~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.15-rc5 ] ~ [ linux-5.14.11 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.72 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.152 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.210 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.250 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.286 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.288 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_H
  2 #define _LINUX_SCHED_H
  3 
  4 #include <uapi/linux/sched.h>
  5 
  6 
  7 struct ccs_domain_info;
  8 
  9 struct sched_param {
 10         int sched_priority;
 11 };
 12 
 13 #include <asm/param.h>  /* for HZ */
 14 
 15 #include <linux/capability.h>
 16 #include <linux/threads.h>
 17 #include <linux/kernel.h>
 18 #include <linux/types.h>
 19 #include <linux/timex.h>
 20 #include <linux/jiffies.h>
 21 #include <linux/rbtree.h>
 22 #include <linux/thread_info.h>
 23 #include <linux/cpumask.h>
 24 #include <linux/errno.h>
 25 #include <linux/nodemask.h>
 26 #include <linux/mm_types.h>
 27 
 28 #include <asm/page.h>
 29 #include <asm/ptrace.h>
 30 #include <asm/cputime.h>
 31 
 32 #include <linux/smp.h>
 33 #include <linux/sem.h>
 34 #include <linux/signal.h>
 35 #include <linux/compiler.h>
 36 #include <linux/completion.h>
 37 #include <linux/pid.h>
 38 #include <linux/percpu.h>
 39 #include <linux/topology.h>
 40 #include <linux/proportions.h>
 41 #include <linux/seccomp.h>
 42 #include <linux/rcupdate.h>
 43 #include <linux/rculist.h>
 44 #include <linux/rtmutex.h>
 45 
 46 #include <linux/time.h>
 47 #include <linux/param.h>
 48 #include <linux/resource.h>
 49 #include <linux/timer.h>
 50 #include <linux/hrtimer.h>
 51 #include <linux/task_io_accounting.h>
 52 #include <linux/latencytop.h>
 53 #include <linux/cred.h>
 54 #include <linux/llist.h>
 55 #include <linux/uidgid.h>
 56 #include <linux/gfp.h>
 57 
 58 #include <asm/processor.h>
 59 
 60 struct exec_domain;
 61 struct futex_pi_state;
 62 struct robust_list_head;
 63 struct bio_list;
 64 struct fs_struct;
 65 struct perf_event_context;
 66 struct blk_plug;
 67 
 68 /*
 69  * List of flags we want to share for kernel threads,
 70  * if only because they are not used by them anyway.
 71  */
 72 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 73 
 74 /*
 75  * These are the constant used to fake the fixed-point load-average
 76  * counting. Some notes:
 77  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 78  *    a load-average precision of 10 bits integer + 11 bits fractional
 79  *  - if you want to count load-averages more often, you need more
 80  *    precision, or rounding will get you. With 2-second counting freq,
 81  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 82  *    11 bit fractions.
 83  */
 84 extern unsigned long avenrun[];         /* Load averages */
 85 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 86 
 87 #define FSHIFT          11              /* nr of bits of precision */
 88 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 89 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 90 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 91 #define EXP_5           2014            /* 1/exp(5sec/5min) */
 92 #define EXP_15          2037            /* 1/exp(5sec/15min) */
 93 
 94 #define CALC_LOAD(load,exp,n) \
 95         load *= exp; \
 96         load += n*(FIXED_1-exp); \
 97         load >>= FSHIFT;
 98 
 99 extern unsigned long total_forks;
100 extern int nr_threads;
101 DECLARE_PER_CPU(unsigned long, process_counts);
102 extern int nr_processes(void);
103 extern unsigned long nr_running(void);
104 extern unsigned long nr_iowait(void);
105 extern unsigned long nr_iowait_cpu(int cpu);
106 extern unsigned long this_cpu_load(void);
107 
108 
109 extern void calc_global_load(unsigned long ticks);
110 extern void update_cpu_load_nohz(void);
111 
112 /* Notifier for when a task gets migrated to a new CPU */
113 struct task_migration_notifier {
114         struct task_struct *task;
115         int from_cpu;
116         int to_cpu;
117 };
118 extern void register_task_migration_notifier(struct notifier_block *n);
119 
120 extern unsigned long get_parent_ip(unsigned long addr);
121 
122 extern void dump_cpu_task(int cpu);
123 
124 struct seq_file;
125 struct cfs_rq;
126 struct task_group;
127 #ifdef CONFIG_SCHED_DEBUG
128 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
129 extern void proc_sched_set_task(struct task_struct *p);
130 extern void
131 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
132 #endif
133 
134 /*
135  * Task state bitmask. NOTE! These bits are also
136  * encoded in fs/proc/array.c: get_task_state().
137  *
138  * We have two separate sets of flags: task->state
139  * is about runnability, while task->exit_state are
140  * about the task exiting. Confusing, but this way
141  * modifying one set can't modify the other one by
142  * mistake.
143  */
144 #define TASK_RUNNING            0
145 #define TASK_INTERRUPTIBLE      1
146 #define TASK_UNINTERRUPTIBLE    2
147 #define __TASK_STOPPED          4
148 #define __TASK_TRACED           8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE             16
151 #define EXIT_DEAD               32
152 /* in tsk->state again */
153 #define TASK_DEAD               64
154 #define TASK_WAKEKILL           128
155 #define TASK_WAKING             256
156 #define TASK_PARKED             512
157 #define TASK_STATE_MAX          1024
158 
159 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
160 
161 extern char ___assert_task_state[1 - 2*!!(
162                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
163 
164 /* Convenience macros for the sake of set_task_state */
165 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
166 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
167 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
168 
169 /* Convenience macros for the sake of wake_up */
170 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
171 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
172 
173 /* get_task_state() */
174 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
175                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
176                                  __TASK_TRACED)
177 
178 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
179 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
180 #define task_is_dead(task)      ((task)->exit_state != 0)
181 #define task_is_stopped_or_traced(task) \
182                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
183 #define task_contributes_to_load(task)  \
184                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
185                                  (task->flags & PF_FROZEN) == 0)
186 
187 #define __set_task_state(tsk, state_value)              \
188         do { (tsk)->state = (state_value); } while (0)
189 #define set_task_state(tsk, state_value)                \
190         set_mb((tsk)->state, (state_value))
191 
192 /*
193  * set_current_state() includes a barrier so that the write of current->state
194  * is correctly serialised wrt the caller's subsequent test of whether to
195  * actually sleep:
196  *
197  *      set_current_state(TASK_UNINTERRUPTIBLE);
198  *      if (do_i_need_to_sleep())
199  *              schedule();
200  *
201  * If the caller does not need such serialisation then use __set_current_state()
202  */
203 #define __set_current_state(state_value)                        \
204         do { current->state = (state_value); } while (0)
205 #define set_current_state(state_value)          \
206         set_mb(current->state, (state_value))
207 
208 /* Task command name length */
209 #define TASK_COMM_LEN 16
210 
211 #include <linux/spinlock.h>
212 
213 /*
214  * This serializes "schedule()" and also protects
215  * the run-queue from deletions/modifications (but
216  * _adding_ to the beginning of the run-queue has
217  * a separate lock).
218  */
219 extern rwlock_t tasklist_lock;
220 extern spinlock_t mmlist_lock;
221 
222 struct task_struct;
223 
224 #ifdef CONFIG_PROVE_RCU
225 extern int lockdep_tasklist_lock_is_held(void);
226 #endif /* #ifdef CONFIG_PROVE_RCU */
227 
228 extern void sched_init(void);
229 extern void sched_init_smp(void);
230 extern asmlinkage void schedule_tail(struct task_struct *prev);
231 extern void init_idle(struct task_struct *idle, int cpu);
232 extern void init_idle_bootup_task(struct task_struct *idle);
233 
234 extern int runqueue_is_locked(int cpu);
235 
236 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
237 extern void nohz_balance_enter_idle(int cpu);
238 extern void set_cpu_sd_state_idle(void);
239 extern int get_nohz_timer_target(void);
240 #else
241 static inline void nohz_balance_enter_idle(int cpu) { }
242 static inline void set_cpu_sd_state_idle(void) { }
243 #endif
244 
245 /*
246  * Only dump TASK_* tasks. (0 for all tasks)
247  */
248 extern void show_state_filter(unsigned long state_filter);
249 
250 static inline void show_state(void)
251 {
252         show_state_filter(0);
253 }
254 
255 extern void show_regs(struct pt_regs *);
256 
257 /*
258  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
259  * task), SP is the stack pointer of the first frame that should be shown in the back
260  * trace (or NULL if the entire call-chain of the task should be shown).
261  */
262 extern void show_stack(struct task_struct *task, unsigned long *sp);
263 
264 void io_schedule(void);
265 long io_schedule_timeout(long timeout);
266 
267 extern void cpu_init (void);
268 extern void trap_init(void);
269 extern void update_process_times(int user);
270 extern void scheduler_tick(void);
271 
272 extern void sched_show_task(struct task_struct *p);
273 
274 #ifdef CONFIG_LOCKUP_DETECTOR
275 extern void touch_softlockup_watchdog(void);
276 extern void touch_softlockup_watchdog_sync(void);
277 extern void touch_all_softlockup_watchdogs(void);
278 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
279                                   void __user *buffer,
280                                   size_t *lenp, loff_t *ppos);
281 extern unsigned int  softlockup_panic;
282 void lockup_detector_init(void);
283 #else
284 static inline void touch_softlockup_watchdog(void)
285 {
286 }
287 static inline void touch_softlockup_watchdog_sync(void)
288 {
289 }
290 static inline void touch_all_softlockup_watchdogs(void)
291 {
292 }
293 static inline void lockup_detector_init(void)
294 {
295 }
296 #endif
297 
298 /* Attach to any functions which should be ignored in wchan output. */
299 #define __sched         __attribute__((__section__(".sched.text")))
300 
301 /* Linker adds these: start and end of __sched functions */
302 extern char __sched_text_start[], __sched_text_end[];
303 
304 /* Is this address in the __sched functions? */
305 extern int in_sched_functions(unsigned long addr);
306 
307 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
308 extern signed long schedule_timeout(signed long timeout);
309 extern signed long schedule_timeout_interruptible(signed long timeout);
310 extern signed long schedule_timeout_killable(signed long timeout);
311 extern signed long schedule_timeout_uninterruptible(signed long timeout);
312 asmlinkage void schedule(void);
313 extern void schedule_preempt_disabled(void);
314 
315 struct nsproxy;
316 struct user_namespace;
317 
318 #ifdef CONFIG_MMU
319 extern void arch_pick_mmap_layout(struct mm_struct *mm);
320 extern unsigned long
321 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
322                        unsigned long, unsigned long);
323 extern unsigned long
324 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
325                           unsigned long len, unsigned long pgoff,
326                           unsigned long flags);
327 extern void arch_unmap_area(struct mm_struct *, unsigned long);
328 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
329 #else
330 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
331 #endif
332 
333 
334 extern void set_dumpable(struct mm_struct *mm, int value);
335 extern int get_dumpable(struct mm_struct *mm);
336 
337 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
338 #define SUID_DUMP_USER          1       /* Dump as user of process */
339 #define SUID_DUMP_ROOT          2       /* Dump as root */
340 
341 /* mm flags */
342 /* dumpable bits */
343 #define MMF_DUMPABLE      0  /* core dump is permitted */
344 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
345 
346 #define MMF_DUMPABLE_BITS 2
347 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
348 
349 /* coredump filter bits */
350 #define MMF_DUMP_ANON_PRIVATE   2
351 #define MMF_DUMP_ANON_SHARED    3
352 #define MMF_DUMP_MAPPED_PRIVATE 4
353 #define MMF_DUMP_MAPPED_SHARED  5
354 #define MMF_DUMP_ELF_HEADERS    6
355 #define MMF_DUMP_HUGETLB_PRIVATE 7
356 #define MMF_DUMP_HUGETLB_SHARED  8
357 
358 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
359 #define MMF_DUMP_FILTER_BITS    7
360 #define MMF_DUMP_FILTER_MASK \
361         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
362 #define MMF_DUMP_FILTER_DEFAULT \
363         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
364          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
365 
366 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
367 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
368 #else
369 # define MMF_DUMP_MASK_DEFAULT_ELF      0
370 #endif
371                                         /* leave room for more dump flags */
372 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
373 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
374 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
375 
376 #define MMF_HAS_UPROBES         19      /* has uprobes */
377 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
378 
379 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
380 
381 struct sighand_struct {
382         atomic_t                count;
383         struct k_sigaction      action[_NSIG];
384         spinlock_t              siglock;
385         wait_queue_head_t       signalfd_wqh;
386 };
387 
388 struct pacct_struct {
389         int                     ac_flag;
390         long                    ac_exitcode;
391         unsigned long           ac_mem;
392         cputime_t               ac_utime, ac_stime;
393         unsigned long           ac_minflt, ac_majflt;
394 };
395 
396 struct cpu_itimer {
397         cputime_t expires;
398         cputime_t incr;
399         u32 error;
400         u32 incr_error;
401 };
402 
403 /**
404  * struct cputime - snaphsot of system and user cputime
405  * @utime: time spent in user mode
406  * @stime: time spent in system mode
407  *
408  * Gathers a generic snapshot of user and system time.
409  */
410 struct cputime {
411         cputime_t utime;
412         cputime_t stime;
413 };
414 
415 /**
416  * struct task_cputime - collected CPU time counts
417  * @utime:              time spent in user mode, in &cputime_t units
418  * @stime:              time spent in kernel mode, in &cputime_t units
419  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
420  *
421  * This is an extension of struct cputime that includes the total runtime
422  * spent by the task from the scheduler point of view.
423  *
424  * As a result, this structure groups together three kinds of CPU time
425  * that are tracked for threads and thread groups.  Most things considering
426  * CPU time want to group these counts together and treat all three
427  * of them in parallel.
428  */
429 struct task_cputime {
430         cputime_t utime;
431         cputime_t stime;
432         unsigned long long sum_exec_runtime;
433 };
434 /* Alternate field names when used to cache expirations. */
435 #define prof_exp        stime
436 #define virt_exp        utime
437 #define sched_exp       sum_exec_runtime
438 
439 #define INIT_CPUTIME    \
440         (struct task_cputime) {                                 \
441                 .utime = 0,                                     \
442                 .stime = 0,                                     \
443                 .sum_exec_runtime = 0,                          \
444         }
445 
446 /*
447  * Disable preemption until the scheduler is running.
448  * Reset by start_kernel()->sched_init()->init_idle().
449  *
450  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
451  * before the scheduler is active -- see should_resched().
452  */
453 #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
454 
455 /**
456  * struct thread_group_cputimer - thread group interval timer counts
457  * @cputime:            thread group interval timers.
458  * @running:            non-zero when there are timers running and
459  *                      @cputime receives updates.
460  * @lock:               lock for fields in this struct.
461  *
462  * This structure contains the version of task_cputime, above, that is
463  * used for thread group CPU timer calculations.
464  */
465 struct thread_group_cputimer {
466         struct task_cputime cputime;
467         int running;
468         raw_spinlock_t lock;
469 };
470 
471 #include <linux/rwsem.h>
472 struct autogroup;
473 
474 /*
475  * NOTE! "signal_struct" does not have its own
476  * locking, because a shared signal_struct always
477  * implies a shared sighand_struct, so locking
478  * sighand_struct is always a proper superset of
479  * the locking of signal_struct.
480  */
481 struct signal_struct {
482         atomic_t                sigcnt;
483         atomic_t                live;
484         int                     nr_threads;
485         struct list_head        thread_head;
486 
487         wait_queue_head_t       wait_chldexit;  /* for wait4() */
488 
489         /* current thread group signal load-balancing target: */
490         struct task_struct      *curr_target;
491 
492         /* shared signal handling: */
493         struct sigpending       shared_pending;
494 
495         /* thread group exit support */
496         int                     group_exit_code;
497         /* overloaded:
498          * - notify group_exit_task when ->count is equal to notify_count
499          * - everyone except group_exit_task is stopped during signal delivery
500          *   of fatal signals, group_exit_task processes the signal.
501          */
502         int                     notify_count;
503         struct task_struct      *group_exit_task;
504 
505         /* thread group stop support, overloads group_exit_code too */
506         int                     group_stop_count;
507         unsigned int            flags; /* see SIGNAL_* flags below */
508 
509         /*
510          * PR_SET_CHILD_SUBREAPER marks a process, like a service
511          * manager, to re-parent orphan (double-forking) child processes
512          * to this process instead of 'init'. The service manager is
513          * able to receive SIGCHLD signals and is able to investigate
514          * the process until it calls wait(). All children of this
515          * process will inherit a flag if they should look for a
516          * child_subreaper process at exit.
517          */
518         unsigned int            is_child_subreaper:1;
519         unsigned int            has_child_subreaper:1;
520 
521         /* POSIX.1b Interval Timers */
522         int                     posix_timer_id;
523         struct list_head        posix_timers;
524 
525         /* ITIMER_REAL timer for the process */
526         struct hrtimer real_timer;
527         struct pid *leader_pid;
528         ktime_t it_real_incr;
529 
530         /*
531          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
532          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
533          * values are defined to 0 and 1 respectively
534          */
535         struct cpu_itimer it[2];
536 
537         /*
538          * Thread group totals for process CPU timers.
539          * See thread_group_cputimer(), et al, for details.
540          */
541         struct thread_group_cputimer cputimer;
542 
543         /* Earliest-expiration cache. */
544         struct task_cputime cputime_expires;
545 
546         struct list_head cpu_timers[3];
547 
548         struct pid *tty_old_pgrp;
549 
550         /* boolean value for session group leader */
551         int leader;
552 
553         struct tty_struct *tty; /* NULL if no tty */
554 
555 #ifdef CONFIG_SCHED_AUTOGROUP
556         struct autogroup *autogroup;
557 #endif
558         /*
559          * Cumulative resource counters for dead threads in the group,
560          * and for reaped dead child processes forked by this group.
561          * Live threads maintain their own counters and add to these
562          * in __exit_signal, except for the group leader.
563          */
564         cputime_t utime, stime, cutime, cstime;
565         cputime_t gtime;
566         cputime_t cgtime;
567 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
568         struct cputime prev_cputime;
569 #endif
570         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
571         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
572         unsigned long inblock, oublock, cinblock, coublock;
573         unsigned long maxrss, cmaxrss;
574         struct task_io_accounting ioac;
575 
576         /*
577          * Cumulative ns of schedule CPU time fo dead threads in the
578          * group, not including a zombie group leader, (This only differs
579          * from jiffies_to_ns(utime + stime) if sched_clock uses something
580          * other than jiffies.)
581          */
582         unsigned long long sum_sched_runtime;
583 
584         /*
585          * We don't bother to synchronize most readers of this at all,
586          * because there is no reader checking a limit that actually needs
587          * to get both rlim_cur and rlim_max atomically, and either one
588          * alone is a single word that can safely be read normally.
589          * getrlimit/setrlimit use task_lock(current->group_leader) to
590          * protect this instead of the siglock, because they really
591          * have no need to disable irqs.
592          */
593         struct rlimit rlim[RLIM_NLIMITS];
594 
595 #ifdef CONFIG_BSD_PROCESS_ACCT
596         struct pacct_struct pacct;      /* per-process accounting information */
597 #endif
598 #ifdef CONFIG_TASKSTATS
599         struct taskstats *stats;
600 #endif
601 #ifdef CONFIG_AUDIT
602         unsigned audit_tty;
603         unsigned audit_tty_log_passwd;
604         struct tty_audit_buf *tty_audit_buf;
605 #endif
606 #ifdef CONFIG_CGROUPS
607         /*
608          * group_rwsem prevents new tasks from entering the threadgroup and
609          * member tasks from exiting,a more specifically, setting of
610          * PF_EXITING.  fork and exit paths are protected with this rwsem
611          * using threadgroup_change_begin/end().  Users which require
612          * threadgroup to remain stable should use threadgroup_[un]lock()
613          * which also takes care of exec path.  Currently, cgroup is the
614          * only user.
615          */
616         struct rw_semaphore group_rwsem;
617 #endif
618 
619         oom_flags_t oom_flags;
620         short oom_score_adj;            /* OOM kill score adjustment */
621         short oom_score_adj_min;        /* OOM kill score adjustment min value.
622                                          * Only settable by CAP_SYS_RESOURCE. */
623 
624         struct mutex cred_guard_mutex;  /* guard against foreign influences on
625                                          * credential calculations
626                                          * (notably. ptrace) */
627 };
628 
629 /*
630  * Bits in flags field of signal_struct.
631  */
632 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
633 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
634 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
635 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
636 /*
637  * Pending notifications to parent.
638  */
639 #define SIGNAL_CLD_STOPPED      0x00000010
640 #define SIGNAL_CLD_CONTINUED    0x00000020
641 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
642 
643 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
644 
645 /* If true, all threads except ->group_exit_task have pending SIGKILL */
646 static inline int signal_group_exit(const struct signal_struct *sig)
647 {
648         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
649                 (sig->group_exit_task != NULL);
650 }
651 
652 /*
653  * Some day this will be a full-fledged user tracking system..
654  */
655 struct user_struct {
656         atomic_t __count;       /* reference count */
657         atomic_t processes;     /* How many processes does this user have? */
658         atomic_t files;         /* How many open files does this user have? */
659         atomic_t sigpending;    /* How many pending signals does this user have? */
660 #ifdef CONFIG_INOTIFY_USER
661         atomic_t inotify_watches; /* How many inotify watches does this user have? */
662         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
663 #endif
664 #ifdef CONFIG_FANOTIFY
665         atomic_t fanotify_listeners;
666 #endif
667 #ifdef CONFIG_EPOLL
668         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
669 #endif
670 #ifdef CONFIG_POSIX_MQUEUE
671         /* protected by mq_lock */
672         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
673 #endif
674         unsigned long locked_shm; /* How many pages of mlocked shm ? */
675         unsigned long unix_inflight;    /* How many files in flight in unix sockets */
676         atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
677 
678 #ifdef CONFIG_KEYS
679         struct key *uid_keyring;        /* UID specific keyring */
680         struct key *session_keyring;    /* UID's default session keyring */
681 #endif
682 
683         /* Hash table maintenance information */
684         struct hlist_node uidhash_node;
685         kuid_t uid;
686 
687 #ifdef CONFIG_PERF_EVENTS
688         atomic_long_t locked_vm;
689 #endif
690 };
691 
692 extern int uids_sysfs_init(void);
693 
694 extern struct user_struct *find_user(kuid_t);
695 
696 extern struct user_struct root_user;
697 #define INIT_USER (&root_user)
698 
699 
700 struct backing_dev_info;
701 struct reclaim_state;
702 
703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704 struct sched_info {
705         /* cumulative counters */
706         unsigned long pcount;         /* # of times run on this cpu */
707         unsigned long long run_delay; /* time spent waiting on a runqueue */
708 
709         /* timestamps */
710         unsigned long long last_arrival,/* when we last ran on a cpu */
711                            last_queued; /* when we were last queued to run */
712 };
713 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
714 
715 #ifdef CONFIG_TASK_DELAY_ACCT
716 struct task_delay_info {
717         spinlock_t      lock;
718         unsigned int    flags;  /* Private per-task flags */
719 
720         /* For each stat XXX, add following, aligned appropriately
721          *
722          * struct timespec XXX_start, XXX_end;
723          * u64 XXX_delay;
724          * u32 XXX_count;
725          *
726          * Atomicity of updates to XXX_delay, XXX_count protected by
727          * single lock above (split into XXX_lock if contention is an issue).
728          */
729 
730         /*
731          * XXX_count is incremented on every XXX operation, the delay
732          * associated with the operation is added to XXX_delay.
733          * XXX_delay contains the accumulated delay time in nanoseconds.
734          */
735         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
736         u64 blkio_delay;        /* wait for sync block io completion */
737         u64 swapin_delay;       /* wait for swapin block io completion */
738         u32 blkio_count;        /* total count of the number of sync block */
739                                 /* io operations performed */
740         u32 swapin_count;       /* total count of the number of swapin block */
741                                 /* io operations performed */
742 
743         struct timespec freepages_start, freepages_end;
744         u64 freepages_delay;    /* wait for memory reclaim */
745         u32 freepages_count;    /* total count of memory reclaim */
746 };
747 #endif  /* CONFIG_TASK_DELAY_ACCT */
748 
749 static inline int sched_info_on(void)
750 {
751 #ifdef CONFIG_SCHEDSTATS
752         return 1;
753 #elif defined(CONFIG_TASK_DELAY_ACCT)
754         extern int delayacct_on;
755         return delayacct_on;
756 #else
757         return 0;
758 #endif
759 }
760 
761 enum cpu_idle_type {
762         CPU_IDLE,
763         CPU_NOT_IDLE,
764         CPU_NEWLY_IDLE,
765         CPU_MAX_IDLE_TYPES
766 };
767 
768 /*
769  * Increase resolution of cpu_power calculations
770  */
771 #define SCHED_POWER_SHIFT       10
772 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
773 
774 /*
775  * sched-domains (multiprocessor balancing) declarations:
776  */
777 #ifdef CONFIG_SMP
778 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
779 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
780 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
781 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
782 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
783 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
784 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
785 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
786 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
787 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
788 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
789 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
790 
791 extern int __weak arch_sd_sibiling_asym_packing(void);
792 
793 struct sched_domain_attr {
794         int relax_domain_level;
795 };
796 
797 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
798         .relax_domain_level = -1,                       \
799 }
800 
801 extern int sched_domain_level_max;
802 
803 struct sched_group;
804 
805 struct sched_domain {
806         /* These fields must be setup */
807         struct sched_domain *parent;    /* top domain must be null terminated */
808         struct sched_domain *child;     /* bottom domain must be null terminated */
809         struct sched_group *groups;     /* the balancing groups of the domain */
810         unsigned long min_interval;     /* Minimum balance interval ms */
811         unsigned long max_interval;     /* Maximum balance interval ms */
812         unsigned int busy_factor;       /* less balancing by factor if busy */
813         unsigned int imbalance_pct;     /* No balance until over watermark */
814         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
815         unsigned int busy_idx;
816         unsigned int idle_idx;
817         unsigned int newidle_idx;
818         unsigned int wake_idx;
819         unsigned int forkexec_idx;
820         unsigned int smt_gain;
821 
822         int nohz_idle;                  /* NOHZ IDLE status */
823         int flags;                      /* See SD_* */
824         int level;
825 
826         /* Runtime fields. */
827         unsigned long last_balance;     /* init to jiffies. units in jiffies */
828         unsigned int balance_interval;  /* initialise to 1. units in ms. */
829         unsigned int nr_balance_failed; /* initialise to 0 */
830 
831         u64 last_update;
832 
833 #ifdef CONFIG_SCHEDSTATS
834         /* load_balance() stats */
835         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
836         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
837         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
838         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
839         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
840         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
841         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
842         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
843 
844         /* Active load balancing */
845         unsigned int alb_count;
846         unsigned int alb_failed;
847         unsigned int alb_pushed;
848 
849         /* SD_BALANCE_EXEC stats */
850         unsigned int sbe_count;
851         unsigned int sbe_balanced;
852         unsigned int sbe_pushed;
853 
854         /* SD_BALANCE_FORK stats */
855         unsigned int sbf_count;
856         unsigned int sbf_balanced;
857         unsigned int sbf_pushed;
858 
859         /* try_to_wake_up() stats */
860         unsigned int ttwu_wake_remote;
861         unsigned int ttwu_move_affine;
862         unsigned int ttwu_move_balance;
863 #endif
864 #ifdef CONFIG_SCHED_DEBUG
865         char *name;
866 #endif
867         union {
868                 void *private;          /* used during construction */
869                 struct rcu_head rcu;    /* used during destruction */
870         };
871 
872         unsigned int span_weight;
873         /*
874          * Span of all CPUs in this domain.
875          *
876          * NOTE: this field is variable length. (Allocated dynamically
877          * by attaching extra space to the end of the structure,
878          * depending on how many CPUs the kernel has booted up with)
879          */
880         unsigned long span[0];
881 };
882 
883 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
884 {
885         return to_cpumask(sd->span);
886 }
887 
888 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
889                                     struct sched_domain_attr *dattr_new);
890 
891 /* Allocate an array of sched domains, for partition_sched_domains(). */
892 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
893 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
894 
895 bool cpus_share_cache(int this_cpu, int that_cpu);
896 
897 #else /* CONFIG_SMP */
898 
899 struct sched_domain_attr;
900 
901 static inline void
902 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
903                         struct sched_domain_attr *dattr_new)
904 {
905 }
906 
907 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
908 {
909         return true;
910 }
911 
912 #endif  /* !CONFIG_SMP */
913 
914 
915 struct io_context;                      /* See blkdev.h */
916 
917 
918 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
919 extern void prefetch_stack(struct task_struct *t);
920 #else
921 static inline void prefetch_stack(struct task_struct *t) { }
922 #endif
923 
924 struct audit_context;           /* See audit.c */
925 struct mempolicy;
926 struct pipe_inode_info;
927 struct uts_namespace;
928 
929 struct load_weight {
930         unsigned long weight, inv_weight;
931 };
932 
933 struct sched_avg {
934         /*
935          * These sums represent an infinite geometric series and so are bound
936          * above by 1024/(1-y).  Thus we only need a u32 to store them for for all
937          * choices of y < 1-2^(-32)*1024.
938          */
939         u32 runnable_avg_sum, runnable_avg_period;
940         u64 last_runnable_update;
941         s64 decay_count;
942         unsigned long load_avg_contrib;
943 };
944 
945 #ifdef CONFIG_SCHEDSTATS
946 struct sched_statistics {
947         u64                     wait_start;
948         u64                     wait_max;
949         u64                     wait_count;
950         u64                     wait_sum;
951         u64                     iowait_count;
952         u64                     iowait_sum;
953 
954         u64                     sleep_start;
955         u64                     sleep_max;
956         s64                     sum_sleep_runtime;
957 
958         u64                     block_start;
959         u64                     block_max;
960         u64                     exec_max;
961         u64                     slice_max;
962 
963         u64                     nr_migrations_cold;
964         u64                     nr_failed_migrations_affine;
965         u64                     nr_failed_migrations_running;
966         u64                     nr_failed_migrations_hot;
967         u64                     nr_forced_migrations;
968 
969         u64                     nr_wakeups;
970         u64                     nr_wakeups_sync;
971         u64                     nr_wakeups_migrate;
972         u64                     nr_wakeups_local;
973         u64                     nr_wakeups_remote;
974         u64                     nr_wakeups_affine;
975         u64                     nr_wakeups_affine_attempts;
976         u64                     nr_wakeups_passive;
977         u64                     nr_wakeups_idle;
978 };
979 #endif
980 
981 struct sched_entity {
982         struct load_weight      load;           /* for load-balancing */
983         struct rb_node          run_node;
984         struct list_head        group_node;
985         unsigned int            on_rq;
986 
987         u64                     exec_start;
988         u64                     sum_exec_runtime;
989         u64                     vruntime;
990         u64                     prev_sum_exec_runtime;
991 
992         u64                     nr_migrations;
993 
994 #ifdef CONFIG_SCHEDSTATS
995         struct sched_statistics statistics;
996 #endif
997 
998 #ifdef CONFIG_FAIR_GROUP_SCHED
999         struct sched_entity     *parent;
1000         /* rq on which this entity is (to be) queued: */
1001         struct cfs_rq           *cfs_rq;
1002         /* rq "owned" by this entity/group: */
1003         struct cfs_rq           *my_q;
1004 #endif
1005 
1006 /*
1007  * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1008  * removed when useful for applications beyond shares distribution (e.g.
1009  * load-balance).
1010  */
1011 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1012         /* Per-entity load-tracking */
1013         struct sched_avg        avg;
1014 #endif
1015 };
1016 
1017 struct sched_rt_entity {
1018         struct list_head run_list;
1019         unsigned long timeout;
1020         unsigned long watchdog_stamp;
1021         unsigned int time_slice;
1022 
1023         struct sched_rt_entity *back;
1024 #ifdef CONFIG_RT_GROUP_SCHED
1025         struct sched_rt_entity  *parent;
1026         /* rq on which this entity is (to be) queued: */
1027         struct rt_rq            *rt_rq;
1028         /* rq "owned" by this entity/group: */
1029         struct rt_rq            *my_q;
1030 #endif
1031 };
1032 
1033 
1034 struct rcu_node;
1035 
1036 enum perf_event_task_context {
1037         perf_invalid_context = -1,
1038         perf_hw_context = 0,
1039         perf_sw_context,
1040         perf_nr_task_contexts,
1041 };
1042 
1043 struct task_struct {
1044         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1045         void *stack;
1046         atomic_t usage;
1047         unsigned int flags;     /* per process flags, defined below */
1048         unsigned int ptrace;
1049 
1050 #ifdef CONFIG_SMP
1051         struct llist_node wake_entry;
1052         int on_cpu;
1053 #endif
1054         int on_rq;
1055 
1056         int prio, static_prio, normal_prio;
1057         unsigned int rt_priority;
1058         const struct sched_class *sched_class;
1059         struct sched_entity se;
1060         struct sched_rt_entity rt;
1061 #ifdef CONFIG_CGROUP_SCHED
1062         struct task_group *sched_task_group;
1063 #endif
1064 
1065 #ifdef CONFIG_PREEMPT_NOTIFIERS
1066         /* list of struct preempt_notifier: */
1067         struct hlist_head preempt_notifiers;
1068 #endif
1069 
1070         /*
1071          * fpu_counter contains the number of consecutive context switches
1072          * that the FPU is used. If this is over a threshold, the lazy fpu
1073          * saving becomes unlazy to save the trap. This is an unsigned char
1074          * so that after 256 times the counter wraps and the behavior turns
1075          * lazy again; this to deal with bursty apps that only use FPU for
1076          * a short time
1077          */
1078         unsigned char fpu_counter;
1079 #ifdef CONFIG_BLK_DEV_IO_TRACE
1080         unsigned int btrace_seq;
1081 #endif
1082 
1083         unsigned int policy;
1084         int nr_cpus_allowed;
1085         cpumask_t cpus_allowed;
1086 
1087 #ifdef CONFIG_PREEMPT_RCU
1088         int rcu_read_lock_nesting;
1089         char rcu_read_unlock_special;
1090         struct list_head rcu_node_entry;
1091 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1092 #ifdef CONFIG_TREE_PREEMPT_RCU
1093         struct rcu_node *rcu_blocked_node;
1094 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1095 #ifdef CONFIG_RCU_BOOST
1096         struct rt_mutex *rcu_boost_mutex;
1097 #endif /* #ifdef CONFIG_RCU_BOOST */
1098 
1099 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1100         struct sched_info sched_info;
1101 #endif
1102 
1103         struct list_head tasks;
1104 #ifdef CONFIG_SMP
1105         struct plist_node pushable_tasks;
1106 #endif
1107 
1108         struct mm_struct *mm, *active_mm;
1109 #ifdef CONFIG_COMPAT_BRK
1110         unsigned brk_randomized:1;
1111 #endif
1112 #if defined(SPLIT_RSS_COUNTING)
1113         struct task_rss_stat    rss_stat;
1114 #endif
1115 /* task state */
1116         int exit_state;
1117         int exit_code, exit_signal;
1118         int pdeath_signal;  /*  The signal sent when the parent dies  */
1119         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1120 
1121         /* Used for emulating ABI behavior of previous Linux versions */
1122         unsigned int personality;
1123 
1124         unsigned did_exec:1;
1125         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1126                                  * execve */
1127         unsigned in_iowait:1;
1128 
1129         /* task may not gain privileges */
1130         unsigned no_new_privs:1;
1131 
1132         /* Revert to default priority/policy when forking */
1133         unsigned sched_reset_on_fork:1;
1134         unsigned sched_contributes_to_load:1;
1135 
1136         pid_t pid;
1137         pid_t tgid;
1138 
1139 #ifdef CONFIG_CC_STACKPROTECTOR
1140         /* Canary value for the -fstack-protector gcc feature */
1141         unsigned long stack_canary;
1142 #endif
1143         /*
1144          * pointers to (original) parent process, youngest child, younger sibling,
1145          * older sibling, respectively.  (p->father can be replaced with
1146          * p->real_parent->pid)
1147          */
1148         struct task_struct __rcu *real_parent; /* real parent process */
1149         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1150         /*
1151          * children/sibling forms the list of my natural children
1152          */
1153         struct list_head children;      /* list of my children */
1154         struct list_head sibling;       /* linkage in my parent's children list */
1155         struct task_struct *group_leader;       /* threadgroup leader */
1156 
1157         /*
1158          * ptraced is the list of tasks this task is using ptrace on.
1159          * This includes both natural children and PTRACE_ATTACH targets.
1160          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1161          */
1162         struct list_head ptraced;
1163         struct list_head ptrace_entry;
1164 
1165         /* PID/PID hash table linkage. */
1166         struct pid_link pids[PIDTYPE_MAX];
1167         struct list_head thread_group;
1168         struct list_head thread_node;
1169 
1170         struct completion *vfork_done;          /* for vfork() */
1171         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1172         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1173 
1174         cputime_t utime, stime, utimescaled, stimescaled;
1175         cputime_t gtime;
1176 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1177         struct cputime prev_cputime;
1178 #endif
1179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1180         seqlock_t vtime_seqlock;
1181         unsigned long long vtime_snap;
1182         enum {
1183                 VTIME_SLEEPING = 0,
1184                 VTIME_USER,
1185                 VTIME_SYS,
1186         } vtime_snap_whence;
1187 #endif
1188         unsigned long nvcsw, nivcsw; /* context switch counts */
1189         struct timespec start_time;             /* monotonic time */
1190         struct timespec real_start_time;        /* boot based time */
1191 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1192         unsigned long min_flt, maj_flt;
1193 
1194         struct task_cputime cputime_expires;
1195         struct list_head cpu_timers[3];
1196 
1197 /* process credentials */
1198         const struct cred __rcu *real_cred; /* objective and real subjective task
1199                                          * credentials (COW) */
1200         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1201                                          * credentials (COW) */
1202         char comm[TASK_COMM_LEN]; /* executable name excluding path
1203                                      - access with [gs]et_task_comm (which lock
1204                                        it with task_lock())
1205                                      - initialized normally by setup_new_exec */
1206 /* file system info */
1207         int link_count, total_link_count;
1208 #ifdef CONFIG_SYSVIPC
1209 /* ipc stuff */
1210         struct sysv_sem sysvsem;
1211 #endif
1212 #ifdef CONFIG_DETECT_HUNG_TASK
1213 /* hung task detection */
1214         unsigned long last_switch_count;
1215 #endif
1216 /* CPU-specific state of this task */
1217         struct thread_struct thread;
1218 /* filesystem information */
1219         struct fs_struct *fs;
1220 /* open file information */
1221         struct files_struct *files;
1222 /* namespaces */
1223         struct nsproxy *nsproxy;
1224 /* signal handlers */
1225         struct signal_struct *signal;
1226         struct sighand_struct *sighand;
1227 
1228         sigset_t blocked, real_blocked;
1229         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1230         struct sigpending pending;
1231 
1232         unsigned long sas_ss_sp;
1233         size_t sas_ss_size;
1234         int (*notifier)(void *priv);
1235         void *notifier_data;
1236         sigset_t *notifier_mask;
1237         struct callback_head *task_works;
1238 
1239         struct audit_context *audit_context;
1240 #ifdef CONFIG_AUDITSYSCALL
1241         kuid_t loginuid;
1242         unsigned int sessionid;
1243 #endif
1244         struct seccomp seccomp;
1245 
1246 /* Thread group tracking */
1247         u32 parent_exec_id;
1248         u32 self_exec_id;
1249 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1250  * mempolicy */
1251         spinlock_t alloc_lock;
1252 
1253         /* Protection of the PI data structures: */
1254         raw_spinlock_t pi_lock;
1255 
1256 #ifdef CONFIG_RT_MUTEXES
1257         /* PI waiters blocked on a rt_mutex held by this task */
1258         struct plist_head pi_waiters;
1259         /* Deadlock detection and priority inheritance handling */
1260         struct rt_mutex_waiter *pi_blocked_on;
1261 #endif
1262 
1263 #ifdef CONFIG_DEBUG_MUTEXES
1264         /* mutex deadlock detection */
1265         struct mutex_waiter *blocked_on;
1266 #endif
1267 #ifdef CONFIG_TRACE_IRQFLAGS
1268         unsigned int irq_events;
1269         unsigned long hardirq_enable_ip;
1270         unsigned long hardirq_disable_ip;
1271         unsigned int hardirq_enable_event;
1272         unsigned int hardirq_disable_event;
1273         int hardirqs_enabled;
1274         int hardirq_context;
1275         unsigned long softirq_disable_ip;
1276         unsigned long softirq_enable_ip;
1277         unsigned int softirq_disable_event;
1278         unsigned int softirq_enable_event;
1279         int softirqs_enabled;
1280         int softirq_context;
1281 #endif
1282 #ifdef CONFIG_LOCKDEP
1283 # define MAX_LOCK_DEPTH 48UL
1284         u64 curr_chain_key;
1285         int lockdep_depth;
1286         unsigned int lockdep_recursion;
1287         struct held_lock held_locks[MAX_LOCK_DEPTH];
1288         gfp_t lockdep_reclaim_gfp;
1289 #endif
1290 
1291 /* journalling filesystem info */
1292         void *journal_info;
1293 
1294 /* stacked block device info */
1295         struct bio_list *bio_list;
1296 
1297 #ifdef CONFIG_BLOCK
1298 /* stack plugging */
1299         struct blk_plug *plug;
1300 #endif
1301 
1302 /* VM state */
1303         struct reclaim_state *reclaim_state;
1304 
1305         struct backing_dev_info *backing_dev_info;
1306 
1307         struct io_context *io_context;
1308 
1309         unsigned long ptrace_message;
1310         siginfo_t *last_siginfo; /* For ptrace use.  */
1311         struct task_io_accounting ioac;
1312 #if defined(CONFIG_TASK_XACCT)
1313         u64 acct_rss_mem1;      /* accumulated rss usage */
1314         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1315         cputime_t acct_timexpd; /* stime + utime since last update */
1316 #endif
1317 #ifdef CONFIG_CPUSETS
1318         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1319         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1320         int cpuset_mem_spread_rotor;
1321         int cpuset_slab_spread_rotor;
1322 #endif
1323 #ifdef CONFIG_CGROUPS
1324         /* Control Group info protected by css_set_lock */
1325         struct css_set __rcu *cgroups;
1326         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1327         struct list_head cg_list;
1328 #endif
1329 #ifdef CONFIG_FUTEX
1330         struct robust_list_head __user *robust_list;
1331 #ifdef CONFIG_COMPAT
1332         struct compat_robust_list_head __user *compat_robust_list;
1333 #endif
1334         struct list_head pi_state_list;
1335         struct futex_pi_state *pi_state_cache;
1336 #endif
1337 #ifdef CONFIG_PERF_EVENTS
1338         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1339         struct mutex perf_event_mutex;
1340         struct list_head perf_event_list;
1341 #endif
1342 #ifdef CONFIG_NUMA
1343         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1344         short il_next;
1345         short pref_node_fork;
1346 #endif
1347 #ifdef CONFIG_NUMA_BALANCING
1348         int numa_scan_seq;
1349         int numa_migrate_seq;
1350         unsigned int numa_scan_period;
1351         u64 node_stamp;                 /* migration stamp  */
1352         struct callback_head numa_work;
1353 #endif /* CONFIG_NUMA_BALANCING */
1354 
1355         struct rcu_head rcu;
1356 
1357         /*
1358          * cache last used pipe for splice
1359          */
1360         struct pipe_inode_info *splice_pipe;
1361 
1362         struct page_frag task_frag;
1363 
1364 #ifdef  CONFIG_TASK_DELAY_ACCT
1365         struct task_delay_info *delays;
1366 #endif
1367 #ifdef CONFIG_FAULT_INJECTION
1368         int make_it_fail;
1369 #endif
1370         /*
1371          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1372          * balance_dirty_pages() for some dirty throttling pause
1373          */
1374         int nr_dirtied;
1375         int nr_dirtied_pause;
1376         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1377 
1378 #ifdef CONFIG_LATENCYTOP
1379         int latency_record_count;
1380         struct latency_record latency_record[LT_SAVECOUNT];
1381 #endif
1382         /*
1383          * time slack values; these are used to round up poll() and
1384          * select() etc timeout values. These are in nanoseconds.
1385          */
1386         unsigned long timer_slack_ns;
1387         unsigned long default_timer_slack_ns;
1388 
1389 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1390         /* Index of current stored address in ret_stack */
1391         int curr_ret_stack;
1392         /* Stack of return addresses for return function tracing */
1393         struct ftrace_ret_stack *ret_stack;
1394         /* time stamp for last schedule */
1395         unsigned long long ftrace_timestamp;
1396         /*
1397          * Number of functions that haven't been traced
1398          * because of depth overrun.
1399          */
1400         atomic_t trace_overrun;
1401         /* Pause for the tracing */
1402         atomic_t tracing_graph_pause;
1403 #endif
1404 #ifdef CONFIG_TRACING
1405         /* state flags for use by tracers */
1406         unsigned long trace;
1407         /* bitmask and counter of trace recursion */
1408         unsigned long trace_recursion;
1409 #endif /* CONFIG_TRACING */
1410 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1411         struct memcg_batch_info {
1412                 int do_batch;   /* incremented when batch uncharge started */
1413                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1414                 unsigned long nr_pages; /* uncharged usage */
1415                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1416         } memcg_batch;
1417         unsigned int memcg_kmem_skip_account;
1418         struct memcg_oom_info {
1419                 struct mem_cgroup *memcg;
1420                 gfp_t gfp_mask;
1421                 int order;
1422                 unsigned int may_oom:1;
1423         } memcg_oom;
1424 #endif
1425 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1426         atomic_t ptrace_bp_refcnt;
1427 #endif
1428 #ifdef CONFIG_UPROBES
1429         struct uprobe_task *utask;
1430 #endif
1431 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1432         unsigned int    sequential_io;
1433         unsigned int    sequential_io_avg;
1434 #endif
1435 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1436         struct ccs_domain_info *ccs_domain_info;
1437         u32 ccs_flags;
1438 #endif
1439 };
1440 
1441 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1442 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1443 
1444 #ifdef CONFIG_NUMA_BALANCING
1445 extern void task_numa_fault(int node, int pages, bool migrated);
1446 extern void set_numabalancing_state(bool enabled);
1447 #else
1448 static inline void task_numa_fault(int node, int pages, bool migrated)
1449 {
1450 }
1451 static inline void set_numabalancing_state(bool enabled)
1452 {
1453 }
1454 #endif
1455 
1456 static inline struct pid *task_pid(struct task_struct *task)
1457 {
1458         return task->pids[PIDTYPE_PID].pid;
1459 }
1460 
1461 static inline struct pid *task_tgid(struct task_struct *task)
1462 {
1463         return task->group_leader->pids[PIDTYPE_PID].pid;
1464 }
1465 
1466 /*
1467  * Without tasklist or rcu lock it is not safe to dereference
1468  * the result of task_pgrp/task_session even if task == current,
1469  * we can race with another thread doing sys_setsid/sys_setpgid.
1470  */
1471 static inline struct pid *task_pgrp(struct task_struct *task)
1472 {
1473         return task->group_leader->pids[PIDTYPE_PGID].pid;
1474 }
1475 
1476 static inline struct pid *task_session(struct task_struct *task)
1477 {
1478         return task->group_leader->pids[PIDTYPE_SID].pid;
1479 }
1480 
1481 struct pid_namespace;
1482 
1483 /*
1484  * the helpers to get the task's different pids as they are seen
1485  * from various namespaces
1486  *
1487  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1488  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1489  *                     current.
1490  * task_xid_nr_ns()  : id seen from the ns specified;
1491  *
1492  * set_task_vxid()   : assigns a virtual id to a task;
1493  *
1494  * see also pid_nr() etc in include/linux/pid.h
1495  */
1496 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1497                         struct pid_namespace *ns);
1498 
1499 static inline pid_t task_pid_nr(struct task_struct *tsk)
1500 {
1501         return tsk->pid;
1502 }
1503 
1504 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1505                                         struct pid_namespace *ns)
1506 {
1507         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1508 }
1509 
1510 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1511 {
1512         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1513 }
1514 
1515 
1516 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1517 {
1518         return tsk->tgid;
1519 }
1520 
1521 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1522 
1523 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1524 {
1525         return pid_vnr(task_tgid(tsk));
1526 }
1527 
1528 
1529 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1530                                         struct pid_namespace *ns)
1531 {
1532         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1533 }
1534 
1535 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1536 {
1537         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1538 }
1539 
1540 
1541 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1542                                         struct pid_namespace *ns)
1543 {
1544         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1545 }
1546 
1547 static inline pid_t task_session_vnr(struct task_struct *tsk)
1548 {
1549         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1550 }
1551 
1552 /* obsolete, do not use */
1553 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1554 {
1555         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1556 }
1557 
1558 /**
1559  * pid_alive - check that a task structure is not stale
1560  * @p: Task structure to be checked.
1561  *
1562  * Test if a process is not yet dead (at most zombie state)
1563  * If pid_alive fails, then pointers within the task structure
1564  * can be stale and must not be dereferenced.
1565  */
1566 static inline int pid_alive(struct task_struct *p)
1567 {
1568         return p->pids[PIDTYPE_PID].pid != NULL;
1569 }
1570 
1571 /**
1572  * is_global_init - check if a task structure is init
1573  * @tsk: Task structure to be checked.
1574  *
1575  * Check if a task structure is the first user space task the kernel created.
1576  */
1577 static inline int is_global_init(struct task_struct *tsk)
1578 {
1579         return tsk->pid == 1;
1580 }
1581 
1582 extern struct pid *cad_pid;
1583 
1584 extern void free_task(struct task_struct *tsk);
1585 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1586 
1587 extern void __put_task_struct(struct task_struct *t);
1588 
1589 static inline void put_task_struct(struct task_struct *t)
1590 {
1591         if (atomic_dec_and_test(&t->usage))
1592                 __put_task_struct(t);
1593 }
1594 
1595 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1596 extern void task_cputime(struct task_struct *t,
1597                          cputime_t *utime, cputime_t *stime);
1598 extern void task_cputime_scaled(struct task_struct *t,
1599                                 cputime_t *utimescaled, cputime_t *stimescaled);
1600 extern cputime_t task_gtime(struct task_struct *t);
1601 #else
1602 static inline void task_cputime(struct task_struct *t,
1603                                 cputime_t *utime, cputime_t *stime)
1604 {
1605         if (utime)
1606                 *utime = t->utime;
1607         if (stime)
1608                 *stime = t->stime;
1609 }
1610 
1611 static inline void task_cputime_scaled(struct task_struct *t,
1612                                        cputime_t *utimescaled,
1613                                        cputime_t *stimescaled)
1614 {
1615         if (utimescaled)
1616                 *utimescaled = t->utimescaled;
1617         if (stimescaled)
1618                 *stimescaled = t->stimescaled;
1619 }
1620 
1621 static inline cputime_t task_gtime(struct task_struct *t)
1622 {
1623         return t->gtime;
1624 }
1625 #endif
1626 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1627 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1628 
1629 /*
1630  * Per process flags
1631  */
1632 #define PF_EXITING      0x00000004      /* getting shut down */
1633 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1634 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1635 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1636 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1637 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1638 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1639 #define PF_DUMPCORE     0x00000200      /* dumped core */
1640 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1641 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1642 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1643 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1644 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1645 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1646 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1647 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1648 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1649 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1650 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1651 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1652 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1653 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1654 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1655 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1656 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1657 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1658 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1659 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1660 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1661 
1662 /*
1663  * Only the _current_ task can read/write to tsk->flags, but other
1664  * tasks can access tsk->flags in readonly mode for example
1665  * with tsk_used_math (like during threaded core dumping).
1666  * There is however an exception to this rule during ptrace
1667  * or during fork: the ptracer task is allowed to write to the
1668  * child->flags of its traced child (same goes for fork, the parent
1669  * can write to the child->flags), because we're guaranteed the
1670  * child is not running and in turn not changing child->flags
1671  * at the same time the parent does it.
1672  */
1673 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1674 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1675 #define clear_used_math() clear_stopped_child_used_math(current)
1676 #define set_used_math() set_stopped_child_used_math(current)
1677 #define conditional_stopped_child_used_math(condition, child) \
1678         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1679 #define conditional_used_math(condition) \
1680         conditional_stopped_child_used_math(condition, current)
1681 #define copy_to_stopped_child_used_math(child) \
1682         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1683 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1684 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1685 #define used_math() tsk_used_math(current)
1686 
1687 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1688  * __GFP_FS is also cleared as it implies __GFP_IO.
1689  */
1690 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1691 {
1692         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1693                 flags &= ~(__GFP_IO | __GFP_FS);
1694         return flags;
1695 }
1696 
1697 static inline unsigned int memalloc_noio_save(void)
1698 {
1699         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1700         current->flags |= PF_MEMALLOC_NOIO;
1701         return flags;
1702 }
1703 
1704 static inline void memalloc_noio_restore(unsigned int flags)
1705 {
1706         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1707 }
1708 
1709 /*
1710  * task->jobctl flags
1711  */
1712 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1713 
1714 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1715 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1716 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1717 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1718 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1719 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1720 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1721 
1722 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1723 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1724 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1725 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1726 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1727 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1728 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1729 
1730 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1731 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1732 
1733 extern bool task_set_jobctl_pending(struct task_struct *task,
1734                                     unsigned int mask);
1735 extern void task_clear_jobctl_trapping(struct task_struct *task);
1736 extern void task_clear_jobctl_pending(struct task_struct *task,
1737                                       unsigned int mask);
1738 
1739 #ifdef CONFIG_PREEMPT_RCU
1740 
1741 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1742 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1743 
1744 static inline void rcu_copy_process(struct task_struct *p)
1745 {
1746         p->rcu_read_lock_nesting = 0;
1747         p->rcu_read_unlock_special = 0;
1748 #ifdef CONFIG_TREE_PREEMPT_RCU
1749         p->rcu_blocked_node = NULL;
1750 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1751 #ifdef CONFIG_RCU_BOOST
1752         p->rcu_boost_mutex = NULL;
1753 #endif /* #ifdef CONFIG_RCU_BOOST */
1754         INIT_LIST_HEAD(&p->rcu_node_entry);
1755 }
1756 
1757 #else
1758 
1759 static inline void rcu_copy_process(struct task_struct *p)
1760 {
1761 }
1762 
1763 #endif
1764 
1765 static inline void tsk_restore_flags(struct task_struct *task,
1766                                 unsigned long orig_flags, unsigned long flags)
1767 {
1768         task->flags &= ~flags;
1769         task->flags |= orig_flags & flags;
1770 }
1771 
1772 #ifdef CONFIG_SMP
1773 extern void do_set_cpus_allowed(struct task_struct *p,
1774                                const struct cpumask *new_mask);
1775 
1776 extern int set_cpus_allowed_ptr(struct task_struct *p,
1777                                 const struct cpumask *new_mask);
1778 #else
1779 static inline void do_set_cpus_allowed(struct task_struct *p,
1780                                       const struct cpumask *new_mask)
1781 {
1782 }
1783 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1784                                        const struct cpumask *new_mask)
1785 {
1786         if (!cpumask_test_cpu(0, new_mask))
1787                 return -EINVAL;
1788         return 0;
1789 }
1790 #endif
1791 
1792 #ifdef CONFIG_NO_HZ_COMMON
1793 void calc_load_enter_idle(void);
1794 void calc_load_exit_idle(void);
1795 #else
1796 static inline void calc_load_enter_idle(void) { }
1797 static inline void calc_load_exit_idle(void) { }
1798 #endif /* CONFIG_NO_HZ_COMMON */
1799 
1800 #ifndef CONFIG_CPUMASK_OFFSTACK
1801 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1802 {
1803         return set_cpus_allowed_ptr(p, &new_mask);
1804 }
1805 #endif
1806 
1807 /*
1808  * Do not use outside of architecture code which knows its limitations.
1809  *
1810  * sched_clock() has no promise of monotonicity or bounded drift between
1811  * CPUs, use (which you should not) requires disabling IRQs.
1812  *
1813  * Please use one of the three interfaces below.
1814  */
1815 extern unsigned long long notrace sched_clock(void);
1816 /*
1817  * See the comment in kernel/sched/clock.c
1818  */
1819 extern u64 cpu_clock(int cpu);
1820 extern u64 local_clock(void);
1821 extern u64 sched_clock_cpu(int cpu);
1822 
1823 
1824 extern void sched_clock_init(void);
1825 
1826 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1827 static inline void sched_clock_tick(void)
1828 {
1829 }
1830 
1831 static inline void sched_clock_idle_sleep_event(void)
1832 {
1833 }
1834 
1835 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1836 {
1837 }
1838 #else
1839 /*
1840  * Architectures can set this to 1 if they have specified
1841  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1842  * but then during bootup it turns out that sched_clock()
1843  * is reliable after all:
1844  */
1845 extern int sched_clock_stable;
1846 
1847 extern void sched_clock_tick(void);
1848 extern void sched_clock_idle_sleep_event(void);
1849 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1850 #endif
1851 
1852 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1853 /*
1854  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1855  * The reason for this explicit opt-in is not to have perf penalty with
1856  * slow sched_clocks.
1857  */
1858 extern void enable_sched_clock_irqtime(void);
1859 extern void disable_sched_clock_irqtime(void);
1860 #else
1861 static inline void enable_sched_clock_irqtime(void) {}
1862 static inline void disable_sched_clock_irqtime(void) {}
1863 #endif
1864 
1865 extern unsigned long long
1866 task_sched_runtime(struct task_struct *task);
1867 
1868 /* sched_exec is called by processes performing an exec */
1869 #ifdef CONFIG_SMP
1870 extern void sched_exec(void);
1871 #else
1872 #define sched_exec()   {}
1873 #endif
1874 
1875 extern void sched_clock_idle_sleep_event(void);
1876 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1877 
1878 #ifdef CONFIG_HOTPLUG_CPU
1879 extern void idle_task_exit(void);
1880 #else
1881 static inline void idle_task_exit(void) {}
1882 #endif
1883 
1884 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1885 extern void wake_up_nohz_cpu(int cpu);
1886 #else
1887 static inline void wake_up_nohz_cpu(int cpu) { }
1888 #endif
1889 
1890 #ifdef CONFIG_NO_HZ_FULL
1891 extern bool sched_can_stop_tick(void);
1892 extern u64 scheduler_tick_max_deferment(void);
1893 #else
1894 static inline bool sched_can_stop_tick(void) { return false; }
1895 #endif
1896 
1897 #ifdef CONFIG_SCHED_AUTOGROUP
1898 extern void sched_autogroup_create_attach(struct task_struct *p);
1899 extern void sched_autogroup_detach(struct task_struct *p);
1900 extern void sched_autogroup_fork(struct signal_struct *sig);
1901 extern void sched_autogroup_exit(struct signal_struct *sig);
1902 #ifdef CONFIG_PROC_FS
1903 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1904 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1905 #endif
1906 #else
1907 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1908 static inline void sched_autogroup_detach(struct task_struct *p) { }
1909 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1910 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1911 #endif
1912 
1913 extern bool yield_to(struct task_struct *p, bool preempt);
1914 extern void set_user_nice(struct task_struct *p, long nice);
1915 extern int task_prio(const struct task_struct *p);
1916 extern int task_nice(const struct task_struct *p);
1917 extern int can_nice(const struct task_struct *p, const int nice);
1918 extern int task_curr(const struct task_struct *p);
1919 extern int idle_cpu(int cpu);
1920 extern int sched_setscheduler(struct task_struct *, int,
1921                               const struct sched_param *);
1922 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1923                                       const struct sched_param *);
1924 extern struct task_struct *idle_task(int cpu);
1925 /**
1926  * is_idle_task - is the specified task an idle task?
1927  * @p: the task in question.
1928  */
1929 static inline bool is_idle_task(const struct task_struct *p)
1930 {
1931         return p->pid == 0;
1932 }
1933 extern struct task_struct *curr_task(int cpu);
1934 extern void set_curr_task(int cpu, struct task_struct *p);
1935 
1936 void yield(void);
1937 
1938 /*
1939  * The default (Linux) execution domain.
1940  */
1941 extern struct exec_domain       default_exec_domain;
1942 
1943 union thread_union {
1944         struct thread_info thread_info;
1945         unsigned long stack[THREAD_SIZE/sizeof(long)];
1946 };
1947 
1948 #ifndef __HAVE_ARCH_KSTACK_END
1949 static inline int kstack_end(void *addr)
1950 {
1951         /* Reliable end of stack detection:
1952          * Some APM bios versions misalign the stack
1953          */
1954         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1955 }
1956 #endif
1957 
1958 extern union thread_union init_thread_union;
1959 extern struct task_struct init_task;
1960 
1961 extern struct   mm_struct init_mm;
1962 
1963 extern struct pid_namespace init_pid_ns;
1964 
1965 /*
1966  * find a task by one of its numerical ids
1967  *
1968  * find_task_by_pid_ns():
1969  *      finds a task by its pid in the specified namespace
1970  * find_task_by_vpid():
1971  *      finds a task by its virtual pid
1972  *
1973  * see also find_vpid() etc in include/linux/pid.h
1974  */
1975 
1976 extern struct task_struct *find_task_by_vpid(pid_t nr);
1977 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1978                 struct pid_namespace *ns);
1979 
1980 extern void __set_special_pids(struct pid *pid);
1981 
1982 /* per-UID process charging. */
1983 extern struct user_struct * alloc_uid(kuid_t);
1984 static inline struct user_struct *get_uid(struct user_struct *u)
1985 {
1986         atomic_inc(&u->__count);
1987         return u;
1988 }
1989 extern void free_uid(struct user_struct *);
1990 
1991 #include <asm/current.h>
1992 
1993 extern void xtime_update(unsigned long ticks);
1994 
1995 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1996 extern int wake_up_process(struct task_struct *tsk);
1997 extern void wake_up_new_task(struct task_struct *tsk);
1998 #ifdef CONFIG_SMP
1999  extern void kick_process(struct task_struct *tsk);
2000 #else
2001  static inline void kick_process(struct task_struct *tsk) { }
2002 #endif
2003 extern void sched_fork(struct task_struct *p);
2004 extern void sched_dead(struct task_struct *p);
2005 
2006 extern void proc_caches_init(void);
2007 extern void flush_signals(struct task_struct *);
2008 extern void __flush_signals(struct task_struct *);
2009 extern void ignore_signals(struct task_struct *);
2010 extern void flush_signal_handlers(struct task_struct *, int force_default);
2011 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2012 
2013 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2014 {
2015         unsigned long flags;
2016         int ret;
2017 
2018         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2019         ret = dequeue_signal(tsk, mask, info);
2020         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2021 
2022         return ret;
2023 }
2024 
2025 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2026                               sigset_t *mask);
2027 extern void unblock_all_signals(void);
2028 extern void release_task(struct task_struct * p);
2029 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2030 extern int force_sigsegv(int, struct task_struct *);
2031 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2032 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2033 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2034 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2035                                 const struct cred *, u32);
2036 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2037 extern int kill_pid(struct pid *pid, int sig, int priv);
2038 extern int kill_proc_info(int, struct siginfo *, pid_t);
2039 extern __must_check bool do_notify_parent(struct task_struct *, int);
2040 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2041 extern void force_sig(int, struct task_struct *);
2042 extern int send_sig(int, struct task_struct *, int);
2043 extern int zap_other_threads(struct task_struct *p);
2044 extern struct sigqueue *sigqueue_alloc(void);
2045 extern void sigqueue_free(struct sigqueue *);
2046 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2047 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2048 
2049 static inline void restore_saved_sigmask(void)
2050 {
2051         if (test_and_clear_restore_sigmask())
2052                 __set_current_blocked(&current->saved_sigmask);
2053 }
2054 
2055 static inline sigset_t *sigmask_to_save(void)
2056 {
2057         sigset_t *res = &current->blocked;
2058         if (unlikely(test_restore_sigmask()))
2059                 res = &current->saved_sigmask;
2060         return res;
2061 }
2062 
2063 static inline int kill_cad_pid(int sig, int priv)
2064 {
2065         return kill_pid(cad_pid, sig, priv);
2066 }
2067 
2068 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2069 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2070 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2071 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2072 
2073 /*
2074  * True if we are on the alternate signal stack.
2075  */
2076 static inline int on_sig_stack(unsigned long sp)
2077 {
2078 #ifdef CONFIG_STACK_GROWSUP
2079         return sp >= current->sas_ss_sp &&
2080                 sp - current->sas_ss_sp < current->sas_ss_size;
2081 #else
2082         return sp > current->sas_ss_sp &&
2083                 sp - current->sas_ss_sp <= current->sas_ss_size;
2084 #endif
2085 }
2086 
2087 static inline int sas_ss_flags(unsigned long sp)
2088 {
2089         return (current->sas_ss_size == 0 ? SS_DISABLE
2090                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2091 }
2092 
2093 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2094 {
2095         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2096 #ifdef CONFIG_STACK_GROWSUP
2097                 return current->sas_ss_sp;
2098 #else
2099                 return current->sas_ss_sp + current->sas_ss_size;
2100 #endif
2101         return sp;
2102 }
2103 
2104 /*
2105  * Routines for handling mm_structs
2106  */
2107 extern struct mm_struct * mm_alloc(void);
2108 
2109 /* mmdrop drops the mm and the page tables */
2110 extern void __mmdrop(struct mm_struct *);
2111 static inline void mmdrop(struct mm_struct * mm)
2112 {
2113         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2114                 __mmdrop(mm);
2115 }
2116 
2117 /* mmput gets rid of the mappings and all user-space */
2118 extern void mmput(struct mm_struct *);
2119 /* Grab a reference to a task's mm, if it is not already going away */
2120 extern struct mm_struct *get_task_mm(struct task_struct *task);
2121 /*
2122  * Grab a reference to a task's mm, if it is not already going away
2123  * and ptrace_may_access with the mode parameter passed to it
2124  * succeeds.
2125  */
2126 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2127 /* Remove the current tasks stale references to the old mm_struct */
2128 extern void mm_release(struct task_struct *, struct mm_struct *);
2129 /* Allocate a new mm structure and copy contents from tsk->mm */
2130 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2131 
2132 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2133                         struct task_struct *);
2134 extern void flush_thread(void);
2135 extern void exit_thread(void);
2136 
2137 extern void exit_files(struct task_struct *);
2138 extern void __cleanup_sighand(struct sighand_struct *);
2139 
2140 extern void exit_itimers(struct signal_struct *);
2141 extern void flush_itimer_signals(void);
2142 
2143 extern void do_group_exit(int);
2144 
2145 extern int allow_signal(int);
2146 extern int disallow_signal(int);
2147 
2148 extern int do_execve(const char *,
2149                      const char __user * const __user *,
2150                      const char __user * const __user *);
2151 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2152 struct task_struct *fork_idle(int);
2153 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2154 
2155 extern void set_task_comm(struct task_struct *tsk, char *from);
2156 extern char *get_task_comm(char *to, struct task_struct *tsk);
2157 
2158 #ifdef CONFIG_SMP
2159 void scheduler_ipi(void);
2160 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2161 #else
2162 static inline void scheduler_ipi(void) { }
2163 static inline unsigned long wait_task_inactive(struct task_struct *p,
2164                                                long match_state)
2165 {
2166         return 1;
2167 }
2168 #endif
2169 
2170 #define next_task(p) \
2171         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2172 
2173 #define for_each_process(p) \
2174         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2175 
2176 extern bool current_is_single_threaded(void);
2177 
2178 /*
2179  * Careful: do_each_thread/while_each_thread is a double loop so
2180  *          'break' will not work as expected - use goto instead.
2181  */
2182 #define do_each_thread(g, t) \
2183         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2184 
2185 #define while_each_thread(g, t) \
2186         while ((t = next_thread(t)) != g)
2187 
2188 #define __for_each_thread(signal, t)    \
2189         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2190 
2191 #define for_each_thread(p, t)           \
2192         __for_each_thread((p)->signal, t)
2193 
2194 /* Careful: this is a double loop, 'break' won't work as expected. */
2195 #define for_each_process_thread(p, t)   \
2196         for_each_process(p) for_each_thread(p, t)
2197 
2198 static inline int get_nr_threads(struct task_struct *tsk)
2199 {
2200         return tsk->signal->nr_threads;
2201 }
2202 
2203 static inline bool thread_group_leader(struct task_struct *p)
2204 {
2205         return p->exit_signal >= 0;
2206 }
2207 
2208 /* Do to the insanities of de_thread it is possible for a process
2209  * to have the pid of the thread group leader without actually being
2210  * the thread group leader.  For iteration through the pids in proc
2211  * all we care about is that we have a task with the appropriate
2212  * pid, we don't actually care if we have the right task.
2213  */
2214 static inline bool has_group_leader_pid(struct task_struct *p)
2215 {
2216         return task_pid(p) == p->signal->leader_pid;
2217 }
2218 
2219 static inline
2220 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2221 {
2222         return p1->signal == p2->signal;
2223 }
2224 
2225 static inline struct task_struct *next_thread(const struct task_struct *p)
2226 {
2227         return list_entry_rcu(p->thread_group.next,
2228                               struct task_struct, thread_group);
2229 }
2230 
2231 static inline int thread_group_empty(struct task_struct *p)
2232 {
2233         return list_empty(&p->thread_group);
2234 }
2235 
2236 #define delay_group_leader(p) \
2237                 (thread_group_leader(p) && !thread_group_empty(p))
2238 
2239 /*
2240  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2241  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2242  * pins the final release of task.io_context.  Also protects ->cpuset and
2243  * ->cgroup.subsys[]. And ->vfork_done.
2244  *
2245  * Nests both inside and outside of read_lock(&tasklist_lock).
2246  * It must not be nested with write_lock_irq(&tasklist_lock),
2247  * neither inside nor outside.
2248  */
2249 static inline void task_lock(struct task_struct *p)
2250 {
2251         spin_lock(&p->alloc_lock);
2252 }
2253 
2254 static inline void task_unlock(struct task_struct *p)
2255 {
2256         spin_unlock(&p->alloc_lock);
2257 }
2258 
2259 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2260                                                         unsigned long *flags);
2261 
2262 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2263                                                        unsigned long *flags)
2264 {
2265         struct sighand_struct *ret;
2266 
2267         ret = __lock_task_sighand(tsk, flags);
2268         (void)__cond_lock(&tsk->sighand->siglock, ret);
2269         return ret;
2270 }
2271 
2272 static inline void unlock_task_sighand(struct task_struct *tsk,
2273                                                 unsigned long *flags)
2274 {
2275         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2276 }
2277 
2278 #ifdef CONFIG_CGROUPS
2279 static inline void threadgroup_change_begin(struct task_struct *tsk)
2280 {
2281         down_read(&tsk->signal->group_rwsem);
2282 }
2283 static inline void threadgroup_change_end(struct task_struct *tsk)
2284 {
2285         up_read(&tsk->signal->group_rwsem);
2286 }
2287 
2288 /**
2289  * threadgroup_lock - lock threadgroup
2290  * @tsk: member task of the threadgroup to lock
2291  *
2292  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2293  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2294  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2295  * needs to stay stable across blockable operations.
2296  *
2297  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2298  * synchronization.  While held, no new task will be added to threadgroup
2299  * and no existing live task will have its PF_EXITING set.
2300  *
2301  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2302  * sub-thread becomes a new leader.
2303  */
2304 static inline void threadgroup_lock(struct task_struct *tsk)
2305 {
2306         down_write(&tsk->signal->group_rwsem);
2307 }
2308 
2309 /**
2310  * threadgroup_unlock - unlock threadgroup
2311  * @tsk: member task of the threadgroup to unlock
2312  *
2313  * Reverse threadgroup_lock().
2314  */
2315 static inline void threadgroup_unlock(struct task_struct *tsk)
2316 {
2317         up_write(&tsk->signal->group_rwsem);
2318 }
2319 #else
2320 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2321 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2322 static inline void threadgroup_lock(struct task_struct *tsk) {}
2323 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2324 #endif
2325 
2326 #ifndef __HAVE_THREAD_FUNCTIONS
2327 
2328 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2329 #define task_stack_page(task)   ((task)->stack)
2330 
2331 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2332 {
2333         *task_thread_info(p) = *task_thread_info(org);
2334         task_thread_info(p)->task = p;
2335 }
2336 
2337 static inline unsigned long *end_of_stack(struct task_struct *p)
2338 {
2339         return (unsigned long *)(task_thread_info(p) + 1);
2340 }
2341 
2342 #endif
2343 
2344 static inline int object_is_on_stack(void *obj)
2345 {
2346         void *stack = task_stack_page(current);
2347 
2348         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2349 }
2350 
2351 extern void thread_info_cache_init(void);
2352 
2353 #ifdef CONFIG_DEBUG_STACK_USAGE
2354 static inline unsigned long stack_not_used(struct task_struct *p)
2355 {
2356         unsigned long *n = end_of_stack(p);
2357 
2358         do {    /* Skip over canary */
2359                 n++;
2360         } while (!*n);
2361 
2362         return (unsigned long)n - (unsigned long)end_of_stack(p);
2363 }
2364 #endif
2365 
2366 /* set thread flags in other task's structures
2367  * - see asm/thread_info.h for TIF_xxxx flags available
2368  */
2369 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2370 {
2371         set_ti_thread_flag(task_thread_info(tsk), flag);
2372 }
2373 
2374 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2375 {
2376         clear_ti_thread_flag(task_thread_info(tsk), flag);
2377 }
2378 
2379 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2380 {
2381         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2382 }
2383 
2384 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2385 {
2386         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2387 }
2388 
2389 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2390 {
2391         return test_ti_thread_flag(task_thread_info(tsk), flag);
2392 }
2393 
2394 static inline void set_tsk_need_resched(struct task_struct *tsk)
2395 {
2396         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2397 }
2398 
2399 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2400 {
2401         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2402 }
2403 
2404 static inline int test_tsk_need_resched(struct task_struct *tsk)
2405 {
2406         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2407 }
2408 
2409 static inline int restart_syscall(void)
2410 {
2411         set_tsk_thread_flag(current, TIF_SIGPENDING);
2412         return -ERESTARTNOINTR;
2413 }
2414 
2415 static inline int signal_pending(struct task_struct *p)
2416 {
2417         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2418 }
2419 
2420 static inline int __fatal_signal_pending(struct task_struct *p)
2421 {
2422         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2423 }
2424 
2425 static inline int fatal_signal_pending(struct task_struct *p)
2426 {
2427         return signal_pending(p) && __fatal_signal_pending(p);
2428 }
2429 
2430 static inline int signal_pending_state(long state, struct task_struct *p)
2431 {
2432         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2433                 return 0;
2434         if (!signal_pending(p))
2435                 return 0;
2436 
2437         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2438 }
2439 
2440 static inline int need_resched(void)
2441 {
2442         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2443 }
2444 
2445 /*
2446  * cond_resched() and cond_resched_lock(): latency reduction via
2447  * explicit rescheduling in places that are safe. The return
2448  * value indicates whether a reschedule was done in fact.
2449  * cond_resched_lock() will drop the spinlock before scheduling,
2450  * cond_resched_softirq() will enable bhs before scheduling.
2451  */
2452 extern int _cond_resched(void);
2453 
2454 #define cond_resched() ({                       \
2455         __might_sleep(__FILE__, __LINE__, 0);   \
2456         _cond_resched();                        \
2457 })
2458 
2459 extern int __cond_resched_lock(spinlock_t *lock);
2460 
2461 #ifdef CONFIG_PREEMPT_COUNT
2462 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2463 #else
2464 #define PREEMPT_LOCK_OFFSET     0
2465 #endif
2466 
2467 #define cond_resched_lock(lock) ({                              \
2468         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2469         __cond_resched_lock(lock);                              \
2470 })
2471 
2472 extern int __cond_resched_softirq(void);
2473 
2474 #define cond_resched_softirq() ({                                       \
2475         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2476         __cond_resched_softirq();                                       \
2477 })
2478 
2479 /*
2480  * Does a critical section need to be broken due to another
2481  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2482  * but a general need for low latency)
2483  */
2484 static inline int spin_needbreak(spinlock_t *lock)
2485 {
2486 #ifdef CONFIG_PREEMPT
2487         return spin_is_contended(lock);
2488 #else
2489         return 0;
2490 #endif
2491 }
2492 
2493 /*
2494  * Idle thread specific functions to determine the need_resched
2495  * polling state. We have two versions, one based on TS_POLLING in
2496  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2497  * thread_info.flags
2498  */
2499 #ifdef TS_POLLING
2500 static inline int tsk_is_polling(struct task_struct *p)
2501 {
2502         return task_thread_info(p)->status & TS_POLLING;
2503 }
2504 static inline void __current_set_polling(void)
2505 {
2506         current_thread_info()->status |= TS_POLLING;
2507 }
2508 
2509 static inline bool __must_check current_set_polling_and_test(void)
2510 {
2511         __current_set_polling();
2512 
2513         /*
2514          * Polling state must be visible before we test NEED_RESCHED,
2515          * paired by resched_task()
2516          */
2517         smp_mb();
2518 
2519         return unlikely(tif_need_resched());
2520 }
2521 
2522 static inline void __current_clr_polling(void)
2523 {
2524         current_thread_info()->status &= ~TS_POLLING;
2525 }
2526 
2527 static inline bool __must_check current_clr_polling_and_test(void)
2528 {
2529         __current_clr_polling();
2530 
2531         /*
2532          * Polling state must be visible before we test NEED_RESCHED,
2533          * paired by resched_task()
2534          */
2535         smp_mb();
2536 
2537         return unlikely(tif_need_resched());
2538 }
2539 #elif defined(TIF_POLLING_NRFLAG)
2540 static inline int tsk_is_polling(struct task_struct *p)
2541 {
2542         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2543 }
2544 
2545 static inline void __current_set_polling(void)
2546 {
2547         set_thread_flag(TIF_POLLING_NRFLAG);
2548 }
2549 
2550 static inline bool __must_check current_set_polling_and_test(void)
2551 {
2552         __current_set_polling();
2553 
2554         /*
2555          * Polling state must be visible before we test NEED_RESCHED,
2556          * paired by resched_task()
2557          *
2558          * XXX: assumes set/clear bit are identical barrier wise.
2559          */
2560         smp_mb__after_clear_bit();
2561 
2562         return unlikely(tif_need_resched());
2563 }
2564 
2565 static inline void __current_clr_polling(void)
2566 {
2567         clear_thread_flag(TIF_POLLING_NRFLAG);
2568 }
2569 
2570 static inline bool __must_check current_clr_polling_and_test(void)
2571 {
2572         __current_clr_polling();
2573 
2574         /*
2575          * Polling state must be visible before we test NEED_RESCHED,
2576          * paired by resched_task()
2577          */
2578         smp_mb__after_clear_bit();
2579 
2580         return unlikely(tif_need_resched());
2581 }
2582 
2583 #else
2584 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2585 static inline void __current_set_polling(void) { }
2586 static inline void __current_clr_polling(void) { }
2587 
2588 static inline bool __must_check current_set_polling_and_test(void)
2589 {
2590         return unlikely(tif_need_resched());
2591 }
2592 static inline bool __must_check current_clr_polling_and_test(void)
2593 {
2594         return unlikely(tif_need_resched());
2595 }
2596 #endif
2597 
2598 /*
2599  * Thread group CPU time accounting.
2600  */
2601 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2602 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2603 
2604 static inline void thread_group_cputime_init(struct signal_struct *sig)
2605 {
2606         raw_spin_lock_init(&sig->cputimer.lock);
2607 }
2608 
2609 /*
2610  * Reevaluate whether the task has signals pending delivery.
2611  * Wake the task if so.
2612  * This is required every time the blocked sigset_t changes.
2613  * callers must hold sighand->siglock.
2614  */
2615 extern void recalc_sigpending_and_wake(struct task_struct *t);
2616 extern void recalc_sigpending(void);
2617 
2618 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2619 
2620 static inline void signal_wake_up(struct task_struct *t, bool resume)
2621 {
2622         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2623 }
2624 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2625 {
2626         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2627 }
2628 
2629 /*
2630  * Wrappers for p->thread_info->cpu access. No-op on UP.
2631  */
2632 #ifdef CONFIG_SMP
2633 
2634 static inline unsigned int task_cpu(const struct task_struct *p)
2635 {
2636         return task_thread_info(p)->cpu;
2637 }
2638 
2639 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2640 
2641 #else
2642 
2643 static inline unsigned int task_cpu(const struct task_struct *p)
2644 {
2645         return 0;
2646 }
2647 
2648 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2649 {
2650 }
2651 
2652 #endif /* CONFIG_SMP */
2653 
2654 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2655 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2656 
2657 #ifdef CONFIG_CGROUP_SCHED
2658 extern struct task_group root_task_group;
2659 #endif /* CONFIG_CGROUP_SCHED */
2660 
2661 extern int task_can_switch_user(struct user_struct *up,
2662                                         struct task_struct *tsk);
2663 
2664 #ifdef CONFIG_TASK_XACCT
2665 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2666 {
2667         tsk->ioac.rchar += amt;
2668 }
2669 
2670 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2671 {
2672         tsk->ioac.wchar += amt;
2673 }
2674 
2675 static inline void inc_syscr(struct task_struct *tsk)
2676 {
2677         tsk->ioac.syscr++;
2678 }
2679 
2680 static inline void inc_syscw(struct task_struct *tsk)
2681 {
2682         tsk->ioac.syscw++;
2683 }
2684 #else
2685 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2686 {
2687 }
2688 
2689 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2690 {
2691 }
2692 
2693 static inline void inc_syscr(struct task_struct *tsk)
2694 {
2695 }
2696 
2697 static inline void inc_syscw(struct task_struct *tsk)
2698 {
2699 }
2700 #endif
2701 
2702 #ifndef TASK_SIZE_OF
2703 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2704 #endif
2705 
2706 #ifdef CONFIG_MM_OWNER
2707 extern void mm_update_next_owner(struct mm_struct *mm);
2708 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2709 #else
2710 static inline void mm_update_next_owner(struct mm_struct *mm)
2711 {
2712 }
2713 
2714 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2715 {
2716 }
2717 #endif /* CONFIG_MM_OWNER */
2718 
2719 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2720                 unsigned int limit)
2721 {
2722         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2723 }
2724 
2725 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2726                 unsigned int limit)
2727 {
2728         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2729 }
2730 
2731 static inline unsigned long rlimit(unsigned int limit)
2732 {
2733         return task_rlimit(current, limit);
2734 }
2735 
2736 static inline unsigned long rlimit_max(unsigned int limit)
2737 {
2738         return task_rlimit_max(current, limit);
2739 }
2740 
2741 #endif
2742 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp