~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.10 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.83 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.153 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.200 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.200 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.76 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_H
  2 #define _LINUX_SCHED_H
  3 
  4 #include <uapi/linux/sched.h>
  5 
  6 #include <linux/sched/prio.h>
  7 
  8 
  9 struct ccs_domain_info;
 10 
 11 struct sched_param {
 12         int sched_priority;
 13 };
 14 
 15 #include <asm/param.h>  /* for HZ */
 16 
 17 #include <linux/capability.h>
 18 #include <linux/threads.h>
 19 #include <linux/kernel.h>
 20 #include <linux/types.h>
 21 #include <linux/timex.h>
 22 #include <linux/jiffies.h>
 23 #include <linux/plist.h>
 24 #include <linux/rbtree.h>
 25 #include <linux/thread_info.h>
 26 #include <linux/cpumask.h>
 27 #include <linux/errno.h>
 28 #include <linux/nodemask.h>
 29 #include <linux/mm_types.h>
 30 #include <linux/preempt_mask.h>
 31 
 32 #include <asm/page.h>
 33 #include <asm/ptrace.h>
 34 #include <linux/cputime.h>
 35 
 36 #include <linux/smp.h>
 37 #include <linux/sem.h>
 38 #include <linux/shm.h>
 39 #include <linux/signal.h>
 40 #include <linux/compiler.h>
 41 #include <linux/completion.h>
 42 #include <linux/pid.h>
 43 #include <linux/percpu.h>
 44 #include <linux/topology.h>
 45 #include <linux/proportions.h>
 46 #include <linux/seccomp.h>
 47 #include <linux/rcupdate.h>
 48 #include <linux/rculist.h>
 49 #include <linux/rtmutex.h>
 50 
 51 #include <linux/time.h>
 52 #include <linux/param.h>
 53 #include <linux/resource.h>
 54 #include <linux/timer.h>
 55 #include <linux/hrtimer.h>
 56 #include <linux/task_io_accounting.h>
 57 #include <linux/latencytop.h>
 58 #include <linux/cred.h>
 59 #include <linux/llist.h>
 60 #include <linux/uidgid.h>
 61 #include <linux/gfp.h>
 62 #include <linux/magic.h>
 63 
 64 #include <asm/processor.h>
 65 
 66 #define SCHED_ATTR_SIZE_VER0    48      /* sizeof first published struct */
 67 
 68 /*
 69  * Extended scheduling parameters data structure.
 70  *
 71  * This is needed because the original struct sched_param can not be
 72  * altered without introducing ABI issues with legacy applications
 73  * (e.g., in sched_getparam()).
 74  *
 75  * However, the possibility of specifying more than just a priority for
 76  * the tasks may be useful for a wide variety of application fields, e.g.,
 77  * multimedia, streaming, automation and control, and many others.
 78  *
 79  * This variant (sched_attr) is meant at describing a so-called
 80  * sporadic time-constrained task. In such model a task is specified by:
 81  *  - the activation period or minimum instance inter-arrival time;
 82  *  - the maximum (or average, depending on the actual scheduling
 83  *    discipline) computation time of all instances, a.k.a. runtime;
 84  *  - the deadline (relative to the actual activation time) of each
 85  *    instance.
 86  * Very briefly, a periodic (sporadic) task asks for the execution of
 87  * some specific computation --which is typically called an instance--
 88  * (at most) every period. Moreover, each instance typically lasts no more
 89  * than the runtime and must be completed by time instant t equal to
 90  * the instance activation time + the deadline.
 91  *
 92  * This is reflected by the actual fields of the sched_attr structure:
 93  *
 94  *  @size               size of the structure, for fwd/bwd compat.
 95  *
 96  *  @sched_policy       task's scheduling policy
 97  *  @sched_flags        for customizing the scheduler behaviour
 98  *  @sched_nice         task's nice value      (SCHED_NORMAL/BATCH)
 99  *  @sched_priority     task's static priority (SCHED_FIFO/RR)
100  *  @sched_deadline     representative of the task's deadline
101  *  @sched_runtime      representative of the task's runtime
102  *  @sched_period       representative of the task's period
103  *
104  * Given this task model, there are a multiplicity of scheduling algorithms
105  * and policies, that can be used to ensure all the tasks will make their
106  * timing constraints.
107  *
108  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109  * only user of this new interface. More information about the algorithm
110  * available in the scheduling class file or in Documentation/.
111  */
112 struct sched_attr {
113         u32 size;
114 
115         u32 sched_policy;
116         u64 sched_flags;
117 
118         /* SCHED_NORMAL, SCHED_BATCH */
119         s32 sched_nice;
120 
121         /* SCHED_FIFO, SCHED_RR */
122         u32 sched_priority;
123 
124         /* SCHED_DEADLINE */
125         u64 sched_runtime;
126         u64 sched_deadline;
127         u64 sched_period;
128 };
129 
130 struct exec_domain;
131 struct futex_pi_state;
132 struct robust_list_head;
133 struct bio_list;
134 struct fs_struct;
135 struct perf_event_context;
136 struct blk_plug;
137 struct filename;
138 
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142 
143 /*
144  * These are the constant used to fake the fixed-point load-average
145  * counting. Some notes:
146  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
147  *    a load-average precision of 10 bits integer + 11 bits fractional
148  *  - if you want to count load-averages more often, you need more
149  *    precision, or rounding will get you. With 2-second counting freq,
150  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
151  *    11 bit fractions.
152  */
153 extern unsigned long avenrun[];         /* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155 
156 #define FSHIFT          11              /* nr of bits of precision */
157 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
158 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
159 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5           2014            /* 1/exp(5sec/5min) */
161 #define EXP_15          2037            /* 1/exp(5sec/15min) */
162 
163 #define CALC_LOAD(load,exp,n) \
164         load *= exp; \
165         load += n*(FIXED_1-exp); \
166         load >>= FSHIFT;
167 
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern bool single_task_running(void);
174 extern unsigned long nr_iowait(void);
175 extern unsigned long nr_iowait_cpu(int cpu);
176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177 
178 extern void calc_global_load(unsigned long ticks);
179 extern void update_cpu_load_nohz(void);
180 
181 /* Notifier for when a task gets migrated to a new CPU */
182 struct task_migration_notifier {
183         struct task_struct *task;
184         int from_cpu;
185         int to_cpu;
186 };
187 extern void register_task_migration_notifier(struct notifier_block *n);
188 
189 extern unsigned long get_parent_ip(unsigned long addr);
190 
191 extern void dump_cpu_task(int cpu);
192 
193 struct seq_file;
194 struct cfs_rq;
195 struct task_group;
196 #ifdef CONFIG_SCHED_DEBUG
197 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
198 extern void proc_sched_set_task(struct task_struct *p);
199 extern void
200 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
201 #endif
202 
203 /*
204  * Task state bitmask. NOTE! These bits are also
205  * encoded in fs/proc/array.c: get_task_state().
206  *
207  * We have two separate sets of flags: task->state
208  * is about runnability, while task->exit_state are
209  * about the task exiting. Confusing, but this way
210  * modifying one set can't modify the other one by
211  * mistake.
212  */
213 #define TASK_RUNNING            0
214 #define TASK_INTERRUPTIBLE      1
215 #define TASK_UNINTERRUPTIBLE    2
216 #define __TASK_STOPPED          4
217 #define __TASK_TRACED           8
218 /* in tsk->exit_state */
219 #define EXIT_DEAD               16
220 #define EXIT_ZOMBIE             32
221 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
222 /* in tsk->state again */
223 #define TASK_DEAD               64
224 #define TASK_WAKEKILL           128
225 #define TASK_WAKING             256
226 #define TASK_PARKED             512
227 #define TASK_STATE_MAX          1024
228 
229 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
230 
231 extern char ___assert_task_state[1 - 2*!!(
232                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
233 
234 /* Convenience macros for the sake of set_task_state */
235 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
236 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
237 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
238 
239 /* Convenience macros for the sake of wake_up */
240 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
241 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
242 
243 /* get_task_state() */
244 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
245                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
246                                  __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
247 
248 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
249 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
250 #define task_is_stopped_or_traced(task) \
251                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
252 #define task_contributes_to_load(task)  \
253                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
254                                  (task->flags & PF_FROZEN) == 0)
255 
256 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
257 
258 #define __set_task_state(tsk, state_value)                      \
259         do {                                                    \
260                 (tsk)->task_state_change = _THIS_IP_;           \
261                 (tsk)->state = (state_value);                   \
262         } while (0)
263 #define set_task_state(tsk, state_value)                        \
264         do {                                                    \
265                 (tsk)->task_state_change = _THIS_IP_;           \
266                 set_mb((tsk)->state, (state_value));            \
267         } while (0)
268 
269 /*
270  * set_current_state() includes a barrier so that the write of current->state
271  * is correctly serialised wrt the caller's subsequent test of whether to
272  * actually sleep:
273  *
274  *      set_current_state(TASK_UNINTERRUPTIBLE);
275  *      if (do_i_need_to_sleep())
276  *              schedule();
277  *
278  * If the caller does not need such serialisation then use __set_current_state()
279  */
280 #define __set_current_state(state_value)                        \
281         do {                                                    \
282                 current->task_state_change = _THIS_IP_;         \
283                 current->state = (state_value);                 \
284         } while (0)
285 #define set_current_state(state_value)                          \
286         do {                                                    \
287                 current->task_state_change = _THIS_IP_;         \
288                 set_mb(current->state, (state_value));          \
289         } while (0)
290 
291 #else
292 
293 #define __set_task_state(tsk, state_value)              \
294         do { (tsk)->state = (state_value); } while (0)
295 #define set_task_state(tsk, state_value)                \
296         set_mb((tsk)->state, (state_value))
297 
298 /*
299  * set_current_state() includes a barrier so that the write of current->state
300  * is correctly serialised wrt the caller's subsequent test of whether to
301  * actually sleep:
302  *
303  *      set_current_state(TASK_UNINTERRUPTIBLE);
304  *      if (do_i_need_to_sleep())
305  *              schedule();
306  *
307  * If the caller does not need such serialisation then use __set_current_state()
308  */
309 #define __set_current_state(state_value)                \
310         do { current->state = (state_value); } while (0)
311 #define set_current_state(state_value)                  \
312         set_mb(current->state, (state_value))
313 
314 #endif
315 
316 /* Task command name length */
317 #define TASK_COMM_LEN 16
318 
319 #include <linux/spinlock.h>
320 
321 /*
322  * This serializes "schedule()" and also protects
323  * the run-queue from deletions/modifications (but
324  * _adding_ to the beginning of the run-queue has
325  * a separate lock).
326  */
327 extern rwlock_t tasklist_lock;
328 extern spinlock_t mmlist_lock;
329 
330 struct task_struct;
331 
332 #ifdef CONFIG_PROVE_RCU
333 extern int lockdep_tasklist_lock_is_held(void);
334 #endif /* #ifdef CONFIG_PROVE_RCU */
335 
336 extern void sched_init(void);
337 extern void sched_init_smp(void);
338 extern asmlinkage void schedule_tail(struct task_struct *prev);
339 extern void init_idle(struct task_struct *idle, int cpu);
340 extern void init_idle_bootup_task(struct task_struct *idle);
341 
342 extern int runqueue_is_locked(int cpu);
343 
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(int pinned);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 static inline int get_nohz_timer_target(int pinned)
352 {
353         return smp_processor_id();
354 }
355 #endif
356 
357 /*
358  * Only dump TASK_* tasks. (0 for all tasks)
359  */
360 extern void show_state_filter(unsigned long state_filter);
361 
362 static inline void show_state(void)
363 {
364         show_state_filter(0);
365 }
366 
367 extern void show_regs(struct pt_regs *);
368 
369 /*
370  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
371  * task), SP is the stack pointer of the first frame that should be shown in the back
372  * trace (or NULL if the entire call-chain of the task should be shown).
373  */
374 extern void show_stack(struct task_struct *task, unsigned long *sp);
375 
376 extern void cpu_init (void);
377 extern void trap_init(void);
378 extern void update_process_times(int user);
379 extern void scheduler_tick(void);
380 
381 extern void sched_show_task(struct task_struct *p);
382 
383 #ifdef CONFIG_LOCKUP_DETECTOR
384 extern void touch_softlockup_watchdog(void);
385 extern void touch_softlockup_watchdog_sync(void);
386 extern void touch_all_softlockup_watchdogs(void);
387 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
388                                   void __user *buffer,
389                                   size_t *lenp, loff_t *ppos);
390 extern unsigned int  softlockup_panic;
391 void lockup_detector_init(void);
392 #else
393 static inline void touch_softlockup_watchdog(void)
394 {
395 }
396 static inline void touch_softlockup_watchdog_sync(void)
397 {
398 }
399 static inline void touch_all_softlockup_watchdogs(void)
400 {
401 }
402 static inline void lockup_detector_init(void)
403 {
404 }
405 #endif
406 
407 #ifdef CONFIG_DETECT_HUNG_TASK
408 void reset_hung_task_detector(void);
409 #else
410 static inline void reset_hung_task_detector(void)
411 {
412 }
413 #endif
414 
415 /* Attach to any functions which should be ignored in wchan output. */
416 #define __sched         __attribute__((__section__(".sched.text")))
417 
418 /* Linker adds these: start and end of __sched functions */
419 extern char __sched_text_start[], __sched_text_end[];
420 
421 /* Is this address in the __sched functions? */
422 extern int in_sched_functions(unsigned long addr);
423 
424 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
425 extern signed long schedule_timeout(signed long timeout);
426 extern signed long schedule_timeout_interruptible(signed long timeout);
427 extern signed long schedule_timeout_killable(signed long timeout);
428 extern signed long schedule_timeout_uninterruptible(signed long timeout);
429 asmlinkage void schedule(void);
430 extern void schedule_preempt_disabled(void);
431 
432 extern long io_schedule_timeout(long timeout);
433 
434 static inline void io_schedule(void)
435 {
436         io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
437 }
438 
439 struct nsproxy;
440 struct user_namespace;
441 
442 #ifdef CONFIG_MMU
443 extern void arch_pick_mmap_layout(struct mm_struct *mm);
444 extern unsigned long
445 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
446                        unsigned long, unsigned long);
447 extern unsigned long
448 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
449                           unsigned long len, unsigned long pgoff,
450                           unsigned long flags);
451 #else
452 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
453 #endif
454 
455 #define SUID_DUMP_DISABLE       0       /* No setuid dumping */
456 #define SUID_DUMP_USER          1       /* Dump as user of process */
457 #define SUID_DUMP_ROOT          2       /* Dump as root */
458 
459 /* mm flags */
460 
461 /* for SUID_DUMP_* above */
462 #define MMF_DUMPABLE_BITS 2
463 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
464 
465 extern void set_dumpable(struct mm_struct *mm, int value);
466 /*
467  * This returns the actual value of the suid_dumpable flag. For things
468  * that are using this for checking for privilege transitions, it must
469  * test against SUID_DUMP_USER rather than treating it as a boolean
470  * value.
471  */
472 static inline int __get_dumpable(unsigned long mm_flags)
473 {
474         return mm_flags & MMF_DUMPABLE_MASK;
475 }
476 
477 static inline int get_dumpable(struct mm_struct *mm)
478 {
479         return __get_dumpable(mm->flags);
480 }
481 
482 /* coredump filter bits */
483 #define MMF_DUMP_ANON_PRIVATE   2
484 #define MMF_DUMP_ANON_SHARED    3
485 #define MMF_DUMP_MAPPED_PRIVATE 4
486 #define MMF_DUMP_MAPPED_SHARED  5
487 #define MMF_DUMP_ELF_HEADERS    6
488 #define MMF_DUMP_HUGETLB_PRIVATE 7
489 #define MMF_DUMP_HUGETLB_SHARED  8
490 
491 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
492 #define MMF_DUMP_FILTER_BITS    7
493 #define MMF_DUMP_FILTER_MASK \
494         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
495 #define MMF_DUMP_FILTER_DEFAULT \
496         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
497          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
498 
499 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
500 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
501 #else
502 # define MMF_DUMP_MASK_DEFAULT_ELF      0
503 #endif
504                                         /* leave room for more dump flags */
505 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
506 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
507 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
508 
509 #define MMF_HAS_UPROBES         19      /* has uprobes */
510 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
511 
512 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
513 
514 struct sighand_struct {
515         atomic_t                count;
516         struct k_sigaction      action[_NSIG];
517         spinlock_t              siglock;
518         wait_queue_head_t       signalfd_wqh;
519 };
520 
521 struct pacct_struct {
522         int                     ac_flag;
523         long                    ac_exitcode;
524         unsigned long           ac_mem;
525         cputime_t               ac_utime, ac_stime;
526         unsigned long           ac_minflt, ac_majflt;
527 };
528 
529 struct cpu_itimer {
530         cputime_t expires;
531         cputime_t incr;
532         u32 error;
533         u32 incr_error;
534 };
535 
536 /**
537  * struct cputime - snaphsot of system and user cputime
538  * @utime: time spent in user mode
539  * @stime: time spent in system mode
540  *
541  * Gathers a generic snapshot of user and system time.
542  */
543 struct cputime {
544         cputime_t utime;
545         cputime_t stime;
546 };
547 
548 /**
549  * struct task_cputime - collected CPU time counts
550  * @utime:              time spent in user mode, in &cputime_t units
551  * @stime:              time spent in kernel mode, in &cputime_t units
552  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
553  *
554  * This is an extension of struct cputime that includes the total runtime
555  * spent by the task from the scheduler point of view.
556  *
557  * As a result, this structure groups together three kinds of CPU time
558  * that are tracked for threads and thread groups.  Most things considering
559  * CPU time want to group these counts together and treat all three
560  * of them in parallel.
561  */
562 struct task_cputime {
563         cputime_t utime;
564         cputime_t stime;
565         unsigned long long sum_exec_runtime;
566 };
567 /* Alternate field names when used to cache expirations. */
568 #define prof_exp        stime
569 #define virt_exp        utime
570 #define sched_exp       sum_exec_runtime
571 
572 #define INIT_CPUTIME    \
573         (struct task_cputime) {                                 \
574                 .utime = 0,                                     \
575                 .stime = 0,                                     \
576                 .sum_exec_runtime = 0,                          \
577         }
578 
579 #ifdef CONFIG_PREEMPT_COUNT
580 #define PREEMPT_DISABLED        (1 + PREEMPT_ENABLED)
581 #else
582 #define PREEMPT_DISABLED        PREEMPT_ENABLED
583 #endif
584 
585 /*
586  * Disable preemption until the scheduler is running.
587  * Reset by start_kernel()->sched_init()->init_idle().
588  *
589  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
590  * before the scheduler is active -- see should_resched().
591  */
592 #define INIT_PREEMPT_COUNT      (PREEMPT_DISABLED + PREEMPT_ACTIVE)
593 
594 /**
595  * struct thread_group_cputimer - thread group interval timer counts
596  * @cputime:            thread group interval timers.
597  * @running:            non-zero when there are timers running and
598  *                      @cputime receives updates.
599  * @lock:               lock for fields in this struct.
600  *
601  * This structure contains the version of task_cputime, above, that is
602  * used for thread group CPU timer calculations.
603  */
604 struct thread_group_cputimer {
605         struct task_cputime cputime;
606         int running;
607         raw_spinlock_t lock;
608 };
609 
610 #include <linux/rwsem.h>
611 struct autogroup;
612 
613 /*
614  * NOTE! "signal_struct" does not have its own
615  * locking, because a shared signal_struct always
616  * implies a shared sighand_struct, so locking
617  * sighand_struct is always a proper superset of
618  * the locking of signal_struct.
619  */
620 struct signal_struct {
621         atomic_t                sigcnt;
622         atomic_t                live;
623         int                     nr_threads;
624         struct list_head        thread_head;
625 
626         wait_queue_head_t       wait_chldexit;  /* for wait4() */
627 
628         /* current thread group signal load-balancing target: */
629         struct task_struct      *curr_target;
630 
631         /* shared signal handling: */
632         struct sigpending       shared_pending;
633 
634         /* thread group exit support */
635         int                     group_exit_code;
636         /* overloaded:
637          * - notify group_exit_task when ->count is equal to notify_count
638          * - everyone except group_exit_task is stopped during signal delivery
639          *   of fatal signals, group_exit_task processes the signal.
640          */
641         int                     notify_count;
642         struct task_struct      *group_exit_task;
643 
644         /* thread group stop support, overloads group_exit_code too */
645         int                     group_stop_count;
646         unsigned int            flags; /* see SIGNAL_* flags below */
647 
648         /*
649          * PR_SET_CHILD_SUBREAPER marks a process, like a service
650          * manager, to re-parent orphan (double-forking) child processes
651          * to this process instead of 'init'. The service manager is
652          * able to receive SIGCHLD signals and is able to investigate
653          * the process until it calls wait(). All children of this
654          * process will inherit a flag if they should look for a
655          * child_subreaper process at exit.
656          */
657         unsigned int            is_child_subreaper:1;
658         unsigned int            has_child_subreaper:1;
659 
660         /* POSIX.1b Interval Timers */
661         int                     posix_timer_id;
662         struct list_head        posix_timers;
663 
664         /* ITIMER_REAL timer for the process */
665         struct hrtimer real_timer;
666         struct pid *leader_pid;
667         ktime_t it_real_incr;
668 
669         /*
670          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
671          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
672          * values are defined to 0 and 1 respectively
673          */
674         struct cpu_itimer it[2];
675 
676         /*
677          * Thread group totals for process CPU timers.
678          * See thread_group_cputimer(), et al, for details.
679          */
680         struct thread_group_cputimer cputimer;
681 
682         /* Earliest-expiration cache. */
683         struct task_cputime cputime_expires;
684 
685         struct list_head cpu_timers[3];
686 
687         struct pid *tty_old_pgrp;
688 
689         /* boolean value for session group leader */
690         int leader;
691 
692         struct tty_struct *tty; /* NULL if no tty */
693 
694 #ifdef CONFIG_SCHED_AUTOGROUP
695         struct autogroup *autogroup;
696 #endif
697         /*
698          * Cumulative resource counters for dead threads in the group,
699          * and for reaped dead child processes forked by this group.
700          * Live threads maintain their own counters and add to these
701          * in __exit_signal, except for the group leader.
702          */
703         seqlock_t stats_lock;
704         cputime_t utime, stime, cutime, cstime;
705         cputime_t gtime;
706         cputime_t cgtime;
707 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
708         struct cputime prev_cputime;
709 #endif
710         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
711         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
712         unsigned long inblock, oublock, cinblock, coublock;
713         unsigned long maxrss, cmaxrss;
714         struct task_io_accounting ioac;
715 
716         /*
717          * Cumulative ns of schedule CPU time fo dead threads in the
718          * group, not including a zombie group leader, (This only differs
719          * from jiffies_to_ns(utime + stime) if sched_clock uses something
720          * other than jiffies.)
721          */
722         unsigned long long sum_sched_runtime;
723 
724         /*
725          * We don't bother to synchronize most readers of this at all,
726          * because there is no reader checking a limit that actually needs
727          * to get both rlim_cur and rlim_max atomically, and either one
728          * alone is a single word that can safely be read normally.
729          * getrlimit/setrlimit use task_lock(current->group_leader) to
730          * protect this instead of the siglock, because they really
731          * have no need to disable irqs.
732          */
733         struct rlimit rlim[RLIM_NLIMITS];
734 
735 #ifdef CONFIG_BSD_PROCESS_ACCT
736         struct pacct_struct pacct;      /* per-process accounting information */
737 #endif
738 #ifdef CONFIG_TASKSTATS
739         struct taskstats *stats;
740 #endif
741 #ifdef CONFIG_AUDIT
742         unsigned audit_tty;
743         unsigned audit_tty_log_passwd;
744         struct tty_audit_buf *tty_audit_buf;
745 #endif
746 #ifdef CONFIG_CGROUPS
747         /*
748          * group_rwsem prevents new tasks from entering the threadgroup and
749          * member tasks from exiting,a more specifically, setting of
750          * PF_EXITING.  fork and exit paths are protected with this rwsem
751          * using threadgroup_change_begin/end().  Users which require
752          * threadgroup to remain stable should use threadgroup_[un]lock()
753          * which also takes care of exec path.  Currently, cgroup is the
754          * only user.
755          */
756         struct rw_semaphore group_rwsem;
757 #endif
758 
759         oom_flags_t oom_flags;
760         short oom_score_adj;            /* OOM kill score adjustment */
761         short oom_score_adj_min;        /* OOM kill score adjustment min value.
762                                          * Only settable by CAP_SYS_RESOURCE. */
763 
764         struct mutex cred_guard_mutex;  /* guard against foreign influences on
765                                          * credential calculations
766                                          * (notably. ptrace) */
767 };
768 
769 /*
770  * Bits in flags field of signal_struct.
771  */
772 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
773 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
774 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
775 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
776 /*
777  * Pending notifications to parent.
778  */
779 #define SIGNAL_CLD_STOPPED      0x00000010
780 #define SIGNAL_CLD_CONTINUED    0x00000020
781 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
782 
783 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
784 
785 /* If true, all threads except ->group_exit_task have pending SIGKILL */
786 static inline int signal_group_exit(const struct signal_struct *sig)
787 {
788         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
789                 (sig->group_exit_task != NULL);
790 }
791 
792 /*
793  * Some day this will be a full-fledged user tracking system..
794  */
795 struct user_struct {
796         atomic_t __count;       /* reference count */
797         atomic_t processes;     /* How many processes does this user have? */
798         atomic_t sigpending;    /* How many pending signals does this user have? */
799 #ifdef CONFIG_INOTIFY_USER
800         atomic_t inotify_watches; /* How many inotify watches does this user have? */
801         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
802 #endif
803 #ifdef CONFIG_FANOTIFY
804         atomic_t fanotify_listeners;
805 #endif
806 #ifdef CONFIG_EPOLL
807         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
808 #endif
809 #ifdef CONFIG_POSIX_MQUEUE
810         /* protected by mq_lock */
811         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
812 #endif
813         unsigned long locked_shm; /* How many pages of mlocked shm ? */
814 
815 #ifdef CONFIG_KEYS
816         struct key *uid_keyring;        /* UID specific keyring */
817         struct key *session_keyring;    /* UID's default session keyring */
818 #endif
819 
820         /* Hash table maintenance information */
821         struct hlist_node uidhash_node;
822         kuid_t uid;
823 
824 #ifdef CONFIG_PERF_EVENTS
825         atomic_long_t locked_vm;
826 #endif
827 };
828 
829 extern int uids_sysfs_init(void);
830 
831 extern struct user_struct *find_user(kuid_t);
832 
833 extern struct user_struct root_user;
834 #define INIT_USER (&root_user)
835 
836 
837 struct backing_dev_info;
838 struct reclaim_state;
839 
840 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
841 struct sched_info {
842         /* cumulative counters */
843         unsigned long pcount;         /* # of times run on this cpu */
844         unsigned long long run_delay; /* time spent waiting on a runqueue */
845 
846         /* timestamps */
847         unsigned long long last_arrival,/* when we last ran on a cpu */
848                            last_queued; /* when we were last queued to run */
849 };
850 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
851 
852 #ifdef CONFIG_TASK_DELAY_ACCT
853 struct task_delay_info {
854         spinlock_t      lock;
855         unsigned int    flags;  /* Private per-task flags */
856 
857         /* For each stat XXX, add following, aligned appropriately
858          *
859          * struct timespec XXX_start, XXX_end;
860          * u64 XXX_delay;
861          * u32 XXX_count;
862          *
863          * Atomicity of updates to XXX_delay, XXX_count protected by
864          * single lock above (split into XXX_lock if contention is an issue).
865          */
866 
867         /*
868          * XXX_count is incremented on every XXX operation, the delay
869          * associated with the operation is added to XXX_delay.
870          * XXX_delay contains the accumulated delay time in nanoseconds.
871          */
872         u64 blkio_start;        /* Shared by blkio, swapin */
873         u64 blkio_delay;        /* wait for sync block io completion */
874         u64 swapin_delay;       /* wait for swapin block io completion */
875         u32 blkio_count;        /* total count of the number of sync block */
876                                 /* io operations performed */
877         u32 swapin_count;       /* total count of the number of swapin block */
878                                 /* io operations performed */
879 
880         u64 freepages_start;
881         u64 freepages_delay;    /* wait for memory reclaim */
882         u32 freepages_count;    /* total count of memory reclaim */
883 };
884 #endif  /* CONFIG_TASK_DELAY_ACCT */
885 
886 static inline int sched_info_on(void)
887 {
888 #ifdef CONFIG_SCHEDSTATS
889         return 1;
890 #elif defined(CONFIG_TASK_DELAY_ACCT)
891         extern int delayacct_on;
892         return delayacct_on;
893 #else
894         return 0;
895 #endif
896 }
897 
898 enum cpu_idle_type {
899         CPU_IDLE,
900         CPU_NOT_IDLE,
901         CPU_NEWLY_IDLE,
902         CPU_MAX_IDLE_TYPES
903 };
904 
905 /*
906  * Increase resolution of cpu_capacity calculations
907  */
908 #define SCHED_CAPACITY_SHIFT    10
909 #define SCHED_CAPACITY_SCALE    (1L << SCHED_CAPACITY_SHIFT)
910 
911 /*
912  * sched-domains (multiprocessor balancing) declarations:
913  */
914 #ifdef CONFIG_SMP
915 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
916 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
917 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
918 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
919 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
920 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
921 #define SD_SHARE_CPUCAPACITY    0x0080  /* Domain members share cpu power */
922 #define SD_SHARE_POWERDOMAIN    0x0100  /* Domain members share power domain */
923 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
924 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
925 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
926 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
927 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
928 #define SD_NUMA                 0x4000  /* cross-node balancing */
929 
930 #ifdef CONFIG_SCHED_SMT
931 static inline int cpu_smt_flags(void)
932 {
933         return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
934 }
935 #endif
936 
937 #ifdef CONFIG_SCHED_MC
938 static inline int cpu_core_flags(void)
939 {
940         return SD_SHARE_PKG_RESOURCES;
941 }
942 #endif
943 
944 #ifdef CONFIG_NUMA
945 static inline int cpu_numa_flags(void)
946 {
947         return SD_NUMA;
948 }
949 #endif
950 
951 struct sched_domain_attr {
952         int relax_domain_level;
953 };
954 
955 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
956         .relax_domain_level = -1,                       \
957 }
958 
959 extern int sched_domain_level_max;
960 
961 struct sched_group;
962 
963 struct sched_domain {
964         /* These fields must be setup */
965         struct sched_domain *parent;    /* top domain must be null terminated */
966         struct sched_domain *child;     /* bottom domain must be null terminated */
967         struct sched_group *groups;     /* the balancing groups of the domain */
968         unsigned long min_interval;     /* Minimum balance interval ms */
969         unsigned long max_interval;     /* Maximum balance interval ms */
970         unsigned int busy_factor;       /* less balancing by factor if busy */
971         unsigned int imbalance_pct;     /* No balance until over watermark */
972         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
973         unsigned int busy_idx;
974         unsigned int idle_idx;
975         unsigned int newidle_idx;
976         unsigned int wake_idx;
977         unsigned int forkexec_idx;
978         unsigned int smt_gain;
979 
980         int nohz_idle;                  /* NOHZ IDLE status */
981         int flags;                      /* See SD_* */
982         int level;
983 
984         /* Runtime fields. */
985         unsigned long last_balance;     /* init to jiffies. units in jiffies */
986         unsigned int balance_interval;  /* initialise to 1. units in ms. */
987         unsigned int nr_balance_failed; /* initialise to 0 */
988 
989         /* idle_balance() stats */
990         u64 max_newidle_lb_cost;
991         unsigned long next_decay_max_lb_cost;
992 
993 #ifdef CONFIG_SCHEDSTATS
994         /* load_balance() stats */
995         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
996         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
997         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
998         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
999         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1000         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1001         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1002         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1003 
1004         /* Active load balancing */
1005         unsigned int alb_count;
1006         unsigned int alb_failed;
1007         unsigned int alb_pushed;
1008 
1009         /* SD_BALANCE_EXEC stats */
1010         unsigned int sbe_count;
1011         unsigned int sbe_balanced;
1012         unsigned int sbe_pushed;
1013 
1014         /* SD_BALANCE_FORK stats */
1015         unsigned int sbf_count;
1016         unsigned int sbf_balanced;
1017         unsigned int sbf_pushed;
1018 
1019         /* try_to_wake_up() stats */
1020         unsigned int ttwu_wake_remote;
1021         unsigned int ttwu_move_affine;
1022         unsigned int ttwu_move_balance;
1023 #endif
1024 #ifdef CONFIG_SCHED_DEBUG
1025         char *name;
1026 #endif
1027         union {
1028                 void *private;          /* used during construction */
1029                 struct rcu_head rcu;    /* used during destruction */
1030         };
1031 
1032         unsigned int span_weight;
1033         /*
1034          * Span of all CPUs in this domain.
1035          *
1036          * NOTE: this field is variable length. (Allocated dynamically
1037          * by attaching extra space to the end of the structure,
1038          * depending on how many CPUs the kernel has booted up with)
1039          */
1040         unsigned long span[0];
1041 };
1042 
1043 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1044 {
1045         return to_cpumask(sd->span);
1046 }
1047 
1048 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1049                                     struct sched_domain_attr *dattr_new);
1050 
1051 /* Allocate an array of sched domains, for partition_sched_domains(). */
1052 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1053 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1054 
1055 bool cpus_share_cache(int this_cpu, int that_cpu);
1056 
1057 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1058 typedef int (*sched_domain_flags_f)(void);
1059 
1060 #define SDTL_OVERLAP    0x01
1061 
1062 struct sd_data {
1063         struct sched_domain **__percpu sd;
1064         struct sched_group **__percpu sg;
1065         struct sched_group_capacity **__percpu sgc;
1066 };
1067 
1068 struct sched_domain_topology_level {
1069         sched_domain_mask_f mask;
1070         sched_domain_flags_f sd_flags;
1071         int                 flags;
1072         int                 numa_level;
1073         struct sd_data      data;
1074 #ifdef CONFIG_SCHED_DEBUG
1075         char                *name;
1076 #endif
1077 };
1078 
1079 extern struct sched_domain_topology_level *sched_domain_topology;
1080 
1081 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1082 extern void wake_up_if_idle(int cpu);
1083 
1084 #ifdef CONFIG_SCHED_DEBUG
1085 # define SD_INIT_NAME(type)             .name = #type
1086 #else
1087 # define SD_INIT_NAME(type)
1088 #endif
1089 
1090 #else /* CONFIG_SMP */
1091 
1092 struct sched_domain_attr;
1093 
1094 static inline void
1095 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1096                         struct sched_domain_attr *dattr_new)
1097 {
1098 }
1099 
1100 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1101 {
1102         return true;
1103 }
1104 
1105 #endif  /* !CONFIG_SMP */
1106 
1107 
1108 struct io_context;                      /* See blkdev.h */
1109 
1110 
1111 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1112 extern void prefetch_stack(struct task_struct *t);
1113 #else
1114 static inline void prefetch_stack(struct task_struct *t) { }
1115 #endif
1116 
1117 struct audit_context;           /* See audit.c */
1118 struct mempolicy;
1119 struct pipe_inode_info;
1120 struct uts_namespace;
1121 
1122 struct load_weight {
1123         unsigned long weight;
1124         u32 inv_weight;
1125 };
1126 
1127 struct sched_avg {
1128         /*
1129          * These sums represent an infinite geometric series and so are bound
1130          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
1131          * choices of y < 1-2^(-32)*1024.
1132          */
1133         u32 runnable_avg_sum, runnable_avg_period;
1134         u64 last_runnable_update;
1135         s64 decay_count;
1136         unsigned long load_avg_contrib;
1137 };
1138 
1139 #ifdef CONFIG_SCHEDSTATS
1140 struct sched_statistics {
1141         u64                     wait_start;
1142         u64                     wait_max;
1143         u64                     wait_count;
1144         u64                     wait_sum;
1145         u64                     iowait_count;
1146         u64                     iowait_sum;
1147 
1148         u64                     sleep_start;
1149         u64                     sleep_max;
1150         s64                     sum_sleep_runtime;
1151 
1152         u64                     block_start;
1153         u64                     block_max;
1154         u64                     exec_max;
1155         u64                     slice_max;
1156 
1157         u64                     nr_migrations_cold;
1158         u64                     nr_failed_migrations_affine;
1159         u64                     nr_failed_migrations_running;
1160         u64                     nr_failed_migrations_hot;
1161         u64                     nr_forced_migrations;
1162 
1163         u64                     nr_wakeups;
1164         u64                     nr_wakeups_sync;
1165         u64                     nr_wakeups_migrate;
1166         u64                     nr_wakeups_local;
1167         u64                     nr_wakeups_remote;
1168         u64                     nr_wakeups_affine;
1169         u64                     nr_wakeups_affine_attempts;
1170         u64                     nr_wakeups_passive;
1171         u64                     nr_wakeups_idle;
1172 };
1173 #endif
1174 
1175 struct sched_entity {
1176         struct load_weight      load;           /* for load-balancing */
1177         struct rb_node          run_node;
1178         struct list_head        group_node;
1179         unsigned int            on_rq;
1180 
1181         u64                     exec_start;
1182         u64                     sum_exec_runtime;
1183         u64                     vruntime;
1184         u64                     prev_sum_exec_runtime;
1185 
1186         u64                     nr_migrations;
1187 
1188 #ifdef CONFIG_SCHEDSTATS
1189         struct sched_statistics statistics;
1190 #endif
1191 
1192 #ifdef CONFIG_FAIR_GROUP_SCHED
1193         int                     depth;
1194         struct sched_entity     *parent;
1195         /* rq on which this entity is (to be) queued: */
1196         struct cfs_rq           *cfs_rq;
1197         /* rq "owned" by this entity/group: */
1198         struct cfs_rq           *my_q;
1199 #endif
1200 
1201 #ifdef CONFIG_SMP
1202         /* Per-entity load-tracking */
1203         struct sched_avg        avg;
1204 #endif
1205 };
1206 
1207 struct sched_rt_entity {
1208         struct list_head run_list;
1209         unsigned long timeout;
1210         unsigned long watchdog_stamp;
1211         unsigned int time_slice;
1212 
1213         struct sched_rt_entity *back;
1214 #ifdef CONFIG_RT_GROUP_SCHED
1215         struct sched_rt_entity  *parent;
1216         /* rq on which this entity is (to be) queued: */
1217         struct rt_rq            *rt_rq;
1218         /* rq "owned" by this entity/group: */
1219         struct rt_rq            *my_q;
1220 #endif
1221 };
1222 
1223 struct sched_dl_entity {
1224         struct rb_node  rb_node;
1225 
1226         /*
1227          * Original scheduling parameters. Copied here from sched_attr
1228          * during sched_setattr(), they will remain the same until
1229          * the next sched_setattr().
1230          */
1231         u64 dl_runtime;         /* maximum runtime for each instance    */
1232         u64 dl_deadline;        /* relative deadline of each instance   */
1233         u64 dl_period;          /* separation of two instances (period) */
1234         u64 dl_bw;              /* dl_runtime / dl_deadline             */
1235 
1236         /*
1237          * Actual scheduling parameters. Initialized with the values above,
1238          * they are continously updated during task execution. Note that
1239          * the remaining runtime could be < 0 in case we are in overrun.
1240          */
1241         s64 runtime;            /* remaining runtime for this instance  */
1242         u64 deadline;           /* absolute deadline for this instance  */
1243         unsigned int flags;     /* specifying the scheduler behaviour   */
1244 
1245         /*
1246          * Some bool flags:
1247          *
1248          * @dl_throttled tells if we exhausted the runtime. If so, the
1249          * task has to wait for a replenishment to be performed at the
1250          * next firing of dl_timer.
1251          *
1252          * @dl_new tells if a new instance arrived. If so we must
1253          * start executing it with full runtime and reset its absolute
1254          * deadline;
1255          *
1256          * @dl_boosted tells if we are boosted due to DI. If so we are
1257          * outside bandwidth enforcement mechanism (but only until we
1258          * exit the critical section);
1259          *
1260          * @dl_yielded tells if task gave up the cpu before consuming
1261          * all its available runtime during the last job.
1262          */
1263         int dl_throttled, dl_new, dl_boosted, dl_yielded;
1264 
1265         /*
1266          * Bandwidth enforcement timer. Each -deadline task has its
1267          * own bandwidth to be enforced, thus we need one timer per task.
1268          */
1269         struct hrtimer dl_timer;
1270 };
1271 
1272 union rcu_special {
1273         struct {
1274                 bool blocked;
1275                 bool need_qs;
1276         } b;
1277         short s;
1278 };
1279 struct rcu_node;
1280 
1281 enum perf_event_task_context {
1282         perf_invalid_context = -1,
1283         perf_hw_context = 0,
1284         perf_sw_context,
1285         perf_nr_task_contexts,
1286 };
1287 
1288 struct task_struct {
1289         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1290         void *stack;
1291         atomic_t usage;
1292         unsigned int flags;     /* per process flags, defined below */
1293         unsigned int ptrace;
1294 
1295 #ifdef CONFIG_SMP
1296         struct llist_node wake_entry;
1297         int on_cpu;
1298         struct task_struct *last_wakee;
1299         unsigned long wakee_flips;
1300         unsigned long wakee_flip_decay_ts;
1301 
1302         int wake_cpu;
1303 #endif
1304         int on_rq;
1305 
1306         int prio, static_prio, normal_prio;
1307         unsigned int rt_priority;
1308         const struct sched_class *sched_class;
1309         struct sched_entity se;
1310         struct sched_rt_entity rt;
1311 #ifdef CONFIG_CGROUP_SCHED
1312         struct task_group *sched_task_group;
1313 #endif
1314         struct sched_dl_entity dl;
1315 
1316 #ifdef CONFIG_PREEMPT_NOTIFIERS
1317         /* list of struct preempt_notifier: */
1318         struct hlist_head preempt_notifiers;
1319 #endif
1320 
1321 #ifdef CONFIG_BLK_DEV_IO_TRACE
1322         unsigned int btrace_seq;
1323 #endif
1324 
1325         unsigned int policy;
1326         int nr_cpus_allowed;
1327         cpumask_t cpus_allowed;
1328 
1329 #ifdef CONFIG_PREEMPT_RCU
1330         int rcu_read_lock_nesting;
1331         union rcu_special rcu_read_unlock_special;
1332         struct list_head rcu_node_entry;
1333 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1334 #ifdef CONFIG_PREEMPT_RCU
1335         struct rcu_node *rcu_blocked_node;
1336 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1337 #ifdef CONFIG_TASKS_RCU
1338         unsigned long rcu_tasks_nvcsw;
1339         bool rcu_tasks_holdout;
1340         struct list_head rcu_tasks_holdout_list;
1341         int rcu_tasks_idle_cpu;
1342 #endif /* #ifdef CONFIG_TASKS_RCU */
1343 
1344 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1345         struct sched_info sched_info;
1346 #endif
1347 
1348         struct list_head tasks;
1349 #ifdef CONFIG_SMP
1350         struct plist_node pushable_tasks;
1351         struct rb_node pushable_dl_tasks;
1352 #endif
1353 
1354         struct mm_struct *mm, *active_mm;
1355 #ifdef CONFIG_COMPAT_BRK
1356         unsigned brk_randomized:1;
1357 #endif
1358         /* per-thread vma caching */
1359         u32 vmacache_seqnum;
1360         struct vm_area_struct *vmacache[VMACACHE_SIZE];
1361 #if defined(SPLIT_RSS_COUNTING)
1362         struct task_rss_stat    rss_stat;
1363 #endif
1364 /* task state */
1365         int exit_state;
1366         int exit_code, exit_signal;
1367         int pdeath_signal;  /*  The signal sent when the parent dies  */
1368         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1369 
1370         /* Used for emulating ABI behavior of previous Linux versions */
1371         unsigned int personality;
1372 
1373         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1374                                  * execve */
1375         unsigned in_iowait:1;
1376 
1377         /* Revert to default priority/policy when forking */
1378         unsigned sched_reset_on_fork:1;
1379         unsigned sched_contributes_to_load:1;
1380 
1381 #ifdef CONFIG_MEMCG_KMEM
1382         unsigned memcg_kmem_skip_account:1;
1383 #endif
1384 
1385         unsigned long atomic_flags; /* Flags needing atomic access. */
1386 
1387         struct restart_block restart_block;
1388 
1389         pid_t pid;
1390         pid_t tgid;
1391 
1392 #ifdef CONFIG_CC_STACKPROTECTOR
1393         /* Canary value for the -fstack-protector gcc feature */
1394         unsigned long stack_canary;
1395 #endif
1396         /*
1397          * pointers to (original) parent process, youngest child, younger sibling,
1398          * older sibling, respectively.  (p->father can be replaced with
1399          * p->real_parent->pid)
1400          */
1401         struct task_struct __rcu *real_parent; /* real parent process */
1402         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1403         /*
1404          * children/sibling forms the list of my natural children
1405          */
1406         struct list_head children;      /* list of my children */
1407         struct list_head sibling;       /* linkage in my parent's children list */
1408         struct task_struct *group_leader;       /* threadgroup leader */
1409 
1410         /*
1411          * ptraced is the list of tasks this task is using ptrace on.
1412          * This includes both natural children and PTRACE_ATTACH targets.
1413          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1414          */
1415         struct list_head ptraced;
1416         struct list_head ptrace_entry;
1417 
1418         /* PID/PID hash table linkage. */
1419         struct pid_link pids[PIDTYPE_MAX];
1420         struct list_head thread_group;
1421         struct list_head thread_node;
1422 
1423         struct completion *vfork_done;          /* for vfork() */
1424         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1425         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1426 
1427         cputime_t utime, stime, utimescaled, stimescaled;
1428         cputime_t gtime;
1429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1430         struct cputime prev_cputime;
1431 #endif
1432 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1433         seqlock_t vtime_seqlock;
1434         unsigned long long vtime_snap;
1435         enum {
1436                 VTIME_SLEEPING = 0,
1437                 VTIME_USER,
1438                 VTIME_SYS,
1439         } vtime_snap_whence;
1440 #endif
1441         unsigned long nvcsw, nivcsw; /* context switch counts */
1442         u64 start_time;         /* monotonic time in nsec */
1443         u64 real_start_time;    /* boot based time in nsec */
1444 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1445         unsigned long min_flt, maj_flt;
1446 
1447         struct task_cputime cputime_expires;
1448         struct list_head cpu_timers[3];
1449 
1450 /* process credentials */
1451         const struct cred __rcu *real_cred; /* objective and real subjective task
1452                                          * credentials (COW) */
1453         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1454                                          * credentials (COW) */
1455         char comm[TASK_COMM_LEN]; /* executable name excluding path
1456                                      - access with [gs]et_task_comm (which lock
1457                                        it with task_lock())
1458                                      - initialized normally by setup_new_exec */
1459 /* file system info */
1460         int link_count, total_link_count;
1461 #ifdef CONFIG_SYSVIPC
1462 /* ipc stuff */
1463         struct sysv_sem sysvsem;
1464         struct sysv_shm sysvshm;
1465 #endif
1466 #ifdef CONFIG_DETECT_HUNG_TASK
1467 /* hung task detection */
1468         unsigned long last_switch_count;
1469 #endif
1470 /* CPU-specific state of this task */
1471         struct thread_struct thread;
1472 /* filesystem information */
1473         struct fs_struct *fs;
1474 /* open file information */
1475         struct files_struct *files;
1476 /* namespaces */
1477         struct nsproxy *nsproxy;
1478 /* signal handlers */
1479         struct signal_struct *signal;
1480         struct sighand_struct *sighand;
1481 
1482         sigset_t blocked, real_blocked;
1483         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1484         struct sigpending pending;
1485 
1486         unsigned long sas_ss_sp;
1487         size_t sas_ss_size;
1488         int (*notifier)(void *priv);
1489         void *notifier_data;
1490         sigset_t *notifier_mask;
1491         struct callback_head *task_works;
1492 
1493         struct audit_context *audit_context;
1494 #ifdef CONFIG_AUDITSYSCALL
1495         kuid_t loginuid;
1496         unsigned int sessionid;
1497 #endif
1498         struct seccomp seccomp;
1499 
1500 /* Thread group tracking */
1501         u32 parent_exec_id;
1502         u32 self_exec_id;
1503 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1504  * mempolicy */
1505         spinlock_t alloc_lock;
1506 
1507         /* Protection of the PI data structures: */
1508         raw_spinlock_t pi_lock;
1509 
1510 #ifdef CONFIG_RT_MUTEXES
1511         /* PI waiters blocked on a rt_mutex held by this task */
1512         struct rb_root pi_waiters;
1513         struct rb_node *pi_waiters_leftmost;
1514         /* Deadlock detection and priority inheritance handling */
1515         struct rt_mutex_waiter *pi_blocked_on;
1516 #endif
1517 
1518 #ifdef CONFIG_DEBUG_MUTEXES
1519         /* mutex deadlock detection */
1520         struct mutex_waiter *blocked_on;
1521 #endif
1522 #ifdef CONFIG_TRACE_IRQFLAGS
1523         unsigned int irq_events;
1524         unsigned long hardirq_enable_ip;
1525         unsigned long hardirq_disable_ip;
1526         unsigned int hardirq_enable_event;
1527         unsigned int hardirq_disable_event;
1528         int hardirqs_enabled;
1529         int hardirq_context;
1530         unsigned long softirq_disable_ip;
1531         unsigned long softirq_enable_ip;
1532         unsigned int softirq_disable_event;
1533         unsigned int softirq_enable_event;
1534         int softirqs_enabled;
1535         int softirq_context;
1536 #endif
1537 #ifdef CONFIG_LOCKDEP
1538 # define MAX_LOCK_DEPTH 48UL
1539         u64 curr_chain_key;
1540         int lockdep_depth;
1541         unsigned int lockdep_recursion;
1542         struct held_lock held_locks[MAX_LOCK_DEPTH];
1543         gfp_t lockdep_reclaim_gfp;
1544 #endif
1545 
1546 /* journalling filesystem info */
1547         void *journal_info;
1548 
1549 /* stacked block device info */
1550         struct bio_list *bio_list;
1551 
1552 #ifdef CONFIG_BLOCK
1553 /* stack plugging */
1554         struct blk_plug *plug;
1555 #endif
1556 
1557 /* VM state */
1558         struct reclaim_state *reclaim_state;
1559 
1560         struct backing_dev_info *backing_dev_info;
1561 
1562         struct io_context *io_context;
1563 
1564         unsigned long ptrace_message;
1565         siginfo_t *last_siginfo; /* For ptrace use.  */
1566         struct task_io_accounting ioac;
1567 #if defined(CONFIG_TASK_XACCT)
1568         u64 acct_rss_mem1;      /* accumulated rss usage */
1569         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1570         cputime_t acct_timexpd; /* stime + utime since last update */
1571 #endif
1572 #ifdef CONFIG_CPUSETS
1573         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1574         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1575         int cpuset_mem_spread_rotor;
1576         int cpuset_slab_spread_rotor;
1577 #endif
1578 #ifdef CONFIG_CGROUPS
1579         /* Control Group info protected by css_set_lock */
1580         struct css_set __rcu *cgroups;
1581         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1582         struct list_head cg_list;
1583 #endif
1584 #ifdef CONFIG_FUTEX
1585         struct robust_list_head __user *robust_list;
1586 #ifdef CONFIG_COMPAT
1587         struct compat_robust_list_head __user *compat_robust_list;
1588 #endif
1589         struct list_head pi_state_list;
1590         struct futex_pi_state *pi_state_cache;
1591 #endif
1592 #ifdef CONFIG_PERF_EVENTS
1593         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1594         struct mutex perf_event_mutex;
1595         struct list_head perf_event_list;
1596 #endif
1597 #ifdef CONFIG_DEBUG_PREEMPT
1598         unsigned long preempt_disable_ip;
1599 #endif
1600 #ifdef CONFIG_NUMA
1601         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1602         short il_next;
1603         short pref_node_fork;
1604 #endif
1605 #ifdef CONFIG_NUMA_BALANCING
1606         int numa_scan_seq;
1607         unsigned int numa_scan_period;
1608         unsigned int numa_scan_period_max;
1609         int numa_preferred_nid;
1610         unsigned long numa_migrate_retry;
1611         u64 node_stamp;                 /* migration stamp  */
1612         u64 last_task_numa_placement;
1613         u64 last_sum_exec_runtime;
1614         struct callback_head numa_work;
1615 
1616         struct list_head numa_entry;
1617         struct numa_group *numa_group;
1618 
1619         /*
1620          * numa_faults is an array split into four regions:
1621          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1622          * in this precise order.
1623          *
1624          * faults_memory: Exponential decaying average of faults on a per-node
1625          * basis. Scheduling placement decisions are made based on these
1626          * counts. The values remain static for the duration of a PTE scan.
1627          * faults_cpu: Track the nodes the process was running on when a NUMA
1628          * hinting fault was incurred.
1629          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1630          * during the current scan window. When the scan completes, the counts
1631          * in faults_memory and faults_cpu decay and these values are copied.
1632          */
1633         unsigned long *numa_faults;
1634         unsigned long total_numa_faults;
1635 
1636         /*
1637          * numa_faults_locality tracks if faults recorded during the last
1638          * scan window were remote/local or failed to migrate. The task scan
1639          * period is adapted based on the locality of the faults with different
1640          * weights depending on whether they were shared or private faults
1641          */
1642         unsigned long numa_faults_locality[3];
1643 
1644         unsigned long numa_pages_migrated;
1645 #endif /* CONFIG_NUMA_BALANCING */
1646 
1647         struct rcu_head rcu;
1648 
1649         /*
1650          * cache last used pipe for splice
1651          */
1652         struct pipe_inode_info *splice_pipe;
1653 
1654         struct page_frag task_frag;
1655 
1656 #ifdef  CONFIG_TASK_DELAY_ACCT
1657         struct task_delay_info *delays;
1658 #endif
1659 #ifdef CONFIG_FAULT_INJECTION
1660         int make_it_fail;
1661 #endif
1662         /*
1663          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1664          * balance_dirty_pages() for some dirty throttling pause
1665          */
1666         int nr_dirtied;
1667         int nr_dirtied_pause;
1668         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1669 
1670 #ifdef CONFIG_LATENCYTOP
1671         int latency_record_count;
1672         struct latency_record latency_record[LT_SAVECOUNT];
1673 #endif
1674         /*
1675          * time slack values; these are used to round up poll() and
1676          * select() etc timeout values. These are in nanoseconds.
1677          */
1678         unsigned long timer_slack_ns;
1679         unsigned long default_timer_slack_ns;
1680 
1681 #ifdef CONFIG_KASAN
1682         unsigned int kasan_depth;
1683 #endif
1684 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1685         /* Index of current stored address in ret_stack */
1686         int curr_ret_stack;
1687         /* Stack of return addresses for return function tracing */
1688         struct ftrace_ret_stack *ret_stack;
1689         /* time stamp for last schedule */
1690         unsigned long long ftrace_timestamp;
1691         /*
1692          * Number of functions that haven't been traced
1693          * because of depth overrun.
1694          */
1695         atomic_t trace_overrun;
1696         /* Pause for the tracing */
1697         atomic_t tracing_graph_pause;
1698 #endif
1699 #ifdef CONFIG_TRACING
1700         /* state flags for use by tracers */
1701         unsigned long trace;
1702         /* bitmask and counter of trace recursion */
1703         unsigned long trace_recursion;
1704 #endif /* CONFIG_TRACING */
1705 #ifdef CONFIG_MEMCG
1706         struct memcg_oom_info {
1707                 struct mem_cgroup *memcg;
1708                 gfp_t gfp_mask;
1709                 int order;
1710                 unsigned int may_oom:1;
1711         } memcg_oom;
1712 #endif
1713 #ifdef CONFIG_UPROBES
1714         struct uprobe_task *utask;
1715 #endif
1716 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1717         unsigned int    sequential_io;
1718         unsigned int    sequential_io_avg;
1719 #endif
1720 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1721         unsigned long   task_state_change;
1722 #endif
1723 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1724         struct ccs_domain_info *ccs_domain_info;
1725         u32 ccs_flags;
1726 #endif
1727 };
1728 
1729 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1730 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1731 
1732 #define TNF_MIGRATED    0x01
1733 #define TNF_NO_GROUP    0x02
1734 #define TNF_SHARED      0x04
1735 #define TNF_FAULT_LOCAL 0x08
1736 #define TNF_MIGRATE_FAIL 0x10
1737 
1738 #ifdef CONFIG_NUMA_BALANCING
1739 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1740 extern pid_t task_numa_group_id(struct task_struct *p);
1741 extern void set_numabalancing_state(bool enabled);
1742 extern void task_numa_free(struct task_struct *p);
1743 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1744                                         int src_nid, int dst_cpu);
1745 #else
1746 static inline void task_numa_fault(int last_node, int node, int pages,
1747                                    int flags)
1748 {
1749 }
1750 static inline pid_t task_numa_group_id(struct task_struct *p)
1751 {
1752         return 0;
1753 }
1754 static inline void set_numabalancing_state(bool enabled)
1755 {
1756 }
1757 static inline void task_numa_free(struct task_struct *p)
1758 {
1759 }
1760 static inline bool should_numa_migrate_memory(struct task_struct *p,
1761                                 struct page *page, int src_nid, int dst_cpu)
1762 {
1763         return true;
1764 }
1765 #endif
1766 
1767 static inline struct pid *task_pid(struct task_struct *task)
1768 {
1769         return task->pids[PIDTYPE_PID].pid;
1770 }
1771 
1772 static inline struct pid *task_tgid(struct task_struct *task)
1773 {
1774         return task->group_leader->pids[PIDTYPE_PID].pid;
1775 }
1776 
1777 /*
1778  * Without tasklist or rcu lock it is not safe to dereference
1779  * the result of task_pgrp/task_session even if task == current,
1780  * we can race with another thread doing sys_setsid/sys_setpgid.
1781  */
1782 static inline struct pid *task_pgrp(struct task_struct *task)
1783 {
1784         return task->group_leader->pids[PIDTYPE_PGID].pid;
1785 }
1786 
1787 static inline struct pid *task_session(struct task_struct *task)
1788 {
1789         return task->group_leader->pids[PIDTYPE_SID].pid;
1790 }
1791 
1792 struct pid_namespace;
1793 
1794 /*
1795  * the helpers to get the task's different pids as they are seen
1796  * from various namespaces
1797  *
1798  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1799  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1800  *                     current.
1801  * task_xid_nr_ns()  : id seen from the ns specified;
1802  *
1803  * set_task_vxid()   : assigns a virtual id to a task;
1804  *
1805  * see also pid_nr() etc in include/linux/pid.h
1806  */
1807 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1808                         struct pid_namespace *ns);
1809 
1810 static inline pid_t task_pid_nr(struct task_struct *tsk)
1811 {
1812         return tsk->pid;
1813 }
1814 
1815 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1816                                         struct pid_namespace *ns)
1817 {
1818         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1819 }
1820 
1821 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1822 {
1823         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1824 }
1825 
1826 
1827 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1828 {
1829         return tsk->tgid;
1830 }
1831 
1832 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1833 
1834 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1835 {
1836         return pid_vnr(task_tgid(tsk));
1837 }
1838 
1839 
1840 static inline int pid_alive(const struct task_struct *p);
1841 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1842 {
1843         pid_t pid = 0;
1844 
1845         rcu_read_lock();
1846         if (pid_alive(tsk))
1847                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1848         rcu_read_unlock();
1849 
1850         return pid;
1851 }
1852 
1853 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1854 {
1855         return task_ppid_nr_ns(tsk, &init_pid_ns);
1856 }
1857 
1858 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1859                                         struct pid_namespace *ns)
1860 {
1861         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1862 }
1863 
1864 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1865 {
1866         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1867 }
1868 
1869 
1870 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1871                                         struct pid_namespace *ns)
1872 {
1873         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1874 }
1875 
1876 static inline pid_t task_session_vnr(struct task_struct *tsk)
1877 {
1878         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1879 }
1880 
1881 /* obsolete, do not use */
1882 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1883 {
1884         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1885 }
1886 
1887 /**
1888  * pid_alive - check that a task structure is not stale
1889  * @p: Task structure to be checked.
1890  *
1891  * Test if a process is not yet dead (at most zombie state)
1892  * If pid_alive fails, then pointers within the task structure
1893  * can be stale and must not be dereferenced.
1894  *
1895  * Return: 1 if the process is alive. 0 otherwise.
1896  */
1897 static inline int pid_alive(const struct task_struct *p)
1898 {
1899         return p->pids[PIDTYPE_PID].pid != NULL;
1900 }
1901 
1902 /**
1903  * is_global_init - check if a task structure is init
1904  * @tsk: Task structure to be checked.
1905  *
1906  * Check if a task structure is the first user space task the kernel created.
1907  *
1908  * Return: 1 if the task structure is init. 0 otherwise.
1909  */
1910 static inline int is_global_init(struct task_struct *tsk)
1911 {
1912         return tsk->pid == 1;
1913 }
1914 
1915 extern struct pid *cad_pid;
1916 
1917 extern void free_task(struct task_struct *tsk);
1918 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1919 
1920 extern void __put_task_struct(struct task_struct *t);
1921 
1922 static inline void put_task_struct(struct task_struct *t)
1923 {
1924         if (atomic_dec_and_test(&t->usage))
1925                 __put_task_struct(t);
1926 }
1927 
1928 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1929 extern void task_cputime(struct task_struct *t,
1930                          cputime_t *utime, cputime_t *stime);
1931 extern void task_cputime_scaled(struct task_struct *t,
1932                                 cputime_t *utimescaled, cputime_t *stimescaled);
1933 extern cputime_t task_gtime(struct task_struct *t);
1934 #else
1935 static inline void task_cputime(struct task_struct *t,
1936                                 cputime_t *utime, cputime_t *stime)
1937 {
1938         if (utime)
1939                 *utime = t->utime;
1940         if (stime)
1941                 *stime = t->stime;
1942 }
1943 
1944 static inline void task_cputime_scaled(struct task_struct *t,
1945                                        cputime_t *utimescaled,
1946                                        cputime_t *stimescaled)
1947 {
1948         if (utimescaled)
1949                 *utimescaled = t->utimescaled;
1950         if (stimescaled)
1951                 *stimescaled = t->stimescaled;
1952 }
1953 
1954 static inline cputime_t task_gtime(struct task_struct *t)
1955 {
1956         return t->gtime;
1957 }
1958 #endif
1959 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1960 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1961 
1962 /*
1963  * Per process flags
1964  */
1965 #define PF_EXITING      0x00000004      /* getting shut down */
1966 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1967 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1968 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1969 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1970 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1971 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1972 #define PF_DUMPCORE     0x00000200      /* dumped core */
1973 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1974 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1975 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1976 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1977 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1978 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1979 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1980 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1981 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1982 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1983 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1984 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1985 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1986 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1987 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1988 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1989 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1990 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1991 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1992 
1993 /*
1994  * Only the _current_ task can read/write to tsk->flags, but other
1995  * tasks can access tsk->flags in readonly mode for example
1996  * with tsk_used_math (like during threaded core dumping).
1997  * There is however an exception to this rule during ptrace
1998  * or during fork: the ptracer task is allowed to write to the
1999  * child->flags of its traced child (same goes for fork, the parent
2000  * can write to the child->flags), because we're guaranteed the
2001  * child is not running and in turn not changing child->flags
2002  * at the same time the parent does it.
2003  */
2004 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2005 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2006 #define clear_used_math() clear_stopped_child_used_math(current)
2007 #define set_used_math() set_stopped_child_used_math(current)
2008 #define conditional_stopped_child_used_math(condition, child) \
2009         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2010 #define conditional_used_math(condition) \
2011         conditional_stopped_child_used_math(condition, current)
2012 #define copy_to_stopped_child_used_math(child) \
2013         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2014 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2015 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2016 #define used_math() tsk_used_math(current)
2017 
2018 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2019  * __GFP_FS is also cleared as it implies __GFP_IO.
2020  */
2021 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2022 {
2023         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2024                 flags &= ~(__GFP_IO | __GFP_FS);
2025         return flags;
2026 }
2027 
2028 static inline unsigned int memalloc_noio_save(void)
2029 {
2030         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2031         current->flags |= PF_MEMALLOC_NOIO;
2032         return flags;
2033 }
2034 
2035 static inline void memalloc_noio_restore(unsigned int flags)
2036 {
2037         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2038 }
2039 
2040 /* Per-process atomic flags. */
2041 #define PFA_NO_NEW_PRIVS 0      /* May not gain new privileges. */
2042 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2043 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2044 
2045 
2046 #define TASK_PFA_TEST(name, func)                                       \
2047         static inline bool task_##func(struct task_struct *p)           \
2048         { return test_bit(PFA_##name, &p->atomic_flags); }
2049 #define TASK_PFA_SET(name, func)                                        \
2050         static inline void task_set_##func(struct task_struct *p)       \
2051         { set_bit(PFA_##name, &p->atomic_flags); }
2052 #define TASK_PFA_CLEAR(name, func)                                      \
2053         static inline void task_clear_##func(struct task_struct *p)     \
2054         { clear_bit(PFA_##name, &p->atomic_flags); }
2055 
2056 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2057 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2058 
2059 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2060 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2061 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2062 
2063 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2064 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2065 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2066 
2067 /*
2068  * task->jobctl flags
2069  */
2070 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
2071 
2072 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
2073 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
2074 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
2075 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
2076 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
2077 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
2078 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
2079 
2080 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
2081 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
2082 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
2083 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
2084 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
2085 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
2086 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
2087 
2088 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2089 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2090 
2091 extern bool task_set_jobctl_pending(struct task_struct *task,
2092                                     unsigned int mask);
2093 extern void task_clear_jobctl_trapping(struct task_struct *task);
2094 extern void task_clear_jobctl_pending(struct task_struct *task,
2095                                       unsigned int mask);
2096 
2097 static inline void rcu_copy_process(struct task_struct *p)
2098 {
2099 #ifdef CONFIG_PREEMPT_RCU
2100         p->rcu_read_lock_nesting = 0;
2101         p->rcu_read_unlock_special.s = 0;
2102         p->rcu_blocked_node = NULL;
2103         INIT_LIST_HEAD(&p->rcu_node_entry);
2104 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2105 #ifdef CONFIG_TASKS_RCU
2106         p->rcu_tasks_holdout = false;
2107         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2108         p->rcu_tasks_idle_cpu = -1;
2109 #endif /* #ifdef CONFIG_TASKS_RCU */
2110 }
2111 
2112 static inline void tsk_restore_flags(struct task_struct *task,
2113                                 unsigned long orig_flags, unsigned long flags)
2114 {
2115         task->flags &= ~flags;
2116         task->flags |= orig_flags & flags;
2117 }
2118 
2119 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2120                                      const struct cpumask *trial);
2121 extern int task_can_attach(struct task_struct *p,
2122                            const struct cpumask *cs_cpus_allowed);
2123 #ifdef CONFIG_SMP
2124 extern void do_set_cpus_allowed(struct task_struct *p,
2125                                const struct cpumask *new_mask);
2126 
2127 extern int set_cpus_allowed_ptr(struct task_struct *p,
2128                                 const struct cpumask *new_mask);
2129 #else
2130 static inline void do_set_cpus_allowed(struct task_struct *p,
2131                                       const struct cpumask *new_mask)
2132 {
2133 }
2134 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2135                                        const struct cpumask *new_mask)
2136 {
2137         if (!cpumask_test_cpu(0, new_mask))
2138                 return -EINVAL;
2139         return 0;
2140 }
2141 #endif
2142 
2143 #ifdef CONFIG_NO_HZ_COMMON
2144 void calc_load_enter_idle(void);
2145 void calc_load_exit_idle(void);
2146 #else
2147 static inline void calc_load_enter_idle(void) { }
2148 static inline void calc_load_exit_idle(void) { }
2149 #endif /* CONFIG_NO_HZ_COMMON */
2150 
2151 #ifndef CONFIG_CPUMASK_OFFSTACK
2152 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2153 {
2154         return set_cpus_allowed_ptr(p, &new_mask);
2155 }
2156 #endif
2157 
2158 /*
2159  * Do not use outside of architecture code which knows its limitations.
2160  *
2161  * sched_clock() has no promise of monotonicity or bounded drift between
2162  * CPUs, use (which you should not) requires disabling IRQs.
2163  *
2164  * Please use one of the three interfaces below.
2165  */
2166 extern unsigned long long notrace sched_clock(void);
2167 /*
2168  * See the comment in kernel/sched/clock.c
2169  */
2170 extern u64 cpu_clock(int cpu);
2171 extern u64 local_clock(void);
2172 extern u64 running_clock(void);
2173 extern u64 sched_clock_cpu(int cpu);
2174 
2175 
2176 extern void sched_clock_init(void);
2177 
2178 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2179 static inline void sched_clock_tick(void)
2180 {
2181 }
2182 
2183 static inline void sched_clock_idle_sleep_event(void)
2184 {
2185 }
2186 
2187 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2188 {
2189 }
2190 #else
2191 /*
2192  * Architectures can set this to 1 if they have specified
2193  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2194  * but then during bootup it turns out that sched_clock()
2195  * is reliable after all:
2196  */
2197 extern int sched_clock_stable(void);
2198 extern void set_sched_clock_stable(void);
2199 extern void clear_sched_clock_stable(void);
2200 
2201 extern void sched_clock_tick(void);
2202 extern void sched_clock_idle_sleep_event(void);
2203 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2204 #endif
2205 
2206 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2207 /*
2208  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2209  * The reason for this explicit opt-in is not to have perf penalty with
2210  * slow sched_clocks.
2211  */
2212 extern void enable_sched_clock_irqtime(void);
2213 extern void disable_sched_clock_irqtime(void);
2214 #else
2215 static inline void enable_sched_clock_irqtime(void) {}
2216 static inline void disable_sched_clock_irqtime(void) {}
2217 #endif
2218 
2219 extern unsigned long long
2220 task_sched_runtime(struct task_struct *task);
2221 
2222 /* sched_exec is called by processes performing an exec */
2223 #ifdef CONFIG_SMP
2224 extern void sched_exec(void);
2225 #else
2226 #define sched_exec()   {}
2227 #endif
2228 
2229 extern void sched_clock_idle_sleep_event(void);
2230 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2231 
2232 #ifdef CONFIG_HOTPLUG_CPU
2233 extern void idle_task_exit(void);
2234 #else
2235 static inline void idle_task_exit(void) {}
2236 #endif
2237 
2238 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2239 extern void wake_up_nohz_cpu(int cpu);
2240 #else
2241 static inline void wake_up_nohz_cpu(int cpu) { }
2242 #endif
2243 
2244 #ifdef CONFIG_NO_HZ_FULL
2245 extern bool sched_can_stop_tick(void);
2246 extern u64 scheduler_tick_max_deferment(void);
2247 #else
2248 static inline bool sched_can_stop_tick(void) { return false; }
2249 #endif
2250 
2251 #ifdef CONFIG_SCHED_AUTOGROUP
2252 extern void sched_autogroup_create_attach(struct task_struct *p);
2253 extern void sched_autogroup_detach(struct task_struct *p);
2254 extern void sched_autogroup_fork(struct signal_struct *sig);
2255 extern void sched_autogroup_exit(struct signal_struct *sig);
2256 #ifdef CONFIG_PROC_FS
2257 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2258 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2259 #endif
2260 #else
2261 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2262 static inline void sched_autogroup_detach(struct task_struct *p) { }
2263 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2264 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2265 #endif
2266 
2267 extern int yield_to(struct task_struct *p, bool preempt);
2268 extern void set_user_nice(struct task_struct *p, long nice);
2269 extern int task_prio(const struct task_struct *p);
2270 /**
2271  * task_nice - return the nice value of a given task.
2272  * @p: the task in question.
2273  *
2274  * Return: The nice value [ -20 ... 0 ... 19 ].
2275  */
2276 static inline int task_nice(const struct task_struct *p)
2277 {
2278         return PRIO_TO_NICE((p)->static_prio);
2279 }
2280 extern int can_nice(const struct task_struct *p, const int nice);
2281 extern int task_curr(const struct task_struct *p);
2282 extern int idle_cpu(int cpu);
2283 extern int sched_setscheduler(struct task_struct *, int,
2284                               const struct sched_param *);
2285 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2286                                       const struct sched_param *);
2287 extern int sched_setattr(struct task_struct *,
2288                          const struct sched_attr *);
2289 extern struct task_struct *idle_task(int cpu);
2290 /**
2291  * is_idle_task - is the specified task an idle task?
2292  * @p: the task in question.
2293  *
2294  * Return: 1 if @p is an idle task. 0 otherwise.
2295  */
2296 static inline bool is_idle_task(const struct task_struct *p)
2297 {
2298         return p->pid == 0;
2299 }
2300 extern struct task_struct *curr_task(int cpu);
2301 extern void set_curr_task(int cpu, struct task_struct *p);
2302 
2303 void yield(void);
2304 
2305 /*
2306  * The default (Linux) execution domain.
2307  */
2308 extern struct exec_domain       default_exec_domain;
2309 
2310 union thread_union {
2311         struct thread_info thread_info;
2312         unsigned long stack[THREAD_SIZE/sizeof(long)];
2313 };
2314 
2315 #ifndef __HAVE_ARCH_KSTACK_END
2316 static inline int kstack_end(void *addr)
2317 {
2318         /* Reliable end of stack detection:
2319          * Some APM bios versions misalign the stack
2320          */
2321         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2322 }
2323 #endif
2324 
2325 extern union thread_union init_thread_union;
2326 extern struct task_struct init_task;
2327 
2328 extern struct   mm_struct init_mm;
2329 
2330 extern struct pid_namespace init_pid_ns;
2331 
2332 /*
2333  * find a task by one of its numerical ids
2334  *
2335  * find_task_by_pid_ns():
2336  *      finds a task by its pid in the specified namespace
2337  * find_task_by_vpid():
2338  *      finds a task by its virtual pid
2339  *
2340  * see also find_vpid() etc in include/linux/pid.h
2341  */
2342 
2343 extern struct task_struct *find_task_by_vpid(pid_t nr);
2344 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2345                 struct pid_namespace *ns);
2346 
2347 /* per-UID process charging. */
2348 extern struct user_struct * alloc_uid(kuid_t);
2349 static inline struct user_struct *get_uid(struct user_struct *u)
2350 {
2351         atomic_inc(&u->__count);
2352         return u;
2353 }
2354 extern void free_uid(struct user_struct *);
2355 
2356 #include <asm/current.h>
2357 
2358 extern void xtime_update(unsigned long ticks);
2359 
2360 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2361 extern int wake_up_process(struct task_struct *tsk);
2362 extern void wake_up_new_task(struct task_struct *tsk);
2363 #ifdef CONFIG_SMP
2364  extern void kick_process(struct task_struct *tsk);
2365 #else
2366  static inline void kick_process(struct task_struct *tsk) { }
2367 #endif
2368 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2369 extern void sched_dead(struct task_struct *p);
2370 
2371 extern void proc_caches_init(void);
2372 extern void flush_signals(struct task_struct *);
2373 extern void __flush_signals(struct task_struct *);
2374 extern void ignore_signals(struct task_struct *);
2375 extern void flush_signal_handlers(struct task_struct *, int force_default);
2376 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2377 
2378 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2379 {
2380         unsigned long flags;
2381         int ret;
2382 
2383         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2384         ret = dequeue_signal(tsk, mask, info);
2385         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2386 
2387         return ret;
2388 }
2389 
2390 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2391                               sigset_t *mask);
2392 extern void unblock_all_signals(void);
2393 extern void release_task(struct task_struct * p);
2394 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2395 extern int force_sigsegv(int, struct task_struct *);
2396 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2397 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2398 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2399 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2400                                 const struct cred *, u32);
2401 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2402 extern int kill_pid(struct pid *pid, int sig, int priv);
2403 extern int kill_proc_info(int, struct siginfo *, pid_t);
2404 extern __must_check bool do_notify_parent(struct task_struct *, int);
2405 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2406 extern void force_sig(int, struct task_struct *);
2407 extern int send_sig(int, struct task_struct *, int);
2408 extern int zap_other_threads(struct task_struct *p);
2409 extern struct sigqueue *sigqueue_alloc(void);
2410 extern void sigqueue_free(struct sigqueue *);
2411 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2412 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2413 
2414 static inline void restore_saved_sigmask(void)
2415 {
2416         if (test_and_clear_restore_sigmask())
2417                 __set_current_blocked(&current->saved_sigmask);
2418 }
2419 
2420 static inline sigset_t *sigmask_to_save(void)
2421 {
2422         sigset_t *res = &current->blocked;
2423         if (unlikely(test_restore_sigmask()))
2424                 res = &current->saved_sigmask;
2425         return res;
2426 }
2427 
2428 static inline int kill_cad_pid(int sig, int priv)
2429 {
2430         return kill_pid(cad_pid, sig, priv);
2431 }
2432 
2433 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2434 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2435 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2436 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2437 
2438 /*
2439  * True if we are on the alternate signal stack.
2440  */
2441 static inline int on_sig_stack(unsigned long sp)
2442 {
2443 #ifdef CONFIG_STACK_GROWSUP
2444         return sp >= current->sas_ss_sp &&
2445                 sp - current->sas_ss_sp < current->sas_ss_size;
2446 #else
2447         return sp > current->sas_ss_sp &&
2448                 sp - current->sas_ss_sp <= current->sas_ss_size;
2449 #endif
2450 }
2451 
2452 static inline int sas_ss_flags(unsigned long sp)
2453 {
2454         if (!current->sas_ss_size)
2455                 return SS_DISABLE;
2456 
2457         return on_sig_stack(sp) ? SS_ONSTACK : 0;
2458 }
2459 
2460 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2461 {
2462         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2463 #ifdef CONFIG_STACK_GROWSUP
2464                 return current->sas_ss_sp;
2465 #else
2466                 return current->sas_ss_sp + current->sas_ss_size;
2467 #endif
2468         return sp;
2469 }
2470 
2471 /*
2472  * Routines for handling mm_structs
2473  */
2474 extern struct mm_struct * mm_alloc(void);
2475 
2476 /* mmdrop drops the mm and the page tables */
2477 extern void __mmdrop(struct mm_struct *);
2478 static inline void mmdrop(struct mm_struct * mm)
2479 {
2480         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2481                 __mmdrop(mm);
2482 }
2483 
2484 /* mmput gets rid of the mappings and all user-space */
2485 extern void mmput(struct mm_struct *);
2486 /* Grab a reference to a task's mm, if it is not already going away */
2487 extern struct mm_struct *get_task_mm(struct task_struct *task);
2488 /*
2489  * Grab a reference to a task's mm, if it is not already going away
2490  * and ptrace_may_access with the mode parameter passed to it
2491  * succeeds.
2492  */
2493 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2494 /* Remove the current tasks stale references to the old mm_struct */
2495 extern void mm_release(struct task_struct *, struct mm_struct *);
2496 
2497 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2498                         struct task_struct *);
2499 extern void flush_thread(void);
2500 extern void exit_thread(void);
2501 
2502 extern void exit_files(struct task_struct *);
2503 extern void __cleanup_sighand(struct sighand_struct *);
2504 
2505 extern void exit_itimers(struct signal_struct *);
2506 extern void flush_itimer_signals(void);
2507 
2508 extern void do_group_exit(int);
2509 
2510 extern int do_execve(struct filename *,
2511                      const char __user * const __user *,
2512                      const char __user * const __user *);
2513 extern int do_execveat(int, struct filename *,
2514                        const char __user * const __user *,
2515                        const char __user * const __user *,
2516                        int);
2517 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2518 struct task_struct *fork_idle(int);
2519 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2520 
2521 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2522 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2523 {
2524         __set_task_comm(tsk, from, false);
2525 }
2526 extern char *get_task_comm(char *to, struct task_struct *tsk);
2527 
2528 #ifdef CONFIG_SMP
2529 void scheduler_ipi(void);
2530 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2531 #else
2532 static inline void scheduler_ipi(void) { }
2533 static inline unsigned long wait_task_inactive(struct task_struct *p,
2534                                                long match_state)
2535 {
2536         return 1;
2537 }
2538 #endif
2539 
2540 #define next_task(p) \
2541         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2542 
2543 #define for_each_process(p) \
2544         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2545 
2546 extern bool current_is_single_threaded(void);
2547 
2548 /*
2549  * Careful: do_each_thread/while_each_thread is a double loop so
2550  *          'break' will not work as expected - use goto instead.
2551  */
2552 #define do_each_thread(g, t) \
2553         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2554 
2555 #define while_each_thread(g, t) \
2556         while ((t = next_thread(t)) != g)
2557 
2558 #define __for_each_thread(signal, t)    \
2559         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2560 
2561 #define for_each_thread(p, t)           \
2562         __for_each_thread((p)->signal, t)
2563 
2564 /* Careful: this is a double loop, 'break' won't work as expected. */
2565 #define for_each_process_thread(p, t)   \
2566         for_each_process(p) for_each_thread(p, t)
2567 
2568 static inline int get_nr_threads(struct task_struct *tsk)
2569 {
2570         return tsk->signal->nr_threads;
2571 }
2572 
2573 static inline bool thread_group_leader(struct task_struct *p)
2574 {
2575         return p->exit_signal >= 0;
2576 }
2577 
2578 /* Do to the insanities of de_thread it is possible for a process
2579  * to have the pid of the thread group leader without actually being
2580  * the thread group leader.  For iteration through the pids in proc
2581  * all we care about is that we have a task with the appropriate
2582  * pid, we don't actually care if we have the right task.
2583  */
2584 static inline bool has_group_leader_pid(struct task_struct *p)
2585 {
2586         return task_pid(p) == p->signal->leader_pid;
2587 }
2588 
2589 static inline
2590 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2591 {
2592         return p1->signal == p2->signal;
2593 }
2594 
2595 static inline struct task_struct *next_thread(const struct task_struct *p)
2596 {
2597         return list_entry_rcu(p->thread_group.next,
2598                               struct task_struct, thread_group);
2599 }
2600 
2601 static inline int thread_group_empty(struct task_struct *p)
2602 {
2603         return list_empty(&p->thread_group);
2604 }
2605 
2606 #define delay_group_leader(p) \
2607                 (thread_group_leader(p) && !thread_group_empty(p))
2608 
2609 /*
2610  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2611  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2612  * pins the final release of task.io_context.  Also protects ->cpuset and
2613  * ->cgroup.subsys[]. And ->vfork_done.
2614  *
2615  * Nests both inside and outside of read_lock(&tasklist_lock).
2616  * It must not be nested with write_lock_irq(&tasklist_lock),
2617  * neither inside nor outside.
2618  */
2619 static inline void task_lock(struct task_struct *p)
2620 {
2621         spin_lock(&p->alloc_lock);
2622 }
2623 
2624 static inline void task_unlock(struct task_struct *p)
2625 {
2626         spin_unlock(&p->alloc_lock);
2627 }
2628 
2629 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2630                                                         unsigned long *flags);
2631 
2632 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2633                                                        unsigned long *flags)
2634 {
2635         struct sighand_struct *ret;
2636 
2637         ret = __lock_task_sighand(tsk, flags);
2638         (void)__cond_lock(&tsk->sighand->siglock, ret);
2639         return ret;
2640 }
2641 
2642 static inline void unlock_task_sighand(struct task_struct *tsk,
2643                                                 unsigned long *flags)
2644 {
2645         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2646 }
2647 
2648 #ifdef CONFIG_CGROUPS
2649 static inline void threadgroup_change_begin(struct task_struct *tsk)
2650 {
2651         down_read(&tsk->signal->group_rwsem);
2652 }
2653 static inline void threadgroup_change_end(struct task_struct *tsk)
2654 {
2655         up_read(&tsk->signal->group_rwsem);
2656 }
2657 
2658 /**
2659  * threadgroup_lock - lock threadgroup
2660  * @tsk: member task of the threadgroup to lock
2661  *
2662  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2663  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2664  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2665  * needs to stay stable across blockable operations.
2666  *
2667  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2668  * synchronization.  While held, no new task will be added to threadgroup
2669  * and no existing live task will have its PF_EXITING set.
2670  *
2671  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2672  * sub-thread becomes a new leader.
2673  */
2674 static inline void threadgroup_lock(struct task_struct *tsk)
2675 {
2676         down_write(&tsk->signal->group_rwsem);
2677 }
2678 
2679 /**
2680  * threadgroup_unlock - unlock threadgroup
2681  * @tsk: member task of the threadgroup to unlock
2682  *
2683  * Reverse threadgroup_lock().
2684  */
2685 static inline void threadgroup_unlock(struct task_struct *tsk)
2686 {
2687         up_write(&tsk->signal->group_rwsem);
2688 }
2689 #else
2690 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2691 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2692 static inline void threadgroup_lock(struct task_struct *tsk) {}
2693 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2694 #endif
2695 
2696 #ifndef __HAVE_THREAD_FUNCTIONS
2697 
2698 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2699 #define task_stack_page(task)   ((task)->stack)
2700 
2701 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2702 {
2703         *task_thread_info(p) = *task_thread_info(org);
2704         task_thread_info(p)->task = p;
2705 }
2706 
2707 /*
2708  * Return the address of the last usable long on the stack.
2709  *
2710  * When the stack grows down, this is just above the thread
2711  * info struct. Going any lower will corrupt the threadinfo.
2712  *
2713  * When the stack grows up, this is the highest address.
2714  * Beyond that position, we corrupt data on the next page.
2715  */
2716 static inline unsigned long *end_of_stack(struct task_struct *p)
2717 {
2718 #ifdef CONFIG_STACK_GROWSUP
2719         return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2720 #else
2721         return (unsigned long *)(task_thread_info(p) + 1);
2722 #endif
2723 }
2724 
2725 #endif
2726 #define task_stack_end_corrupted(task) \
2727                 (*(end_of_stack(task)) != STACK_END_MAGIC)
2728 
2729 static inline int object_is_on_stack(void *obj)
2730 {
2731         void *stack = task_stack_page(current);
2732 
2733         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2734 }
2735 
2736 extern void thread_info_cache_init(void);
2737 
2738 #ifdef CONFIG_DEBUG_STACK_USAGE
2739 static inline unsigned long stack_not_used(struct task_struct *p)
2740 {
2741         unsigned long *n = end_of_stack(p);
2742 
2743         do {    /* Skip over canary */
2744                 n++;
2745         } while (!*n);
2746 
2747         return (unsigned long)n - (unsigned long)end_of_stack(p);
2748 }
2749 #endif
2750 extern void set_task_stack_end_magic(struct task_struct *tsk);
2751 
2752 /* set thread flags in other task's structures
2753  * - see asm/thread_info.h for TIF_xxxx flags available
2754  */
2755 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2756 {
2757         set_ti_thread_flag(task_thread_info(tsk), flag);
2758 }
2759 
2760 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2761 {
2762         clear_ti_thread_flag(task_thread_info(tsk), flag);
2763 }
2764 
2765 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2766 {
2767         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2768 }
2769 
2770 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2771 {
2772         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2773 }
2774 
2775 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2776 {
2777         return test_ti_thread_flag(task_thread_info(tsk), flag);
2778 }
2779 
2780 static inline void set_tsk_need_resched(struct task_struct *tsk)
2781 {
2782         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2783 }
2784 
2785 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2786 {
2787         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2788 }
2789 
2790 static inline int test_tsk_need_resched(struct task_struct *tsk)
2791 {
2792         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2793 }
2794 
2795 static inline int restart_syscall(void)
2796 {
2797         set_tsk_thread_flag(current, TIF_SIGPENDING);
2798         return -ERESTARTNOINTR;
2799 }
2800 
2801 static inline int signal_pending(struct task_struct *p)
2802 {
2803         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2804 }
2805 
2806 static inline int __fatal_signal_pending(struct task_struct *p)
2807 {
2808         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2809 }
2810 
2811 static inline int fatal_signal_pending(struct task_struct *p)
2812 {
2813         return signal_pending(p) && __fatal_signal_pending(p);
2814 }
2815 
2816 static inline int signal_pending_state(long state, struct task_struct *p)
2817 {
2818         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2819                 return 0;
2820         if (!signal_pending(p))
2821                 return 0;
2822 
2823         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2824 }
2825 
2826 /*
2827  * cond_resched() and cond_resched_lock(): latency reduction via
2828  * explicit rescheduling in places that are safe. The return
2829  * value indicates whether a reschedule was done in fact.
2830  * cond_resched_lock() will drop the spinlock before scheduling,
2831  * cond_resched_softirq() will enable bhs before scheduling.
2832  */
2833 extern int _cond_resched(void);
2834 
2835 #define cond_resched() ({                       \
2836         ___might_sleep(__FILE__, __LINE__, 0);  \
2837         _cond_resched();                        \
2838 })
2839 
2840 extern int __cond_resched_lock(spinlock_t *lock);
2841 
2842 #ifdef CONFIG_PREEMPT_COUNT
2843 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2844 #else
2845 #define PREEMPT_LOCK_OFFSET     0
2846 #endif
2847 
2848 #define cond_resched_lock(lock) ({                              \
2849         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2850         __cond_resched_lock(lock);                              \
2851 })
2852 
2853 extern int __cond_resched_softirq(void);
2854 
2855 #define cond_resched_softirq() ({                                       \
2856         ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);     \
2857         __cond_resched_softirq();                                       \
2858 })
2859 
2860 static inline void cond_resched_rcu(void)
2861 {
2862 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2863         rcu_read_unlock();
2864         cond_resched();
2865         rcu_read_lock();
2866 #endif
2867 }
2868 
2869 /*
2870  * Does a critical section need to be broken due to another
2871  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2872  * but a general need for low latency)
2873  */
2874 static inline int spin_needbreak(spinlock_t *lock)
2875 {
2876 #ifdef CONFIG_PREEMPT
2877         return spin_is_contended(lock);
2878 #else
2879         return 0;
2880 #endif
2881 }
2882 
2883 /*
2884  * Idle thread specific functions to determine the need_resched
2885  * polling state.
2886  */
2887 #ifdef TIF_POLLING_NRFLAG
2888 static inline int tsk_is_polling(struct task_struct *p)
2889 {
2890         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2891 }
2892 
2893 static inline void __current_set_polling(void)
2894 {
2895         set_thread_flag(TIF_POLLING_NRFLAG);
2896 }
2897 
2898 static inline bool __must_check current_set_polling_and_test(void)
2899 {
2900         __current_set_polling();
2901 
2902         /*
2903          * Polling state must be visible before we test NEED_RESCHED,
2904          * paired by resched_curr()
2905          */
2906         smp_mb__after_atomic();
2907 
2908         return unlikely(tif_need_resched());
2909 }
2910 
2911 static inline void __current_clr_polling(void)
2912 {
2913         clear_thread_flag(TIF_POLLING_NRFLAG);
2914 }
2915 
2916 static inline bool __must_check current_clr_polling_and_test(void)
2917 {
2918         __current_clr_polling();
2919 
2920         /*
2921          * Polling state must be visible before we test NEED_RESCHED,
2922          * paired by resched_curr()
2923          */
2924         smp_mb__after_atomic();
2925 
2926         return unlikely(tif_need_resched());
2927 }
2928 
2929 #else
2930 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2931 static inline void __current_set_polling(void) { }
2932 static inline void __current_clr_polling(void) { }
2933 
2934 static inline bool __must_check current_set_polling_and_test(void)
2935 {
2936         return unlikely(tif_need_resched());
2937 }
2938 static inline bool __must_check current_clr_polling_and_test(void)
2939 {
2940         return unlikely(tif_need_resched());
2941 }
2942 #endif
2943 
2944 static inline void current_clr_polling(void)
2945 {
2946         __current_clr_polling();
2947 
2948         /*
2949          * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2950          * Once the bit is cleared, we'll get IPIs with every new
2951          * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2952          * fold.
2953          */
2954         smp_mb(); /* paired with resched_curr() */
2955 
2956         preempt_fold_need_resched();
2957 }
2958 
2959 static __always_inline bool need_resched(void)
2960 {
2961         return unlikely(tif_need_resched());
2962 }
2963 
2964 /*
2965  * Thread group CPU time accounting.
2966  */
2967 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2968 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2969 
2970 static inline void thread_group_cputime_init(struct signal_struct *sig)
2971 {
2972         raw_spin_lock_init(&sig->cputimer.lock);
2973 }
2974 
2975 /*
2976  * Reevaluate whether the task has signals pending delivery.
2977  * Wake the task if so.
2978  * This is required every time the blocked sigset_t changes.
2979  * callers must hold sighand->siglock.
2980  */
2981 extern void recalc_sigpending_and_wake(struct task_struct *t);
2982 extern void recalc_sigpending(void);
2983 
2984 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2985 
2986 static inline void signal_wake_up(struct task_struct *t, bool resume)
2987 {
2988         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2989 }
2990 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2991 {
2992         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2993 }
2994 
2995 /*
2996  * Wrappers for p->thread_info->cpu access. No-op on UP.
2997  */
2998 #ifdef CONFIG_SMP
2999 
3000 static inline unsigned int task_cpu(const struct task_struct *p)
3001 {
3002         return task_thread_info(p)->cpu;
3003 }
3004 
3005 static inline int task_node(const struct task_struct *p)
3006 {
3007         return cpu_to_node(task_cpu(p));
3008 }
3009 
3010 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3011 
3012 #else
3013 
3014 static inline unsigned int task_cpu(const struct task_struct *p)
3015 {
3016         return 0;
3017 }
3018 
3019 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3020 {
3021 }
3022 
3023 #endif /* CONFIG_SMP */
3024 
3025 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3026 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3027 
3028 #ifdef CONFIG_CGROUP_SCHED
3029 extern struct task_group root_task_group;
3030 #endif /* CONFIG_CGROUP_SCHED */
3031 
3032 extern int task_can_switch_user(struct user_struct *up,
3033                                         struct task_struct *tsk);
3034 
3035 #ifdef CONFIG_TASK_XACCT
3036 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3037 {
3038         tsk->ioac.rchar += amt;
3039 }
3040 
3041 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3042 {
3043         tsk->ioac.wchar += amt;
3044 }
3045 
3046 static inline void inc_syscr(struct task_struct *tsk)
3047 {
3048         tsk->ioac.syscr++;
3049 }
3050 
3051 static inline void inc_syscw(struct task_struct *tsk)
3052 {
3053         tsk->ioac.syscw++;
3054 }
3055 #else
3056 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3057 {
3058 }
3059 
3060 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3061 {
3062 }
3063 
3064 static inline void inc_syscr(struct task_struct *tsk)
3065 {
3066 }
3067 
3068 static inline void inc_syscw(struct task_struct *tsk)
3069 {
3070 }
3071 #endif
3072 
3073 #ifndef TASK_SIZE_OF
3074 #define TASK_SIZE_OF(tsk)       TASK_SIZE
3075 #endif
3076 
3077 #ifdef CONFIG_MEMCG
3078 extern void mm_update_next_owner(struct mm_struct *mm);
3079 #else
3080 static inline void mm_update_next_owner(struct mm_struct *mm)
3081 {
3082 }
3083 #endif /* CONFIG_MEMCG */
3084 
3085 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3086                 unsigned int limit)
3087 {
3088         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3089 }
3090 
3091 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3092                 unsigned int limit)
3093 {
3094         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3095 }
3096 
3097 static inline unsigned long rlimit(unsigned int limit)
3098 {
3099         return task_rlimit(current, limit);
3100 }
3101 
3102 static inline unsigned long rlimit_max(unsigned int limit)
3103 {
3104         return task_rlimit_max(current, limit);
3105 }
3106 
3107 #endif
3108 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp