 2354 static inline unsigned long stack_not_used(struct task_struct *p) 2355 { 2356 unsigned long *n = end_of_stack(p); 2357 2358 do { /* Skip over canary */ 2359 n++; 2360 } while (!*n); 2361 2362 return (unsigned long)n - (unsigned long)end_of_stack(p); 2363 } 2364 #endif 2365 2366 /* set thread flags in other task's structures 2367 * - see asm/thread_info.h for TIF_xxxx flags available 2368 */ 2369 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2370 { 2371 set_ti_thread_flag(task_thread_info(tsk), flag); 2372 } 2373 2374 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2375 { 2376 clear_ti_thread_flag(task_thread_info(tsk), flag); 2377 } 2378 2379 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2380 { 2381 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2382 } 2383 2384 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2385 { 2386 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2387 } 2388 2389 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2390 { 2391 return test_ti_thread_flag(task_thread_info(tsk), flag); 2392 } 2393 2394 static inline void set_tsk_need_resched(struct task_struct *tsk) 2395 { 2396 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2397 } 2398 2399 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2400 { 2401 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2402 } 2403 2404 static inline int test_tsk_need_resched(struct task_struct *tsk) 2405 { 2406 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2407 } 2408 2409 static inline int restart_syscall(void) 2410 { 2411 set_tsk_thread_flag(current, TIF_SIGPENDING); 2412 return -ERESTARTNOINTR; 2413 } 2414 2415 static inline int signal_pending(struct task_struct *p) 2416 { 2417 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2418 } 2419 2420 static inline int __fatal_signal_pending(struct task_struct *p) 2421 { 2422 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2423 } 2424 2425 static inline int fatal_signal_pending(struct task_struct *p) 2426 { 2427 return signal_pending(p) && __fatal_signal_pending(p); 2428 } 2429 2430 static inline int signal_pending_state(long state, struct task_struct *p) 2431 { 2432 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2433 return 0; 2434 if (!signal_pending(p)) 2435 return 0; 2436 2437 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2438 } 2439 2440 static inline int need_resched(void) 2441 { 2442 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2443 } 2444 2445 /* 2446 * cond_resched() and cond_resched_lock(): latency reduction via 2447 * explicit rescheduling in places that are safe. The return 2448 * value indicates whether a reschedule was done in fact. 2449 * cond_resched_lock() will drop the spinlock before scheduling, 2450 * cond_resched_softirq() will enable bhs before scheduling. 2451 */ 2452 extern int _cond_resched(void); 2453 2454 #define cond_resched() ({ \ 2455 __might_sleep(__FILE__, __LINE__, 0); \ 2456 _cond_resched(); \ 2457 }) 2458 2459 extern int __cond_resched_lock(spinlock_t *lock); 2460 2461 #ifdef CONFIG_PREEMPT_COUNT 2462 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2463 #else 2464 #define PREEMPT_LOCK_OFFSET 0 2465 #endif 2466 2467 #define cond_resched_lock(lock) ({ \ 2468 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2469 __cond_resched_lock(lock); \ 2470 }) 2471 2472 extern int __cond_resched_softirq(void); 2473 2474 #define cond_resched_softirq() ({ \ 2475 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2476 __cond_resched_softirq(); \ 2477 }) 2478 2479 /* 2480 * Does a critical section need to be broken due to another 2481 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2482 * but a general need for low latency) 2483 */ 2484 static inline int spin_needbreak(spinlock_t *lock) 2485 { 2486 #ifdef CONFIG_PREEMPT 2487 return spin_is_contended(lock); 2488 #else 2489 return 0; 2490 #endif 2491 } 2492 2493 /* 2494 * Idle thread specific functions to determine the need_resched 2495 * polling state. We have two versions, one based on TS_POLLING in 2496 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2497 * thread_info.flags 2498 */ 2499 #ifdef TS_POLLING 2500 static inline int tsk_is_polling(struct task_struct *p) 2501 { 2502 return task_thread_info(p)->status & TS_POLLING; 2503 } 2504 static inline void __current_set_polling(void) 2505 { 2506 current_thread_info()->status |= TS_POLLING; 2507 } 2508 2509 static inline bool __must_check current_set_polling_and_test(void) 2510 { 2511 __current_set_polling(); 2512 2513 /* 2514 * Polling state must be visible before we test NEED_RESCHED, 2515 * paired by resched_task() 2516 */ 2517 smp_mb(); 2518 2519 return unlikely(tif_need_resched()); 2520 } 2521 2522 static inline void __current_clr_polling(void) 2523 { 2524 current_thread_info()->status &= ~TS_POLLING; 2525 } 2526 2527 static inline bool __must_check current_clr_polling_and_test(void) 2528 { 2529 __current_clr_polling(); 2530 2531 /* 2532 * Polling state must be visible before we test NEED_RESCHED, 2533 * paired by resched_task() 2534 */ 2535 smp_mb(); 2536 2537 return unlikely(tif_need_resched()); 2538 } 2539 #elif defined(TIF_POLLING_NRFLAG) 2540 static inline int tsk_is_polling(struct task_struct *p) 2541 { 2542 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2543 } 2544 2545 static inline void __current_set_polling(void) 2546 { 2547 set_thread_flag(TIF_POLLING_NRFLAG); 2548 } 2549 2550 static inline bool __must_check current_set_polling_and_test(void) 2551 { 2552 __current_set_polling(); 2553 2554 /* 2555 * Polling state must be visible before we test NEED_RESCHED, 2556 * paired by resched_task() 2557 * 2558 * XXX: assumes set/clear bit are identical barrier wise. 2559 */ 2560 smp_mb__after_clear_bit(); 2561 2562 return unlikely(tif_need_resched()); 2563 } 2564 2565 static inline void __current_clr_polling(void) 2566 { 2567 clear_thread_flag(TIF_POLLING_NRFLAG); 2568 } 2569 2570 static inline bool __must_check current_clr_polling_and_test(void) 2571 { 2572 __current_clr_polling(); 2573 2574 /* 2575 * Polling state must be visible before we test NEED_RESCHED, 2576 * paired by resched_task() 2577 */ 2578 smp_mb__after_clear_bit(); 2579 2580 return unlikely(tif_need_resched()); 2581 } 2582 2583 #else 2584 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2585 static inline void __current_set_polling(void) { } 2586 static inline void __current_clr_polling(void) { } 2587 2588 static inline bool __must_check current_set_polling_and_test(void) 2589 { 2590 return unlikely(tif_need_resched()); 2591 } 2592 static inline bool __must_check current_clr_polling_and_test(void) 2593 { 2594 return unlikely(tif_need_resched()); 2595 } 2596 #endif 2597 2598 /* 2599 * Thread group CPU time accounting. 2600 */ 2601 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2602 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2603 2604 static inline void thread_group_cputime_init(struct signal_struct *sig) 2605 { 2606 raw_spin_lock_init(&sig->cputimer.lock); 2607 } 2608 2609 /* 2610 * Reevaluate whether the task has signals pending delivery. 2611 * Wake the task if so. 2612 * This is required every time the blocked sigset_t changes. 2613 * callers must hold sighand->siglock. 2614 */ 2615 extern void recalc_sigpending_and_wake(struct task_struct *t); 2616 extern void recalc_sigpending(void); 2617 2618 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2619 2620 static inline void signal_wake_up(struct task_struct *t, bool resume) 2621 { 2622 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2623 } 2624 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2625 { 2626 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2627 } 2628 2629 /* 2630 * Wrappers for p->thread_info->cpu access. No-op on UP. 2631 */ 2632 #ifdef CONFIG_SMP 2633 2634 static inline unsigned int task_cpu(const struct task_struct *p) 2635 { 2636 return task_thread_info(p)->cpu; 2637 } 2638 2639 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2640 2641 #else 2642 2643 static inline unsigned int task_cpu(const struct task_struct *p) 2644 { 2645 return 0; 2646 } 2647 2648 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2649 { 2650 } 2651 2652 #endif /* CONFIG_SMP */ 2653 2654 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2655 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2656 2657 #ifdef CONFIG_CGROUP_SCHED 2658 extern struct task_group root_task_group; 2659 #endif /* CONFIG_CGROUP_SCHED */ 2660 2661 extern int task_can_switch_user(struct user_struct *up, 2662 struct task_struct *tsk); 2663 2664 #ifdef CONFIG_TASK_XACCT 2665 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2666 { 2667 tsk->ioac.rchar += amt; 2668 } 2669 2670 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2671 { 2672 tsk->ioac.wchar += amt; 2673 } 2674 2675 static inline void inc_syscr(struct task_struct *tsk) 2676 { 2677 tsk->ioac.syscr++; 2678 } 2679 2680 static inline void inc_syscw(struct task_struct *tsk) 2681 { 2682 tsk->ioac.syscw++; 2683 } 2684 #else 2685 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2686 { 2687 } 2688 2689 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2690 { 2691 } 2692 2693 static inline void inc_syscr(struct task_struct *tsk) 2694 { 2695 } 2696 2697 static inline void inc_syscw(struct task_struct *tsk) 2698 { 2699 } 2700 #endif 2701 2702 #ifndef TASK_SIZE_OF 2703 #define TASK_SIZE_OF(tsk) TASK_SIZE 2704 #endif 2705 2706 #ifdef CONFIG_MM_OWNER 2707 extern void mm_update_next_owner(struct mm_struct *mm); 2708 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2709 #else 2710 static inline void mm_update_next_owner(struct mm_struct *mm) 2711 { 2712 } 2713 2714 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2715 { 2716 } 2717 #endif /* CONFIG_MM_OWNER */ 2718 2719 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2720 unsigned int limit) 2721 { 2722 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2723 } 2724 2725 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2726 unsigned int limit) 2727 { 2728 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2729 } 2730 2731 static inline unsigned long rlimit(unsigned int limit) 2732 { 2733 return task_rlimit(current, limit); 2734 } 2735 2736 static inline unsigned long rlimit_max(unsigned int limit) 2737 { 2738 return task_rlimit_max(current, limit); 2739 } 2740 2741 #endif 2742
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.