~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_H
  2 #define _LINUX_SCHED_H
  3 
  4 /*
  5  * cloning flags:
  6  */
  7 #define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
  8 #define CLONE_VM        0x00000100      /* set if VM shared between processes */
  9 #define CLONE_FS        0x00000200      /* set if fs info shared between processes */
 10 #define CLONE_FILES     0x00000400      /* set if open files shared between processes */
 11 #define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked signals shared */
 12 #define CLONE_PTRACE    0x00002000      /* set if we want to let tracing continue on the child too */
 13 #define CLONE_VFORK     0x00004000      /* set if the parent wants the child to wake it up on mm_release */
 14 #define CLONE_PARENT    0x00008000      /* set if we want to have the same parent as the cloner */
 15 #define CLONE_THREAD    0x00010000      /* Same thread group? */
 16 #define CLONE_NEWNS     0x00020000      /* New namespace group? */
 17 #define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
 18 #define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
 19 #define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
 20 #define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
 21 #define CLONE_DETACHED          0x00400000      /* Unused, ignored */
 22 #define CLONE_UNTRACED          0x00800000      /* set if the tracing process can't force CLONE_PTRACE on this clone */
 23 #define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
 25    and is now available for re-use. */
 26 #define CLONE_NEWUTS            0x04000000      /* New utsname group? */
 27 #define CLONE_NEWIPC            0x08000000      /* New ipcs */
 28 #define CLONE_NEWUSER           0x10000000      /* New user namespace */
 29 #define CLONE_NEWPID            0x20000000      /* New pid namespace */
 30 #define CLONE_NEWNET            0x40000000      /* New network namespace */
 31 #define CLONE_IO                0x80000000      /* Clone io context */
 32 
 33 /*
 34  * Scheduling policies
 35  */
 36 #define SCHED_NORMAL            0
 37 #define SCHED_FIFO              1
 38 #define SCHED_RR                2
 39 #define SCHED_BATCH             3
 40 /* SCHED_ISO: reserved but not implemented yet */
 41 #define SCHED_IDLE              5
 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
 43 #define SCHED_RESET_ON_FORK     0x40000000
 44 
 45 #ifdef __KERNEL__
 46 
 47 struct ccs_domain_info;
 48 
 49 struct sched_param {
 50         int sched_priority;
 51 };
 52 
 53 #include <asm/param.h>  /* for HZ */
 54 
 55 #include <linux/capability.h>
 56 #include <linux/threads.h>
 57 #include <linux/kernel.h>
 58 #include <linux/types.h>
 59 #include <linux/timex.h>
 60 #include <linux/jiffies.h>
 61 #include <linux/rbtree.h>
 62 #include <linux/thread_info.h>
 63 #include <linux/cpumask.h>
 64 #include <linux/errno.h>
 65 #include <linux/nodemask.h>
 66 #include <linux/mm_types.h>
 67 
 68 #include <asm/page.h>
 69 #include <asm/ptrace.h>
 70 #include <asm/cputime.h>
 71 
 72 #include <linux/smp.h>
 73 #include <linux/sem.h>
 74 #include <linux/signal.h>
 75 #include <linux/compiler.h>
 76 #include <linux/completion.h>
 77 #include <linux/pid.h>
 78 #include <linux/percpu.h>
 79 #include <linux/topology.h>
 80 #include <linux/proportions.h>
 81 #include <linux/seccomp.h>
 82 #include <linux/rcupdate.h>
 83 #include <linux/rculist.h>
 84 #include <linux/rtmutex.h>
 85 
 86 #include <linux/time.h>
 87 #include <linux/param.h>
 88 #include <linux/resource.h>
 89 #include <linux/timer.h>
 90 #include <linux/hrtimer.h>
 91 #include <linux/task_io_accounting.h>
 92 #include <linux/latencytop.h>
 93 #include <linux/cred.h>
 94 #include <linux/llist.h>
 95 #include <linux/uidgid.h>
 96 
 97 #include <asm/processor.h>
 98 
 99 struct exec_domain;
100 struct futex_pi_state;
101 struct robust_list_head;
102 struct bio_list;
103 struct fs_struct;
104 struct perf_event_context;
105 struct blk_plug;
106 
107 /*
108  * List of flags we want to share for kernel threads,
109  * if only because they are not used by them anyway.
110  */
111 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
112 
113 /*
114  * These are the constant used to fake the fixed-point load-average
115  * counting. Some notes:
116  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
117  *    a load-average precision of 10 bits integer + 11 bits fractional
118  *  - if you want to count load-averages more often, you need more
119  *    precision, or rounding will get you. With 2-second counting freq,
120  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
121  *    11 bit fractions.
122  */
123 extern unsigned long avenrun[];         /* Load averages */
124 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
125 
126 #define FSHIFT          11              /* nr of bits of precision */
127 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
128 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
129 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
130 #define EXP_5           2014            /* 1/exp(5sec/5min) */
131 #define EXP_15          2037            /* 1/exp(5sec/15min) */
132 
133 #define CALC_LOAD(load,exp,n) \
134         load *= exp; \
135         load += n*(FIXED_1-exp); \
136         load >>= FSHIFT;
137 
138 extern unsigned long total_forks;
139 extern int nr_threads;
140 DECLARE_PER_CPU(unsigned long, process_counts);
141 extern int nr_processes(void);
142 extern unsigned long nr_running(void);
143 extern unsigned long nr_uninterruptible(void);
144 extern unsigned long nr_iowait(void);
145 extern unsigned long nr_iowait_cpu(int cpu);
146 extern unsigned long this_cpu_load(void);
147 
148 
149 extern void calc_global_load(unsigned long ticks);
150 extern void update_cpu_load_nohz(void);
151 
152 extern unsigned long get_parent_ip(unsigned long addr);
153 
154 struct seq_file;
155 struct cfs_rq;
156 struct task_group;
157 #ifdef CONFIG_SCHED_DEBUG
158 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
159 extern void proc_sched_set_task(struct task_struct *p);
160 extern void
161 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
162 #else
163 static inline void
164 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
165 {
166 }
167 static inline void proc_sched_set_task(struct task_struct *p)
168 {
169 }
170 static inline void
171 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
172 {
173 }
174 #endif
175 
176 /*
177  * Task state bitmask. NOTE! These bits are also
178  * encoded in fs/proc/array.c: get_task_state().
179  *
180  * We have two separate sets of flags: task->state
181  * is about runnability, while task->exit_state are
182  * about the task exiting. Confusing, but this way
183  * modifying one set can't modify the other one by
184  * mistake.
185  */
186 #define TASK_RUNNING            0
187 #define TASK_INTERRUPTIBLE      1
188 #define TASK_UNINTERRUPTIBLE    2
189 #define __TASK_STOPPED          4
190 #define __TASK_TRACED           8
191 /* in tsk->exit_state */
192 #define EXIT_ZOMBIE             16
193 #define EXIT_DEAD               32
194 /* in tsk->state again */
195 #define TASK_DEAD               64
196 #define TASK_WAKEKILL           128
197 #define TASK_WAKING             256
198 #define TASK_STATE_MAX          512
199 
200 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
201 
202 extern char ___assert_task_state[1 - 2*!!(
203                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
204 
205 /* Convenience macros for the sake of set_task_state */
206 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
207 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
208 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
209 
210 /* Convenience macros for the sake of wake_up */
211 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
212 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
213 
214 /* get_task_state() */
215 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
216                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
217                                  __TASK_TRACED)
218 
219 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
220 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
221 #define task_is_dead(task)      ((task)->exit_state != 0)
222 #define task_is_stopped_or_traced(task) \
223                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
224 #define task_contributes_to_load(task)  \
225                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
226                                  (task->flags & PF_FROZEN) == 0)
227 
228 #define __set_task_state(tsk, state_value)              \
229         do { (tsk)->state = (state_value); } while (0)
230 #define set_task_state(tsk, state_value)                \
231         set_mb((tsk)->state, (state_value))
232 
233 /*
234  * set_current_state() includes a barrier so that the write of current->state
235  * is correctly serialised wrt the caller's subsequent test of whether to
236  * actually sleep:
237  *
238  *      set_current_state(TASK_UNINTERRUPTIBLE);
239  *      if (do_i_need_to_sleep())
240  *              schedule();
241  *
242  * If the caller does not need such serialisation then use __set_current_state()
243  */
244 #define __set_current_state(state_value)                        \
245         do { current->state = (state_value); } while (0)
246 #define set_current_state(state_value)          \
247         set_mb(current->state, (state_value))
248 
249 /* Task command name length */
250 #define TASK_COMM_LEN 16
251 
252 #include <linux/spinlock.h>
253 
254 /*
255  * This serializes "schedule()" and also protects
256  * the run-queue from deletions/modifications (but
257  * _adding_ to the beginning of the run-queue has
258  * a separate lock).
259  */
260 extern rwlock_t tasklist_lock;
261 extern spinlock_t mmlist_lock;
262 
263 struct task_struct;
264 
265 #ifdef CONFIG_PROVE_RCU
266 extern int lockdep_tasklist_lock_is_held(void);
267 #endif /* #ifdef CONFIG_PROVE_RCU */
268 
269 extern void sched_init(void);
270 extern void sched_init_smp(void);
271 extern asmlinkage void schedule_tail(struct task_struct *prev);
272 extern void init_idle(struct task_struct *idle, int cpu);
273 extern void init_idle_bootup_task(struct task_struct *idle);
274 
275 extern int runqueue_is_locked(int cpu);
276 
277 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
278 extern void select_nohz_load_balancer(int stop_tick);
279 extern void set_cpu_sd_state_idle(void);
280 extern int get_nohz_timer_target(void);
281 #else
282 static inline void select_nohz_load_balancer(int stop_tick) { }
283 static inline void set_cpu_sd_state_idle(void) { }
284 #endif
285 
286 /*
287  * Only dump TASK_* tasks. (0 for all tasks)
288  */
289 extern void show_state_filter(unsigned long state_filter);
290 
291 static inline void show_state(void)
292 {
293         show_state_filter(0);
294 }
295 
296 extern void show_regs(struct pt_regs *);
297 
298 /*
299  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
300  * task), SP is the stack pointer of the first frame that should be shown in the back
301  * trace (or NULL if the entire call-chain of the task should be shown).
302  */
303 extern void show_stack(struct task_struct *task, unsigned long *sp);
304 
305 void io_schedule(void);
306 long io_schedule_timeout(long timeout);
307 
308 extern void cpu_init (void);
309 extern void trap_init(void);
310 extern void update_process_times(int user);
311 extern void scheduler_tick(void);
312 
313 extern void sched_show_task(struct task_struct *p);
314 
315 #ifdef CONFIG_LOCKUP_DETECTOR
316 extern void touch_softlockup_watchdog(void);
317 extern void touch_softlockup_watchdog_sync(void);
318 extern void touch_all_softlockup_watchdogs(void);
319 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
320                                   void __user *buffer,
321                                   size_t *lenp, loff_t *ppos);
322 extern unsigned int  softlockup_panic;
323 void lockup_detector_init(void);
324 #else
325 static inline void touch_softlockup_watchdog(void)
326 {
327 }
328 static inline void touch_softlockup_watchdog_sync(void)
329 {
330 }
331 static inline void touch_all_softlockup_watchdogs(void)
332 {
333 }
334 static inline void lockup_detector_init(void)
335 {
336 }
337 #endif
338 
339 #ifdef CONFIG_DETECT_HUNG_TASK
340 extern unsigned int  sysctl_hung_task_panic;
341 extern unsigned long sysctl_hung_task_check_count;
342 extern unsigned long sysctl_hung_task_timeout_secs;
343 extern unsigned long sysctl_hung_task_warnings;
344 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
345                                          void __user *buffer,
346                                          size_t *lenp, loff_t *ppos);
347 #else
348 /* Avoid need for ifdefs elsewhere in the code */
349 enum { sysctl_hung_task_timeout_secs = 0 };
350 #endif
351 
352 /* Attach to any functions which should be ignored in wchan output. */
353 #define __sched         __attribute__((__section__(".sched.text")))
354 
355 /* Linker adds these: start and end of __sched functions */
356 extern char __sched_text_start[], __sched_text_end[];
357 
358 /* Is this address in the __sched functions? */
359 extern int in_sched_functions(unsigned long addr);
360 
361 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
362 extern signed long schedule_timeout(signed long timeout);
363 extern signed long schedule_timeout_interruptible(signed long timeout);
364 extern signed long schedule_timeout_killable(signed long timeout);
365 extern signed long schedule_timeout_uninterruptible(signed long timeout);
366 asmlinkage void schedule(void);
367 extern void schedule_preempt_disabled(void);
368 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
369 
370 struct nsproxy;
371 struct user_namespace;
372 
373 /*
374  * Default maximum number of active map areas, this limits the number of vmas
375  * per mm struct. Users can overwrite this number by sysctl but there is a
376  * problem.
377  *
378  * When a program's coredump is generated as ELF format, a section is created
379  * per a vma. In ELF, the number of sections is represented in unsigned short.
380  * This means the number of sections should be smaller than 65535 at coredump.
381  * Because the kernel adds some informative sections to a image of program at
382  * generating coredump, we need some margin. The number of extra sections is
383  * 1-3 now and depends on arch. We use "5" as safe margin, here.
384  */
385 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
386 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
387 
388 extern int sysctl_max_map_count;
389 
390 #include <linux/aio.h>
391 
392 #ifdef CONFIG_MMU
393 extern void arch_pick_mmap_layout(struct mm_struct *mm);
394 extern unsigned long
395 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
396                        unsigned long, unsigned long);
397 extern unsigned long
398 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
399                           unsigned long len, unsigned long pgoff,
400                           unsigned long flags);
401 extern void arch_unmap_area(struct mm_struct *, unsigned long);
402 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
403 #else
404 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
405 #endif
406 
407 
408 extern void set_dumpable(struct mm_struct *mm, int value);
409 extern int get_dumpable(struct mm_struct *mm);
410 
411 /* mm flags */
412 /* dumpable bits */
413 #define MMF_DUMPABLE      0  /* core dump is permitted */
414 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
415 
416 #define MMF_DUMPABLE_BITS 2
417 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
418 
419 /* coredump filter bits */
420 #define MMF_DUMP_ANON_PRIVATE   2
421 #define MMF_DUMP_ANON_SHARED    3
422 #define MMF_DUMP_MAPPED_PRIVATE 4
423 #define MMF_DUMP_MAPPED_SHARED  5
424 #define MMF_DUMP_ELF_HEADERS    6
425 #define MMF_DUMP_HUGETLB_PRIVATE 7
426 #define MMF_DUMP_HUGETLB_SHARED  8
427 
428 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
429 #define MMF_DUMP_FILTER_BITS    7
430 #define MMF_DUMP_FILTER_MASK \
431         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
432 #define MMF_DUMP_FILTER_DEFAULT \
433         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
434          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
435 
436 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
437 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
438 #else
439 # define MMF_DUMP_MASK_DEFAULT_ELF      0
440 #endif
441                                         /* leave room for more dump flags */
442 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
443 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
444 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
445 
446 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
447 
448 struct sighand_struct {
449         atomic_t                count;
450         struct k_sigaction      action[_NSIG];
451         spinlock_t              siglock;
452         wait_queue_head_t       signalfd_wqh;
453 };
454 
455 struct pacct_struct {
456         int                     ac_flag;
457         long                    ac_exitcode;
458         unsigned long           ac_mem;
459         cputime_t               ac_utime, ac_stime;
460         unsigned long           ac_minflt, ac_majflt;
461 };
462 
463 struct cpu_itimer {
464         cputime_t expires;
465         cputime_t incr;
466         u32 error;
467         u32 incr_error;
468 };
469 
470 /**
471  * struct task_cputime - collected CPU time counts
472  * @utime:              time spent in user mode, in &cputime_t units
473  * @stime:              time spent in kernel mode, in &cputime_t units
474  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
475  *
476  * This structure groups together three kinds of CPU time that are
477  * tracked for threads and thread groups.  Most things considering
478  * CPU time want to group these counts together and treat all three
479  * of them in parallel.
480  */
481 struct task_cputime {
482         cputime_t utime;
483         cputime_t stime;
484         unsigned long long sum_exec_runtime;
485 };
486 /* Alternate field names when used to cache expirations. */
487 #define prof_exp        stime
488 #define virt_exp        utime
489 #define sched_exp       sum_exec_runtime
490 
491 #define INIT_CPUTIME    \
492         (struct task_cputime) {                                 \
493                 .utime = 0,                                     \
494                 .stime = 0,                                     \
495                 .sum_exec_runtime = 0,                          \
496         }
497 
498 /*
499  * Disable preemption until the scheduler is running.
500  * Reset by start_kernel()->sched_init()->init_idle().
501  *
502  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
503  * before the scheduler is active -- see should_resched().
504  */
505 #define INIT_PREEMPT_COUNT      (1 + PREEMPT_ACTIVE)
506 
507 /**
508  * struct thread_group_cputimer - thread group interval timer counts
509  * @cputime:            thread group interval timers.
510  * @running:            non-zero when there are timers running and
511  *                      @cputime receives updates.
512  * @lock:               lock for fields in this struct.
513  *
514  * This structure contains the version of task_cputime, above, that is
515  * used for thread group CPU timer calculations.
516  */
517 struct thread_group_cputimer {
518         struct task_cputime cputime;
519         int running;
520         raw_spinlock_t lock;
521 };
522 
523 #include <linux/rwsem.h>
524 struct autogroup;
525 
526 /*
527  * NOTE! "signal_struct" does not have its own
528  * locking, because a shared signal_struct always
529  * implies a shared sighand_struct, so locking
530  * sighand_struct is always a proper superset of
531  * the locking of signal_struct.
532  */
533 struct signal_struct {
534         atomic_t                sigcnt;
535         atomic_t                live;
536         int                     nr_threads;
537 
538         wait_queue_head_t       wait_chldexit;  /* for wait4() */
539 
540         /* current thread group signal load-balancing target: */
541         struct task_struct      *curr_target;
542 
543         /* shared signal handling: */
544         struct sigpending       shared_pending;
545 
546         /* thread group exit support */
547         int                     group_exit_code;
548         /* overloaded:
549          * - notify group_exit_task when ->count is equal to notify_count
550          * - everyone except group_exit_task is stopped during signal delivery
551          *   of fatal signals, group_exit_task processes the signal.
552          */
553         int                     notify_count;
554         struct task_struct      *group_exit_task;
555 
556         /* thread group stop support, overloads group_exit_code too */
557         int                     group_stop_count;
558         unsigned int            flags; /* see SIGNAL_* flags below */
559 
560         /*
561          * PR_SET_CHILD_SUBREAPER marks a process, like a service
562          * manager, to re-parent orphan (double-forking) child processes
563          * to this process instead of 'init'. The service manager is
564          * able to receive SIGCHLD signals and is able to investigate
565          * the process until it calls wait(). All children of this
566          * process will inherit a flag if they should look for a
567          * child_subreaper process at exit.
568          */
569         unsigned int            is_child_subreaper:1;
570         unsigned int            has_child_subreaper:1;
571 
572         /* POSIX.1b Interval Timers */
573         struct list_head posix_timers;
574 
575         /* ITIMER_REAL timer for the process */
576         struct hrtimer real_timer;
577         struct pid *leader_pid;
578         ktime_t it_real_incr;
579 
580         /*
581          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
582          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
583          * values are defined to 0 and 1 respectively
584          */
585         struct cpu_itimer it[2];
586 
587         /*
588          * Thread group totals for process CPU timers.
589          * See thread_group_cputimer(), et al, for details.
590          */
591         struct thread_group_cputimer cputimer;
592 
593         /* Earliest-expiration cache. */
594         struct task_cputime cputime_expires;
595 
596         struct list_head cpu_timers[3];
597 
598         struct pid *tty_old_pgrp;
599 
600         /* boolean value for session group leader */
601         int leader;
602 
603         struct tty_struct *tty; /* NULL if no tty */
604 
605 #ifdef CONFIG_SCHED_AUTOGROUP
606         struct autogroup *autogroup;
607 #endif
608         /*
609          * Cumulative resource counters for dead threads in the group,
610          * and for reaped dead child processes forked by this group.
611          * Live threads maintain their own counters and add to these
612          * in __exit_signal, except for the group leader.
613          */
614         cputime_t utime, stime, cutime, cstime;
615         cputime_t gtime;
616         cputime_t cgtime;
617 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
618         cputime_t prev_utime, prev_stime;
619 #endif
620         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
621         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
622         unsigned long inblock, oublock, cinblock, coublock;
623         unsigned long maxrss, cmaxrss;
624         struct task_io_accounting ioac;
625 
626         /*
627          * Cumulative ns of schedule CPU time fo dead threads in the
628          * group, not including a zombie group leader, (This only differs
629          * from jiffies_to_ns(utime + stime) if sched_clock uses something
630          * other than jiffies.)
631          */
632         unsigned long long sum_sched_runtime;
633 
634         /*
635          * We don't bother to synchronize most readers of this at all,
636          * because there is no reader checking a limit that actually needs
637          * to get both rlim_cur and rlim_max atomically, and either one
638          * alone is a single word that can safely be read normally.
639          * getrlimit/setrlimit use task_lock(current->group_leader) to
640          * protect this instead of the siglock, because they really
641          * have no need to disable irqs.
642          */
643         struct rlimit rlim[RLIM_NLIMITS];
644 
645 #ifdef CONFIG_BSD_PROCESS_ACCT
646         struct pacct_struct pacct;      /* per-process accounting information */
647 #endif
648 #ifdef CONFIG_TASKSTATS
649         struct taskstats *stats;
650 #endif
651 #ifdef CONFIG_AUDIT
652         unsigned audit_tty;
653         struct tty_audit_buf *tty_audit_buf;
654 #endif
655 #ifdef CONFIG_CGROUPS
656         /*
657          * group_rwsem prevents new tasks from entering the threadgroup and
658          * member tasks from exiting,a more specifically, setting of
659          * PF_EXITING.  fork and exit paths are protected with this rwsem
660          * using threadgroup_change_begin/end().  Users which require
661          * threadgroup to remain stable should use threadgroup_[un]lock()
662          * which also takes care of exec path.  Currently, cgroup is the
663          * only user.
664          */
665         struct rw_semaphore group_rwsem;
666 #endif
667 
668         int oom_adj;            /* OOM kill score adjustment (bit shift) */
669         int oom_score_adj;      /* OOM kill score adjustment */
670         int oom_score_adj_min;  /* OOM kill score adjustment minimum value.
671                                  * Only settable by CAP_SYS_RESOURCE. */
672 
673         struct mutex cred_guard_mutex;  /* guard against foreign influences on
674                                          * credential calculations
675                                          * (notably. ptrace) */
676 };
677 
678 /* Context switch must be unlocked if interrupts are to be enabled */
679 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
680 # define __ARCH_WANT_UNLOCKED_CTXSW
681 #endif
682 
683 /*
684  * Bits in flags field of signal_struct.
685  */
686 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
687 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
688 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
689 /*
690  * Pending notifications to parent.
691  */
692 #define SIGNAL_CLD_STOPPED      0x00000010
693 #define SIGNAL_CLD_CONTINUED    0x00000020
694 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
695 
696 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
697 
698 /* If true, all threads except ->group_exit_task have pending SIGKILL */
699 static inline int signal_group_exit(const struct signal_struct *sig)
700 {
701         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
702                 (sig->group_exit_task != NULL);
703 }
704 
705 /*
706  * Some day this will be a full-fledged user tracking system..
707  */
708 struct user_struct {
709         atomic_t __count;       /* reference count */
710         atomic_t processes;     /* How many processes does this user have? */
711         atomic_t files;         /* How many open files does this user have? */
712         atomic_t sigpending;    /* How many pending signals does this user have? */
713 #ifdef CONFIG_INOTIFY_USER
714         atomic_t inotify_watches; /* How many inotify watches does this user have? */
715         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
716 #endif
717 #ifdef CONFIG_FANOTIFY
718         atomic_t fanotify_listeners;
719 #endif
720 #ifdef CONFIG_EPOLL
721         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
722 #endif
723 #ifdef CONFIG_POSIX_MQUEUE
724         /* protected by mq_lock */
725         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
726 #endif
727         unsigned long locked_shm; /* How many pages of mlocked shm ? */
728 
729 #ifdef CONFIG_KEYS
730         struct key *uid_keyring;        /* UID specific keyring */
731         struct key *session_keyring;    /* UID's default session keyring */
732 #endif
733 
734         /* Hash table maintenance information */
735         struct hlist_node uidhash_node;
736         kuid_t uid;
737 
738 #ifdef CONFIG_PERF_EVENTS
739         atomic_long_t locked_vm;
740 #endif
741 };
742 
743 extern int uids_sysfs_init(void);
744 
745 extern struct user_struct *find_user(kuid_t);
746 
747 extern struct user_struct root_user;
748 #define INIT_USER (&root_user)
749 
750 
751 struct backing_dev_info;
752 struct reclaim_state;
753 
754 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
755 struct sched_info {
756         /* cumulative counters */
757         unsigned long pcount;         /* # of times run on this cpu */
758         unsigned long long run_delay; /* time spent waiting on a runqueue */
759 
760         /* timestamps */
761         unsigned long long last_arrival,/* when we last ran on a cpu */
762                            last_queued; /* when we were last queued to run */
763 };
764 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
765 
766 #ifdef CONFIG_TASK_DELAY_ACCT
767 struct task_delay_info {
768         spinlock_t      lock;
769         unsigned int    flags;  /* Private per-task flags */
770 
771         /* For each stat XXX, add following, aligned appropriately
772          *
773          * struct timespec XXX_start, XXX_end;
774          * u64 XXX_delay;
775          * u32 XXX_count;
776          *
777          * Atomicity of updates to XXX_delay, XXX_count protected by
778          * single lock above (split into XXX_lock if contention is an issue).
779          */
780 
781         /*
782          * XXX_count is incremented on every XXX operation, the delay
783          * associated with the operation is added to XXX_delay.
784          * XXX_delay contains the accumulated delay time in nanoseconds.
785          */
786         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
787         u64 blkio_delay;        /* wait for sync block io completion */
788         u64 swapin_delay;       /* wait for swapin block io completion */
789         u32 blkio_count;        /* total count of the number of sync block */
790                                 /* io operations performed */
791         u32 swapin_count;       /* total count of the number of swapin block */
792                                 /* io operations performed */
793 
794         struct timespec freepages_start, freepages_end;
795         u64 freepages_delay;    /* wait for memory reclaim */
796         u32 freepages_count;    /* total count of memory reclaim */
797 };
798 #endif  /* CONFIG_TASK_DELAY_ACCT */
799 
800 static inline int sched_info_on(void)
801 {
802 #ifdef CONFIG_SCHEDSTATS
803         return 1;
804 #elif defined(CONFIG_TASK_DELAY_ACCT)
805         extern int delayacct_on;
806         return delayacct_on;
807 #else
808         return 0;
809 #endif
810 }
811 
812 enum cpu_idle_type {
813         CPU_IDLE,
814         CPU_NOT_IDLE,
815         CPU_NEWLY_IDLE,
816         CPU_MAX_IDLE_TYPES
817 };
818 
819 /*
820  * Increase resolution of nice-level calculations for 64-bit architectures.
821  * The extra resolution improves shares distribution and load balancing of
822  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
823  * hierarchies, especially on larger systems. This is not a user-visible change
824  * and does not change the user-interface for setting shares/weights.
825  *
826  * We increase resolution only if we have enough bits to allow this increased
827  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
828  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
829  * increased costs.
830  */
831 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
832 # define SCHED_LOAD_RESOLUTION  10
833 # define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
834 # define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
835 #else
836 # define SCHED_LOAD_RESOLUTION  0
837 # define scale_load(w)          (w)
838 # define scale_load_down(w)     (w)
839 #endif
840 
841 #define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
842 #define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
843 
844 /*
845  * Increase resolution of cpu_power calculations
846  */
847 #define SCHED_POWER_SHIFT       10
848 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
849 
850 /*
851  * sched-domains (multiprocessor balancing) declarations:
852  */
853 #ifdef CONFIG_SMP
854 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
855 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
856 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
857 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
858 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
859 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
860 #define SD_PREFER_LOCAL         0x0040  /* Prefer to keep tasks local to this domain */
861 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
862 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
863 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
864 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
865 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
866 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
867 
868 extern int __weak arch_sd_sibiling_asym_packing(void);
869 
870 struct sched_group_power {
871         atomic_t ref;
872         /*
873          * CPU power of this group, SCHED_LOAD_SCALE being max power for a
874          * single CPU.
875          */
876         unsigned int power, power_orig;
877         unsigned long next_update;
878         /*
879          * Number of busy cpus in this group.
880          */
881         atomic_t nr_busy_cpus;
882 
883         unsigned long cpumask[0]; /* iteration mask */
884 };
885 
886 struct sched_group {
887         struct sched_group *next;       /* Must be a circular list */
888         atomic_t ref;
889 
890         unsigned int group_weight;
891         struct sched_group_power *sgp;
892 
893         /*
894          * The CPUs this group covers.
895          *
896          * NOTE: this field is variable length. (Allocated dynamically
897          * by attaching extra space to the end of the structure,
898          * depending on how many CPUs the kernel has booted up with)
899          */
900         unsigned long cpumask[0];
901 };
902 
903 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
904 {
905         return to_cpumask(sg->cpumask);
906 }
907 
908 /*
909  * cpumask masking which cpus in the group are allowed to iterate up the domain
910  * tree.
911  */
912 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
913 {
914         return to_cpumask(sg->sgp->cpumask);
915 }
916 
917 /**
918  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
919  * @group: The group whose first cpu is to be returned.
920  */
921 static inline unsigned int group_first_cpu(struct sched_group *group)
922 {
923         return cpumask_first(sched_group_cpus(group));
924 }
925 
926 struct sched_domain_attr {
927         int relax_domain_level;
928 };
929 
930 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
931         .relax_domain_level = -1,                       \
932 }
933 
934 extern int sched_domain_level_max;
935 
936 struct sched_domain {
937         /* These fields must be setup */
938         struct sched_domain *parent;    /* top domain must be null terminated */
939         struct sched_domain *child;     /* bottom domain must be null terminated */
940         struct sched_group *groups;     /* the balancing groups of the domain */
941         unsigned long min_interval;     /* Minimum balance interval ms */
942         unsigned long max_interval;     /* Maximum balance interval ms */
943         unsigned int busy_factor;       /* less balancing by factor if busy */
944         unsigned int imbalance_pct;     /* No balance until over watermark */
945         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
946         unsigned int busy_idx;
947         unsigned int idle_idx;
948         unsigned int newidle_idx;
949         unsigned int wake_idx;
950         unsigned int forkexec_idx;
951         unsigned int smt_gain;
952         int flags;                      /* See SD_* */
953         int level;
954 
955         /* Runtime fields. */
956         unsigned long last_balance;     /* init to jiffies. units in jiffies */
957         unsigned int balance_interval;  /* initialise to 1. units in ms. */
958         unsigned int nr_balance_failed; /* initialise to 0 */
959 
960         u64 last_update;
961 
962 #ifdef CONFIG_SCHEDSTATS
963         /* load_balance() stats */
964         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
965         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
966         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
967         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
968         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
969         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
970         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
971         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
972 
973         /* Active load balancing */
974         unsigned int alb_count;
975         unsigned int alb_failed;
976         unsigned int alb_pushed;
977 
978         /* SD_BALANCE_EXEC stats */
979         unsigned int sbe_count;
980         unsigned int sbe_balanced;
981         unsigned int sbe_pushed;
982 
983         /* SD_BALANCE_FORK stats */
984         unsigned int sbf_count;
985         unsigned int sbf_balanced;
986         unsigned int sbf_pushed;
987 
988         /* try_to_wake_up() stats */
989         unsigned int ttwu_wake_remote;
990         unsigned int ttwu_move_affine;
991         unsigned int ttwu_move_balance;
992 #endif
993 #ifdef CONFIG_SCHED_DEBUG
994         char *name;
995 #endif
996         union {
997                 void *private;          /* used during construction */
998                 struct rcu_head rcu;    /* used during destruction */
999         };
1000 
1001         unsigned int span_weight;
1002         /*
1003          * Span of all CPUs in this domain.
1004          *
1005          * NOTE: this field is variable length. (Allocated dynamically
1006          * by attaching extra space to the end of the structure,
1007          * depending on how many CPUs the kernel has booted up with)
1008          */
1009         unsigned long span[0];
1010 };
1011 
1012 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1013 {
1014         return to_cpumask(sd->span);
1015 }
1016 
1017 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1018                                     struct sched_domain_attr *dattr_new);
1019 
1020 /* Allocate an array of sched domains, for partition_sched_domains(). */
1021 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1022 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1023 
1024 /* Test a flag in parent sched domain */
1025 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1026 {
1027         if (sd->parent && (sd->parent->flags & flag))
1028                 return 1;
1029 
1030         return 0;
1031 }
1032 
1033 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1034 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1035 
1036 bool cpus_share_cache(int this_cpu, int that_cpu);
1037 
1038 #else /* CONFIG_SMP */
1039 
1040 struct sched_domain_attr;
1041 
1042 static inline void
1043 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1044                         struct sched_domain_attr *dattr_new)
1045 {
1046 }
1047 
1048 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1049 {
1050         return true;
1051 }
1052 
1053 #endif  /* !CONFIG_SMP */
1054 
1055 
1056 struct io_context;                      /* See blkdev.h */
1057 
1058 
1059 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1060 extern void prefetch_stack(struct task_struct *t);
1061 #else
1062 static inline void prefetch_stack(struct task_struct *t) { }
1063 #endif
1064 
1065 struct audit_context;           /* See audit.c */
1066 struct mempolicy;
1067 struct pipe_inode_info;
1068 struct uts_namespace;
1069 
1070 struct rq;
1071 struct sched_domain;
1072 
1073 /*
1074  * wake flags
1075  */
1076 #define WF_SYNC         0x01            /* waker goes to sleep after wakup */
1077 #define WF_FORK         0x02            /* child wakeup after fork */
1078 #define WF_MIGRATED     0x04            /* internal use, task got migrated */
1079 
1080 #define ENQUEUE_WAKEUP          1
1081 #define ENQUEUE_HEAD            2
1082 #ifdef CONFIG_SMP
1083 #define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
1084 #else
1085 #define ENQUEUE_WAKING          0
1086 #endif
1087 
1088 #define DEQUEUE_SLEEP           1
1089 
1090 struct sched_class {
1091         const struct sched_class *next;
1092 
1093         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1094         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1095         void (*yield_task) (struct rq *rq);
1096         bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1097 
1098         void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1099 
1100         struct task_struct * (*pick_next_task) (struct rq *rq);
1101         void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1102 
1103 #ifdef CONFIG_SMP
1104         int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1105 
1106         void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1107         void (*post_schedule) (struct rq *this_rq);
1108         void (*task_waking) (struct task_struct *task);
1109         void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1110 
1111         void (*set_cpus_allowed)(struct task_struct *p,
1112                                  const struct cpumask *newmask);
1113 
1114         void (*rq_online)(struct rq *rq);
1115         void (*rq_offline)(struct rq *rq);
1116 #endif
1117 
1118         void (*set_curr_task) (struct rq *rq);
1119         void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1120         void (*task_fork) (struct task_struct *p);
1121 
1122         void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1123         void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1124         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1125                              int oldprio);
1126 
1127         unsigned int (*get_rr_interval) (struct rq *rq,
1128                                          struct task_struct *task);
1129 
1130 #ifdef CONFIG_FAIR_GROUP_SCHED
1131         void (*task_move_group) (struct task_struct *p, int on_rq);
1132 #endif
1133 };
1134 
1135 struct load_weight {
1136         unsigned long weight, inv_weight;
1137 };
1138 
1139 #ifdef CONFIG_SCHEDSTATS
1140 struct sched_statistics {
1141         u64                     wait_start;
1142         u64                     wait_max;
1143         u64                     wait_count;
1144         u64                     wait_sum;
1145         u64                     iowait_count;
1146         u64                     iowait_sum;
1147 
1148         u64                     sleep_start;
1149         u64                     sleep_max;
1150         s64                     sum_sleep_runtime;
1151 
1152         u64                     block_start;
1153         u64                     block_max;
1154         u64                     exec_max;
1155         u64                     slice_max;
1156 
1157         u64                     nr_migrations_cold;
1158         u64                     nr_failed_migrations_affine;
1159         u64                     nr_failed_migrations_running;
1160         u64                     nr_failed_migrations_hot;
1161         u64                     nr_forced_migrations;
1162 
1163         u64                     nr_wakeups;
1164         u64                     nr_wakeups_sync;
1165         u64                     nr_wakeups_migrate;
1166         u64                     nr_wakeups_local;
1167         u64                     nr_wakeups_remote;
1168         u64                     nr_wakeups_affine;
1169         u64                     nr_wakeups_affine_attempts;
1170         u64                     nr_wakeups_passive;
1171         u64                     nr_wakeups_idle;
1172 };
1173 #endif
1174 
1175 struct sched_entity {
1176         struct load_weight      load;           /* for load-balancing */
1177         struct rb_node          run_node;
1178         struct list_head        group_node;
1179         unsigned int            on_rq;
1180 
1181         u64                     exec_start;
1182         u64                     sum_exec_runtime;
1183         u64                     vruntime;
1184         u64                     prev_sum_exec_runtime;
1185 
1186         u64                     nr_migrations;
1187 
1188 #ifdef CONFIG_SCHEDSTATS
1189         struct sched_statistics statistics;
1190 #endif
1191 
1192 #ifdef CONFIG_FAIR_GROUP_SCHED
1193         struct sched_entity     *parent;
1194         /* rq on which this entity is (to be) queued: */
1195         struct cfs_rq           *cfs_rq;
1196         /* rq "owned" by this entity/group: */
1197         struct cfs_rq           *my_q;
1198 #endif
1199 };
1200 
1201 struct sched_rt_entity {
1202         struct list_head run_list;
1203         unsigned long timeout;
1204         unsigned int time_slice;
1205 
1206         struct sched_rt_entity *back;
1207 #ifdef CONFIG_RT_GROUP_SCHED
1208         struct sched_rt_entity  *parent;
1209         /* rq on which this entity is (to be) queued: */
1210         struct rt_rq            *rt_rq;
1211         /* rq "owned" by this entity/group: */
1212         struct rt_rq            *my_q;
1213 #endif
1214 };
1215 
1216 /*
1217  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1218  * Timeslices get refilled after they expire.
1219  */
1220 #define RR_TIMESLICE            (100 * HZ / 1000)
1221 
1222 struct rcu_node;
1223 
1224 enum perf_event_task_context {
1225         perf_invalid_context = -1,
1226         perf_hw_context = 0,
1227         perf_sw_context,
1228         perf_nr_task_contexts,
1229 };
1230 
1231 struct task_struct {
1232         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1233         void *stack;
1234         atomic_t usage;
1235         unsigned int flags;     /* per process flags, defined below */
1236         unsigned int ptrace;
1237 
1238 #ifdef CONFIG_SMP
1239         struct llist_node wake_entry;
1240         int on_cpu;
1241 #endif
1242         int on_rq;
1243 
1244         int prio, static_prio, normal_prio;
1245         unsigned int rt_priority;
1246         const struct sched_class *sched_class;
1247         struct sched_entity se;
1248         struct sched_rt_entity rt;
1249 #ifdef CONFIG_CGROUP_SCHED
1250         struct task_group *sched_task_group;
1251 #endif
1252 
1253 #ifdef CONFIG_PREEMPT_NOTIFIERS
1254         /* list of struct preempt_notifier: */
1255         struct hlist_head preempt_notifiers;
1256 #endif
1257 
1258         /*
1259          * fpu_counter contains the number of consecutive context switches
1260          * that the FPU is used. If this is over a threshold, the lazy fpu
1261          * saving becomes unlazy to save the trap. This is an unsigned char
1262          * so that after 256 times the counter wraps and the behavior turns
1263          * lazy again; this to deal with bursty apps that only use FPU for
1264          * a short time
1265          */
1266         unsigned char fpu_counter;
1267 #ifdef CONFIG_BLK_DEV_IO_TRACE
1268         unsigned int btrace_seq;
1269 #endif
1270 
1271         unsigned int policy;
1272         int nr_cpus_allowed;
1273         cpumask_t cpus_allowed;
1274 
1275 #ifdef CONFIG_PREEMPT_RCU
1276         int rcu_read_lock_nesting;
1277         char rcu_read_unlock_special;
1278         struct list_head rcu_node_entry;
1279 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1280 #ifdef CONFIG_TREE_PREEMPT_RCU
1281         struct rcu_node *rcu_blocked_node;
1282 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1283 #ifdef CONFIG_RCU_BOOST
1284         struct rt_mutex *rcu_boost_mutex;
1285 #endif /* #ifdef CONFIG_RCU_BOOST */
1286 
1287 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1288         struct sched_info sched_info;
1289 #endif
1290 
1291         struct list_head tasks;
1292 #ifdef CONFIG_SMP
1293         struct plist_node pushable_tasks;
1294 #endif
1295 
1296         struct mm_struct *mm, *active_mm;
1297 #ifdef CONFIG_COMPAT_BRK
1298         unsigned brk_randomized:1;
1299 #endif
1300 #if defined(SPLIT_RSS_COUNTING)
1301         struct task_rss_stat    rss_stat;
1302 #endif
1303 /* task state */
1304         int exit_state;
1305         int exit_code, exit_signal;
1306         int pdeath_signal;  /*  The signal sent when the parent dies  */
1307         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1308         /* ??? */
1309         unsigned int personality;
1310         unsigned did_exec:1;
1311         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1312                                  * execve */
1313         unsigned in_iowait:1;
1314 
1315         /* task may not gain privileges */
1316         unsigned no_new_privs:1;
1317 
1318         /* Revert to default priority/policy when forking */
1319         unsigned sched_reset_on_fork:1;
1320         unsigned sched_contributes_to_load:1;
1321 
1322         pid_t pid;
1323         pid_t tgid;
1324 
1325 #ifdef CONFIG_CC_STACKPROTECTOR
1326         /* Canary value for the -fstack-protector gcc feature */
1327         unsigned long stack_canary;
1328 #endif
1329         /*
1330          * pointers to (original) parent process, youngest child, younger sibling,
1331          * older sibling, respectively.  (p->father can be replaced with
1332          * p->real_parent->pid)
1333          */
1334         struct task_struct __rcu *real_parent; /* real parent process */
1335         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1336         /*
1337          * children/sibling forms the list of my natural children
1338          */
1339         struct list_head children;      /* list of my children */
1340         struct list_head sibling;       /* linkage in my parent's children list */
1341         struct task_struct *group_leader;       /* threadgroup leader */
1342 
1343         /*
1344          * ptraced is the list of tasks this task is using ptrace on.
1345          * This includes both natural children and PTRACE_ATTACH targets.
1346          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1347          */
1348         struct list_head ptraced;
1349         struct list_head ptrace_entry;
1350 
1351         /* PID/PID hash table linkage. */
1352         struct pid_link pids[PIDTYPE_MAX];
1353         struct list_head thread_group;
1354 
1355         struct completion *vfork_done;          /* for vfork() */
1356         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1357         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1358 
1359         cputime_t utime, stime, utimescaled, stimescaled;
1360         cputime_t gtime;
1361 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1362         cputime_t prev_utime, prev_stime;
1363 #endif
1364         unsigned long nvcsw, nivcsw; /* context switch counts */
1365         struct timespec start_time;             /* monotonic time */
1366         struct timespec real_start_time;        /* boot based time */
1367 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1368         unsigned long min_flt, maj_flt;
1369 
1370         struct task_cputime cputime_expires;
1371         struct list_head cpu_timers[3];
1372 
1373 /* process credentials */
1374         const struct cred __rcu *real_cred; /* objective and real subjective task
1375                                          * credentials (COW) */
1376         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1377                                          * credentials (COW) */
1378         char comm[TASK_COMM_LEN]; /* executable name excluding path
1379                                      - access with [gs]et_task_comm (which lock
1380                                        it with task_lock())
1381                                      - initialized normally by setup_new_exec */
1382 /* file system info */
1383         int link_count, total_link_count;
1384 #ifdef CONFIG_SYSVIPC
1385 /* ipc stuff */
1386         struct sysv_sem sysvsem;
1387 #endif
1388 #ifdef CONFIG_DETECT_HUNG_TASK
1389 /* hung task detection */
1390         unsigned long last_switch_count;
1391 #endif
1392 /* CPU-specific state of this task */
1393         struct thread_struct thread;
1394 /* filesystem information */
1395         struct fs_struct *fs;
1396 /* open file information */
1397         struct files_struct *files;
1398 /* namespaces */
1399         struct nsproxy *nsproxy;
1400 /* signal handlers */
1401         struct signal_struct *signal;
1402         struct sighand_struct *sighand;
1403 
1404         sigset_t blocked, real_blocked;
1405         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1406         struct sigpending pending;
1407 
1408         unsigned long sas_ss_sp;
1409         size_t sas_ss_size;
1410         int (*notifier)(void *priv);
1411         void *notifier_data;
1412         sigset_t *notifier_mask;
1413         struct hlist_head task_works;
1414 
1415         struct audit_context *audit_context;
1416 #ifdef CONFIG_AUDITSYSCALL
1417         uid_t loginuid;
1418         unsigned int sessionid;
1419 #endif
1420         struct seccomp seccomp;
1421 
1422 /* Thread group tracking */
1423         u32 parent_exec_id;
1424         u32 self_exec_id;
1425 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1426  * mempolicy */
1427         spinlock_t alloc_lock;
1428 
1429         /* Protection of the PI data structures: */
1430         raw_spinlock_t pi_lock;
1431 
1432 #ifdef CONFIG_RT_MUTEXES
1433         /* PI waiters blocked on a rt_mutex held by this task */
1434         struct plist_head pi_waiters;
1435         /* Deadlock detection and priority inheritance handling */
1436         struct rt_mutex_waiter *pi_blocked_on;
1437 #endif
1438 
1439 #ifdef CONFIG_DEBUG_MUTEXES
1440         /* mutex deadlock detection */
1441         struct mutex_waiter *blocked_on;
1442 #endif
1443 #ifdef CONFIG_TRACE_IRQFLAGS
1444         unsigned int irq_events;
1445         unsigned long hardirq_enable_ip;
1446         unsigned long hardirq_disable_ip;
1447         unsigned int hardirq_enable_event;
1448         unsigned int hardirq_disable_event;
1449         int hardirqs_enabled;
1450         int hardirq_context;
1451         unsigned long softirq_disable_ip;
1452         unsigned long softirq_enable_ip;
1453         unsigned int softirq_disable_event;
1454         unsigned int softirq_enable_event;
1455         int softirqs_enabled;
1456         int softirq_context;
1457 #endif
1458 #ifdef CONFIG_LOCKDEP
1459 # define MAX_LOCK_DEPTH 48UL
1460         u64 curr_chain_key;
1461         int lockdep_depth;
1462         unsigned int lockdep_recursion;
1463         struct held_lock held_locks[MAX_LOCK_DEPTH];
1464         gfp_t lockdep_reclaim_gfp;
1465 #endif
1466 
1467 /* journalling filesystem info */
1468         void *journal_info;
1469 
1470 /* stacked block device info */
1471         struct bio_list *bio_list;
1472 
1473 #ifdef CONFIG_BLOCK
1474 /* stack plugging */
1475         struct blk_plug *plug;
1476 #endif
1477 
1478 /* VM state */
1479         struct reclaim_state *reclaim_state;
1480 
1481         struct backing_dev_info *backing_dev_info;
1482 
1483         struct io_context *io_context;
1484 
1485         unsigned long ptrace_message;
1486         siginfo_t *last_siginfo; /* For ptrace use.  */
1487         struct task_io_accounting ioac;
1488 #if defined(CONFIG_TASK_XACCT)
1489         u64 acct_rss_mem1;      /* accumulated rss usage */
1490         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1491         cputime_t acct_timexpd; /* stime + utime since last update */
1492 #endif
1493 #ifdef CONFIG_CPUSETS
1494         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1495         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1496         int cpuset_mem_spread_rotor;
1497         int cpuset_slab_spread_rotor;
1498 #endif
1499 #ifdef CONFIG_CGROUPS
1500         /* Control Group info protected by css_set_lock */
1501         struct css_set __rcu *cgroups;
1502         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1503         struct list_head cg_list;
1504 #endif
1505 #ifdef CONFIG_FUTEX
1506         struct robust_list_head __user *robust_list;
1507 #ifdef CONFIG_COMPAT
1508         struct compat_robust_list_head __user *compat_robust_list;
1509 #endif
1510         struct list_head pi_state_list;
1511         struct futex_pi_state *pi_state_cache;
1512 #endif
1513 #ifdef CONFIG_PERF_EVENTS
1514         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1515         struct mutex perf_event_mutex;
1516         struct list_head perf_event_list;
1517 #endif
1518 #ifdef CONFIG_NUMA
1519         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1520         short il_next;
1521         short pref_node_fork;
1522 #endif
1523         struct rcu_head rcu;
1524 
1525         /*
1526          * cache last used pipe for splice
1527          */
1528         struct pipe_inode_info *splice_pipe;
1529 #ifdef  CONFIG_TASK_DELAY_ACCT
1530         struct task_delay_info *delays;
1531 #endif
1532 #ifdef CONFIG_FAULT_INJECTION
1533         int make_it_fail;
1534 #endif
1535         /*
1536          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1537          * balance_dirty_pages() for some dirty throttling pause
1538          */
1539         int nr_dirtied;
1540         int nr_dirtied_pause;
1541         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1542 
1543 #ifdef CONFIG_LATENCYTOP
1544         int latency_record_count;
1545         struct latency_record latency_record[LT_SAVECOUNT];
1546 #endif
1547         /*
1548          * time slack values; these are used to round up poll() and
1549          * select() etc timeout values. These are in nanoseconds.
1550          */
1551         unsigned long timer_slack_ns;
1552         unsigned long default_timer_slack_ns;
1553 
1554         struct list_head        *scm_work_list;
1555 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1556         /* Index of current stored address in ret_stack */
1557         int curr_ret_stack;
1558         /* Stack of return addresses for return function tracing */
1559         struct ftrace_ret_stack *ret_stack;
1560         /* time stamp for last schedule */
1561         unsigned long long ftrace_timestamp;
1562         /*
1563          * Number of functions that haven't been traced
1564          * because of depth overrun.
1565          */
1566         atomic_t trace_overrun;
1567         /* Pause for the tracing */
1568         atomic_t tracing_graph_pause;
1569 #endif
1570 #ifdef CONFIG_TRACING
1571         /* state flags for use by tracers */
1572         unsigned long trace;
1573         /* bitmask and counter of trace recursion */
1574         unsigned long trace_recursion;
1575 #endif /* CONFIG_TRACING */
1576 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1577         struct memcg_batch_info {
1578                 int do_batch;   /* incremented when batch uncharge started */
1579                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1580                 unsigned long nr_pages; /* uncharged usage */
1581                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1582         } memcg_batch;
1583 #endif
1584 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1585         atomic_t ptrace_bp_refcnt;
1586 #endif
1587 #ifdef CONFIG_UPROBES
1588         struct uprobe_task *utask;
1589         int uprobe_srcu_id;
1590 #endif
1591 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1592         struct ccs_domain_info *ccs_domain_info;
1593         u32 ccs_flags;
1594 #endif
1595 };
1596 
1597 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1598 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1599 
1600 /*
1601  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1602  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1603  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1604  * values are inverted: lower p->prio value means higher priority.
1605  *
1606  * The MAX_USER_RT_PRIO value allows the actual maximum
1607  * RT priority to be separate from the value exported to
1608  * user-space.  This allows kernel threads to set their
1609  * priority to a value higher than any user task. Note:
1610  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1611  */
1612 
1613 #define MAX_USER_RT_PRIO        100
1614 #define MAX_RT_PRIO             MAX_USER_RT_PRIO
1615 
1616 #define MAX_PRIO                (MAX_RT_PRIO + 40)
1617 #define DEFAULT_PRIO            (MAX_RT_PRIO + 20)
1618 
1619 static inline int rt_prio(int prio)
1620 {
1621         if (unlikely(prio < MAX_RT_PRIO))
1622                 return 1;
1623         return 0;
1624 }
1625 
1626 static inline int rt_task(struct task_struct *p)
1627 {
1628         return rt_prio(p->prio);
1629 }
1630 
1631 static inline struct pid *task_pid(struct task_struct *task)
1632 {
1633         return task->pids[PIDTYPE_PID].pid;
1634 }
1635 
1636 static inline struct pid *task_tgid(struct task_struct *task)
1637 {
1638         return task->group_leader->pids[PIDTYPE_PID].pid;
1639 }
1640 
1641 /*
1642  * Without tasklist or rcu lock it is not safe to dereference
1643  * the result of task_pgrp/task_session even if task == current,
1644  * we can race with another thread doing sys_setsid/sys_setpgid.
1645  */
1646 static inline struct pid *task_pgrp(struct task_struct *task)
1647 {
1648         return task->group_leader->pids[PIDTYPE_PGID].pid;
1649 }
1650 
1651 static inline struct pid *task_session(struct task_struct *task)
1652 {
1653         return task->group_leader->pids[PIDTYPE_SID].pid;
1654 }
1655 
1656 struct pid_namespace;
1657 
1658 /*
1659  * the helpers to get the task's different pids as they are seen
1660  * from various namespaces
1661  *
1662  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1663  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1664  *                     current.
1665  * task_xid_nr_ns()  : id seen from the ns specified;
1666  *
1667  * set_task_vxid()   : assigns a virtual id to a task;
1668  *
1669  * see also pid_nr() etc in include/linux/pid.h
1670  */
1671 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1672                         struct pid_namespace *ns);
1673 
1674 static inline pid_t task_pid_nr(struct task_struct *tsk)
1675 {
1676         return tsk->pid;
1677 }
1678 
1679 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1680                                         struct pid_namespace *ns)
1681 {
1682         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1683 }
1684 
1685 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1686 {
1687         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1688 }
1689 
1690 
1691 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1692 {
1693         return tsk->tgid;
1694 }
1695 
1696 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1697 
1698 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1699 {
1700         return pid_vnr(task_tgid(tsk));
1701 }
1702 
1703 
1704 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1705                                         struct pid_namespace *ns)
1706 {
1707         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1708 }
1709 
1710 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1711 {
1712         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1713 }
1714 
1715 
1716 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1717                                         struct pid_namespace *ns)
1718 {
1719         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1720 }
1721 
1722 static inline pid_t task_session_vnr(struct task_struct *tsk)
1723 {
1724         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1725 }
1726 
1727 /* obsolete, do not use */
1728 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1729 {
1730         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1731 }
1732 
1733 /**
1734  * pid_alive - check that a task structure is not stale
1735  * @p: Task structure to be checked.
1736  *
1737  * Test if a process is not yet dead (at most zombie state)
1738  * If pid_alive fails, then pointers within the task structure
1739  * can be stale and must not be dereferenced.
1740  */
1741 static inline int pid_alive(struct task_struct *p)
1742 {
1743         return p->pids[PIDTYPE_PID].pid != NULL;
1744 }
1745 
1746 /**
1747  * is_global_init - check if a task structure is init
1748  * @tsk: Task structure to be checked.
1749  *
1750  * Check if a task structure is the first user space task the kernel created.
1751  */
1752 static inline int is_global_init(struct task_struct *tsk)
1753 {
1754         return tsk->pid == 1;
1755 }
1756 
1757 /*
1758  * is_container_init:
1759  * check whether in the task is init in its own pid namespace.
1760  */
1761 extern int is_container_init(struct task_struct *tsk);
1762 
1763 extern struct pid *cad_pid;
1764 
1765 extern void free_task(struct task_struct *tsk);
1766 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1767 
1768 extern void __put_task_struct(struct task_struct *t);
1769 
1770 static inline void put_task_struct(struct task_struct *t)
1771 {
1772         if (atomic_dec_and_test(&t->usage))
1773                 __put_task_struct(t);
1774 }
1775 
1776 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1777 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1778 
1779 /*
1780  * Per process flags
1781  */
1782 #define PF_EXITING      0x00000004      /* getting shut down */
1783 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1784 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1785 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1786 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1787 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1788 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1789 #define PF_DUMPCORE     0x00000200      /* dumped core */
1790 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1791 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1792 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1793 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1794 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1795 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1796 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1797 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1798 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1799 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1800 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1801 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1802 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1803 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1804 #define PF_THREAD_BOUND 0x04000000      /* Thread bound to specific cpu */
1805 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1806 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1807 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1808 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1809 
1810 /*
1811  * Only the _current_ task can read/write to tsk->flags, but other
1812  * tasks can access tsk->flags in readonly mode for example
1813  * with tsk_used_math (like during threaded core dumping).
1814  * There is however an exception to this rule during ptrace
1815  * or during fork: the ptracer task is allowed to write to the
1816  * child->flags of its traced child (same goes for fork, the parent
1817  * can write to the child->flags), because we're guaranteed the
1818  * child is not running and in turn not changing child->flags
1819  * at the same time the parent does it.
1820  */
1821 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1822 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1823 #define clear_used_math() clear_stopped_child_used_math(current)
1824 #define set_used_math() set_stopped_child_used_math(current)
1825 #define conditional_stopped_child_used_math(condition, child) \
1826         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1827 #define conditional_used_math(condition) \
1828         conditional_stopped_child_used_math(condition, current)
1829 #define copy_to_stopped_child_used_math(child) \
1830         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1831 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1832 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1833 #define used_math() tsk_used_math(current)
1834 
1835 /*
1836  * task->jobctl flags
1837  */
1838 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1839 
1840 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1841 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1842 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1843 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1844 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1845 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1846 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1847 
1848 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1849 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1850 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1851 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1852 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1853 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1854 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1855 
1856 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1857 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1858 
1859 extern bool task_set_jobctl_pending(struct task_struct *task,
1860                                     unsigned int mask);
1861 extern void task_clear_jobctl_trapping(struct task_struct *task);
1862 extern void task_clear_jobctl_pending(struct task_struct *task,
1863                                       unsigned int mask);
1864 
1865 #ifdef CONFIG_PREEMPT_RCU
1866 
1867 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1868 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1869 
1870 static inline void rcu_copy_process(struct task_struct *p)
1871 {
1872         p->rcu_read_lock_nesting = 0;
1873         p->rcu_read_unlock_special = 0;
1874 #ifdef CONFIG_TREE_PREEMPT_RCU
1875         p->rcu_blocked_node = NULL;
1876 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1877 #ifdef CONFIG_RCU_BOOST
1878         p->rcu_boost_mutex = NULL;
1879 #endif /* #ifdef CONFIG_RCU_BOOST */
1880         INIT_LIST_HEAD(&p->rcu_node_entry);
1881 }
1882 
1883 #else
1884 
1885 static inline void rcu_copy_process(struct task_struct *p)
1886 {
1887 }
1888 
1889 #endif
1890 
1891 #ifdef CONFIG_SMP
1892 extern void do_set_cpus_allowed(struct task_struct *p,
1893                                const struct cpumask *new_mask);
1894 
1895 extern int set_cpus_allowed_ptr(struct task_struct *p,
1896                                 const struct cpumask *new_mask);
1897 #else
1898 static inline void do_set_cpus_allowed(struct task_struct *p,
1899                                       const struct cpumask *new_mask)
1900 {
1901 }
1902 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1903                                        const struct cpumask *new_mask)
1904 {
1905         if (!cpumask_test_cpu(0, new_mask))
1906                 return -EINVAL;
1907         return 0;
1908 }
1909 #endif
1910 
1911 #ifdef CONFIG_NO_HZ
1912 void calc_load_enter_idle(void);
1913 void calc_load_exit_idle(void);
1914 #else
1915 static inline void calc_load_enter_idle(void) { }
1916 static inline void calc_load_exit_idle(void) { }
1917 #endif /* CONFIG_NO_HZ */
1918 
1919 #ifndef CONFIG_CPUMASK_OFFSTACK
1920 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1921 {
1922         return set_cpus_allowed_ptr(p, &new_mask);
1923 }
1924 #endif
1925 
1926 /*
1927  * Do not use outside of architecture code which knows its limitations.
1928  *
1929  * sched_clock() has no promise of monotonicity or bounded drift between
1930  * CPUs, use (which you should not) requires disabling IRQs.
1931  *
1932  * Please use one of the three interfaces below.
1933  */
1934 extern unsigned long long notrace sched_clock(void);
1935 /*
1936  * See the comment in kernel/sched/clock.c
1937  */
1938 extern u64 cpu_clock(int cpu);
1939 extern u64 local_clock(void);
1940 extern u64 sched_clock_cpu(int cpu);
1941 
1942 
1943 extern void sched_clock_init(void);
1944 
1945 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1946 static inline void sched_clock_tick(void)
1947 {
1948 }
1949 
1950 static inline void sched_clock_idle_sleep_event(void)
1951 {
1952 }
1953 
1954 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1955 {
1956 }
1957 #else
1958 /*
1959  * Architectures can set this to 1 if they have specified
1960  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1961  * but then during bootup it turns out that sched_clock()
1962  * is reliable after all:
1963  */
1964 extern int sched_clock_stable;
1965 
1966 extern void sched_clock_tick(void);
1967 extern void sched_clock_idle_sleep_event(void);
1968 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1969 #endif
1970 
1971 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1972 /*
1973  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1974  * The reason for this explicit opt-in is not to have perf penalty with
1975  * slow sched_clocks.
1976  */
1977 extern void enable_sched_clock_irqtime(void);
1978 extern void disable_sched_clock_irqtime(void);
1979 #else
1980 static inline void enable_sched_clock_irqtime(void) {}
1981 static inline void disable_sched_clock_irqtime(void) {}
1982 #endif
1983 
1984 extern unsigned long long
1985 task_sched_runtime(struct task_struct *task);
1986 
1987 /* sched_exec is called by processes performing an exec */
1988 #ifdef CONFIG_SMP
1989 extern void sched_exec(void);
1990 #else
1991 #define sched_exec()   {}
1992 #endif
1993 
1994 extern void sched_clock_idle_sleep_event(void);
1995 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1996 
1997 #ifdef CONFIG_HOTPLUG_CPU
1998 extern void idle_task_exit(void);
1999 #else
2000 static inline void idle_task_exit(void) {}
2001 #endif
2002 
2003 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2004 extern void wake_up_idle_cpu(int cpu);
2005 #else
2006 static inline void wake_up_idle_cpu(int cpu) { }
2007 #endif
2008 
2009 extern unsigned int sysctl_sched_latency;
2010 extern unsigned int sysctl_sched_min_granularity;
2011 extern unsigned int sysctl_sched_wakeup_granularity;
2012 extern unsigned int sysctl_sched_child_runs_first;
2013 
2014 enum sched_tunable_scaling {
2015         SCHED_TUNABLESCALING_NONE,
2016         SCHED_TUNABLESCALING_LOG,
2017         SCHED_TUNABLESCALING_LINEAR,
2018         SCHED_TUNABLESCALING_END,
2019 };
2020 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2021 
2022 #ifdef CONFIG_SCHED_DEBUG
2023 extern unsigned int sysctl_sched_migration_cost;
2024 extern unsigned int sysctl_sched_nr_migrate;
2025 extern unsigned int sysctl_sched_time_avg;
2026 extern unsigned int sysctl_timer_migration;
2027 extern unsigned int sysctl_sched_shares_window;
2028 
2029 int sched_proc_update_handler(struct ctl_table *table, int write,
2030                 void __user *buffer, size_t *length,
2031                 loff_t *ppos);
2032 #endif
2033 #ifdef CONFIG_SCHED_DEBUG
2034 static inline unsigned int get_sysctl_timer_migration(void)
2035 {
2036         return sysctl_timer_migration;
2037 }
2038 #else
2039 static inline unsigned int get_sysctl_timer_migration(void)
2040 {
2041         return 1;
2042 }
2043 #endif
2044 extern unsigned int sysctl_sched_rt_period;
2045 extern int sysctl_sched_rt_runtime;
2046 
2047 int sched_rt_handler(struct ctl_table *table, int write,
2048                 void __user *buffer, size_t *lenp,
2049                 loff_t *ppos);
2050 
2051 #ifdef CONFIG_SCHED_AUTOGROUP
2052 extern unsigned int sysctl_sched_autogroup_enabled;
2053 
2054 extern void sched_autogroup_create_attach(struct task_struct *p);
2055 extern void sched_autogroup_detach(struct task_struct *p);
2056 extern void sched_autogroup_fork(struct signal_struct *sig);
2057 extern void sched_autogroup_exit(struct signal_struct *sig);
2058 #ifdef CONFIG_PROC_FS
2059 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2060 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2061 #endif
2062 #else
2063 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2064 static inline void sched_autogroup_detach(struct task_struct *p) { }
2065 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2066 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2067 #endif
2068 
2069 #ifdef CONFIG_CFS_BANDWIDTH
2070 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2071 #endif
2072 
2073 #ifdef CONFIG_RT_MUTEXES
2074 extern int rt_mutex_getprio(struct task_struct *p);
2075 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2076 extern void rt_mutex_adjust_pi(struct task_struct *p);
2077 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2078 {
2079         return tsk->pi_blocked_on != NULL;
2080 }
2081 #else
2082 static inline int rt_mutex_getprio(struct task_struct *p)
2083 {
2084         return p->normal_prio;
2085 }
2086 # define rt_mutex_adjust_pi(p)          do { } while (0)
2087 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2088 {
2089         return false;
2090 }
2091 #endif
2092 
2093 extern bool yield_to(struct task_struct *p, bool preempt);
2094 extern void set_user_nice(struct task_struct *p, long nice);
2095 extern int task_prio(const struct task_struct *p);
2096 extern int task_nice(const struct task_struct *p);
2097 extern int can_nice(const struct task_struct *p, const int nice);
2098 extern int task_curr(const struct task_struct *p);
2099 extern int idle_cpu(int cpu);
2100 extern int sched_setscheduler(struct task_struct *, int,
2101                               const struct sched_param *);
2102 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2103                                       const struct sched_param *);
2104 extern struct task_struct *idle_task(int cpu);
2105 /**
2106  * is_idle_task - is the specified task an idle task?
2107  * @p: the task in question.
2108  */
2109 static inline bool is_idle_task(const struct task_struct *p)
2110 {
2111         return p->pid == 0;
2112 }
2113 extern struct task_struct *curr_task(int cpu);
2114 extern void set_curr_task(int cpu, struct task_struct *p);
2115 
2116 void yield(void);
2117 
2118 /*
2119  * The default (Linux) execution domain.
2120  */
2121 extern struct exec_domain       default_exec_domain;
2122 
2123 union thread_union {
2124         struct thread_info thread_info;
2125         unsigned long stack[THREAD_SIZE/sizeof(long)];
2126 };
2127 
2128 #ifndef __HAVE_ARCH_KSTACK_END
2129 static inline int kstack_end(void *addr)
2130 {
2131         /* Reliable end of stack detection:
2132          * Some APM bios versions misalign the stack
2133          */
2134         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2135 }
2136 #endif
2137 
2138 extern union thread_union init_thread_union;
2139 extern struct task_struct init_task;
2140 
2141 extern struct   mm_struct init_mm;
2142 
2143 extern struct pid_namespace init_pid_ns;
2144 
2145 /*
2146  * find a task by one of its numerical ids
2147  *
2148  * find_task_by_pid_ns():
2149  *      finds a task by its pid in the specified namespace
2150  * find_task_by_vpid():
2151  *      finds a task by its virtual pid
2152  *
2153  * see also find_vpid() etc in include/linux/pid.h
2154  */
2155 
2156 extern struct task_struct *find_task_by_vpid(pid_t nr);
2157 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2158                 struct pid_namespace *ns);
2159 
2160 extern void __set_special_pids(struct pid *pid);
2161 
2162 /* per-UID process charging. */
2163 extern struct user_struct * alloc_uid(kuid_t);
2164 static inline struct user_struct *get_uid(struct user_struct *u)
2165 {
2166         atomic_inc(&u->__count);
2167         return u;
2168 }
2169 extern void free_uid(struct user_struct *);
2170 
2171 #include <asm/current.h>
2172 
2173 extern void xtime_update(unsigned long ticks);
2174 
2175 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2176 extern int wake_up_process(struct task_struct *tsk);
2177 extern void wake_up_new_task(struct task_struct *tsk);
2178 #ifdef CONFIG_SMP
2179  extern void kick_process(struct task_struct *tsk);
2180 #else
2181  static inline void kick_process(struct task_struct *tsk) { }
2182 #endif
2183 extern void sched_fork(struct task_struct *p);
2184 extern void sched_dead(struct task_struct *p);
2185 
2186 extern void proc_caches_init(void);
2187 extern void flush_signals(struct task_struct *);
2188 extern void __flush_signals(struct task_struct *);
2189 extern void ignore_signals(struct task_struct *);
2190 extern void flush_signal_handlers(struct task_struct *, int force_default);
2191 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2192 
2193 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2194 {
2195         unsigned long flags;
2196         int ret;
2197 
2198         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2199         ret = dequeue_signal(tsk, mask, info);
2200         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2201 
2202         return ret;
2203 }
2204 
2205 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2206                               sigset_t *mask);
2207 extern void unblock_all_signals(void);
2208 extern void release_task(struct task_struct * p);
2209 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2210 extern int force_sigsegv(int, struct task_struct *);
2211 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2212 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2213 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2214 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2215                                 const struct cred *, u32);
2216 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2217 extern int kill_pid(struct pid *pid, int sig, int priv);
2218 extern int kill_proc_info(int, struct siginfo *, pid_t);
2219 extern __must_check bool do_notify_parent(struct task_struct *, int);
2220 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2221 extern void force_sig(int, struct task_struct *);
2222 extern int send_sig(int, struct task_struct *, int);
2223 extern int zap_other_threads(struct task_struct *p);
2224 extern struct sigqueue *sigqueue_alloc(void);
2225 extern void sigqueue_free(struct sigqueue *);
2226 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2227 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2228 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2229 
2230 static inline void restore_saved_sigmask(void)
2231 {
2232         if (test_and_clear_restore_sigmask())
2233                 __set_current_blocked(&current->saved_sigmask);
2234 }
2235 
2236 static inline sigset_t *sigmask_to_save(void)
2237 {
2238         sigset_t *res = &current->blocked;
2239         if (unlikely(test_restore_sigmask()))
2240                 res = &current->saved_sigmask;
2241         return res;
2242 }
2243 
2244 static inline int kill_cad_pid(int sig, int priv)
2245 {
2246         return kill_pid(cad_pid, sig, priv);
2247 }
2248 
2249 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2250 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2251 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2252 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2253 
2254 /*
2255  * True if we are on the alternate signal stack.
2256  */
2257 static inline int on_sig_stack(unsigned long sp)
2258 {
2259 #ifdef CONFIG_STACK_GROWSUP
2260         return sp >= current->sas_ss_sp &&
2261                 sp - current->sas_ss_sp < current->sas_ss_size;
2262 #else
2263         return sp > current->sas_ss_sp &&
2264                 sp - current->sas_ss_sp <= current->sas_ss_size;
2265 #endif
2266 }
2267 
2268 static inline int sas_ss_flags(unsigned long sp)
2269 {
2270         return (current->sas_ss_size == 0 ? SS_DISABLE
2271                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2272 }
2273 
2274 /*
2275  * Routines for handling mm_structs
2276  */
2277 extern struct mm_struct * mm_alloc(void);
2278 
2279 /* mmdrop drops the mm and the page tables */
2280 extern void __mmdrop(struct mm_struct *);
2281 static inline void mmdrop(struct mm_struct * mm)
2282 {
2283         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2284                 __mmdrop(mm);
2285 }
2286 
2287 /* mmput gets rid of the mappings and all user-space */
2288 extern void mmput(struct mm_struct *);
2289 /* Grab a reference to a task's mm, if it is not already going away */
2290 extern struct mm_struct *get_task_mm(struct task_struct *task);
2291 /*
2292  * Grab a reference to a task's mm, if it is not already going away
2293  * and ptrace_may_access with the mode parameter passed to it
2294  * succeeds.
2295  */
2296 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2297 /* Remove the current tasks stale references to the old mm_struct */
2298 extern void mm_release(struct task_struct *, struct mm_struct *);
2299 /* Allocate a new mm structure and copy contents from tsk->mm */
2300 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2301 
2302 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2303                         struct task_struct *, struct pt_regs *);
2304 extern void flush_thread(void);
2305 extern void exit_thread(void);
2306 
2307 extern void exit_files(struct task_struct *);
2308 extern void __cleanup_sighand(struct sighand_struct *);
2309 
2310 extern void exit_itimers(struct signal_struct *);
2311 extern void flush_itimer_signals(void);
2312 
2313 extern void do_group_exit(int);
2314 
2315 extern void daemonize(const char *, ...);
2316 extern int allow_signal(int);
2317 extern int disallow_signal(int);
2318 
2319 extern int do_execve(const char *,
2320                      const char __user * const __user *,
2321                      const char __user * const __user *, struct pt_regs *);
2322 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2323 struct task_struct *fork_idle(int);
2324 
2325 extern void set_task_comm(struct task_struct *tsk, char *from);
2326 extern char *get_task_comm(char *to, struct task_struct *tsk);
2327 
2328 #ifdef CONFIG_SMP
2329 void scheduler_ipi(void);
2330 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2331 #else
2332 static inline void scheduler_ipi(void) { }
2333 static inline unsigned long wait_task_inactive(struct task_struct *p,
2334                                                long match_state)
2335 {
2336         return 1;
2337 }
2338 #endif
2339 
2340 #define next_task(p) \
2341         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2342 
2343 #define for_each_process(p) \
2344         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2345 
2346 extern bool current_is_single_threaded(void);
2347 
2348 /*
2349  * Careful: do_each_thread/while_each_thread is a double loop so
2350  *          'break' will not work as expected - use goto instead.
2351  */
2352 #define do_each_thread(g, t) \
2353         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2354 
2355 #define while_each_thread(g, t) \
2356         while ((t = next_thread(t)) != g)
2357 
2358 static inline int get_nr_threads(struct task_struct *tsk)
2359 {
2360         return tsk->signal->nr_threads;
2361 }
2362 
2363 static inline bool thread_group_leader(struct task_struct *p)
2364 {
2365         return p->exit_signal >= 0;
2366 }
2367 
2368 /* Do to the insanities of de_thread it is possible for a process
2369  * to have the pid of the thread group leader without actually being
2370  * the thread group leader.  For iteration through the pids in proc
2371  * all we care about is that we have a task with the appropriate
2372  * pid, we don't actually care if we have the right task.
2373  */
2374 static inline int has_group_leader_pid(struct task_struct *p)
2375 {
2376         return p->pid == p->tgid;
2377 }
2378 
2379 static inline
2380 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2381 {
2382         return p1->tgid == p2->tgid;
2383 }
2384 
2385 static inline struct task_struct *next_thread(const struct task_struct *p)
2386 {
2387         return list_entry_rcu(p->thread_group.next,
2388                               struct task_struct, thread_group);
2389 }
2390 
2391 static inline int thread_group_empty(struct task_struct *p)
2392 {
2393         return list_empty(&p->thread_group);
2394 }
2395 
2396 #define delay_group_leader(p) \
2397                 (thread_group_leader(p) && !thread_group_empty(p))
2398 
2399 /*
2400  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2401  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2402  * pins the final release of task.io_context.  Also protects ->cpuset and
2403  * ->cgroup.subsys[]. And ->vfork_done.
2404  *
2405  * Nests both inside and outside of read_lock(&tasklist_lock).
2406  * It must not be nested with write_lock_irq(&tasklist_lock),
2407  * neither inside nor outside.
2408  */
2409 static inline void task_lock(struct task_struct *p)
2410 {
2411         spin_lock(&p->alloc_lock);
2412 }
2413 
2414 static inline void task_unlock(struct task_struct *p)
2415 {
2416         spin_unlock(&p->alloc_lock);
2417 }
2418 
2419 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2420                                                         unsigned long *flags);
2421 
2422 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2423                                                        unsigned long *flags)
2424 {
2425         struct sighand_struct *ret;
2426 
2427         ret = __lock_task_sighand(tsk, flags);
2428         (void)__cond_lock(&tsk->sighand->siglock, ret);
2429         return ret;
2430 }
2431 
2432 static inline void unlock_task_sighand(struct task_struct *tsk,
2433                                                 unsigned long *flags)
2434 {
2435         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2436 }
2437 
2438 #ifdef CONFIG_CGROUPS
2439 static inline void threadgroup_change_begin(struct task_struct *tsk)
2440 {
2441         down_read(&tsk->signal->group_rwsem);
2442 }
2443 static inline void threadgroup_change_end(struct task_struct *tsk)
2444 {
2445         up_read(&tsk->signal->group_rwsem);
2446 }
2447 
2448 /**
2449  * threadgroup_lock - lock threadgroup
2450  * @tsk: member task of the threadgroup to lock
2451  *
2452  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2453  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2454  * perform exec.  This is useful for cases where the threadgroup needs to
2455  * stay stable across blockable operations.
2456  *
2457  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2458  * synchronization.  While held, no new task will be added to threadgroup
2459  * and no existing live task will have its PF_EXITING set.
2460  *
2461  * During exec, a task goes and puts its thread group through unusual
2462  * changes.  After de-threading, exclusive access is assumed to resources
2463  * which are usually shared by tasks in the same group - e.g. sighand may
2464  * be replaced with a new one.  Also, the exec'ing task takes over group
2465  * leader role including its pid.  Exclude these changes while locked by
2466  * grabbing cred_guard_mutex which is used to synchronize exec path.
2467  */
2468 static inline void threadgroup_lock(struct task_struct *tsk)
2469 {
2470         /*
2471          * exec uses exit for de-threading nesting group_rwsem inside
2472          * cred_guard_mutex. Grab cred_guard_mutex first.
2473          */
2474         mutex_lock(&tsk->signal->cred_guard_mutex);
2475         down_write(&tsk->signal->group_rwsem);
2476 }
2477 
2478 /**
2479  * threadgroup_unlock - unlock threadgroup
2480  * @tsk: member task of the threadgroup to unlock
2481  *
2482  * Reverse threadgroup_lock().
2483  */
2484 static inline void threadgroup_unlock(struct task_struct *tsk)
2485 {
2486         up_write(&tsk->signal->group_rwsem);
2487         mutex_unlock(&tsk->signal->cred_guard_mutex);
2488 }
2489 #else
2490 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2491 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2492 static inline void threadgroup_lock(struct task_struct *tsk) {}
2493 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2494 #endif
2495 
2496 #ifndef __HAVE_THREAD_FUNCTIONS
2497 
2498 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2499 #define task_stack_page(task)   ((task)->stack)
2500 
2501 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2502 {
2503         *task_thread_info(p) = *task_thread_info(org);
2504         task_thread_info(p)->task = p;
2505 }
2506 
2507 static inline unsigned long *end_of_stack(struct task_struct *p)
2508 {
2509         return (unsigned long *)(task_thread_info(p) + 1);
2510 }
2511 
2512 #endif
2513 
2514 static inline int object_is_on_stack(void *obj)
2515 {
2516         void *stack = task_stack_page(current);
2517 
2518         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2519 }
2520 
2521 extern void thread_info_cache_init(void);
2522 
2523 #ifdef CONFIG_DEBUG_STACK_USAGE
2524 static inline unsigned long stack_not_used(struct task_struct *p)
2525 {
2526         unsigned long *n = end_of_stack(p);
2527 
2528         do {    /* Skip over canary */
2529                 n++;
2530         } while (!*n);
2531 
2532         return (unsigned long)n - (unsigned long)end_of_stack(p);
2533 }
2534 #endif
2535 
2536 /* set thread flags in other task's structures
2537  * - see asm/thread_info.h for TIF_xxxx flags available
2538  */
2539 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2540 {
2541         set_ti_thread_flag(task_thread_info(tsk), flag);
2542 }
2543 
2544 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2545 {
2546         clear_ti_thread_flag(task_thread_info(tsk), flag);
2547 }
2548 
2549 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2550 {
2551         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2552 }
2553 
2554 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2555 {
2556         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2557 }
2558 
2559 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2560 {
2561         return test_ti_thread_flag(task_thread_info(tsk), flag);
2562 }
2563 
2564 static inline void set_tsk_need_resched(struct task_struct *tsk)
2565 {
2566         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2567 }
2568 
2569 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2570 {
2571         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2572 }
2573 
2574 static inline int test_tsk_need_resched(struct task_struct *tsk)
2575 {
2576         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2577 }
2578 
2579 static inline int restart_syscall(void)
2580 {
2581         set_tsk_thread_flag(current, TIF_SIGPENDING);
2582         return -ERESTARTNOINTR;
2583 }
2584 
2585 static inline int signal_pending(struct task_struct *p)
2586 {
2587         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2588 }
2589 
2590 static inline int __fatal_signal_pending(struct task_struct *p)
2591 {
2592         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2593 }
2594 
2595 static inline int fatal_signal_pending(struct task_struct *p)
2596 {
2597         return signal_pending(p) && __fatal_signal_pending(p);
2598 }
2599 
2600 static inline int signal_pending_state(long state, struct task_struct *p)
2601 {
2602         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2603                 return 0;
2604         if (!signal_pending(p))
2605                 return 0;
2606 
2607         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2608 }
2609 
2610 static inline int need_resched(void)
2611 {
2612         return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2613 }
2614 
2615 /*
2616  * cond_resched() and cond_resched_lock(): latency reduction via
2617  * explicit rescheduling in places that are safe. The return
2618  * value indicates whether a reschedule was done in fact.
2619  * cond_resched_lock() will drop the spinlock before scheduling,
2620  * cond_resched_softirq() will enable bhs before scheduling.
2621  */
2622 extern int _cond_resched(void);
2623 
2624 #define cond_resched() ({                       \
2625         __might_sleep(__FILE__, __LINE__, 0);   \
2626         _cond_resched();                        \
2627 })
2628 
2629 extern int __cond_resched_lock(spinlock_t *lock);
2630 
2631 #ifdef CONFIG_PREEMPT_COUNT
2632 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2633 #else
2634 #define PREEMPT_LOCK_OFFSET     0
2635 #endif
2636 
2637 #define cond_resched_lock(lock) ({                              \
2638         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2639         __cond_resched_lock(lock);                              \
2640 })
2641 
2642 extern int __cond_resched_softirq(void);
2643 
2644 #define cond_resched_softirq() ({                                       \
2645         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2646         __cond_resched_softirq();                                       \
2647 })
2648 
2649 /*
2650  * Does a critical section need to be broken due to another
2651  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2652  * but a general need for low latency)
2653  */
2654 static inline int spin_needbreak(spinlock_t *lock)
2655 {
2656 #ifdef CONFIG_PREEMPT
2657         return spin_is_contended(lock);
2658 #else
2659         return 0;
2660 #endif
2661 }
2662 
2663 /*
2664  * Thread group CPU time accounting.
2665  */
2666 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2667 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2668 
2669 static inline void thread_group_cputime_init(struct signal_struct *sig)
2670 {
2671         raw_spin_lock_init(&sig->cputimer.lock);
2672 }
2673 
2674 /*
2675  * Reevaluate whether the task has signals pending delivery.
2676  * Wake the task if so.
2677  * This is required every time the blocked sigset_t changes.
2678  * callers must hold sighand->siglock.
2679  */
2680 extern void recalc_sigpending_and_wake(struct task_struct *t);
2681 extern void recalc_sigpending(void);
2682 
2683 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2684 
2685 /*
2686  * Wrappers for p->thread_info->cpu access. No-op on UP.
2687  */
2688 #ifdef CONFIG_SMP
2689 
2690 static inline unsigned int task_cpu(const struct task_struct *p)
2691 {
2692         return task_thread_info(p)->cpu;
2693 }
2694 
2695 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2696 
2697 #else
2698 
2699 static inline unsigned int task_cpu(const struct task_struct *p)
2700 {
2701         return 0;
2702 }
2703 
2704 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2705 {
2706 }
2707 
2708 #endif /* CONFIG_SMP */
2709 
2710 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2711 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2712 
2713 extern void normalize_rt_tasks(void);
2714 
2715 #ifdef CONFIG_CGROUP_SCHED
2716 
2717 extern struct task_group root_task_group;
2718 
2719 extern struct task_group *sched_create_group(struct task_group *parent);
2720 extern void sched_destroy_group(struct task_group *tg);
2721 extern void sched_move_task(struct task_struct *tsk);
2722 #ifdef CONFIG_FAIR_GROUP_SCHED
2723 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2724 extern unsigned long sched_group_shares(struct task_group *tg);
2725 #endif
2726 #ifdef CONFIG_RT_GROUP_SCHED
2727 extern int sched_group_set_rt_runtime(struct task_group *tg,
2728                                       long rt_runtime_us);
2729 extern long sched_group_rt_runtime(struct task_group *tg);
2730 extern int sched_group_set_rt_period(struct task_group *tg,
2731                                       long rt_period_us);
2732 extern long sched_group_rt_period(struct task_group *tg);
2733 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2734 #endif
2735 #endif /* CONFIG_CGROUP_SCHED */
2736 
2737 extern int task_can_switch_user(struct user_struct *up,
2738                                         struct task_struct *tsk);
2739 
2740 #ifdef CONFIG_TASK_XACCT
2741 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2742 {
2743         tsk->ioac.rchar += amt;
2744 }
2745 
2746 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2747 {
2748         tsk->ioac.wchar += amt;
2749 }
2750 
2751 static inline void inc_syscr(struct task_struct *tsk)
2752 {
2753         tsk->ioac.syscr++;
2754 }
2755 
2756 static inline void inc_syscw(struct task_struct *tsk)
2757 {
2758         tsk->ioac.syscw++;
2759 }
2760 #else
2761 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2762 {
2763 }
2764 
2765 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2766 {
2767 }
2768 
2769 static inline void inc_syscr(struct task_struct *tsk)
2770 {
2771 }
2772 
2773 static inline void inc_syscw(struct task_struct *tsk)
2774 {
2775 }
2776 #endif
2777 
2778 #ifndef TASK_SIZE_OF
2779 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2780 #endif
2781 
2782 #ifdef CONFIG_MM_OWNER
2783 extern void mm_update_next_owner(struct mm_struct *mm);
2784 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2785 #else
2786 static inline void mm_update_next_owner(struct mm_struct *mm)
2787 {
2788 }
2789 
2790 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2791 {
2792 }
2793 #endif /* CONFIG_MM_OWNER */
2794 
2795 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2796                 unsigned int limit)
2797 {
2798         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2799 }
2800 
2801 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2802                 unsigned int limit)
2803 {
2804         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2805 }
2806 
2807 static inline unsigned long rlimit(unsigned int limit)
2808 {
2809         return task_rlimit(current, limit);
2810 }
2811 
2812 static inline unsigned long rlimit_max(unsigned int limit)
2813 {
2814         return task_rlimit_max(current, limit);
2815 }
2816 
2817 #endif /* __KERNEL__ */
2818 
2819 #endif
2820 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp