~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched.h

Version: ~ [ linux-5.10-rc6 ] ~ [ linux-5.9.12 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.81 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.161 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.210 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.247 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.247 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef _LINUX_SCHED_H
  3 #define _LINUX_SCHED_H
  4 
  5 /*
  6  * Define 'struct task_struct' and provide the main scheduler
  7  * APIs (schedule(), wakeup variants, etc.)
  8  */
  9 
 10 #include <uapi/linux/sched.h>
 11 
 12 #include <asm/current.h>
 13 
 14 #include <linux/pid.h>
 15 #include <linux/sem.h>
 16 #include <linux/shm.h>
 17 #include <linux/kcov.h>
 18 #include <linux/mutex.h>
 19 #include <linux/plist.h>
 20 #include <linux/hrtimer.h>
 21 #include <linux/seccomp.h>
 22 #include <linux/nodemask.h>
 23 #include <linux/rcupdate.h>
 24 #include <linux/resource.h>
 25 #include <linux/latencytop.h>
 26 #include <linux/sched/prio.h>
 27 #include <linux/signal_types.h>
 28 #include <linux/mm_types_task.h>
 29 #include <linux/task_io_accounting.h>
 30 #include <linux/rseq.h>
 31 
 32 /* task_struct member predeclarations (sorted alphabetically): */
 33 struct audit_context;
 34 struct backing_dev_info;
 35 struct bio_list;
 36 struct blk_plug;
 37 struct ccs_domain_info;
 38 struct cfs_rq;
 39 struct fs_struct;
 40 struct futex_pi_state;
 41 struct io_context;
 42 struct mempolicy;
 43 struct nameidata;
 44 struct nsproxy;
 45 struct perf_event_context;
 46 struct pid_namespace;
 47 struct pipe_inode_info;
 48 struct rcu_node;
 49 struct reclaim_state;
 50 struct robust_list_head;
 51 struct sched_attr;
 52 struct sched_param;
 53 struct seq_file;
 54 struct sighand_struct;
 55 struct signal_struct;
 56 struct task_delay_info;
 57 struct task_group;
 58 
 59 /*
 60  * Task state bitmask. NOTE! These bits are also
 61  * encoded in fs/proc/array.c: get_task_state().
 62  *
 63  * We have two separate sets of flags: task->state
 64  * is about runnability, while task->exit_state are
 65  * about the task exiting. Confusing, but this way
 66  * modifying one set can't modify the other one by
 67  * mistake.
 68  */
 69 
 70 /* Used in tsk->state: */
 71 #define TASK_RUNNING                    0x0000
 72 #define TASK_INTERRUPTIBLE              0x0001
 73 #define TASK_UNINTERRUPTIBLE            0x0002
 74 #define __TASK_STOPPED                  0x0004
 75 #define __TASK_TRACED                   0x0008
 76 /* Used in tsk->exit_state: */
 77 #define EXIT_DEAD                       0x0010
 78 #define EXIT_ZOMBIE                     0x0020
 79 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
 80 /* Used in tsk->state again: */
 81 #define TASK_PARKED                     0x0040
 82 #define TASK_DEAD                       0x0080
 83 #define TASK_WAKEKILL                   0x0100
 84 #define TASK_WAKING                     0x0200
 85 #define TASK_NOLOAD                     0x0400
 86 #define TASK_NEW                        0x0800
 87 #define TASK_STATE_MAX                  0x1000
 88 
 89 /* Convenience macros for the sake of set_current_state: */
 90 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 91 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 92 #define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 93 
 94 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 95 
 96 /* Convenience macros for the sake of wake_up(): */
 97 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 98 
 99 /* get_task_state(): */
100 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
101                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103                                          TASK_PARKED)
104 
105 #define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
106 
107 #define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
108 
109 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
110 
111 #define task_contributes_to_load(task)  ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
112                                          (task->flags & PF_FROZEN) == 0 && \
113                                          (task->state & TASK_NOLOAD) == 0)
114 
115 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116 
117 /*
118  * Special states are those that do not use the normal wait-loop pattern. See
119  * the comment with set_special_state().
120  */
121 #define is_special_task_state(state)                            \
122         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
123 
124 #define __set_current_state(state_value)                        \
125         do {                                                    \
126                 WARN_ON_ONCE(is_special_task_state(state_value));\
127                 current->task_state_change = _THIS_IP_;         \
128                 current->state = (state_value);                 \
129         } while (0)
130 
131 #define set_current_state(state_value)                          \
132         do {                                                    \
133                 WARN_ON_ONCE(is_special_task_state(state_value));\
134                 current->task_state_change = _THIS_IP_;         \
135                 smp_store_mb(current->state, (state_value));    \
136         } while (0)
137 
138 #define set_special_state(state_value)                                  \
139         do {                                                            \
140                 unsigned long flags; /* may shadow */                   \
141                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
142                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
143                 current->task_state_change = _THIS_IP_;                 \
144                 current->state = (state_value);                         \
145                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
146         } while (0)
147 #else
148 /*
149  * set_current_state() includes a barrier so that the write of current->state
150  * is correctly serialised wrt the caller's subsequent test of whether to
151  * actually sleep:
152  *
153  *   for (;;) {
154  *      set_current_state(TASK_UNINTERRUPTIBLE);
155  *      if (!need_sleep)
156  *              break;
157  *
158  *      schedule();
159  *   }
160  *   __set_current_state(TASK_RUNNING);
161  *
162  * If the caller does not need such serialisation (because, for instance, the
163  * condition test and condition change and wakeup are under the same lock) then
164  * use __set_current_state().
165  *
166  * The above is typically ordered against the wakeup, which does:
167  *
168  *   need_sleep = false;
169  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
170  *
171  * Where wake_up_state() (and all other wakeup primitives) imply enough
172  * barriers to order the store of the variable against wakeup.
173  *
174  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
175  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
176  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
177  *
178  * However, with slightly different timing the wakeup TASK_RUNNING store can
179  * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
180  * a problem either because that will result in one extra go around the loop
181  * and our @cond test will save the day.
182  *
183  * Also see the comments of try_to_wake_up().
184  */
185 #define __set_current_state(state_value)                                \
186         current->state = (state_value)
187 
188 #define set_current_state(state_value)                                  \
189         smp_store_mb(current->state, (state_value))
190 
191 /*
192  * set_special_state() should be used for those states when the blocking task
193  * can not use the regular condition based wait-loop. In that case we must
194  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
195  * will not collide with our state change.
196  */
197 #define set_special_state(state_value)                                  \
198         do {                                                            \
199                 unsigned long flags; /* may shadow */                   \
200                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
201                 current->state = (state_value);                         \
202                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
203         } while (0)
204 
205 #endif
206 
207 /* Task command name length: */
208 #define TASK_COMM_LEN                   16
209 
210 extern void scheduler_tick(void);
211 
212 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
213 
214 extern long schedule_timeout(long timeout);
215 extern long schedule_timeout_interruptible(long timeout);
216 extern long schedule_timeout_killable(long timeout);
217 extern long schedule_timeout_uninterruptible(long timeout);
218 extern long schedule_timeout_idle(long timeout);
219 asmlinkage void schedule(void);
220 extern void schedule_preempt_disabled(void);
221 
222 extern int __must_check io_schedule_prepare(void);
223 extern void io_schedule_finish(int token);
224 extern long io_schedule_timeout(long timeout);
225 extern void io_schedule(void);
226 
227 /**
228  * struct prev_cputime - snapshot of system and user cputime
229  * @utime: time spent in user mode
230  * @stime: time spent in system mode
231  * @lock: protects the above two fields
232  *
233  * Stores previous user/system time values such that we can guarantee
234  * monotonicity.
235  */
236 struct prev_cputime {
237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
238         u64                             utime;
239         u64                             stime;
240         raw_spinlock_t                  lock;
241 #endif
242 };
243 
244 /**
245  * struct task_cputime - collected CPU time counts
246  * @utime:              time spent in user mode, in nanoseconds
247  * @stime:              time spent in kernel mode, in nanoseconds
248  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
249  *
250  * This structure groups together three kinds of CPU time that are tracked for
251  * threads and thread groups.  Most things considering CPU time want to group
252  * these counts together and treat all three of them in parallel.
253  */
254 struct task_cputime {
255         u64                             utime;
256         u64                             stime;
257         unsigned long long              sum_exec_runtime;
258 };
259 
260 /* Alternate field names when used on cache expirations: */
261 #define virt_exp                        utime
262 #define prof_exp                        stime
263 #define sched_exp                       sum_exec_runtime
264 
265 enum vtime_state {
266         /* Task is sleeping or running in a CPU with VTIME inactive: */
267         VTIME_INACTIVE = 0,
268         /* Task runs in userspace in a CPU with VTIME active: */
269         VTIME_USER,
270         /* Task runs in kernelspace in a CPU with VTIME active: */
271         VTIME_SYS,
272 };
273 
274 struct vtime {
275         seqcount_t              seqcount;
276         unsigned long long      starttime;
277         enum vtime_state        state;
278         u64                     utime;
279         u64                     stime;
280         u64                     gtime;
281 };
282 
283 struct sched_info {
284 #ifdef CONFIG_SCHED_INFO
285         /* Cumulative counters: */
286 
287         /* # of times we have run on this CPU: */
288         unsigned long                   pcount;
289 
290         /* Time spent waiting on a runqueue: */
291         unsigned long long              run_delay;
292 
293         /* Timestamps: */
294 
295         /* When did we last run on a CPU? */
296         unsigned long long              last_arrival;
297 
298         /* When were we last queued to run? */
299         unsigned long long              last_queued;
300 
301 #endif /* CONFIG_SCHED_INFO */
302 };
303 
304 /*
305  * Integer metrics need fixed point arithmetic, e.g., sched/fair
306  * has a few: load, load_avg, util_avg, freq, and capacity.
307  *
308  * We define a basic fixed point arithmetic range, and then formalize
309  * all these metrics based on that basic range.
310  */
311 # define SCHED_FIXEDPOINT_SHIFT         10
312 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
313 
314 struct load_weight {
315         unsigned long                   weight;
316         u32                             inv_weight;
317 };
318 
319 /**
320  * struct util_est - Estimation utilization of FAIR tasks
321  * @enqueued: instantaneous estimated utilization of a task/cpu
322  * @ewma:     the Exponential Weighted Moving Average (EWMA)
323  *            utilization of a task
324  *
325  * Support data structure to track an Exponential Weighted Moving Average
326  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
327  * average each time a task completes an activation. Sample's weight is chosen
328  * so that the EWMA will be relatively insensitive to transient changes to the
329  * task's workload.
330  *
331  * The enqueued attribute has a slightly different meaning for tasks and cpus:
332  * - task:   the task's util_avg at last task dequeue time
333  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
334  * Thus, the util_est.enqueued of a task represents the contribution on the
335  * estimated utilization of the CPU where that task is currently enqueued.
336  *
337  * Only for tasks we track a moving average of the past instantaneous
338  * estimated utilization. This allows to absorb sporadic drops in utilization
339  * of an otherwise almost periodic task.
340  */
341 struct util_est {
342         unsigned int                    enqueued;
343         unsigned int                    ewma;
344 #define UTIL_EST_WEIGHT_SHIFT           2
345 } __attribute__((__aligned__(sizeof(u64))));
346 
347 /*
348  * The load_avg/util_avg accumulates an infinite geometric series
349  * (see __update_load_avg() in kernel/sched/fair.c).
350  *
351  * [load_avg definition]
352  *
353  *   load_avg = runnable% * scale_load_down(load)
354  *
355  * where runnable% is the time ratio that a sched_entity is runnable.
356  * For cfs_rq, it is the aggregated load_avg of all runnable and
357  * blocked sched_entities.
358  *
359  * load_avg may also take frequency scaling into account:
360  *
361  *   load_avg = runnable% * scale_load_down(load) * freq%
362  *
363  * where freq% is the CPU frequency normalized to the highest frequency.
364  *
365  * [util_avg definition]
366  *
367  *   util_avg = running% * SCHED_CAPACITY_SCALE
368  *
369  * where running% is the time ratio that a sched_entity is running on
370  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371  * and blocked sched_entities.
372  *
373  * util_avg may also factor frequency scaling and CPU capacity scaling:
374  *
375  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
376  *
377  * where freq% is the same as above, and capacity% is the CPU capacity
378  * normalized to the greatest capacity (due to uarch differences, etc).
379  *
380  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
381  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
382  * we therefore scale them to as large a range as necessary. This is for
383  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
384  *
385  * [Overflow issue]
386  *
387  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
388  * with the highest load (=88761), always runnable on a single cfs_rq,
389  * and should not overflow as the number already hits PID_MAX_LIMIT.
390  *
391  * For all other cases (including 32-bit kernels), struct load_weight's
392  * weight will overflow first before we do, because:
393  *
394  *    Max(load_avg) <= Max(load.weight)
395  *
396  * Then it is the load_weight's responsibility to consider overflow
397  * issues.
398  */
399 struct sched_avg {
400         u64                             last_update_time;
401         u64                             load_sum;
402         u64                             runnable_load_sum;
403         u32                             util_sum;
404         u32                             period_contrib;
405         unsigned long                   load_avg;
406         unsigned long                   runnable_load_avg;
407         unsigned long                   util_avg;
408         struct util_est                 util_est;
409 } ____cacheline_aligned;
410 
411 struct sched_statistics {
412 #ifdef CONFIG_SCHEDSTATS
413         u64                             wait_start;
414         u64                             wait_max;
415         u64                             wait_count;
416         u64                             wait_sum;
417         u64                             iowait_count;
418         u64                             iowait_sum;
419 
420         u64                             sleep_start;
421         u64                             sleep_max;
422         s64                             sum_sleep_runtime;
423 
424         u64                             block_start;
425         u64                             block_max;
426         u64                             exec_max;
427         u64                             slice_max;
428 
429         u64                             nr_migrations_cold;
430         u64                             nr_failed_migrations_affine;
431         u64                             nr_failed_migrations_running;
432         u64                             nr_failed_migrations_hot;
433         u64                             nr_forced_migrations;
434 
435         u64                             nr_wakeups;
436         u64                             nr_wakeups_sync;
437         u64                             nr_wakeups_migrate;
438         u64                             nr_wakeups_local;
439         u64                             nr_wakeups_remote;
440         u64                             nr_wakeups_affine;
441         u64                             nr_wakeups_affine_attempts;
442         u64                             nr_wakeups_passive;
443         u64                             nr_wakeups_idle;
444 #endif
445 };
446 
447 struct sched_entity {
448         /* For load-balancing: */
449         struct load_weight              load;
450         unsigned long                   runnable_weight;
451         struct rb_node                  run_node;
452         struct list_head                group_node;
453         unsigned int                    on_rq;
454 
455         u64                             exec_start;
456         u64                             sum_exec_runtime;
457         u64                             vruntime;
458         u64                             prev_sum_exec_runtime;
459 
460         u64                             nr_migrations;
461 
462         struct sched_statistics         statistics;
463 
464 #ifdef CONFIG_FAIR_GROUP_SCHED
465         int                             depth;
466         struct sched_entity             *parent;
467         /* rq on which this entity is (to be) queued: */
468         struct cfs_rq                   *cfs_rq;
469         /* rq "owned" by this entity/group: */
470         struct cfs_rq                   *my_q;
471 #endif
472 
473 #ifdef CONFIG_SMP
474         /*
475          * Per entity load average tracking.
476          *
477          * Put into separate cache line so it does not
478          * collide with read-mostly values above.
479          */
480         struct sched_avg                avg;
481 #endif
482 };
483 
484 struct sched_rt_entity {
485         struct list_head                run_list;
486         unsigned long                   timeout;
487         unsigned long                   watchdog_stamp;
488         unsigned int                    time_slice;
489         unsigned short                  on_rq;
490         unsigned short                  on_list;
491 
492         struct sched_rt_entity          *back;
493 #ifdef CONFIG_RT_GROUP_SCHED
494         struct sched_rt_entity          *parent;
495         /* rq on which this entity is (to be) queued: */
496         struct rt_rq                    *rt_rq;
497         /* rq "owned" by this entity/group: */
498         struct rt_rq                    *my_q;
499 #endif
500 } __randomize_layout;
501 
502 struct sched_dl_entity {
503         struct rb_node                  rb_node;
504 
505         /*
506          * Original scheduling parameters. Copied here from sched_attr
507          * during sched_setattr(), they will remain the same until
508          * the next sched_setattr().
509          */
510         u64                             dl_runtime;     /* Maximum runtime for each instance    */
511         u64                             dl_deadline;    /* Relative deadline of each instance   */
512         u64                             dl_period;      /* Separation of two instances (period) */
513         u64                             dl_bw;          /* dl_runtime / dl_period               */
514         u64                             dl_density;     /* dl_runtime / dl_deadline             */
515 
516         /*
517          * Actual scheduling parameters. Initialized with the values above,
518          * they are continously updated during task execution. Note that
519          * the remaining runtime could be < 0 in case we are in overrun.
520          */
521         s64                             runtime;        /* Remaining runtime for this instance  */
522         u64                             deadline;       /* Absolute deadline for this instance  */
523         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
524 
525         /*
526          * Some bool flags:
527          *
528          * @dl_throttled tells if we exhausted the runtime. If so, the
529          * task has to wait for a replenishment to be performed at the
530          * next firing of dl_timer.
531          *
532          * @dl_boosted tells if we are boosted due to DI. If so we are
533          * outside bandwidth enforcement mechanism (but only until we
534          * exit the critical section);
535          *
536          * @dl_yielded tells if task gave up the CPU before consuming
537          * all its available runtime during the last job.
538          *
539          * @dl_non_contending tells if the task is inactive while still
540          * contributing to the active utilization. In other words, it
541          * indicates if the inactive timer has been armed and its handler
542          * has not been executed yet. This flag is useful to avoid race
543          * conditions between the inactive timer handler and the wakeup
544          * code.
545          *
546          * @dl_overrun tells if the task asked to be informed about runtime
547          * overruns.
548          */
549         unsigned int                    dl_throttled      : 1;
550         unsigned int                    dl_boosted        : 1;
551         unsigned int                    dl_yielded        : 1;
552         unsigned int                    dl_non_contending : 1;
553         unsigned int                    dl_overrun        : 1;
554 
555         /*
556          * Bandwidth enforcement timer. Each -deadline task has its
557          * own bandwidth to be enforced, thus we need one timer per task.
558          */
559         struct hrtimer                  dl_timer;
560 
561         /*
562          * Inactive timer, responsible for decreasing the active utilization
563          * at the "0-lag time". When a -deadline task blocks, it contributes
564          * to GRUB's active utilization until the "0-lag time", hence a
565          * timer is needed to decrease the active utilization at the correct
566          * time.
567          */
568         struct hrtimer inactive_timer;
569 };
570 
571 union rcu_special {
572         struct {
573                 u8                      blocked;
574                 u8                      need_qs;
575                 u8                      exp_need_qs;
576 
577                 /* Otherwise the compiler can store garbage here: */
578                 u8                      pad;
579         } b; /* Bits. */
580         u32 s; /* Set of bits. */
581 };
582 
583 enum perf_event_task_context {
584         perf_invalid_context = -1,
585         perf_hw_context = 0,
586         perf_sw_context,
587         perf_nr_task_contexts,
588 };
589 
590 struct wake_q_node {
591         struct wake_q_node *next;
592 };
593 
594 struct task_struct {
595 #ifdef CONFIG_THREAD_INFO_IN_TASK
596         /*
597          * For reasons of header soup (see current_thread_info()), this
598          * must be the first element of task_struct.
599          */
600         struct thread_info              thread_info;
601 #endif
602         /* -1 unrunnable, 0 runnable, >0 stopped: */
603         volatile long                   state;
604 
605         /*
606          * This begins the randomizable portion of task_struct. Only
607          * scheduling-critical items should be added above here.
608          */
609         randomized_struct_fields_start
610 
611         void                            *stack;
612         atomic_t                        usage;
613         /* Per task flags (PF_*), defined further below: */
614         unsigned int                    flags;
615         unsigned int                    ptrace;
616 
617 #ifdef CONFIG_SMP
618         struct llist_node               wake_entry;
619         int                             on_cpu;
620 #ifdef CONFIG_THREAD_INFO_IN_TASK
621         /* Current CPU: */
622         unsigned int                    cpu;
623 #endif
624         unsigned int                    wakee_flips;
625         unsigned long                   wakee_flip_decay_ts;
626         struct task_struct              *last_wakee;
627 
628         /*
629          * recent_used_cpu is initially set as the last CPU used by a task
630          * that wakes affine another task. Waker/wakee relationships can
631          * push tasks around a CPU where each wakeup moves to the next one.
632          * Tracking a recently used CPU allows a quick search for a recently
633          * used CPU that may be idle.
634          */
635         int                             recent_used_cpu;
636         int                             wake_cpu;
637 #endif
638         int                             on_rq;
639 
640         int                             prio;
641         int                             static_prio;
642         int                             normal_prio;
643         unsigned int                    rt_priority;
644 
645         const struct sched_class        *sched_class;
646         struct sched_entity             se;
647         struct sched_rt_entity          rt;
648 #ifdef CONFIG_CGROUP_SCHED
649         struct task_group               *sched_task_group;
650 #endif
651         struct sched_dl_entity          dl;
652 
653 #ifdef CONFIG_PREEMPT_NOTIFIERS
654         /* List of struct preempt_notifier: */
655         struct hlist_head               preempt_notifiers;
656 #endif
657 
658 #ifdef CONFIG_BLK_DEV_IO_TRACE
659         unsigned int                    btrace_seq;
660 #endif
661 
662         unsigned int                    policy;
663         int                             nr_cpus_allowed;
664         cpumask_t                       cpus_allowed;
665 
666 #ifdef CONFIG_PREEMPT_RCU
667         int                             rcu_read_lock_nesting;
668         union rcu_special               rcu_read_unlock_special;
669         struct list_head                rcu_node_entry;
670         struct rcu_node                 *rcu_blocked_node;
671 #endif /* #ifdef CONFIG_PREEMPT_RCU */
672 
673 #ifdef CONFIG_TASKS_RCU
674         unsigned long                   rcu_tasks_nvcsw;
675         u8                              rcu_tasks_holdout;
676         u8                              rcu_tasks_idx;
677         int                             rcu_tasks_idle_cpu;
678         struct list_head                rcu_tasks_holdout_list;
679 #endif /* #ifdef CONFIG_TASKS_RCU */
680 
681         struct sched_info               sched_info;
682 
683         struct list_head                tasks;
684 #ifdef CONFIG_SMP
685         struct plist_node               pushable_tasks;
686         struct rb_node                  pushable_dl_tasks;
687 #endif
688 
689         struct mm_struct                *mm;
690         struct mm_struct                *active_mm;
691 
692         /* Per-thread vma caching: */
693         struct vmacache                 vmacache;
694 
695 #ifdef SPLIT_RSS_COUNTING
696         struct task_rss_stat            rss_stat;
697 #endif
698         int                             exit_state;
699         int                             exit_code;
700         int                             exit_signal;
701         /* The signal sent when the parent dies: */
702         int                             pdeath_signal;
703         /* JOBCTL_*, siglock protected: */
704         unsigned long                   jobctl;
705 
706         /* Used for emulating ABI behavior of previous Linux versions: */
707         unsigned int                    personality;
708 
709         /* Scheduler bits, serialized by scheduler locks: */
710         unsigned                        sched_reset_on_fork:1;
711         unsigned                        sched_contributes_to_load:1;
712         unsigned                        sched_migrated:1;
713         unsigned                        sched_remote_wakeup:1;
714         /* Force alignment to the next boundary: */
715         unsigned                        :0;
716 
717         /* Unserialized, strictly 'current' */
718 
719         /* Bit to tell LSMs we're in execve(): */
720         unsigned                        in_execve:1;
721         unsigned                        in_iowait:1;
722 #ifndef TIF_RESTORE_SIGMASK
723         unsigned                        restore_sigmask:1;
724 #endif
725 #ifdef CONFIG_MEMCG
726         unsigned                        memcg_may_oom:1;
727 #ifndef CONFIG_SLOB
728         unsigned                        memcg_kmem_skip_account:1;
729 #endif
730 #endif
731 #ifdef CONFIG_COMPAT_BRK
732         unsigned                        brk_randomized:1;
733 #endif
734 #ifdef CONFIG_CGROUPS
735         /* disallow userland-initiated cgroup migration */
736         unsigned                        no_cgroup_migration:1;
737 #endif
738 
739         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
740 
741         struct restart_block            restart_block;
742 
743         pid_t                           pid;
744         pid_t                           tgid;
745 
746 #ifdef CONFIG_STACKPROTECTOR
747         /* Canary value for the -fstack-protector GCC feature: */
748         unsigned long                   stack_canary;
749 #endif
750         /*
751          * Pointers to the (original) parent process, youngest child, younger sibling,
752          * older sibling, respectively.  (p->father can be replaced with
753          * p->real_parent->pid)
754          */
755 
756         /* Real parent process: */
757         struct task_struct __rcu        *real_parent;
758 
759         /* Recipient of SIGCHLD, wait4() reports: */
760         struct task_struct __rcu        *parent;
761 
762         /*
763          * Children/sibling form the list of natural children:
764          */
765         struct list_head                children;
766         struct list_head                sibling;
767         struct task_struct              *group_leader;
768 
769         /*
770          * 'ptraced' is the list of tasks this task is using ptrace() on.
771          *
772          * This includes both natural children and PTRACE_ATTACH targets.
773          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
774          */
775         struct list_head                ptraced;
776         struct list_head                ptrace_entry;
777 
778         /* PID/PID hash table linkage. */
779         struct pid_link                 pids[PIDTYPE_MAX];
780         struct list_head                thread_group;
781         struct list_head                thread_node;
782 
783         struct completion               *vfork_done;
784 
785         /* CLONE_CHILD_SETTID: */
786         int __user                      *set_child_tid;
787 
788         /* CLONE_CHILD_CLEARTID: */
789         int __user                      *clear_child_tid;
790 
791         u64                             utime;
792         u64                             stime;
793 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
794         u64                             utimescaled;
795         u64                             stimescaled;
796 #endif
797         u64                             gtime;
798         struct prev_cputime             prev_cputime;
799 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
800         struct vtime                    vtime;
801 #endif
802 
803 #ifdef CONFIG_NO_HZ_FULL
804         atomic_t                        tick_dep_mask;
805 #endif
806         /* Context switch counts: */
807         unsigned long                   nvcsw;
808         unsigned long                   nivcsw;
809 
810         /* Monotonic time in nsecs: */
811         u64                             start_time;
812 
813         /* Boot based time in nsecs: */
814         u64                             real_start_time;
815 
816         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
817         unsigned long                   min_flt;
818         unsigned long                   maj_flt;
819 
820 #ifdef CONFIG_POSIX_TIMERS
821         struct task_cputime             cputime_expires;
822         struct list_head                cpu_timers[3];
823 #endif
824 
825         /* Process credentials: */
826 
827         /* Tracer's credentials at attach: */
828         const struct cred __rcu         *ptracer_cred;
829 
830         /* Objective and real subjective task credentials (COW): */
831         const struct cred __rcu         *real_cred;
832 
833         /* Effective (overridable) subjective task credentials (COW): */
834         const struct cred __rcu         *cred;
835 
836         /*
837          * executable name, excluding path.
838          *
839          * - normally initialized setup_new_exec()
840          * - access it with [gs]et_task_comm()
841          * - lock it with task_lock()
842          */
843         char                            comm[TASK_COMM_LEN];
844 
845         struct nameidata                *nameidata;
846 
847 #ifdef CONFIG_SYSVIPC
848         struct sysv_sem                 sysvsem;
849         struct sysv_shm                 sysvshm;
850 #endif
851 #ifdef CONFIG_DETECT_HUNG_TASK
852         unsigned long                   last_switch_count;
853 #endif
854         /* Filesystem information: */
855         struct fs_struct                *fs;
856 
857         /* Open file information: */
858         struct files_struct             *files;
859 
860         /* Namespaces: */
861         struct nsproxy                  *nsproxy;
862 
863         /* Signal handlers: */
864         struct signal_struct            *signal;
865         struct sighand_struct           *sighand;
866         sigset_t                        blocked;
867         sigset_t                        real_blocked;
868         /* Restored if set_restore_sigmask() was used: */
869         sigset_t                        saved_sigmask;
870         struct sigpending               pending;
871         unsigned long                   sas_ss_sp;
872         size_t                          sas_ss_size;
873         unsigned int                    sas_ss_flags;
874 
875         struct callback_head            *task_works;
876 
877         struct audit_context            *audit_context;
878 #ifdef CONFIG_AUDITSYSCALL
879         kuid_t                          loginuid;
880         unsigned int                    sessionid;
881 #endif
882         struct seccomp                  seccomp;
883 
884         /* Thread group tracking: */
885         u32                             parent_exec_id;
886         u32                             self_exec_id;
887 
888         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
889         spinlock_t                      alloc_lock;
890 
891         /* Protection of the PI data structures: */
892         raw_spinlock_t                  pi_lock;
893 
894         struct wake_q_node              wake_q;
895 
896 #ifdef CONFIG_RT_MUTEXES
897         /* PI waiters blocked on a rt_mutex held by this task: */
898         struct rb_root_cached           pi_waiters;
899         /* Updated under owner's pi_lock and rq lock */
900         struct task_struct              *pi_top_task;
901         /* Deadlock detection and priority inheritance handling: */
902         struct rt_mutex_waiter          *pi_blocked_on;
903 #endif
904 
905 #ifdef CONFIG_DEBUG_MUTEXES
906         /* Mutex deadlock detection: */
907         struct mutex_waiter             *blocked_on;
908 #endif
909 
910 #ifdef CONFIG_TRACE_IRQFLAGS
911         unsigned int                    irq_events;
912         unsigned long                   hardirq_enable_ip;
913         unsigned long                   hardirq_disable_ip;
914         unsigned int                    hardirq_enable_event;
915         unsigned int                    hardirq_disable_event;
916         int                             hardirqs_enabled;
917         int                             hardirq_context;
918         unsigned long                   softirq_disable_ip;
919         unsigned long                   softirq_enable_ip;
920         unsigned int                    softirq_disable_event;
921         unsigned int                    softirq_enable_event;
922         int                             softirqs_enabled;
923         int                             softirq_context;
924 #endif
925 
926 #ifdef CONFIG_LOCKDEP
927 # define MAX_LOCK_DEPTH                 48UL
928         u64                             curr_chain_key;
929         int                             lockdep_depth;
930         unsigned int                    lockdep_recursion;
931         struct held_lock                held_locks[MAX_LOCK_DEPTH];
932 #endif
933 
934 #ifdef CONFIG_UBSAN
935         unsigned int                    in_ubsan;
936 #endif
937 
938         /* Journalling filesystem info: */
939         void                            *journal_info;
940 
941         /* Stacked block device info: */
942         struct bio_list                 *bio_list;
943 
944 #ifdef CONFIG_BLOCK
945         /* Stack plugging: */
946         struct blk_plug                 *plug;
947 #endif
948 
949         /* VM state: */
950         struct reclaim_state            *reclaim_state;
951 
952         struct backing_dev_info         *backing_dev_info;
953 
954         struct io_context               *io_context;
955 
956         /* Ptrace state: */
957         unsigned long                   ptrace_message;
958         siginfo_t                       *last_siginfo;
959 
960         struct task_io_accounting       ioac;
961 #ifdef CONFIG_TASK_XACCT
962         /* Accumulated RSS usage: */
963         u64                             acct_rss_mem1;
964         /* Accumulated virtual memory usage: */
965         u64                             acct_vm_mem1;
966         /* stime + utime since last update: */
967         u64                             acct_timexpd;
968 #endif
969 #ifdef CONFIG_CPUSETS
970         /* Protected by ->alloc_lock: */
971         nodemask_t                      mems_allowed;
972         /* Seqence number to catch updates: */
973         seqcount_t                      mems_allowed_seq;
974         int                             cpuset_mem_spread_rotor;
975         int                             cpuset_slab_spread_rotor;
976 #endif
977 #ifdef CONFIG_CGROUPS
978         /* Control Group info protected by css_set_lock: */
979         struct css_set __rcu            *cgroups;
980         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
981         struct list_head                cg_list;
982 #endif
983 #ifdef CONFIG_INTEL_RDT
984         u32                             closid;
985         u32                             rmid;
986 #endif
987 #ifdef CONFIG_FUTEX
988         struct robust_list_head __user  *robust_list;
989 #ifdef CONFIG_COMPAT
990         struct compat_robust_list_head __user *compat_robust_list;
991 #endif
992         struct list_head                pi_state_list;
993         struct futex_pi_state           *pi_state_cache;
994 #endif
995 #ifdef CONFIG_PERF_EVENTS
996         struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
997         struct mutex                    perf_event_mutex;
998         struct list_head                perf_event_list;
999 #endif
1000 #ifdef CONFIG_DEBUG_PREEMPT
1001         unsigned long                   preempt_disable_ip;
1002 #endif
1003 #ifdef CONFIG_NUMA
1004         /* Protected by alloc_lock: */
1005         struct mempolicy                *mempolicy;
1006         short                           il_prev;
1007         short                           pref_node_fork;
1008 #endif
1009 #ifdef CONFIG_NUMA_BALANCING
1010         int                             numa_scan_seq;
1011         unsigned int                    numa_scan_period;
1012         unsigned int                    numa_scan_period_max;
1013         int                             numa_preferred_nid;
1014         unsigned long                   numa_migrate_retry;
1015         /* Migration stamp: */
1016         u64                             node_stamp;
1017         u64                             last_task_numa_placement;
1018         u64                             last_sum_exec_runtime;
1019         struct callback_head            numa_work;
1020 
1021         struct list_head                numa_entry;
1022         struct numa_group               *numa_group;
1023 
1024         /*
1025          * numa_faults is an array split into four regions:
1026          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1027          * in this precise order.
1028          *
1029          * faults_memory: Exponential decaying average of faults on a per-node
1030          * basis. Scheduling placement decisions are made based on these
1031          * counts. The values remain static for the duration of a PTE scan.
1032          * faults_cpu: Track the nodes the process was running on when a NUMA
1033          * hinting fault was incurred.
1034          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1035          * during the current scan window. When the scan completes, the counts
1036          * in faults_memory and faults_cpu decay and these values are copied.
1037          */
1038         unsigned long                   *numa_faults;
1039         unsigned long                   total_numa_faults;
1040 
1041         /*
1042          * numa_faults_locality tracks if faults recorded during the last
1043          * scan window were remote/local or failed to migrate. The task scan
1044          * period is adapted based on the locality of the faults with different
1045          * weights depending on whether they were shared or private faults
1046          */
1047         unsigned long                   numa_faults_locality[3];
1048 
1049         unsigned long                   numa_pages_migrated;
1050 #endif /* CONFIG_NUMA_BALANCING */
1051 
1052 #ifdef CONFIG_RSEQ
1053         struct rseq __user *rseq;
1054         u32 rseq_len;
1055         u32 rseq_sig;
1056         /*
1057          * RmW on rseq_event_mask must be performed atomically
1058          * with respect to preemption.
1059          */
1060         unsigned long rseq_event_mask;
1061 #endif
1062 
1063         struct tlbflush_unmap_batch     tlb_ubc;
1064 
1065         struct rcu_head                 rcu;
1066 
1067         /* Cache last used pipe for splice(): */
1068         struct pipe_inode_info          *splice_pipe;
1069 
1070         struct page_frag                task_frag;
1071 
1072 #ifdef CONFIG_TASK_DELAY_ACCT
1073         struct task_delay_info          *delays;
1074 #endif
1075 
1076 #ifdef CONFIG_FAULT_INJECTION
1077         int                             make_it_fail;
1078         unsigned int                    fail_nth;
1079 #endif
1080         /*
1081          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1082          * balance_dirty_pages() for a dirty throttling pause:
1083          */
1084         int                             nr_dirtied;
1085         int                             nr_dirtied_pause;
1086         /* Start of a write-and-pause period: */
1087         unsigned long                   dirty_paused_when;
1088 
1089 #ifdef CONFIG_LATENCYTOP
1090         int                             latency_record_count;
1091         struct latency_record           latency_record[LT_SAVECOUNT];
1092 #endif
1093         /*
1094          * Time slack values; these are used to round up poll() and
1095          * select() etc timeout values. These are in nanoseconds.
1096          */
1097         u64                             timer_slack_ns;
1098         u64                             default_timer_slack_ns;
1099 
1100 #ifdef CONFIG_KASAN
1101         unsigned int                    kasan_depth;
1102 #endif
1103 
1104 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1105         /* Index of current stored address in ret_stack: */
1106         int                             curr_ret_stack;
1107 
1108         /* Stack of return addresses for return function tracing: */
1109         struct ftrace_ret_stack         *ret_stack;
1110 
1111         /* Timestamp for last schedule: */
1112         unsigned long long              ftrace_timestamp;
1113 
1114         /*
1115          * Number of functions that haven't been traced
1116          * because of depth overrun:
1117          */
1118         atomic_t                        trace_overrun;
1119 
1120         /* Pause tracing: */
1121         atomic_t                        tracing_graph_pause;
1122 #endif
1123 
1124 #ifdef CONFIG_TRACING
1125         /* State flags for use by tracers: */
1126         unsigned long                   trace;
1127 
1128         /* Bitmask and counter of trace recursion: */
1129         unsigned long                   trace_recursion;
1130 #endif /* CONFIG_TRACING */
1131 
1132 #ifdef CONFIG_KCOV
1133         /* Coverage collection mode enabled for this task (0 if disabled): */
1134         unsigned int                    kcov_mode;
1135 
1136         /* Size of the kcov_area: */
1137         unsigned int                    kcov_size;
1138 
1139         /* Buffer for coverage collection: */
1140         void                            *kcov_area;
1141 
1142         /* KCOV descriptor wired with this task or NULL: */
1143         struct kcov                     *kcov;
1144 #endif
1145 
1146 #ifdef CONFIG_MEMCG
1147         struct mem_cgroup               *memcg_in_oom;
1148         gfp_t                           memcg_oom_gfp_mask;
1149         int                             memcg_oom_order;
1150 
1151         /* Number of pages to reclaim on returning to userland: */
1152         unsigned int                    memcg_nr_pages_over_high;
1153 #endif
1154 
1155 #ifdef CONFIG_UPROBES
1156         struct uprobe_task              *utask;
1157 #endif
1158 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1159         unsigned int                    sequential_io;
1160         unsigned int                    sequential_io_avg;
1161 #endif
1162 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1163         unsigned long                   task_state_change;
1164 #endif
1165         int                             pagefault_disabled;
1166 #ifdef CONFIG_MMU
1167         struct task_struct              *oom_reaper_list;
1168 #endif
1169 #ifdef CONFIG_VMAP_STACK
1170         struct vm_struct                *stack_vm_area;
1171 #endif
1172 #ifdef CONFIG_THREAD_INFO_IN_TASK
1173         /* A live task holds one reference: */
1174         atomic_t                        stack_refcount;
1175 #endif
1176 #ifdef CONFIG_LIVEPATCH
1177         int patch_state;
1178 #endif
1179 #ifdef CONFIG_SECURITY
1180         /* Used by LSM modules for access restriction: */
1181         void                            *security;
1182 #endif
1183 #if defined(CONFIG_CCSECURITY) && !defined(CONFIG_CCSECURITY_USE_EXTERNAL_TASK_SECURITY)
1184         struct ccs_domain_info          *ccs_domain_info;
1185         u32                             ccs_flags;
1186 #endif
1187 
1188         /*
1189          * New fields for task_struct should be added above here, so that
1190          * they are included in the randomized portion of task_struct.
1191          */
1192         randomized_struct_fields_end
1193 
1194         /* CPU-specific state of this task: */
1195         struct thread_struct            thread;
1196 
1197         /*
1198          * WARNING: on x86, 'thread_struct' contains a variable-sized
1199          * structure.  It *MUST* be at the end of 'task_struct'.
1200          *
1201          * Do not put anything below here!
1202          */
1203 };
1204 
1205 static inline struct pid *task_pid(struct task_struct *task)
1206 {
1207         return task->pids[PIDTYPE_PID].pid;
1208 }
1209 
1210 static inline struct pid *task_tgid(struct task_struct *task)
1211 {
1212         return task->group_leader->pids[PIDTYPE_PID].pid;
1213 }
1214 
1215 /*
1216  * Without tasklist or RCU lock it is not safe to dereference
1217  * the result of task_pgrp/task_session even if task == current,
1218  * we can race with another thread doing sys_setsid/sys_setpgid.
1219  */
1220 static inline struct pid *task_pgrp(struct task_struct *task)
1221 {
1222         return task->group_leader->pids[PIDTYPE_PGID].pid;
1223 }
1224 
1225 static inline struct pid *task_session(struct task_struct *task)
1226 {
1227         return task->group_leader->pids[PIDTYPE_SID].pid;
1228 }
1229 
1230 /*
1231  * the helpers to get the task's different pids as they are seen
1232  * from various namespaces
1233  *
1234  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1235  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1236  *                     current.
1237  * task_xid_nr_ns()  : id seen from the ns specified;
1238  *
1239  * see also pid_nr() etc in include/linux/pid.h
1240  */
1241 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1242 
1243 static inline pid_t task_pid_nr(struct task_struct *tsk)
1244 {
1245         return tsk->pid;
1246 }
1247 
1248 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1249 {
1250         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1251 }
1252 
1253 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1254 {
1255         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1256 }
1257 
1258 
1259 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1260 {
1261         return tsk->tgid;
1262 }
1263 
1264 /**
1265  * pid_alive - check that a task structure is not stale
1266  * @p: Task structure to be checked.
1267  *
1268  * Test if a process is not yet dead (at most zombie state)
1269  * If pid_alive fails, then pointers within the task structure
1270  * can be stale and must not be dereferenced.
1271  *
1272  * Return: 1 if the process is alive. 0 otherwise.
1273  */
1274 static inline int pid_alive(const struct task_struct *p)
1275 {
1276         return p->pids[PIDTYPE_PID].pid != NULL;
1277 }
1278 
1279 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1280 {
1281         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1282 }
1283 
1284 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1285 {
1286         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1287 }
1288 
1289 
1290 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1291 {
1292         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1293 }
1294 
1295 static inline pid_t task_session_vnr(struct task_struct *tsk)
1296 {
1297         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1298 }
1299 
1300 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1301 {
1302         return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1303 }
1304 
1305 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1306 {
1307         return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1308 }
1309 
1310 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1311 {
1312         pid_t pid = 0;
1313 
1314         rcu_read_lock();
1315         if (pid_alive(tsk))
1316                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1317         rcu_read_unlock();
1318 
1319         return pid;
1320 }
1321 
1322 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1323 {
1324         return task_ppid_nr_ns(tsk, &init_pid_ns);
1325 }
1326 
1327 /* Obsolete, do not use: */
1328 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1329 {
1330         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1331 }
1332 
1333 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1334 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1335 
1336 static inline unsigned int task_state_index(struct task_struct *tsk)
1337 {
1338         unsigned int tsk_state = READ_ONCE(tsk->state);
1339         unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1340 
1341         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1342 
1343         if (tsk_state == TASK_IDLE)
1344                 state = TASK_REPORT_IDLE;
1345 
1346         return fls(state);
1347 }
1348 
1349 static inline char task_index_to_char(unsigned int state)
1350 {
1351         static const char state_char[] = "RSDTtXZPI";
1352 
1353         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1354 
1355         return state_char[state];
1356 }
1357 
1358 static inline char task_state_to_char(struct task_struct *tsk)
1359 {
1360         return task_index_to_char(task_state_index(tsk));
1361 }
1362 
1363 /**
1364  * is_global_init - check if a task structure is init. Since init
1365  * is free to have sub-threads we need to check tgid.
1366  * @tsk: Task structure to be checked.
1367  *
1368  * Check if a task structure is the first user space task the kernel created.
1369  *
1370  * Return: 1 if the task structure is init. 0 otherwise.
1371  */
1372 static inline int is_global_init(struct task_struct *tsk)
1373 {
1374         return task_tgid_nr(tsk) == 1;
1375 }
1376 
1377 extern struct pid *cad_pid;
1378 
1379 /*
1380  * Per process flags
1381  */
1382 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1383 #define PF_EXITING              0x00000004      /* Getting shut down */
1384 #define PF_EXITPIDONE           0x00000008      /* PI exit done on shut down */
1385 #define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1386 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1387 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1388 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1389 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1390 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1391 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1392 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1393 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1394 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1395 #define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1396 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1397 #define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1398 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1399 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1400 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1401 #define PF_LESS_THROTTLE        0x00100000      /* Throttle me less: I clean memory */
1402 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1403 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1404 #define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1405 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_allowed */
1406 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1407 #define PF_MUTEX_TESTER         0x20000000      /* Thread belongs to the rt mutex tester */
1408 #define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1409 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1410 
1411 /*
1412  * Only the _current_ task can read/write to tsk->flags, but other
1413  * tasks can access tsk->flags in readonly mode for example
1414  * with tsk_used_math (like during threaded core dumping).
1415  * There is however an exception to this rule during ptrace
1416  * or during fork: the ptracer task is allowed to write to the
1417  * child->flags of its traced child (same goes for fork, the parent
1418  * can write to the child->flags), because we're guaranteed the
1419  * child is not running and in turn not changing child->flags
1420  * at the same time the parent does it.
1421  */
1422 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1423 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1424 #define clear_used_math()                       clear_stopped_child_used_math(current)
1425 #define set_used_math()                         set_stopped_child_used_math(current)
1426 
1427 #define conditional_stopped_child_used_math(condition, child) \
1428         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1429 
1430 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1431 
1432 #define copy_to_stopped_child_used_math(child) \
1433         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1434 
1435 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1436 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1437 #define used_math()                             tsk_used_math(current)
1438 
1439 static inline bool is_percpu_thread(void)
1440 {
1441 #ifdef CONFIG_SMP
1442         return (current->flags & PF_NO_SETAFFINITY) &&
1443                 (current->nr_cpus_allowed  == 1);
1444 #else
1445         return true;
1446 #endif
1447 }
1448 
1449 /* Per-process atomic flags. */
1450 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1451 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1452 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1453 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1454 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1455 
1456 #define TASK_PFA_TEST(name, func)                                       \
1457         static inline bool task_##func(struct task_struct *p)           \
1458         { return test_bit(PFA_##name, &p->atomic_flags); }
1459 
1460 #define TASK_PFA_SET(name, func)                                        \
1461         static inline void task_set_##func(struct task_struct *p)       \
1462         { set_bit(PFA_##name, &p->atomic_flags); }
1463 
1464 #define TASK_PFA_CLEAR(name, func)                                      \
1465         static inline void task_clear_##func(struct task_struct *p)     \
1466         { clear_bit(PFA_##name, &p->atomic_flags); }
1467 
1468 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1469 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1470 
1471 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1472 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1473 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1474 
1475 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1476 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1477 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1478 
1479 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1480 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1481 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1482 
1483 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1484 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1485 
1486 static inline void
1487 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1488 {
1489         current->flags &= ~flags;
1490         current->flags |= orig_flags & flags;
1491 }
1492 
1493 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1494 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1495 #ifdef CONFIG_SMP
1496 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1497 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1498 #else
1499 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1500 {
1501 }
1502 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1503 {
1504         if (!cpumask_test_cpu(0, new_mask))
1505                 return -EINVAL;
1506         return 0;
1507 }
1508 #endif
1509 
1510 #ifndef cpu_relax_yield
1511 #define cpu_relax_yield() cpu_relax()
1512 #endif
1513 
1514 extern int yield_to(struct task_struct *p, bool preempt);
1515 extern void set_user_nice(struct task_struct *p, long nice);
1516 extern int task_prio(const struct task_struct *p);
1517 
1518 /**
1519  * task_nice - return the nice value of a given task.
1520  * @p: the task in question.
1521  *
1522  * Return: The nice value [ -20 ... 0 ... 19 ].
1523  */
1524 static inline int task_nice(const struct task_struct *p)
1525 {
1526         return PRIO_TO_NICE((p)->static_prio);
1527 }
1528 
1529 extern int can_nice(const struct task_struct *p, const int nice);
1530 extern int task_curr(const struct task_struct *p);
1531 extern int idle_cpu(int cpu);
1532 extern int available_idle_cpu(int cpu);
1533 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1534 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1535 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1536 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1537 extern struct task_struct *idle_task(int cpu);
1538 
1539 /**
1540  * is_idle_task - is the specified task an idle task?
1541  * @p: the task in question.
1542  *
1543  * Return: 1 if @p is an idle task. 0 otherwise.
1544  */
1545 static inline bool is_idle_task(const struct task_struct *p)
1546 {
1547         return !!(p->flags & PF_IDLE);
1548 }
1549 
1550 extern struct task_struct *curr_task(int cpu);
1551 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1552 
1553 void yield(void);
1554 
1555 union thread_union {
1556 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1557         struct task_struct task;
1558 #endif
1559 #ifndef CONFIG_THREAD_INFO_IN_TASK
1560         struct thread_info thread_info;
1561 #endif
1562         unsigned long stack[THREAD_SIZE/sizeof(long)];
1563 };
1564 
1565 #ifndef CONFIG_THREAD_INFO_IN_TASK
1566 extern struct thread_info init_thread_info;
1567 #endif
1568 
1569 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1570 
1571 #ifdef CONFIG_THREAD_INFO_IN_TASK
1572 static inline struct thread_info *task_thread_info(struct task_struct *task)
1573 {
1574         return &task->thread_info;
1575 }
1576 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1577 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1578 #endif
1579 
1580 /*
1581  * find a task by one of its numerical ids
1582  *
1583  * find_task_by_pid_ns():
1584  *      finds a task by its pid in the specified namespace
1585  * find_task_by_vpid():
1586  *      finds a task by its virtual pid
1587  *
1588  * see also find_vpid() etc in include/linux/pid.h
1589  */
1590 
1591 extern struct task_struct *find_task_by_vpid(pid_t nr);
1592 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1593 
1594 /*
1595  * find a task by its virtual pid and get the task struct
1596  */
1597 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1598 
1599 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1600 extern int wake_up_process(struct task_struct *tsk);
1601 extern void wake_up_new_task(struct task_struct *tsk);
1602 
1603 #ifdef CONFIG_SMP
1604 extern void kick_process(struct task_struct *tsk);
1605 #else
1606 static inline void kick_process(struct task_struct *tsk) { }
1607 #endif
1608 
1609 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1610 
1611 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1612 {
1613         __set_task_comm(tsk, from, false);
1614 }
1615 
1616 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1617 #define get_task_comm(buf, tsk) ({                      \
1618         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1619         __get_task_comm(buf, sizeof(buf), tsk);         \
1620 })
1621 
1622 #ifdef CONFIG_SMP
1623 void scheduler_ipi(void);
1624 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1625 #else
1626 static inline void scheduler_ipi(void) { }
1627 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1628 {
1629         return 1;
1630 }
1631 #endif
1632 
1633 /*
1634  * Set thread flags in other task's structures.
1635  * See asm/thread_info.h for TIF_xxxx flags available:
1636  */
1637 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1638 {
1639         set_ti_thread_flag(task_thread_info(tsk), flag);
1640 }
1641 
1642 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1643 {
1644         clear_ti_thread_flag(task_thread_info(tsk), flag);
1645 }
1646 
1647 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1648                                           bool value)
1649 {
1650         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1651 }
1652 
1653 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1654 {
1655         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1656 }
1657 
1658 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1659 {
1660         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1661 }
1662 
1663 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1664 {
1665         return test_ti_thread_flag(task_thread_info(tsk), flag);
1666 }
1667 
1668 static inline void set_tsk_need_resched(struct task_struct *tsk)
1669 {
1670         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1671 }
1672 
1673 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1674 {
1675         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1676 }
1677 
1678 static inline int test_tsk_need_resched(struct task_struct *tsk)
1679 {
1680         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1681 }
1682 
1683 /*
1684  * cond_resched() and cond_resched_lock(): latency reduction via
1685  * explicit rescheduling in places that are safe. The return
1686  * value indicates whether a reschedule was done in fact.
1687  * cond_resched_lock() will drop the spinlock before scheduling,
1688  */
1689 #ifndef CONFIG_PREEMPT
1690 extern int _cond_resched(void);
1691 #else
1692 static inline int _cond_resched(void) { return 0; }
1693 #endif
1694 
1695 #define cond_resched() ({                       \
1696         ___might_sleep(__FILE__, __LINE__, 0);  \
1697         _cond_resched();                        \
1698 })
1699 
1700 extern int __cond_resched_lock(spinlock_t *lock);
1701 
1702 #define cond_resched_lock(lock) ({                              \
1703         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1704         __cond_resched_lock(lock);                              \
1705 })
1706 
1707 static inline void cond_resched_rcu(void)
1708 {
1709 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1710         rcu_read_unlock();
1711         cond_resched();
1712         rcu_read_lock();
1713 #endif
1714 }
1715 
1716 /*
1717  * Does a critical section need to be broken due to another
1718  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1719  * but a general need for low latency)
1720  */
1721 static inline int spin_needbreak(spinlock_t *lock)
1722 {
1723 #ifdef CONFIG_PREEMPT
1724         return spin_is_contended(lock);
1725 #else
1726         return 0;
1727 #endif
1728 }
1729 
1730 static __always_inline bool need_resched(void)
1731 {
1732         return unlikely(tif_need_resched());
1733 }
1734 
1735 /*
1736  * Wrappers for p->thread_info->cpu access. No-op on UP.
1737  */
1738 #ifdef CONFIG_SMP
1739 
1740 static inline unsigned int task_cpu(const struct task_struct *p)
1741 {
1742 #ifdef CONFIG_THREAD_INFO_IN_TASK
1743         return p->cpu;
1744 #else
1745         return task_thread_info(p)->cpu;
1746 #endif
1747 }
1748 
1749 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1750 
1751 #else
1752 
1753 static inline unsigned int task_cpu(const struct task_struct *p)
1754 {
1755         return 0;
1756 }
1757 
1758 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1759 {
1760 }
1761 
1762 #endif /* CONFIG_SMP */
1763 
1764 /*
1765  * In order to reduce various lock holder preemption latencies provide an
1766  * interface to see if a vCPU is currently running or not.
1767  *
1768  * This allows us to terminate optimistic spin loops and block, analogous to
1769  * the native optimistic spin heuristic of testing if the lock owner task is
1770  * running or not.
1771  */
1772 #ifndef vcpu_is_preempted
1773 # define vcpu_is_preempted(cpu) false
1774 #endif
1775 
1776 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1777 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1778 
1779 #ifndef TASK_SIZE_OF
1780 #define TASK_SIZE_OF(tsk)       TASK_SIZE
1781 #endif
1782 
1783 #ifdef CONFIG_RSEQ
1784 
1785 /*
1786  * Map the event mask on the user-space ABI enum rseq_cs_flags
1787  * for direct mask checks.
1788  */
1789 enum rseq_event_mask_bits {
1790         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1791         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1792         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1793 };
1794 
1795 enum rseq_event_mask {
1796         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1797         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1798         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1799 };
1800 
1801 static inline void rseq_set_notify_resume(struct task_struct *t)
1802 {
1803         if (t->rseq)
1804                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1805 }
1806 
1807 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1808 
1809 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1810                                              struct pt_regs *regs)
1811 {
1812         if (current->rseq)
1813                 __rseq_handle_notify_resume(ksig, regs);
1814 }
1815 
1816 static inline void rseq_signal_deliver(struct ksignal *ksig,
1817                                        struct pt_regs *regs)
1818 {
1819         preempt_disable();
1820         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1821         preempt_enable();
1822         rseq_handle_notify_resume(ksig, regs);
1823 }
1824 
1825 /* rseq_preempt() requires preemption to be disabled. */
1826 static inline void rseq_preempt(struct task_struct *t)
1827 {
1828         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1829         rseq_set_notify_resume(t);
1830 }
1831 
1832 /* rseq_migrate() requires preemption to be disabled. */
1833 static inline void rseq_migrate(struct task_struct *t)
1834 {
1835         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1836         rseq_set_notify_resume(t);
1837 }
1838 
1839 /*
1840  * If parent process has a registered restartable sequences area, the
1841  * child inherits. Only applies when forking a process, not a thread.
1842  */
1843 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1844 {
1845         if (clone_flags & CLONE_THREAD) {
1846                 t->rseq = NULL;
1847                 t->rseq_len = 0;
1848                 t->rseq_sig = 0;
1849                 t->rseq_event_mask = 0;
1850         } else {
1851                 t->rseq = current->rseq;
1852                 t->rseq_len = current->rseq_len;
1853                 t->rseq_sig = current->rseq_sig;
1854                 t->rseq_event_mask = current->rseq_event_mask;
1855         }
1856 }
1857 
1858 static inline void rseq_execve(struct task_struct *t)
1859 {
1860         t->rseq = NULL;
1861         t->rseq_len = 0;
1862         t->rseq_sig = 0;
1863         t->rseq_event_mask = 0;
1864 }
1865 
1866 #else
1867 
1868 static inline void rseq_set_notify_resume(struct task_struct *t)
1869 {
1870 }
1871 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1872                                              struct pt_regs *regs)
1873 {
1874 }
1875 static inline void rseq_signal_deliver(struct ksignal *ksig,
1876                                        struct pt_regs *regs)
1877 {
1878 }
1879 static inline void rseq_preempt(struct task_struct *t)
1880 {
1881 }
1882 static inline void rseq_migrate(struct task_struct *t)
1883 {
1884 }
1885 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1886 {
1887 }
1888 static inline void rseq_execve(struct task_struct *t)
1889 {
1890 }
1891 
1892 #endif
1893 
1894 #ifdef CONFIG_DEBUG_RSEQ
1895 
1896 void rseq_syscall(struct pt_regs *regs);
1897 
1898 #else
1899 
1900 static inline void rseq_syscall(struct pt_regs *regs)
1901 {
1902 }
1903 
1904 #endif
1905 
1906 #endif
1907 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp