~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.15-rc5 ] ~ [ linux-5.14.11 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.72 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.152 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.210 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.250 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.286 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.288 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_H
  2 #define _LINUX_SCHED_H
  3 
  4 #include <uapi/linux/sched.h>
  5 
  6 
  7 struct ccs_domain_info;
  8 
  9 struct sched_param {
 10         int sched_priority;
 11 };
 12 
 13 #include <asm/param.h>  /* for HZ */
 14 
 15 #include <linux/capability.h>
 16 #include <linux/threads.h>
 17 #include <linux/kernel.h>
 18 #include <linux/types.h>
 19 #include <linux/timex.h>
 20 #include <linux/jiffies.h>
 21 #include <linux/rbtree.h>
 22 #include <linux/thread_info.h>
 23 #include <linux/cpumask.h>
 24 #include <linux/errno.h>
 25 #include <linux/nodemask.h>
 26 #include <linux/mm_types.h>
 27 
 28 #include <asm/page.h>
 29 #include <asm/ptrace.h>
 30 #include <asm/cputime.h>
 31 
 32 #include <linux/smp.h>
 33 #include <linux/sem.h>
 34 #include <linux/signal.h>
 35 #include <linux/compiler.h>
 36 #include <linux/completion.h>
 37 #include <linux/pid.h>
 38 #include <linux/percpu.h>
 39 #include <linux/topology.h>
 40 #include <linux/proportions.h>
 41 #include <linux/seccomp.h>
 42 #include <linux/rcupdate.h>
 43 #include <linux/rculist.h>
 44 #include <linux/rtmutex.h>
 45 
 46 #include <linux/time.h>
 47 #include <linux/param.h>
 48 #include <linux/resource.h>
 49 #include <linux/timer.h>
 50 #include <linux/hrtimer.h>
 51 #include <linux/task_io_accounting.h>
 52 #include <linux/latencytop.h>
 53 #include <linux/cred.h>
 54 #include <linux/llist.h>
 55 #include <linux/uidgid.h>
 56 #include <linux/gfp.h>
 57 
 58 #include <asm/processor.h>
 59 
 60 struct exec_domain;
 61 struct futex_pi_state;
 62 struct robust_list_head;
 63 struct bio_list;
 64 struct fs_struct;
 65 struct perf_event_context;
 66 struct blk_plug;
 67 
 68 #define VMACACHE_BITS 2
 69 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
 70 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
 71 
 72 /*
 73  * List of flags we want to share for kernel threads,
 74  * if only because they are not used by them anyway.
 75  */
 76 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
 77 
 78 /*
 79  * These are the constant used to fake the fixed-point load-average
 80  * counting. Some notes:
 81  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 82  *    a load-average precision of 10 bits integer + 11 bits fractional
 83  *  - if you want to count load-averages more often, you need more
 84  *    precision, or rounding will get you. With 2-second counting freq,
 85  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 86  *    11 bit fractions.
 87  */
 88 extern unsigned long avenrun[];         /* Load averages */
 89 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
 90 
 91 #define FSHIFT          11              /* nr of bits of precision */
 92 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
 93 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
 94 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
 95 #define EXP_5           2014            /* 1/exp(5sec/5min) */
 96 #define EXP_15          2037            /* 1/exp(5sec/15min) */
 97 
 98 #define CALC_LOAD(load,exp,n) \
 99         load *= exp; \
100         load += n*(FIXED_1-exp); \
101         load >>= FSHIFT;
102 
103 extern unsigned long total_forks;
104 extern int nr_threads;
105 DECLARE_PER_CPU(unsigned long, process_counts);
106 extern int nr_processes(void);
107 extern unsigned long nr_running(void);
108 extern unsigned long nr_iowait(void);
109 extern unsigned long nr_iowait_cpu(int cpu);
110 extern unsigned long this_cpu_load(void);
111 
112 
113 extern void calc_global_load(unsigned long ticks);
114 extern void update_cpu_load_nohz(void);
115 
116 extern unsigned long get_parent_ip(unsigned long addr);
117 
118 extern void dump_cpu_task(int cpu);
119 
120 struct seq_file;
121 struct cfs_rq;
122 struct task_group;
123 #ifdef CONFIG_SCHED_DEBUG
124 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
125 extern void proc_sched_set_task(struct task_struct *p);
126 extern void
127 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
128 #endif
129 
130 /*
131  * Task state bitmask. NOTE! These bits are also
132  * encoded in fs/proc/array.c: get_task_state().
133  *
134  * We have two separate sets of flags: task->state
135  * is about runnability, while task->exit_state are
136  * about the task exiting. Confusing, but this way
137  * modifying one set can't modify the other one by
138  * mistake.
139  */
140 #define TASK_RUNNING            0
141 #define TASK_INTERRUPTIBLE      1
142 #define TASK_UNINTERRUPTIBLE    2
143 #define __TASK_STOPPED          4
144 #define __TASK_TRACED           8
145 /* in tsk->exit_state */
146 #define EXIT_ZOMBIE             16
147 #define EXIT_DEAD               32
148 /* in tsk->state again */
149 #define TASK_DEAD               64
150 #define TASK_WAKEKILL           128
151 #define TASK_WAKING             256
152 #define TASK_PARKED             512
153 #define TASK_STATE_MAX          1024
154 
155 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
156 
157 extern char ___assert_task_state[1 - 2*!!(
158                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
159 
160 /* Convenience macros for the sake of set_task_state */
161 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
162 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
163 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
164 
165 /* Convenience macros for the sake of wake_up */
166 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
167 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
168 
169 /* get_task_state() */
170 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
171                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
172                                  __TASK_TRACED)
173 
174 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
175 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
176 #define task_is_dead(task)      ((task)->exit_state != 0)
177 #define task_is_stopped_or_traced(task) \
178                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
179 #define task_contributes_to_load(task)  \
180                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
181                                  (task->flags & PF_FROZEN) == 0)
182 
183 #define __set_task_state(tsk, state_value)              \
184         do { (tsk)->state = (state_value); } while (0)
185 #define set_task_state(tsk, state_value)                \
186         set_mb((tsk)->state, (state_value))
187 
188 /*
189  * set_current_state() includes a barrier so that the write of current->state
190  * is correctly serialised wrt the caller's subsequent test of whether to
191  * actually sleep:
192  *
193  *      set_current_state(TASK_UNINTERRUPTIBLE);
194  *      if (do_i_need_to_sleep())
195  *              schedule();
196  *
197  * If the caller does not need such serialisation then use __set_current_state()
198  */
199 #define __set_current_state(state_value)                        \
200         do { current->state = (state_value); } while (0)
201 #define set_current_state(state_value)          \
202         set_mb(current->state, (state_value))
203 
204 /* Task command name length */
205 #define TASK_COMM_LEN 16
206 
207 #include <linux/spinlock.h>
208 
209 /*
210  * This serializes "schedule()" and also protects
211  * the run-queue from deletions/modifications (but
212  * _adding_ to the beginning of the run-queue has
213  * a separate lock).
214  */
215 extern rwlock_t tasklist_lock;
216 extern spinlock_t mmlist_lock;
217 
218 struct task_struct;
219 
220 #ifdef CONFIG_PROVE_RCU
221 extern int lockdep_tasklist_lock_is_held(void);
222 #endif /* #ifdef CONFIG_PROVE_RCU */
223 
224 extern void sched_init(void);
225 extern void sched_init_smp(void);
226 extern asmlinkage void schedule_tail(struct task_struct *prev);
227 extern void init_idle(struct task_struct *idle, int cpu);
228 extern void init_idle_bootup_task(struct task_struct *idle);
229 
230 extern int runqueue_is_locked(int cpu);
231 
232 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
233 extern void nohz_balance_enter_idle(int cpu);
234 extern void set_cpu_sd_state_idle(void);
235 extern int get_nohz_timer_target(void);
236 #else
237 static inline void nohz_balance_enter_idle(int cpu) { }
238 static inline void set_cpu_sd_state_idle(void) { }
239 #endif
240 
241 /*
242  * Only dump TASK_* tasks. (0 for all tasks)
243  */
244 extern void show_state_filter(unsigned long state_filter);
245 
246 static inline void show_state(void)
247 {
248         show_state_filter(0);
249 }
250 
251 extern void show_regs(struct pt_regs *);
252 
253 /*
254  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
255  * task), SP is the stack pointer of the first frame that should be shown in the back
256  * trace (or NULL if the entire call-chain of the task should be shown).
257  */
258 extern void show_stack(struct task_struct *task, unsigned long *sp);
259 
260 void io_schedule(void);
261 long io_schedule_timeout(long timeout);
262 
263 extern void cpu_init (void);
264 extern void trap_init(void);
265 extern void update_process_times(int user);
266 extern void scheduler_tick(void);
267 
268 extern void sched_show_task(struct task_struct *p);
269 
270 #ifdef CONFIG_LOCKUP_DETECTOR
271 extern void touch_softlockup_watchdog(void);
272 extern void touch_softlockup_watchdog_sync(void);
273 extern void touch_all_softlockup_watchdogs(void);
274 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
275                                   void __user *buffer,
276                                   size_t *lenp, loff_t *ppos);
277 extern unsigned int  softlockup_panic;
278 void lockup_detector_init(void);
279 #else
280 static inline void touch_softlockup_watchdog(void)
281 {
282 }
283 static inline void touch_softlockup_watchdog_sync(void)
284 {
285 }
286 static inline void touch_all_softlockup_watchdogs(void)
287 {
288 }
289 static inline void lockup_detector_init(void)
290 {
291 }
292 #endif
293 
294 /* Attach to any functions which should be ignored in wchan output. */
295 #define __sched         __attribute__((__section__(".sched.text")))
296 
297 /* Linker adds these: start and end of __sched functions */
298 extern char __sched_text_start[], __sched_text_end[];
299 
300 /* Is this address in the __sched functions? */
301 extern int in_sched_functions(unsigned long addr);
302 
303 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
304 extern signed long schedule_timeout(signed long timeout);
305 extern signed long schedule_timeout_interruptible(signed long timeout);
306 extern signed long schedule_timeout_killable(signed long timeout);
307 extern signed long schedule_timeout_uninterruptible(signed long timeout);
308 asmlinkage void schedule(void);
309 extern void schedule_preempt_disabled(void);
310 
311 struct nsproxy;
312 struct user_namespace;
313 
314 #ifdef CONFIG_MMU
315 extern void arch_pick_mmap_layout(struct mm_struct *mm);
316 extern unsigned long
317 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
318                        unsigned long, unsigned long);
319 extern unsigned long
320 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
321                           unsigned long len, unsigned long pgoff,
322                           unsigned long flags);
323 #else
324 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
325 #endif
326 
327 
328 extern void set_dumpable(struct mm_struct *mm, int value);
329 extern int get_dumpable(struct mm_struct *mm);
330 
331 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
332 #define SUID_DUMP_USER          1       /* Dump as user of process */
333 #define SUID_DUMP_ROOT          2       /* Dump as root */
334 
335 /* mm flags */
336 /* dumpable bits */
337 #define MMF_DUMPABLE      0  /* core dump is permitted */
338 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
339 
340 #define MMF_DUMPABLE_BITS 2
341 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
342 
343 /* coredump filter bits */
344 #define MMF_DUMP_ANON_PRIVATE   2
345 #define MMF_DUMP_ANON_SHARED    3
346 #define MMF_DUMP_MAPPED_PRIVATE 4
347 #define MMF_DUMP_MAPPED_SHARED  5
348 #define MMF_DUMP_ELF_HEADERS    6
349 #define MMF_DUMP_HUGETLB_PRIVATE 7
350 #define MMF_DUMP_HUGETLB_SHARED  8
351 
352 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
353 #define MMF_DUMP_FILTER_BITS    7
354 #define MMF_DUMP_FILTER_MASK \
355         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
356 #define MMF_DUMP_FILTER_DEFAULT \
357         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
358          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
359 
360 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
361 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
362 #else
363 # define MMF_DUMP_MASK_DEFAULT_ELF      0
364 #endif
365                                         /* leave room for more dump flags */
366 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
367 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
368 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
369 
370 #define MMF_HAS_UPROBES         19      /* has uprobes */
371 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
372 
373 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
374 
375 struct sighand_struct {
376         atomic_t                count;
377         struct k_sigaction      action[_NSIG];
378         spinlock_t              siglock;
379         wait_queue_head_t       signalfd_wqh;
380 };
381 
382 struct pacct_struct {
383         int                     ac_flag;
384         long                    ac_exitcode;
385         unsigned long           ac_mem;
386         cputime_t               ac_utime, ac_stime;
387         unsigned long           ac_minflt, ac_majflt;
388 };
389 
390 struct cpu_itimer {
391         cputime_t expires;
392         cputime_t incr;
393         u32 error;
394         u32 incr_error;
395 };
396 
397 /**
398  * struct cputime - snaphsot of system and user cputime
399  * @utime: time spent in user mode
400  * @stime: time spent in system mode
401  *
402  * Gathers a generic snapshot of user and system time.
403  */
404 struct cputime {
405         cputime_t utime;
406         cputime_t stime;
407 };
408 
409 /**
410  * struct task_cputime - collected CPU time counts
411  * @utime:              time spent in user mode, in &cputime_t units
412  * @stime:              time spent in kernel mode, in &cputime_t units
413  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
414  *
415  * This is an extension of struct cputime that includes the total runtime
416  * spent by the task from the scheduler point of view.
417  *
418  * As a result, this structure groups together three kinds of CPU time
419  * that are tracked for threads and thread groups.  Most things considering
420  * CPU time want to group these counts together and treat all three
421  * of them in parallel.
422  */
423 struct task_cputime {
424         cputime_t utime;
425         cputime_t stime;
426         unsigned long long sum_exec_runtime;
427 };
428 /* Alternate field names when used to cache expirations. */
429 #define prof_exp        stime
430 #define virt_exp        utime
431 #define sched_exp       sum_exec_runtime
432 
433 #define INIT_CPUTIME    \
434         (struct task_cputime) {                                 \
435                 .utime = 0,                                     \
436                 .stime = 0,                                     \
437                 .sum_exec_runtime = 0,                          \
438         }
439 
440 /*
441  * Disable preemption until the scheduler is running.
442  * Reset by start_kernel()->sched_init()->init_idle().
443  *
444  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
445  * before the scheduler is active -- see should_resched().
446  */
447 #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
448 
449 /**
450  * struct thread_group_cputimer - thread group interval timer counts
451  * @cputime:            thread group interval timers.
452  * @running:            non-zero when there are timers running and
453  *                      @cputime receives updates.
454  * @lock:               lock for fields in this struct.
455  *
456  * This structure contains the version of task_cputime, above, that is
457  * used for thread group CPU timer calculations.
458  */
459 struct thread_group_cputimer {
460         struct task_cputime cputime;
461         int running;
462         raw_spinlock_t lock;
463 };
464 
465 #include <linux/rwsem.h>
466 struct autogroup;
467 
468 /*
469  * NOTE! "signal_struct" does not have its own
470  * locking, because a shared signal_struct always
471  * implies a shared sighand_struct, so locking
472  * sighand_struct is always a proper superset of
473  * the locking of signal_struct.
474  */
475 struct signal_struct {
476         atomic_t                sigcnt;
477         atomic_t                live;
478         int                     nr_threads;
479         struct list_head        thread_head;
480 
481         wait_queue_head_t       wait_chldexit;  /* for wait4() */
482 
483         /* current thread group signal load-balancing target: */
484         struct task_struct      *curr_target;
485 
486         /* shared signal handling: */
487         struct sigpending       shared_pending;
488 
489         /* thread group exit support */
490         int                     group_exit_code;
491         /* overloaded:
492          * - notify group_exit_task when ->count is equal to notify_count
493          * - everyone except group_exit_task is stopped during signal delivery
494          *   of fatal signals, group_exit_task processes the signal.
495          */
496         int                     notify_count;
497         struct task_struct      *group_exit_task;
498 
499         /* thread group stop support, overloads group_exit_code too */
500         int                     group_stop_count;
501         unsigned int            flags; /* see SIGNAL_* flags below */
502 
503         /*
504          * PR_SET_CHILD_SUBREAPER marks a process, like a service
505          * manager, to re-parent orphan (double-forking) child processes
506          * to this process instead of 'init'. The service manager is
507          * able to receive SIGCHLD signals and is able to investigate
508          * the process until it calls wait(). All children of this
509          * process will inherit a flag if they should look for a
510          * child_subreaper process at exit.
511          */
512         unsigned int            is_child_subreaper:1;
513         unsigned int            has_child_subreaper:1;
514 
515         /* POSIX.1b Interval Timers */
516         int                     posix_timer_id;
517         struct list_head        posix_timers;
518 
519         /* ITIMER_REAL timer for the process */
520         struct hrtimer real_timer;
521         struct pid *leader_pid;
522         ktime_t it_real_incr;
523 
524         /*
525          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
526          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
527          * values are defined to 0 and 1 respectively
528          */
529         struct cpu_itimer it[2];
530 
531         /*
532          * Thread group totals for process CPU timers.
533          * See thread_group_cputimer(), et al, for details.
534          */
535         struct thread_group_cputimer cputimer;
536 
537         /* Earliest-expiration cache. */
538         struct task_cputime cputime_expires;
539 
540         struct list_head cpu_timers[3];
541 
542         struct pid *tty_old_pgrp;
543 
544         /* boolean value for session group leader */
545         int leader;
546 
547         struct tty_struct *tty; /* NULL if no tty */
548 
549 #ifdef CONFIG_SCHED_AUTOGROUP
550         struct autogroup *autogroup;
551 #endif
552         /*
553          * Cumulative resource counters for dead threads in the group,
554          * and for reaped dead child processes forked by this group.
555          * Live threads maintain their own counters and add to these
556          * in __exit_signal, except for the group leader.
557          */
558         cputime_t utime, stime, cutime, cstime;
559         cputime_t gtime;
560         cputime_t cgtime;
561 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
562         struct cputime prev_cputime;
563 #endif
564         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
565         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
566         unsigned long inblock, oublock, cinblock, coublock;
567         unsigned long maxrss, cmaxrss;
568         struct task_io_accounting ioac;
569 
570         /*
571          * Cumulative ns of schedule CPU time fo dead threads in the
572          * group, not including a zombie group leader, (This only differs
573          * from jiffies_to_ns(utime + stime) if sched_clock uses something
574          * other than jiffies.)
575          */
576         unsigned long long sum_sched_runtime;
577 
578         /*
579          * We don't bother to synchronize most readers of this at all,
580          * because there is no reader checking a limit that actually needs
581          * to get both rlim_cur and rlim_max atomically, and either one
582          * alone is a single word that can safely be read normally.
583          * getrlimit/setrlimit use task_lock(current->group_leader) to
584          * protect this instead of the siglock, because they really
585          * have no need to disable irqs.
586          */
587         struct rlimit rlim[RLIM_NLIMITS];
588 
589 #ifdef CONFIG_BSD_PROCESS_ACCT
590         struct pacct_struct pacct;      /* per-process accounting information */
591 #endif
592 #ifdef CONFIG_TASKSTATS
593         struct taskstats *stats;
594 #endif
595 #ifdef CONFIG_AUDIT
596         unsigned audit_tty;
597         unsigned audit_tty_log_passwd;
598         struct tty_audit_buf *tty_audit_buf;
599 #endif
600 #ifdef CONFIG_CGROUPS
601         /*
602          * group_rwsem prevents new tasks from entering the threadgroup and
603          * member tasks from exiting,a more specifically, setting of
604          * PF_EXITING.  fork and exit paths are protected with this rwsem
605          * using threadgroup_change_begin/end().  Users which require
606          * threadgroup to remain stable should use threadgroup_[un]lock()
607          * which also takes care of exec path.  Currently, cgroup is the
608          * only user.
609          */
610         struct rw_semaphore group_rwsem;
611 #endif
612 
613         oom_flags_t oom_flags;
614         short oom_score_adj;            /* OOM kill score adjustment */
615         short oom_score_adj_min;        /* OOM kill score adjustment min value.
616                                          * Only settable by CAP_SYS_RESOURCE. */
617 
618         struct mutex cred_guard_mutex;  /* guard against foreign influences on
619                                          * credential calculations
620                                          * (notably. ptrace) */
621 };
622 
623 /*
624  * Bits in flags field of signal_struct.
625  */
626 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
627 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
628 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
629 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
630 /*
631  * Pending notifications to parent.
632  */
633 #define SIGNAL_CLD_STOPPED      0x00000010
634 #define SIGNAL_CLD_CONTINUED    0x00000020
635 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
636 
637 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
638 
639 /* If true, all threads except ->group_exit_task have pending SIGKILL */
640 static inline int signal_group_exit(const struct signal_struct *sig)
641 {
642         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
643                 (sig->group_exit_task != NULL);
644 }
645 
646 /*
647  * Some day this will be a full-fledged user tracking system..
648  */
649 struct user_struct {
650         atomic_t __count;       /* reference count */
651         atomic_t processes;     /* How many processes does this user have? */
652         atomic_t files;         /* How many open files does this user have? */
653         atomic_t sigpending;    /* How many pending signals does this user have? */
654 #ifdef CONFIG_INOTIFY_USER
655         atomic_t inotify_watches; /* How many inotify watches does this user have? */
656         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
657 #endif
658 #ifdef CONFIG_FANOTIFY
659         atomic_t fanotify_listeners;
660 #endif
661 #ifdef CONFIG_EPOLL
662         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
663 #endif
664 #ifdef CONFIG_POSIX_MQUEUE
665         /* protected by mq_lock */
666         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
667 #endif
668         unsigned long locked_shm; /* How many pages of mlocked shm ? */
669         unsigned long unix_inflight;    /* How many files in flight in unix sockets */
670         atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
671 
672 #ifdef CONFIG_KEYS
673         struct key *uid_keyring;        /* UID specific keyring */
674         struct key *session_keyring;    /* UID's default session keyring */
675 #endif
676 
677         /* Hash table maintenance information */
678         struct hlist_node uidhash_node;
679         kuid_t uid;
680 
681 #ifdef CONFIG_PERF_EVENTS
682         atomic_long_t locked_vm;
683 #endif
684 };
685 
686 extern int uids_sysfs_init(void);
687 
688 extern struct user_struct *find_user(kuid_t);
689 
690 extern struct user_struct root_user;
691 #define INIT_USER (&root_user)
692 
693 
694 struct backing_dev_info;
695 struct reclaim_state;
696 
697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
698 struct sched_info {
699         /* cumulative counters */
700         unsigned long pcount;         /* # of times run on this cpu */
701         unsigned long long run_delay; /* time spent waiting on a runqueue */
702 
703         /* timestamps */
704         unsigned long long last_arrival,/* when we last ran on a cpu */
705                            last_queued; /* when we were last queued to run */
706 };
707 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
708 
709 #ifdef CONFIG_TASK_DELAY_ACCT
710 struct task_delay_info {
711         spinlock_t      lock;
712         unsigned int    flags;  /* Private per-task flags */
713 
714         /* For each stat XXX, add following, aligned appropriately
715          *
716          * struct timespec XXX_start, XXX_end;
717          * u64 XXX_delay;
718          * u32 XXX_count;
719          *
720          * Atomicity of updates to XXX_delay, XXX_count protected by
721          * single lock above (split into XXX_lock if contention is an issue).
722          */
723 
724         /*
725          * XXX_count is incremented on every XXX operation, the delay
726          * associated with the operation is added to XXX_delay.
727          * XXX_delay contains the accumulated delay time in nanoseconds.
728          */
729         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
730         u64 blkio_delay;        /* wait for sync block io completion */
731         u64 swapin_delay;       /* wait for swapin block io completion */
732         u32 blkio_count;        /* total count of the number of sync block */
733                                 /* io operations performed */
734         u32 swapin_count;       /* total count of the number of swapin block */
735                                 /* io operations performed */
736 
737         struct timespec freepages_start, freepages_end;
738         u64 freepages_delay;    /* wait for memory reclaim */
739         u32 freepages_count;    /* total count of memory reclaim */
740 };
741 #endif  /* CONFIG_TASK_DELAY_ACCT */
742 
743 static inline int sched_info_on(void)
744 {
745 #ifdef CONFIG_SCHEDSTATS
746         return 1;
747 #elif defined(CONFIG_TASK_DELAY_ACCT)
748         extern int delayacct_on;
749         return delayacct_on;
750 #else
751         return 0;
752 #endif
753 }
754 
755 enum cpu_idle_type {
756         CPU_IDLE,
757         CPU_NOT_IDLE,
758         CPU_NEWLY_IDLE,
759         CPU_MAX_IDLE_TYPES
760 };
761 
762 /*
763  * Increase resolution of cpu_power calculations
764  */
765 #define SCHED_POWER_SHIFT       10
766 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
767 
768 /*
769  * sched-domains (multiprocessor balancing) declarations:
770  */
771 #ifdef CONFIG_SMP
772 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
773 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
774 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
775 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
776 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
777 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
778 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
779 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
780 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
781 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
782 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
783 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
784 
785 extern int __weak arch_sd_sibiling_asym_packing(void);
786 
787 struct sched_domain_attr {
788         int relax_domain_level;
789 };
790 
791 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
792         .relax_domain_level = -1,                       \
793 }
794 
795 extern int sched_domain_level_max;
796 
797 struct sched_group;
798 
799 struct sched_domain {
800         /* These fields must be setup */
801         struct sched_domain *parent;    /* top domain must be null terminated */
802         struct sched_domain *child;     /* bottom domain must be null terminated */
803         struct sched_group *groups;     /* the balancing groups of the domain */
804         unsigned long min_interval;     /* Minimum balance interval ms */
805         unsigned long max_interval;     /* Maximum balance interval ms */
806         unsigned int busy_factor;       /* less balancing by factor if busy */
807         unsigned int imbalance_pct;     /* No balance until over watermark */
808         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
809         unsigned int busy_idx;
810         unsigned int idle_idx;
811         unsigned int newidle_idx;
812         unsigned int wake_idx;
813         unsigned int forkexec_idx;
814         unsigned int smt_gain;
815 
816         int nohz_idle;                  /* NOHZ IDLE status */
817         int flags;                      /* See SD_* */
818         int level;
819 
820         /* Runtime fields. */
821         unsigned long last_balance;     /* init to jiffies. units in jiffies */
822         unsigned int balance_interval;  /* initialise to 1. units in ms. */
823         unsigned int nr_balance_failed; /* initialise to 0 */
824 
825         u64 last_update;
826 
827 #ifdef CONFIG_SCHEDSTATS
828         /* load_balance() stats */
829         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
830         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
831         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
832         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
833         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
834         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
835         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
836         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
837 
838         /* Active load balancing */
839         unsigned int alb_count;
840         unsigned int alb_failed;
841         unsigned int alb_pushed;
842 
843         /* SD_BALANCE_EXEC stats */
844         unsigned int sbe_count;
845         unsigned int sbe_balanced;
846         unsigned int sbe_pushed;
847 
848         /* SD_BALANCE_FORK stats */
849         unsigned int sbf_count;
850         unsigned int sbf_balanced;
851         unsigned int sbf_pushed;
852 
853         /* try_to_wake_up() stats */
854         unsigned int ttwu_wake_remote;
855         unsigned int ttwu_move_affine;
856         unsigned int ttwu_move_balance;
857 #endif
858 #ifdef CONFIG_SCHED_DEBUG
859         char *name;
860 #endif
861         union {
862                 void *private;          /* used during construction */
863                 struct rcu_head rcu;    /* used during destruction */
864         };
865 
866         unsigned int span_weight;
867         /*
868          * Span of all CPUs in this domain.
869          *
870          * NOTE: this field is variable length. (Allocated dynamically
871          * by attaching extra space to the end of the structure,
872          * depending on how many CPUs the kernel has booted up with)
873          */
874         unsigned long span[0];
875 };
876 
877 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
878 {
879         return to_cpumask(sd->span);
880 }
881 
882 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
883                                     struct sched_domain_attr *dattr_new);
884 
885 /* Allocate an array of sched domains, for partition_sched_domains(). */
886 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
887 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
888 
889 bool cpus_share_cache(int this_cpu, int that_cpu);
890 
891 #else /* CONFIG_SMP */
892 
893 struct sched_domain_attr;
894 
895 static inline void
896 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
897                         struct sched_domain_attr *dattr_new)
898 {
899 }
900 
901 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
902 {
903         return true;
904 }
905 
906 #endif  /* !CONFIG_SMP */
907 
908 
909 struct io_context;                      /* See blkdev.h */
910 
911 
912 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
913 extern void prefetch_stack(struct task_struct *t);
914 #else
915 static inline void prefetch_stack(struct task_struct *t) { }
916 #endif
917 
918 struct audit_context;           /* See audit.c */
919 struct mempolicy;
920 struct pipe_inode_info;
921 struct uts_namespace;
922 
923 struct load_weight {
924         unsigned long weight, inv_weight;
925 };
926 
927 struct sched_avg {
928         /*
929          * These sums represent an infinite geometric series and so are bound
930          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
931          * choices of y < 1-2^(-32)*1024.
932          */
933         u32 runnable_avg_sum, runnable_avg_period;
934         u64 last_runnable_update;
935         s64 decay_count;
936         unsigned long load_avg_contrib;
937 };
938 
939 #ifdef CONFIG_SCHEDSTATS
940 struct sched_statistics {
941         u64                     wait_start;
942         u64                     wait_max;
943         u64                     wait_count;
944         u64                     wait_sum;
945         u64                     iowait_count;
946         u64                     iowait_sum;
947 
948         u64                     sleep_start;
949         u64                     sleep_max;
950         s64                     sum_sleep_runtime;
951 
952         u64                     block_start;
953         u64                     block_max;
954         u64                     exec_max;
955         u64                     slice_max;
956 
957         u64                     nr_migrations_cold;
958         u64                     nr_failed_migrations_affine;
959         u64                     nr_failed_migrations_running;
960         u64                     nr_failed_migrations_hot;
961         u64                     nr_forced_migrations;
962 
963         u64                     nr_wakeups;
964         u64                     nr_wakeups_sync;
965         u64                     nr_wakeups_migrate;
966         u64                     nr_wakeups_local;
967         u64                     nr_wakeups_remote;
968         u64                     nr_wakeups_affine;
969         u64                     nr_wakeups_affine_attempts;
970         u64                     nr_wakeups_passive;
971         u64                     nr_wakeups_idle;
972 };
973 #endif
974 
975 struct sched_entity {
976         struct load_weight      load;           /* for load-balancing */
977         struct rb_node          run_node;
978         struct list_head        group_node;
979         unsigned int            on_rq;
980 
981         u64                     exec_start;
982         u64                     sum_exec_runtime;
983         u64                     vruntime;
984         u64                     prev_sum_exec_runtime;
985 
986         u64                     nr_migrations;
987 
988 #ifdef CONFIG_SCHEDSTATS
989         struct sched_statistics statistics;
990 #endif
991 
992 #ifdef CONFIG_FAIR_GROUP_SCHED
993         struct sched_entity     *parent;
994         /* rq on which this entity is (to be) queued: */
995         struct cfs_rq           *cfs_rq;
996         /* rq "owned" by this entity/group: */
997         struct cfs_rq           *my_q;
998 #endif
999 
1000 #ifdef CONFIG_SMP
1001         /* Per-entity load-tracking */
1002         struct sched_avg        avg;
1003 #endif
1004 };
1005 
1006 struct sched_rt_entity {
1007         struct list_head run_list;
1008         unsigned long timeout;
1009         unsigned long watchdog_stamp;
1010         unsigned int time_slice;
1011 
1012         struct sched_rt_entity *back;
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014         struct sched_rt_entity  *parent;
1015         /* rq on which this entity is (to be) queued: */
1016         struct rt_rq            *rt_rq;
1017         /* rq "owned" by this entity/group: */
1018         struct rt_rq            *my_q;
1019 #endif
1020 };
1021 
1022 
1023 struct rcu_node;
1024 
1025 enum perf_event_task_context {
1026         perf_invalid_context = -1,
1027         perf_hw_context = 0,
1028         perf_sw_context,
1029         perf_nr_task_contexts,
1030 };
1031 
1032 struct task_struct {
1033         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1034         void *stack;
1035         atomic_t usage;
1036         unsigned int flags;     /* per process flags, defined below */
1037         unsigned int ptrace;
1038 
1039 #ifdef CONFIG_SMP
1040         struct llist_node wake_entry;
1041         int on_cpu;
1042         struct task_struct *last_wakee;
1043         unsigned long wakee_flips;
1044         unsigned long wakee_flip_decay_ts;
1045 #endif
1046         int on_rq;
1047 
1048         int prio, static_prio, normal_prio;
1049         unsigned int rt_priority;
1050         const struct sched_class *sched_class;
1051         struct sched_entity se;
1052         struct sched_rt_entity rt;
1053 #ifdef CONFIG_CGROUP_SCHED
1054         struct task_group *sched_task_group;
1055 #endif
1056 
1057 #ifdef CONFIG_PREEMPT_NOTIFIERS
1058         /* list of struct preempt_notifier: */
1059         struct hlist_head preempt_notifiers;
1060 #endif
1061 
1062         /*
1063          * fpu_counter contains the number of consecutive context switches
1064          * that the FPU is used. If this is over a threshold, the lazy fpu
1065          * saving becomes unlazy to save the trap. This is an unsigned char
1066          * so that after 256 times the counter wraps and the behavior turns
1067          * lazy again; this to deal with bursty apps that only use FPU for
1068          * a short time
1069          */
1070         unsigned char fpu_counter;
1071 #ifdef CONFIG_BLK_DEV_IO_TRACE
1072         unsigned int btrace_seq;
1073 #endif
1074 
1075         unsigned int policy;
1076         int nr_cpus_allowed;
1077         cpumask_t cpus_allowed;
1078 
1079 #ifdef CONFIG_PREEMPT_RCU
1080         int rcu_read_lock_nesting;
1081         char rcu_read_unlock_special;
1082         struct list_head rcu_node_entry;
1083 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1084 #ifdef CONFIG_TREE_PREEMPT_RCU
1085         struct rcu_node *rcu_blocked_node;
1086 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1087 #ifdef CONFIG_RCU_BOOST
1088         struct rt_mutex *rcu_boost_mutex;
1089 #endif /* #ifdef CONFIG_RCU_BOOST */
1090 
1091 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1092         struct sched_info sched_info;
1093 #endif
1094 
1095         struct list_head tasks;
1096 #ifdef CONFIG_SMP
1097         struct plist_node pushable_tasks;
1098 #endif
1099 
1100         struct mm_struct *mm, *active_mm;
1101 #ifdef CONFIG_COMPAT_BRK
1102         unsigned brk_randomized:1;
1103 #endif
1104         /* per-thread vma caching */
1105         u32 vmacache_seqnum;
1106         struct vm_area_struct *vmacache[VMACACHE_SIZE];
1107 #if defined(SPLIT_RSS_COUNTING)
1108         struct task_rss_stat    rss_stat;
1109 #endif
1110 /* task state */
1111         int exit_state;
1112         int exit_code, exit_signal;
1113         int pdeath_signal;  /*  The signal sent when the parent dies  */
1114         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1115 
1116         /* Used for emulating ABI behavior of previous Linux versions */
1117         unsigned int personality;
1118 
1119         unsigned did_exec:1;
1120         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1121                                  * execve */
1122         unsigned in_iowait:1;
1123 
1124         /* task may not gain privileges */
1125         unsigned no_new_privs:1;
1126 
1127         /* Revert to default priority/policy when forking */
1128         unsigned sched_reset_on_fork:1;
1129         unsigned sched_contributes_to_load:1;
1130 
1131         pid_t pid;
1132         pid_t tgid;
1133 
1134 #ifdef CONFIG_CC_STACKPROTECTOR
1135         /* Canary value for the -fstack-protector gcc feature */
1136         unsigned long stack_canary;
1137 #endif
1138         /*
1139          * pointers to (original) parent process, youngest child, younger sibling,
1140          * older sibling, respectively.  (p->father can be replaced with
1141          * p->real_parent->pid)
1142          */
1143         struct task_struct __rcu *real_parent; /* real parent process */
1144         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1145         /*
1146          * children/sibling forms the list of my natural children
1147          */
1148         struct list_head children;      /* list of my children */
1149         struct list_head sibling;       /* linkage in my parent's children list */
1150         struct task_struct *group_leader;       /* threadgroup leader */
1151 
1152         /*
1153          * ptraced is the list of tasks this task is using ptrace on.
1154          * This includes both natural children and PTRACE_ATTACH targets.
1155          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1156          */
1157         struct list_head ptraced;
1158         struct list_head ptrace_entry;
1159 
1160         /* PID/PID hash table linkage. */
1161         struct pid_link pids[PIDTYPE_MAX];
1162         struct list_head thread_group;
1163         struct list_head thread_node;
1164 
1165         struct completion *vfork_done;          /* for vfork() */
1166         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1167         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1168 
1169         cputime_t utime, stime, utimescaled, stimescaled;
1170         cputime_t gtime;
1171 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1172         struct cputime prev_cputime;
1173 #endif
1174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1175         seqlock_t vtime_seqlock;
1176         unsigned long long vtime_snap;
1177         enum {
1178                 VTIME_SLEEPING = 0,
1179                 VTIME_USER,
1180                 VTIME_SYS,
1181         } vtime_snap_whence;
1182 #endif
1183         unsigned long nvcsw, nivcsw; /* context switch counts */
1184         struct timespec start_time;             /* monotonic time */
1185         struct timespec real_start_time;        /* boot based time */
1186 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1187         unsigned long min_flt, maj_flt;
1188 
1189         struct task_cputime cputime_expires;
1190         struct list_head cpu_timers[3];
1191 
1192 /* process credentials */
1193         const struct cred __rcu *real_cred; /* objective and real subjective task
1194                                          * credentials (COW) */
1195         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1196                                          * credentials (COW) */
1197         char comm[TASK_COMM_LEN]; /* executable name excluding path
1198                                      - access with [gs]et_task_comm (which lock
1199                                        it with task_lock())
1200                                      - initialized normally by setup_new_exec */
1201 /* file system info */
1202         int link_count, total_link_count;
1203 #ifdef CONFIG_SYSVIPC
1204 /* ipc stuff */
1205         struct sysv_sem sysvsem;
1206 #endif
1207 #ifdef CONFIG_DETECT_HUNG_TASK
1208 /* hung task detection */
1209         unsigned long last_switch_count;
1210 #endif
1211 /* CPU-specific state of this task */
1212         struct thread_struct thread;
1213 /* filesystem information */
1214         struct fs_struct *fs;
1215 /* open file information */
1216         struct files_struct *files;
1217 /* namespaces */
1218         struct nsproxy *nsproxy;
1219 /* signal handlers */
1220         struct signal_struct *signal;
1221         struct sighand_struct *sighand;
1222 
1223         sigset_t blocked, real_blocked;
1224         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1225         struct sigpending pending;
1226 
1227         unsigned long sas_ss_sp;
1228         size_t sas_ss_size;
1229         int (*notifier)(void *priv);
1230         void *notifier_data;
1231         sigset_t *notifier_mask;
1232         struct callback_head *task_works;
1233 
1234         struct audit_context *audit_context;
1235 #ifdef CONFIG_AUDITSYSCALL
1236         kuid_t loginuid;
1237         unsigned int sessionid;
1238 #endif
1239         struct seccomp seccomp;
1240 
1241 /* Thread group tracking */
1242         u32 parent_exec_id;
1243         u32 self_exec_id;
1244 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1245  * mempolicy */
1246         spinlock_t alloc_lock;
1247 
1248         /* Protection of the PI data structures: */
1249         raw_spinlock_t pi_lock;
1250 
1251 #ifdef CONFIG_RT_MUTEXES
1252         /* PI waiters blocked on a rt_mutex held by this task */
1253         struct plist_head pi_waiters;
1254         /* Deadlock detection and priority inheritance handling */
1255         struct rt_mutex_waiter *pi_blocked_on;
1256 #endif
1257 
1258 #ifdef CONFIG_DEBUG_MUTEXES
1259         /* mutex deadlock detection */
1260         struct mutex_waiter *blocked_on;
1261 #endif
1262 #ifdef CONFIG_TRACE_IRQFLAGS
1263         unsigned int irq_events;
1264         unsigned long hardirq_enable_ip;
1265         unsigned long hardirq_disable_ip;
1266         unsigned int hardirq_enable_event;
1267         unsigned int hardirq_disable_event;
1268         int hardirqs_enabled;
1269         int hardirq_context;
1270         unsigned long softirq_disable_ip;
1271         unsigned long softirq_enable_ip;
1272         unsigned int softirq_disable_event;
1273         unsigned int softirq_enable_event;
1274         int softirqs_enabled;
1275         int softirq_context;
1276 #endif
1277 #ifdef CONFIG_LOCKDEP
1278 # define MAX_LOCK_DEPTH 48UL
1279         u64 curr_chain_key;
1280         int lockdep_depth;
1281         unsigned int lockdep_recursion;
1282         struct held_lock held_locks[MAX_LOCK_DEPTH];
1283         gfp_t lockdep_reclaim_gfp;
1284 #endif
1285 
1286 /* journalling filesystem info */
1287         void *journal_info;
1288 
1289 /* stacked block device info */
1290         struct bio_list *bio_list;
1291 
1292 #ifdef CONFIG_BLOCK
1293 /* stack plugging */
1294         struct blk_plug *plug;
1295 #endif
1296 
1297 /* VM state */
1298         struct reclaim_state *reclaim_state;
1299 
1300         struct backing_dev_info *backing_dev_info;
1301 
1302         struct io_context *io_context;
1303 
1304         unsigned long ptrace_message;
1305         siginfo_t *last_siginfo; /* For ptrace use.  */
1306         struct task_io_accounting ioac;
1307 #if defined(CONFIG_TASK_XACCT)
1308         u64 acct_rss_mem1;      /* accumulated rss usage */
1309         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1310         cputime_t acct_timexpd; /* stime + utime since last update */
1311 #endif
1312 #ifdef CONFIG_CPUSETS
1313         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1314         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1315         int cpuset_mem_spread_rotor;
1316         int cpuset_slab_spread_rotor;
1317 #endif
1318 #ifdef CONFIG_CGROUPS
1319         /* Control Group info protected by css_set_lock */
1320         struct css_set __rcu *cgroups;
1321         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1322         struct list_head cg_list;
1323 #endif
1324 #ifdef CONFIG_FUTEX
1325         struct robust_list_head __user *robust_list;
1326 #ifdef CONFIG_COMPAT
1327         struct compat_robust_list_head __user *compat_robust_list;
1328 #endif
1329         struct list_head pi_state_list;
1330         struct futex_pi_state *pi_state_cache;
1331 #endif
1332 #ifdef CONFIG_PERF_EVENTS
1333         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1334         struct mutex perf_event_mutex;
1335         struct list_head perf_event_list;
1336 #endif
1337 #ifdef CONFIG_NUMA
1338         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1339         short il_next;
1340         short pref_node_fork;
1341 #endif
1342 #ifdef CONFIG_NUMA_BALANCING
1343         int numa_scan_seq;
1344         int numa_migrate_seq;
1345         unsigned int numa_scan_period;
1346         u64 node_stamp;                 /* migration stamp  */
1347         struct callback_head numa_work;
1348 #endif /* CONFIG_NUMA_BALANCING */
1349 
1350         struct rcu_head rcu;
1351 
1352         /*
1353          * cache last used pipe for splice
1354          */
1355         struct pipe_inode_info *splice_pipe;
1356 
1357         struct page_frag task_frag;
1358 
1359 #ifdef  CONFIG_TASK_DELAY_ACCT
1360         struct task_delay_info *delays;
1361 #endif
1362 #ifdef CONFIG_FAULT_INJECTION
1363         int make_it_fail;
1364 #endif
1365         /*
1366          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1367          * balance_dirty_pages() for some dirty throttling pause
1368          */
1369         int nr_dirtied;
1370         int nr_dirtied_pause;
1371         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1372 
1373 #ifdef CONFIG_LATENCYTOP
1374         int latency_record_count;
1375         struct latency_record latency_record[LT_SAVECOUNT];
1376 #endif
1377         /*
1378          * time slack values; these are used to round up poll() and
1379          * select() etc timeout values. These are in nanoseconds.
1380          */
1381         unsigned long timer_slack_ns;
1382         unsigned long default_timer_slack_ns;
1383 
1384 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1385         /* Index of current stored address in ret_stack */
1386         int curr_ret_stack;
1387         /* Stack of return addresses for return function tracing */
1388         struct ftrace_ret_stack *ret_stack;
1389         /* time stamp for last schedule */
1390         unsigned long long ftrace_timestamp;
1391         /*
1392          * Number of functions that haven't been traced
1393          * because of depth overrun.
1394          */
1395         atomic_t trace_overrun;
1396         /* Pause for the tracing */
1397         atomic_t tracing_graph_pause;
1398 #endif
1399 #ifdef CONFIG_TRACING
1400         /* state flags for use by tracers */
1401         unsigned long trace;
1402         /* bitmask and counter of trace recursion */
1403         unsigned long trace_recursion;
1404 #endif /* CONFIG_TRACING */
1405 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1406         struct memcg_batch_info {
1407                 int do_batch;   /* incremented when batch uncharge started */
1408                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1409                 unsigned long nr_pages; /* uncharged usage */
1410                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1411         } memcg_batch;
1412         unsigned int memcg_kmem_skip_account;
1413         struct memcg_oom_info {
1414                 struct mem_cgroup *memcg;
1415                 gfp_t gfp_mask;
1416                 int order;
1417                 unsigned int may_oom:1;
1418         } memcg_oom;
1419 #endif
1420 #ifdef CONFIG_UPROBES
1421         struct uprobe_task *utask;
1422 #endif
1423 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1424         unsigned int    sequential_io;
1425         unsigned int    sequential_io_avg;
1426 #endif
1427 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1428         struct ccs_domain_info *ccs_domain_info;
1429         u32 ccs_flags;
1430 #endif
1431 };
1432 
1433 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1434 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1435 
1436 #ifdef CONFIG_NUMA_BALANCING
1437 extern void task_numa_fault(int node, int pages, bool migrated);
1438 extern void set_numabalancing_state(bool enabled);
1439 #else
1440 static inline void task_numa_fault(int node, int pages, bool migrated)
1441 {
1442 }
1443 static inline void set_numabalancing_state(bool enabled)
1444 {
1445 }
1446 #endif
1447 
1448 static inline struct pid *task_pid(struct task_struct *task)
1449 {
1450         return task->pids[PIDTYPE_PID].pid;
1451 }
1452 
1453 static inline struct pid *task_tgid(struct task_struct *task)
1454 {
1455         return task->group_leader->pids[PIDTYPE_PID].pid;
1456 }
1457 
1458 /*
1459  * Without tasklist or rcu lock it is not safe to dereference
1460  * the result of task_pgrp/task_session even if task == current,
1461  * we can race with another thread doing sys_setsid/sys_setpgid.
1462  */
1463 static inline struct pid *task_pgrp(struct task_struct *task)
1464 {
1465         return task->group_leader->pids[PIDTYPE_PGID].pid;
1466 }
1467 
1468 static inline struct pid *task_session(struct task_struct *task)
1469 {
1470         return task->group_leader->pids[PIDTYPE_SID].pid;
1471 }
1472 
1473 struct pid_namespace;
1474 
1475 /*
1476  * the helpers to get the task's different pids as they are seen
1477  * from various namespaces
1478  *
1479  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1480  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1481  *                     current.
1482  * task_xid_nr_ns()  : id seen from the ns specified;
1483  *
1484  * set_task_vxid()   : assigns a virtual id to a task;
1485  *
1486  * see also pid_nr() etc in include/linux/pid.h
1487  */
1488 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1489                         struct pid_namespace *ns);
1490 
1491 static inline pid_t task_pid_nr(struct task_struct *tsk)
1492 {
1493         return tsk->pid;
1494 }
1495 
1496 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1497                                         struct pid_namespace *ns)
1498 {
1499         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1500 }
1501 
1502 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1503 {
1504         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1505 }
1506 
1507 
1508 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1509 {
1510         return tsk->tgid;
1511 }
1512 
1513 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1514 
1515 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1516 {
1517         return pid_vnr(task_tgid(tsk));
1518 }
1519 
1520 
1521 static inline int pid_alive(const struct task_struct *p);
1522 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1523 {
1524         pid_t pid = 0;
1525 
1526         rcu_read_lock();
1527         if (pid_alive(tsk))
1528                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1529         rcu_read_unlock();
1530 
1531         return pid;
1532 }
1533 
1534 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1535 {
1536         return task_ppid_nr_ns(tsk, &init_pid_ns);
1537 }
1538 
1539 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1540                                         struct pid_namespace *ns)
1541 {
1542         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1543 }
1544 
1545 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1546 {
1547         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1548 }
1549 
1550 
1551 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1552                                         struct pid_namespace *ns)
1553 {
1554         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1555 }
1556 
1557 static inline pid_t task_session_vnr(struct task_struct *tsk)
1558 {
1559         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1560 }
1561 
1562 /* obsolete, do not use */
1563 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1564 {
1565         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1566 }
1567 
1568 /**
1569  * pid_alive - check that a task structure is not stale
1570  * @p: Task structure to be checked.
1571  *
1572  * Test if a process is not yet dead (at most zombie state)
1573  * If pid_alive fails, then pointers within the task structure
1574  * can be stale and must not be dereferenced.
1575  *
1576  * Return: 1 if the process is alive. 0 otherwise.
1577  */
1578 static inline int pid_alive(const struct task_struct *p)
1579 {
1580         return p->pids[PIDTYPE_PID].pid != NULL;
1581 }
1582 
1583 /**
1584  * is_global_init - check if a task structure is init
1585  * @tsk: Task structure to be checked.
1586  *
1587  * Check if a task structure is the first user space task the kernel created.
1588  *
1589  * Return: 1 if the task structure is init. 0 otherwise.
1590  */
1591 static inline int is_global_init(struct task_struct *tsk)
1592 {
1593         return tsk->pid == 1;
1594 }
1595 
1596 extern struct pid *cad_pid;
1597 
1598 extern void free_task(struct task_struct *tsk);
1599 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1600 
1601 extern void __put_task_struct(struct task_struct *t);
1602 
1603 static inline void put_task_struct(struct task_struct *t)
1604 {
1605         if (atomic_dec_and_test(&t->usage))
1606                 __put_task_struct(t);
1607 }
1608 
1609 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1610 extern void task_cputime(struct task_struct *t,
1611                          cputime_t *utime, cputime_t *stime);
1612 extern void task_cputime_scaled(struct task_struct *t,
1613                                 cputime_t *utimescaled, cputime_t *stimescaled);
1614 extern cputime_t task_gtime(struct task_struct *t);
1615 #else
1616 static inline void task_cputime(struct task_struct *t,
1617                                 cputime_t *utime, cputime_t *stime)
1618 {
1619         if (utime)
1620                 *utime = t->utime;
1621         if (stime)
1622                 *stime = t->stime;
1623 }
1624 
1625 static inline void task_cputime_scaled(struct task_struct *t,
1626                                        cputime_t *utimescaled,
1627                                        cputime_t *stimescaled)
1628 {
1629         if (utimescaled)
1630                 *utimescaled = t->utimescaled;
1631         if (stimescaled)
1632                 *stimescaled = t->stimescaled;
1633 }
1634 
1635 static inline cputime_t task_gtime(struct task_struct *t)
1636 {
1637         return t->gtime;
1638 }
1639 #endif
1640 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1641 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1642 
1643 /*
1644  * Per process flags
1645  */
1646 #define PF_EXITING      0x00000004      /* getting shut down */
1647 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1648 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1649 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1650 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1651 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1652 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1653 #define PF_DUMPCORE     0x00000200      /* dumped core */
1654 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1655 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1656 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1657 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1658 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1659 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1660 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1661 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1662 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1663 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1664 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1665 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1666 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1667 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1668 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1669 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1670 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1671 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1672 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1673 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1674 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1675 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1676 
1677 /*
1678  * Only the _current_ task can read/write to tsk->flags, but other
1679  * tasks can access tsk->flags in readonly mode for example
1680  * with tsk_used_math (like during threaded core dumping).
1681  * There is however an exception to this rule during ptrace
1682  * or during fork: the ptracer task is allowed to write to the
1683  * child->flags of its traced child (same goes for fork, the parent
1684  * can write to the child->flags), because we're guaranteed the
1685  * child is not running and in turn not changing child->flags
1686  * at the same time the parent does it.
1687  */
1688 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1689 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1690 #define clear_used_math() clear_stopped_child_used_math(current)
1691 #define set_used_math() set_stopped_child_used_math(current)
1692 #define conditional_stopped_child_used_math(condition, child) \
1693         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1694 #define conditional_used_math(condition) \
1695         conditional_stopped_child_used_math(condition, current)
1696 #define copy_to_stopped_child_used_math(child) \
1697         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1698 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1699 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1700 #define used_math() tsk_used_math(current)
1701 
1702 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
1703  * __GFP_FS is also cleared as it implies __GFP_IO.
1704  */
1705 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1706 {
1707         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1708                 flags &= ~(__GFP_IO | __GFP_FS);
1709         return flags;
1710 }
1711 
1712 static inline unsigned int memalloc_noio_save(void)
1713 {
1714         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1715         current->flags |= PF_MEMALLOC_NOIO;
1716         return flags;
1717 }
1718 
1719 static inline void memalloc_noio_restore(unsigned int flags)
1720 {
1721         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1722 }
1723 
1724 /*
1725  * task->jobctl flags
1726  */
1727 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1728 
1729 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1730 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1731 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1732 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1733 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1734 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1735 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1736 
1737 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1738 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1739 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1740 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1741 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1742 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1743 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1744 
1745 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1746 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1747 
1748 extern bool task_set_jobctl_pending(struct task_struct *task,
1749                                     unsigned int mask);
1750 extern void task_clear_jobctl_trapping(struct task_struct *task);
1751 extern void task_clear_jobctl_pending(struct task_struct *task,
1752                                       unsigned int mask);
1753 
1754 #ifdef CONFIG_PREEMPT_RCU
1755 
1756 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1757 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1758 
1759 static inline void rcu_copy_process(struct task_struct *p)
1760 {
1761         p->rcu_read_lock_nesting = 0;
1762         p->rcu_read_unlock_special = 0;
1763 #ifdef CONFIG_TREE_PREEMPT_RCU
1764         p->rcu_blocked_node = NULL;
1765 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1766 #ifdef CONFIG_RCU_BOOST
1767         p->rcu_boost_mutex = NULL;
1768 #endif /* #ifdef CONFIG_RCU_BOOST */
1769         INIT_LIST_HEAD(&p->rcu_node_entry);
1770 }
1771 
1772 #else
1773 
1774 static inline void rcu_copy_process(struct task_struct *p)
1775 {
1776 }
1777 
1778 #endif
1779 
1780 static inline void tsk_restore_flags(struct task_struct *task,
1781                                 unsigned long orig_flags, unsigned long flags)
1782 {
1783         task->flags &= ~flags;
1784         task->flags |= orig_flags & flags;
1785 }
1786 
1787 #ifdef CONFIG_SMP
1788 extern void do_set_cpus_allowed(struct task_struct *p,
1789                                const struct cpumask *new_mask);
1790 
1791 extern int set_cpus_allowed_ptr(struct task_struct *p,
1792                                 const struct cpumask *new_mask);
1793 #else
1794 static inline void do_set_cpus_allowed(struct task_struct *p,
1795                                       const struct cpumask *new_mask)
1796 {
1797 }
1798 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1799                                        const struct cpumask *new_mask)
1800 {
1801         if (!cpumask_test_cpu(0, new_mask))
1802                 return -EINVAL;
1803         return 0;
1804 }
1805 #endif
1806 
1807 #ifdef CONFIG_NO_HZ_COMMON
1808 void calc_load_enter_idle(void);
1809 void calc_load_exit_idle(void);
1810 #else
1811 static inline void calc_load_enter_idle(void) { }
1812 static inline void calc_load_exit_idle(void) { }
1813 #endif /* CONFIG_NO_HZ_COMMON */
1814 
1815 #ifndef CONFIG_CPUMASK_OFFSTACK
1816 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1817 {
1818         return set_cpus_allowed_ptr(p, &new_mask);
1819 }
1820 #endif
1821 
1822 /*
1823  * Do not use outside of architecture code which knows its limitations.
1824  *
1825  * sched_clock() has no promise of monotonicity or bounded drift between
1826  * CPUs, use (which you should not) requires disabling IRQs.
1827  *
1828  * Please use one of the three interfaces below.
1829  */
1830 extern unsigned long long notrace sched_clock(void);
1831 /*
1832  * See the comment in kernel/sched/clock.c
1833  */
1834 extern u64 cpu_clock(int cpu);
1835 extern u64 local_clock(void);
1836 extern u64 sched_clock_cpu(int cpu);
1837 
1838 
1839 extern void sched_clock_init(void);
1840 
1841 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1842 static inline void sched_clock_tick(void)
1843 {
1844 }
1845 
1846 static inline void sched_clock_idle_sleep_event(void)
1847 {
1848 }
1849 
1850 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1851 {
1852 }
1853 #else
1854 /*
1855  * Architectures can set this to 1 if they have specified
1856  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1857  * but then during bootup it turns out that sched_clock()
1858  * is reliable after all:
1859  */
1860 extern int sched_clock_stable;
1861 
1862 extern void sched_clock_tick(void);
1863 extern void sched_clock_idle_sleep_event(void);
1864 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1865 #endif
1866 
1867 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1868 /*
1869  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1870  * The reason for this explicit opt-in is not to have perf penalty with
1871  * slow sched_clocks.
1872  */
1873 extern void enable_sched_clock_irqtime(void);
1874 extern void disable_sched_clock_irqtime(void);
1875 #else
1876 static inline void enable_sched_clock_irqtime(void) {}
1877 static inline void disable_sched_clock_irqtime(void) {}
1878 #endif
1879 
1880 extern unsigned long long
1881 task_sched_runtime(struct task_struct *task);
1882 
1883 /* sched_exec is called by processes performing an exec */
1884 #ifdef CONFIG_SMP
1885 extern void sched_exec(void);
1886 #else
1887 #define sched_exec()   {}
1888 #endif
1889 
1890 extern void sched_clock_idle_sleep_event(void);
1891 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1892 
1893 #ifdef CONFIG_HOTPLUG_CPU
1894 extern void idle_task_exit(void);
1895 #else
1896 static inline void idle_task_exit(void) {}
1897 #endif
1898 
1899 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1900 extern void wake_up_nohz_cpu(int cpu);
1901 #else
1902 static inline void wake_up_nohz_cpu(int cpu) { }
1903 #endif
1904 
1905 #ifdef CONFIG_NO_HZ_FULL
1906 extern bool sched_can_stop_tick(void);
1907 extern u64 scheduler_tick_max_deferment(void);
1908 #else
1909 static inline bool sched_can_stop_tick(void) { return false; }
1910 #endif
1911 
1912 #ifdef CONFIG_SCHED_AUTOGROUP
1913 extern void sched_autogroup_create_attach(struct task_struct *p);
1914 extern void sched_autogroup_detach(struct task_struct *p);
1915 extern void sched_autogroup_fork(struct signal_struct *sig);
1916 extern void sched_autogroup_exit(struct signal_struct *sig);
1917 #ifdef CONFIG_PROC_FS
1918 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1919 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1920 #endif
1921 #else
1922 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1923 static inline void sched_autogroup_detach(struct task_struct *p) { }
1924 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1925 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1926 #endif
1927 
1928 extern bool yield_to(struct task_struct *p, bool preempt);
1929 extern void set_user_nice(struct task_struct *p, long nice);
1930 extern int task_prio(const struct task_struct *p);
1931 extern int task_nice(const struct task_struct *p);
1932 extern int can_nice(const struct task_struct *p, const int nice);
1933 extern int task_curr(const struct task_struct *p);
1934 extern int idle_cpu(int cpu);
1935 extern int sched_setscheduler(struct task_struct *, int,
1936                               const struct sched_param *);
1937 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1938                                       const struct sched_param *);
1939 extern struct task_struct *idle_task(int cpu);
1940 /**
1941  * is_idle_task - is the specified task an idle task?
1942  * @p: the task in question.
1943  *
1944  * Return: 1 if @p is an idle task. 0 otherwise.
1945  */
1946 static inline bool is_idle_task(const struct task_struct *p)
1947 {
1948         return p->pid == 0;
1949 }
1950 extern struct task_struct *curr_task(int cpu);
1951 extern void set_curr_task(int cpu, struct task_struct *p);
1952 
1953 void yield(void);
1954 
1955 /*
1956  * The default (Linux) execution domain.
1957  */
1958 extern struct exec_domain       default_exec_domain;
1959 
1960 union thread_union {
1961         struct thread_info thread_info;
1962         unsigned long stack[THREAD_SIZE/sizeof(long)];
1963 };
1964 
1965 #ifndef __HAVE_ARCH_KSTACK_END
1966 static inline int kstack_end(void *addr)
1967 {
1968         /* Reliable end of stack detection:
1969          * Some APM bios versions misalign the stack
1970          */
1971         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1972 }
1973 #endif
1974 
1975 extern union thread_union init_thread_union;
1976 extern struct task_struct init_task;
1977 
1978 extern struct   mm_struct init_mm;
1979 
1980 extern struct pid_namespace init_pid_ns;
1981 
1982 /*
1983  * find a task by one of its numerical ids
1984  *
1985  * find_task_by_pid_ns():
1986  *      finds a task by its pid in the specified namespace
1987  * find_task_by_vpid():
1988  *      finds a task by its virtual pid
1989  *
1990  * see also find_vpid() etc in include/linux/pid.h
1991  */
1992 
1993 extern struct task_struct *find_task_by_vpid(pid_t nr);
1994 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1995                 struct pid_namespace *ns);
1996 
1997 /* per-UID process charging. */
1998 extern struct user_struct * alloc_uid(kuid_t);
1999 static inline struct user_struct *get_uid(struct user_struct *u)
2000 {
2001         atomic_inc(&u->__count);
2002         return u;
2003 }
2004 extern void free_uid(struct user_struct *);
2005 
2006 #include <asm/current.h>
2007 
2008 extern void xtime_update(unsigned long ticks);
2009 
2010 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2011 extern int wake_up_process(struct task_struct *tsk);
2012 extern void wake_up_new_task(struct task_struct *tsk);
2013 #ifdef CONFIG_SMP
2014  extern void kick_process(struct task_struct *tsk);
2015 #else
2016  static inline void kick_process(struct task_struct *tsk) { }
2017 #endif
2018 extern void sched_fork(struct task_struct *p);
2019 extern void sched_dead(struct task_struct *p);
2020 
2021 extern void proc_caches_init(void);
2022 extern void flush_signals(struct task_struct *);
2023 extern void __flush_signals(struct task_struct *);
2024 extern void ignore_signals(struct task_struct *);
2025 extern void flush_signal_handlers(struct task_struct *, int force_default);
2026 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2027 
2028 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2029 {
2030         unsigned long flags;
2031         int ret;
2032 
2033         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2034         ret = dequeue_signal(tsk, mask, info);
2035         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2036 
2037         return ret;
2038 }
2039 
2040 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2041                               sigset_t *mask);
2042 extern void unblock_all_signals(void);
2043 extern void release_task(struct task_struct * p);
2044 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2045 extern int force_sigsegv(int, struct task_struct *);
2046 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2047 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2048 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2049 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2050                                 const struct cred *, u32);
2051 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2052 extern int kill_pid(struct pid *pid, int sig, int priv);
2053 extern int kill_proc_info(int, struct siginfo *, pid_t);
2054 extern __must_check bool do_notify_parent(struct task_struct *, int);
2055 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2056 extern void force_sig(int, struct task_struct *);
2057 extern int send_sig(int, struct task_struct *, int);
2058 extern int zap_other_threads(struct task_struct *p);
2059 extern struct sigqueue *sigqueue_alloc(void);
2060 extern void sigqueue_free(struct sigqueue *);
2061 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2062 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2063 
2064 static inline void restore_saved_sigmask(void)
2065 {
2066         if (test_and_clear_restore_sigmask())
2067                 __set_current_blocked(&current->saved_sigmask);
2068 }
2069 
2070 static inline sigset_t *sigmask_to_save(void)
2071 {
2072         sigset_t *res = &current->blocked;
2073         if (unlikely(test_restore_sigmask()))
2074                 res = &current->saved_sigmask;
2075         return res;
2076 }
2077 
2078 static inline int kill_cad_pid(int sig, int priv)
2079 {
2080         return kill_pid(cad_pid, sig, priv);
2081 }
2082 
2083 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2084 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2085 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2086 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2087 
2088 /*
2089  * True if we are on the alternate signal stack.
2090  */
2091 static inline int on_sig_stack(unsigned long sp)
2092 {
2093 #ifdef CONFIG_STACK_GROWSUP
2094         return sp >= current->sas_ss_sp &&
2095                 sp - current->sas_ss_sp < current->sas_ss_size;
2096 #else
2097         return sp > current->sas_ss_sp &&
2098                 sp - current->sas_ss_sp <= current->sas_ss_size;
2099 #endif
2100 }
2101 
2102 static inline int sas_ss_flags(unsigned long sp)
2103 {
2104         return (current->sas_ss_size == 0 ? SS_DISABLE
2105                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2106 }
2107 
2108 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2109 {
2110         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2111 #ifdef CONFIG_STACK_GROWSUP
2112                 return current->sas_ss_sp;
2113 #else
2114                 return current->sas_ss_sp + current->sas_ss_size;
2115 #endif
2116         return sp;
2117 }
2118 
2119 /*
2120  * Routines for handling mm_structs
2121  */
2122 extern struct mm_struct * mm_alloc(void);
2123 
2124 /* mmdrop drops the mm and the page tables */
2125 extern void __mmdrop(struct mm_struct *);
2126 static inline void mmdrop(struct mm_struct * mm)
2127 {
2128         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2129                 __mmdrop(mm);
2130 }
2131 
2132 /* mmput gets rid of the mappings and all user-space */
2133 extern void mmput(struct mm_struct *);
2134 /* Grab a reference to a task's mm, if it is not already going away */
2135 extern struct mm_struct *get_task_mm(struct task_struct *task);
2136 /*
2137  * Grab a reference to a task's mm, if it is not already going away
2138  * and ptrace_may_access with the mode parameter passed to it
2139  * succeeds.
2140  */
2141 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2142 /* Remove the current tasks stale references to the old mm_struct */
2143 extern void mm_release(struct task_struct *, struct mm_struct *);
2144 /* Allocate a new mm structure and copy contents from tsk->mm */
2145 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2146 
2147 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2148                         struct task_struct *);
2149 extern void flush_thread(void);
2150 extern void exit_thread(void);
2151 
2152 extern void exit_files(struct task_struct *);
2153 extern void __cleanup_sighand(struct sighand_struct *);
2154 
2155 extern void exit_itimers(struct signal_struct *);
2156 extern void flush_itimer_signals(void);
2157 
2158 extern void do_group_exit(int);
2159 
2160 extern int allow_signal(int);
2161 extern int disallow_signal(int);
2162 
2163 extern int do_execve(const char *,
2164                      const char __user * const __user *,
2165                      const char __user * const __user *);
2166 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2167 struct task_struct *fork_idle(int);
2168 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2169 
2170 extern void set_task_comm(struct task_struct *tsk, char *from);
2171 extern char *get_task_comm(char *to, struct task_struct *tsk);
2172 
2173 #ifdef CONFIG_SMP
2174 void scheduler_ipi(void);
2175 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2176 #else
2177 static inline void scheduler_ipi(void) { }
2178 static inline unsigned long wait_task_inactive(struct task_struct *p,
2179                                                long match_state)
2180 {
2181         return 1;
2182 }
2183 #endif
2184 
2185 #define next_task(p) \
2186         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2187 
2188 #define for_each_process(p) \
2189         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2190 
2191 extern bool current_is_single_threaded(void);
2192 
2193 /*
2194  * Careful: do_each_thread/while_each_thread is a double loop so
2195  *          'break' will not work as expected - use goto instead.
2196  */
2197 #define do_each_thread(g, t) \
2198         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2199 
2200 #define while_each_thread(g, t) \
2201         while ((t = next_thread(t)) != g)
2202 
2203 #define __for_each_thread(signal, t)    \
2204         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2205 
2206 #define for_each_thread(p, t)           \
2207         __for_each_thread((p)->signal, t)
2208 
2209 /* Careful: this is a double loop, 'break' won't work as expected. */
2210 #define for_each_process_thread(p, t)   \
2211         for_each_process(p) for_each_thread(p, t)
2212 
2213 static inline int get_nr_threads(struct task_struct *tsk)
2214 {
2215         return tsk->signal->nr_threads;
2216 }
2217 
2218 static inline bool thread_group_leader(struct task_struct *p)
2219 {
2220         return p->exit_signal >= 0;
2221 }
2222 
2223 /* Do to the insanities of de_thread it is possible for a process
2224  * to have the pid of the thread group leader without actually being
2225  * the thread group leader.  For iteration through the pids in proc
2226  * all we care about is that we have a task with the appropriate
2227  * pid, we don't actually care if we have the right task.
2228  */
2229 static inline bool has_group_leader_pid(struct task_struct *p)
2230 {
2231         return task_pid(p) == p->signal->leader_pid;
2232 }
2233 
2234 static inline
2235 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2236 {
2237         return p1->signal == p2->signal;
2238 }
2239 
2240 static inline struct task_struct *next_thread(const struct task_struct *p)
2241 {
2242         return list_entry_rcu(p->thread_group.next,
2243                               struct task_struct, thread_group);
2244 }
2245 
2246 static inline int thread_group_empty(struct task_struct *p)
2247 {
2248         return list_empty(&p->thread_group);
2249 }
2250 
2251 #define delay_group_leader(p) \
2252                 (thread_group_leader(p) && !thread_group_empty(p))
2253 
2254 /*
2255  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2256  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2257  * pins the final release of task.io_context.  Also protects ->cpuset and
2258  * ->cgroup.subsys[]. And ->vfork_done.
2259  *
2260  * Nests both inside and outside of read_lock(&tasklist_lock).
2261  * It must not be nested with write_lock_irq(&tasklist_lock),
2262  * neither inside nor outside.
2263  */
2264 static inline void task_lock(struct task_struct *p)
2265 {
2266         spin_lock(&p->alloc_lock);
2267 }
2268 
2269 static inline void task_unlock(struct task_struct *p)
2270 {
2271         spin_unlock(&p->alloc_lock);
2272 }
2273 
2274 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2275                                                         unsigned long *flags);
2276 
2277 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2278                                                        unsigned long *flags)
2279 {
2280         struct sighand_struct *ret;
2281 
2282         ret = __lock_task_sighand(tsk, flags);
2283         (void)__cond_lock(&tsk->sighand->siglock, ret);
2284         return ret;
2285 }
2286 
2287 static inline void unlock_task_sighand(struct task_struct *tsk,
2288                                                 unsigned long *flags)
2289 {
2290         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2291 }
2292 
2293 #ifdef CONFIG_CGROUPS
2294 static inline void threadgroup_change_begin(struct task_struct *tsk)
2295 {
2296         down_read(&tsk->signal->group_rwsem);
2297 }
2298 static inline void threadgroup_change_end(struct task_struct *tsk)
2299 {
2300         up_read(&tsk->signal->group_rwsem);
2301 }
2302 
2303 /**
2304  * threadgroup_lock - lock threadgroup
2305  * @tsk: member task of the threadgroup to lock
2306  *
2307  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2308  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2309  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2310  * needs to stay stable across blockable operations.
2311  *
2312  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2313  * synchronization.  While held, no new task will be added to threadgroup
2314  * and no existing live task will have its PF_EXITING set.
2315  *
2316  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2317  * sub-thread becomes a new leader.
2318  */
2319 static inline void threadgroup_lock(struct task_struct *tsk)
2320 {
2321         down_write(&tsk->signal->group_rwsem);
2322 }
2323 
2324 /**
2325  * threadgroup_unlock - unlock threadgroup
2326  * @tsk: member task of the threadgroup to unlock
2327  *
2328  * Reverse threadgroup_lock().
2329  */
2330 static inline void threadgroup_unlock(struct task_struct *tsk)
2331 {
2332         up_write(&tsk->signal->group_rwsem);
2333 }
2334 #else
2335 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2336 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2337 static inline void threadgroup_lock(struct task_struct *tsk) {}
2338 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2339 #endif
2340 
2341 #ifndef __HAVE_THREAD_FUNCTIONS
2342 
2343 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2344 #define task_stack_page(task)   ((task)->stack)
2345 
2346 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2347 {
2348         *task_thread_info(p) = *task_thread_info(org);
2349         task_thread_info(p)->task = p;
2350 }
2351 
2352 static inline unsigned long *end_of_stack(struct task_struct *p)
2353 {
2354         return (unsigned long *)(task_thread_info(p) + 1);
2355 }
2356 
2357 #endif
2358 
2359 static inline int object_is_on_stack(void *obj)
2360 {
2361         void *stack = task_stack_page(current);
2362 
2363         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2364 }
2365 
2366 extern void thread_info_cache_init(void);
2367 
2368 #ifdef CONFIG_DEBUG_STACK_USAGE
2369 static inline unsigned long stack_not_used(struct task_struct *p)
2370 {
2371         unsigned long *n = end_of_stack(p);
2372 
2373         do {    /* Skip over canary */
2374                 n++;
2375         } while (!*n);
2376 
2377         return (unsigned long)n - (unsigned long)end_of_stack(p);
2378 }
2379 #endif
2380 
2381 /* set thread flags in other task's structures
2382  * - see asm/thread_info.h for TIF_xxxx flags available
2383  */
2384 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2385 {
2386         set_ti_thread_flag(task_thread_info(tsk), flag);
2387 }
2388 
2389 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2390 {
2391         clear_ti_thread_flag(task_thread_info(tsk), flag);
2392 }
2393 
2394 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2395 {
2396         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2397 }
2398 
2399 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2400 {
2401         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2402 }
2403 
2404 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2405 {
2406         return test_ti_thread_flag(task_thread_info(tsk), flag);
2407 }
2408 
2409 static inline void set_tsk_need_resched(struct task_struct *tsk)
2410 {
2411         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2412 }
2413 
2414 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2415 {
2416         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2417 }
2418 
2419 static inline int test_tsk_need_resched(struct task_struct *tsk)
2420 {
2421         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2422 }
2423 
2424 static inline int restart_syscall(void)
2425 {
2426         set_tsk_thread_flag(current, TIF_SIGPENDING);
2427         return -ERESTARTNOINTR;
2428 }
2429 
2430 static inline int signal_pending(struct task_struct *p)
2431 {
2432         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2433 }
2434 
2435 static inline int __fatal_signal_pending(struct task_struct *p)
2436 {
2437         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2438 }
2439 
2440 static inline int fatal_signal_pending(struct task_struct *p)
2441 {
2442         return signal_pending(p) && __fatal_signal_pending(p);
2443 }
2444 
2445 static inline int signal_pending_state(long state, struct task_struct *p)
2446 {
2447         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2448                 return 0;
2449         if (!signal_pending(p))
2450                 return 0;
2451 
2452         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2453 }
2454 
2455 static inline int need_resched(void)
2456 {
2457         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2458 }
2459 
2460 /*
2461  * cond_resched() and cond_resched_lock(): latency reduction via
2462  * explicit rescheduling in places that are safe. The return
2463  * value indicates whether a reschedule was done in fact.
2464  * cond_resched_lock() will drop the spinlock before scheduling,
2465  * cond_resched_softirq() will enable bhs before scheduling.
2466  */
2467 extern int _cond_resched(void);
2468 
2469 #define cond_resched() ({                       \
2470         __might_sleep(__FILE__, __LINE__, 0);   \
2471         _cond_resched();                        \
2472 })
2473 
2474 extern int __cond_resched_lock(spinlock_t *lock);
2475 
2476 #ifdef CONFIG_PREEMPT_COUNT
2477 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2478 #else
2479 #define PREEMPT_LOCK_OFFSET     0
2480 #endif
2481 
2482 #define cond_resched_lock(lock) ({                              \
2483         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2484         __cond_resched_lock(lock);                              \
2485 })
2486 
2487 extern int __cond_resched_softirq(void);
2488 
2489 #define cond_resched_softirq() ({                                       \
2490         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2491         __cond_resched_softirq();                                       \
2492 })
2493 
2494 static inline void cond_resched_rcu(void)
2495 {
2496 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2497         rcu_read_unlock();
2498         cond_resched();
2499         rcu_read_lock();
2500 #endif
2501 }
2502 
2503 /*
2504  * Does a critical section need to be broken due to another
2505  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2506  * but a general need for low latency)
2507  */
2508 static inline int spin_needbreak(spinlock_t *lock)
2509 {
2510 #ifdef CONFIG_PREEMPT
2511         return spin_is_contended(lock);
2512 #else
2513         return 0;
2514 #endif
2515 }
2516 
2517 /*
2518  * Idle thread specific functions to determine the need_resched
2519  * polling state. We have two versions, one based on TS_POLLING in
2520  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2521  * thread_info.flags
2522  */
2523 #ifdef TS_POLLING
2524 static inline int tsk_is_polling(struct task_struct *p)
2525 {
2526         return task_thread_info(p)->status & TS_POLLING;
2527 }
2528 static inline void __current_set_polling(void)
2529 {
2530         current_thread_info()->status |= TS_POLLING;
2531 }
2532 
2533 static inline bool __must_check current_set_polling_and_test(void)
2534 {
2535         __current_set_polling();
2536 
2537         /*
2538          * Polling state must be visible before we test NEED_RESCHED,
2539          * paired by resched_task()
2540          */
2541         smp_mb();
2542 
2543         return unlikely(tif_need_resched());
2544 }
2545 
2546 static inline void __current_clr_polling(void)
2547 {
2548         current_thread_info()->status &= ~TS_POLLING;
2549 }
2550 
2551 static inline bool __must_check current_clr_polling_and_test(void)
2552 {
2553         __current_clr_polling();
2554 
2555         /*
2556          * Polling state must be visible before we test NEED_RESCHED,
2557          * paired by resched_task()
2558          */
2559         smp_mb();
2560 
2561         return unlikely(tif_need_resched());
2562 }
2563 #elif defined(TIF_POLLING_NRFLAG)
2564 static inline int tsk_is_polling(struct task_struct *p)
2565 {
2566         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2567 }
2568 
2569 static inline void __current_set_polling(void)
2570 {
2571         set_thread_flag(TIF_POLLING_NRFLAG);
2572 }
2573 
2574 static inline bool __must_check current_set_polling_and_test(void)
2575 {
2576         __current_set_polling();
2577 
2578         /*
2579          * Polling state must be visible before we test NEED_RESCHED,
2580          * paired by resched_task()
2581          *
2582          * XXX: assumes set/clear bit are identical barrier wise.
2583          */
2584         smp_mb__after_clear_bit();
2585 
2586         return unlikely(tif_need_resched());
2587 }
2588 
2589 static inline void __current_clr_polling(void)
2590 {
2591         clear_thread_flag(TIF_POLLING_NRFLAG);
2592 }
2593 
2594 static inline bool __must_check current_clr_polling_and_test(void)
2595 {
2596         __current_clr_polling();
2597 
2598         /*
2599          * Polling state must be visible before we test NEED_RESCHED,
2600          * paired by resched_task()
2601          */
2602         smp_mb__after_clear_bit();
2603 
2604         return unlikely(tif_need_resched());
2605 }
2606 
2607 #else
2608 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2609 static inline void __current_set_polling(void) { }
2610 static inline void __current_clr_polling(void) { }
2611 
2612 static inline bool __must_check current_set_polling_and_test(void)
2613 {
2614         return unlikely(tif_need_resched());
2615 }
2616 static inline bool __must_check current_clr_polling_and_test(void)
2617 {
2618         return unlikely(tif_need_resched());
2619 }
2620 #endif
2621 
2622 /*
2623  * Thread group CPU time accounting.
2624  */
2625 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2626 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2627 
2628 static inline void thread_group_cputime_init(struct signal_struct *sig)
2629 {
2630         raw_spin_lock_init(&sig->cputimer.lock);
2631 }
2632 
2633 /*
2634  * Reevaluate whether the task has signals pending delivery.
2635  * Wake the task if so.
2636  * This is required every time the blocked sigset_t changes.
2637  * callers must hold sighand->siglock.
2638  */
2639 extern void recalc_sigpending_and_wake(struct task_struct *t);
2640 extern void recalc_sigpending(void);
2641 
2642 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2643 
2644 static inline void signal_wake_up(struct task_struct *t, bool resume)
2645 {
2646         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2647 }
2648 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2649 {
2650         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2651 }
2652 
2653 /*
2654  * Wrappers for p->thread_info->cpu access. No-op on UP.
2655  */
2656 #ifdef CONFIG_SMP
2657 
2658 static inline unsigned int task_cpu(const struct task_struct *p)
2659 {
2660         return task_thread_info(p)->cpu;
2661 }
2662 
2663 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2664 
2665 #else
2666 
2667 static inline unsigned int task_cpu(const struct task_struct *p)
2668 {
2669         return 0;
2670 }
2671 
2672 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2673 {
2674 }
2675 
2676 #endif /* CONFIG_SMP */
2677 
2678 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2679 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2680 
2681 #ifdef CONFIG_CGROUP_SCHED
2682 extern struct task_group root_task_group;
2683 #endif /* CONFIG_CGROUP_SCHED */
2684 
2685 extern int task_can_switch_user(struct user_struct *up,
2686                                         struct task_struct *tsk);
2687 
2688 #ifdef CONFIG_TASK_XACCT
2689 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2690 {
2691         tsk->ioac.rchar += amt;
2692 }
2693 
2694 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2695 {
2696         tsk->ioac.wchar += amt;
2697 }
2698 
2699 static inline void inc_syscr(struct task_struct *tsk)
2700 {
2701         tsk->ioac.syscr++;
2702 }
2703 
2704 static inline void inc_syscw(struct task_struct *tsk)
2705 {
2706         tsk->ioac.syscw++;
2707 }
2708 #else
2709 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2710 {
2711 }
2712 
2713 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2714 {
2715 }
2716 
2717 static inline void inc_syscr(struct task_struct *tsk)
2718 {
2719 }
2720 
2721 static inline void inc_syscw(struct task_struct *tsk)
2722 {
2723 }
2724 #endif
2725 
2726 #ifndef TASK_SIZE_OF
2727 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2728 #endif
2729 
2730 #ifdef CONFIG_MM_OWNER
2731 extern void mm_update_next_owner(struct mm_struct *mm);
2732 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2733 #else
2734 static inline void mm_update_next_owner(struct mm_struct *mm)
2735 {
2736 }
2737 
2738 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2739 {
2740 }
2741 #endif /* CONFIG_MM_OWNER */
2742 
2743 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2744                 unsigned int limit)
2745 {
2746         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2747 }
2748 
2749 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2750                 unsigned int limit)
2751 {
2752         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2753 }
2754 
2755 static inline unsigned long rlimit(unsigned int limit)
2756 {
2757         return task_rlimit(current, limit);
2758 }
2759 
2760 static inline unsigned long rlimit_max(unsigned int limit)
2761 {
2762         return task_rlimit_max(current, limit);
2763 }
2764 
2765 #endif
2766 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp