1 #ifndef _LINUX_SCHED_SIGNAL_H 2 #define _LINUX_SCHED_SIGNAL_H 3 4 #include <linux/rculist.h> 5 #include <linux/signal.h> 6 #include <linux/sched.h> 7 #include <linux/sched/jobctl.h> 8 #include <linux/sched/task.h> 9 #include <linux/cred.h> 10 11 /* 12 * Types defining task->signal and task->sighand and APIs using them: 13 */ 14 15 struct sighand_struct { 16 atomic_t count; 17 struct k_sigaction action[_NSIG]; 18 spinlock_t siglock; 19 wait_queue_head_t signalfd_wqh; 20 }; 21 22 /* 23 * Per-process accounting stats: 24 */ 25 struct pacct_struct { 26 int ac_flag; 27 long ac_exitcode; 28 unsigned long ac_mem; 29 u64 ac_utime, ac_stime; 30 unsigned long ac_minflt, ac_majflt; 31 }; 32 33 struct cpu_itimer { 34 u64 expires; 35 u64 incr; 36 }; 37 38 /* 39 * This is the atomic variant of task_cputime, which can be used for 40 * storing and updating task_cputime statistics without locking. 41 */ 42 struct task_cputime_atomic { 43 atomic64_t utime; 44 atomic64_t stime; 45 atomic64_t sum_exec_runtime; 46 }; 47 48 #define INIT_CPUTIME_ATOMIC \ 49 (struct task_cputime_atomic) { \ 50 .utime = ATOMIC64_INIT(0), \ 51 .stime = ATOMIC64_INIT(0), \ 52 .sum_exec_runtime = ATOMIC64_INIT(0), \ 53 } 54 /** 55 * struct thread_group_cputimer - thread group interval timer counts 56 * @cputime_atomic: atomic thread group interval timers. 57 * @running: true when there are timers running and 58 * @cputime_atomic receives updates. 59 * @checking_timer: true when a thread in the group is in the 60 * process of checking for thread group timers. 61 * 62 * This structure contains the version of task_cputime, above, that is 63 * used for thread group CPU timer calculations. 64 */ 65 struct thread_group_cputimer { 66 struct task_cputime_atomic cputime_atomic; 67 bool running; 68 bool checking_timer; 69 }; 70 71 /* 72 * NOTE! "signal_struct" does not have its own 73 * locking, because a shared signal_struct always 74 * implies a shared sighand_struct, so locking 75 * sighand_struct is always a proper superset of 76 * the locking of signal_struct. 77 */ 78 struct signal_struct { 79 atomic_t sigcnt; 80 atomic_t live; 81 int nr_threads; 82 struct list_head thread_head; 83 84 wait_queue_head_t wait_chldexit; /* for wait4() */ 85 86 /* current thread group signal load-balancing target: */ 87 struct task_struct *curr_target; 88 89 /* shared signal handling: */ 90 struct sigpending shared_pending; 91 92 /* thread group exit support */ 93 int group_exit_code; 94 /* overloaded: 95 * - notify group_exit_task when ->count is equal to notify_count 96 * - everyone except group_exit_task is stopped during signal delivery 97 * of fatal signals, group_exit_task processes the signal. 98 */ 99 int notify_count; 100 struct task_struct *group_exit_task; 101 102 /* thread group stop support, overloads group_exit_code too */ 103 int group_stop_count; 104 unsigned int flags; /* see SIGNAL_* flags below */ 105 106 /* 107 * PR_SET_CHILD_SUBREAPER marks a process, like a service 108 * manager, to re-parent orphan (double-forking) child processes 109 * to this process instead of 'init'. The service manager is 110 * able to receive SIGCHLD signals and is able to investigate 111 * the process until it calls wait(). All children of this 112 * process will inherit a flag if they should look for a 113 * child_subreaper process at exit. 114 */ 115 unsigned int is_child_subreaper:1; 116 unsigned int has_child_subreaper:1; 117 118 #ifdef CONFIG_POSIX_TIMERS 119 120 /* POSIX.1b Interval Timers */ 121 int posix_timer_id; 122 struct list_head posix_timers; 123 124 /* ITIMER_REAL timer for the process */ 125 struct hrtimer real_timer; 126 ktime_t it_real_incr; 127 128 /* 129 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 130 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 131 * values are defined to 0 and 1 respectively 132 */ 133 struct cpu_itimer it[2]; 134 135 /* 136 * Thread group totals for process CPU timers. 137 * See thread_group_cputimer(), et al, for details. 138 */ 139 struct thread_group_cputimer cputimer; 140 141 /* Earliest-expiration cache. */ 142 struct task_cputime cputime_expires; 143 144 struct list_head cpu_timers[3]; 145 146 #endif 147 148 struct pid *leader_pid; 149 150 #ifdef CONFIG_NO_HZ_FULL 151 atomic_t tick_dep_mask; 152 #endif 153 154 struct pid *tty_old_pgrp; 155 156 /* boolean value for session group leader */ 157 int leader; 158 159 struct tty_struct *tty; /* NULL if no tty */ 160 161 #ifdef CONFIG_SCHED_AUTOGROUP 162 struct autogroup *autogroup; 163 #endif 164 /* 165 * Cumulative resource counters for dead threads in the group, 166 * and for reaped dead child processes forked by this group. 167 * Live threads maintain their own counters and add to these 168 * in __exit_signal, except for the group leader. 169 */ 170 seqlock_t stats_lock; 171 u64 utime, stime, cutime, cstime; 172 u64 gtime; 173 u64 cgtime; 174 struct prev_cputime prev_cputime; 175 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 176 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 177 unsigned long inblock, oublock, cinblock, coublock; 178 unsigned long maxrss, cmaxrss; 179 struct task_io_accounting ioac; 180 181 /* 182 * Cumulative ns of schedule CPU time fo dead threads in the 183 * group, not including a zombie group leader, (This only differs 184 * from jiffies_to_ns(utime + stime) if sched_clock uses something 185 * other than jiffies.) 186 */ 187 unsigned long long sum_sched_runtime; 188 189 /* 190 * We don't bother to synchronize most readers of this at all, 191 * because there is no reader checking a limit that actually needs 192 * to get both rlim_cur and rlim_max atomically, and either one 193 * alone is a single word that can safely be read normally. 194 * getrlimit/setrlimit use task_lock(current->group_leader) to 195 * protect this instead of the siglock, because they really 196 * have no need to disable irqs. 197 */ 198 struct rlimit rlim[RLIM_NLIMITS]; 199 200 #ifdef CONFIG_BSD_PROCESS_ACCT 201 struct pacct_struct pacct; /* per-process accounting information */ 202 #endif 203 #ifdef CONFIG_TASKSTATS 204 struct taskstats *stats; 205 #endif 206 #ifdef CONFIG_AUDIT 207 unsigned audit_tty; 208 struct tty_audit_buf *tty_audit_buf; 209 #endif 210 211 /* 212 * Thread is the potential origin of an oom condition; kill first on 213 * oom 214 */ 215 bool oom_flag_origin; 216 short oom_score_adj; /* OOM kill score adjustment */ 217 short oom_score_adj_min; /* OOM kill score adjustment min value. 218 * Only settable by CAP_SYS_RESOURCE. */ 219 struct mm_struct *oom_mm; /* recorded mm when the thread group got 220 * killed by the oom killer */ 221 222 struct mutex cred_guard_mutex; /* guard against foreign influences on 223 * credential calculations 224 * (notably. ptrace) */ 225 }; 226 227 /* 228 * Bits in flags field of signal_struct. 229 */ 230 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 231 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 232 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 233 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 234 /* 235 * Pending notifications to parent. 236 */ 237 #define SIGNAL_CLD_STOPPED 0x00000010 238 #define SIGNAL_CLD_CONTINUED 0x00000020 239 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 240 241 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 242 243 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 244 SIGNAL_STOP_CONTINUED) 245 246 static inline void signal_set_stop_flags(struct signal_struct *sig, 247 unsigned int flags) 248 { 249 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 250 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 251 } 252 253 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 254 static inline int signal_group_exit(const struct signal_struct *sig) 255 { 256 return (sig->flags & SIGNAL_GROUP_EXIT) || 257 (sig->group_exit_task != NULL); 258 } 259 260 extern void flush_signals(struct task_struct *); 261 extern void ignore_signals(struct task_struct *); 262 extern void flush_signal_handlers(struct task_struct *, int force_default); 263 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 264 265 static inline int kernel_dequeue_signal(siginfo_t *info) 266 { 267 struct task_struct *tsk = current; 268 siginfo_t __info; 269 int ret; 270 271 spin_lock_irq(&tsk->sighand->siglock); 272 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 273 spin_unlock_irq(&tsk->sighand->siglock); 274 275 return ret; 276 } 277 278 static inline void kernel_signal_stop(void) 279 { 280 spin_lock_irq(¤t->sighand->siglock); 281 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 282 __set_current_state(TASK_STOPPED); 283 spin_unlock_irq(¤t->sighand->siglock); 284 285 schedule(); 286 } 287 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 288 extern int force_sigsegv(int, struct task_struct *); 289 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 290 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 291 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 292 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 293 const struct cred *, u32); 294 extern int kill_pgrp(struct pid *pid, int sig, int priv); 295 extern int kill_pid(struct pid *pid, int sig, int priv); 296 extern int kill_proc_info(int, struct siginfo *, pid_t); 297 extern __must_check bool do_notify_parent(struct task_struct *, int); 298 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 299 extern void force_sig(int, struct task_struct *); 300 extern int send_sig(int, struct task_struct *, int); 301 extern int zap_other_threads(struct task_struct *p); 302 extern struct sigqueue *sigqueue_alloc(void); 303 extern void sigqueue_free(struct sigqueue *); 304 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 305 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 306 307 static inline int restart_syscall(void) 308 { 309 set_tsk_thread_flag(current, TIF_SIGPENDING); 310 return -ERESTARTNOINTR; 311 } 312 313 static inline int signal_pending(struct task_struct *p) 314 { 315 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 316 } 317 318 static inline int __fatal_signal_pending(struct task_struct *p) 319 { 320 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 321 } 322 323 static inline int fatal_signal_pending(struct task_struct *p) 324 { 325 return signal_pending(p) && __fatal_signal_pending(p); 326 } 327 328 static inline int signal_pending_state(long state, struct task_struct *p) 329 { 330 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 331 return 0; 332 if (!signal_pending(p)) 333 return 0; 334 335 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 336 } 337 338 /* 339 * Reevaluate whether the task has signals pending delivery. 340 * Wake the task if so. 341 * This is required every time the blocked sigset_t changes. 342 * callers must hold sighand->siglock. 343 */ 344 extern void recalc_sigpending_and_wake(struct task_struct *t); 345 extern void recalc_sigpending(void); 346 347 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 348 349 static inline void signal_wake_up(struct task_struct *t, bool resume) 350 { 351 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 352 } 353 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 354 { 355 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 356 } 357 358 #ifdef TIF_RESTORE_SIGMASK 359 /* 360 * Legacy restore_sigmask accessors. These are inefficient on 361 * SMP architectures because they require atomic operations. 362 */ 363 364 /** 365 * set_restore_sigmask() - make sure saved_sigmask processing gets done 366 * 367 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 368 * will run before returning to user mode, to process the flag. For 369 * all callers, TIF_SIGPENDING is already set or it's no harm to set 370 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 371 * arch code will notice on return to user mode, in case those bits 372 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 373 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 374 */ 375 static inline void set_restore_sigmask(void) 376 { 377 set_thread_flag(TIF_RESTORE_SIGMASK); 378 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 379 } 380 static inline void clear_restore_sigmask(void) 381 { 382 clear_thread_flag(TIF_RESTORE_SIGMASK); 383 } 384 static inline bool test_restore_sigmask(void) 385 { 386 return test_thread_flag(TIF_RESTORE_SIGMASK); 387 } 388 static inline bool test_and_clear_restore_sigmask(void) 389 { 390 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 391 } 392 393 #else /* TIF_RESTORE_SIGMASK */ 394 395 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 396 static inline void set_restore_sigmask(void) 397 { 398 current->restore_sigmask = true; 399 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 400 } 401 static inline void clear_restore_sigmask(void) 402 { 403 current->restore_sigmask = false; 404 } 405 static inline bool test_restore_sigmask(void) 406 { 407 return current->restore_sigmask; 408 } 409 static inline bool test_and_clear_restore_sigmask(void) 410 { 411 if (!current->restore_sigmask) 412 return false; 413 current->restore_sigmask = false; 414 return true; 415 } 416 #endif 417 418 static inline void restore_saved_sigmask(void) 419 { 420 if (test_and_clear_restore_sigmask()) 421 __set_current_blocked(¤t->saved_sigmask); 422 } 423 424 static inline sigset_t *sigmask_to_save(void) 425 { 426 sigset_t *res = ¤t->blocked; 427 if (unlikely(test_restore_sigmask())) 428 res = ¤t->saved_sigmask; 429 return res; 430 } 431 432 static inline int kill_cad_pid(int sig, int priv) 433 { 434 return kill_pid(cad_pid, sig, priv); 435 } 436 437 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 438 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 439 #define SEND_SIG_PRIV ((struct siginfo *) 1) 440 #define SEND_SIG_FORCED ((struct siginfo *) 2) 441 442 /* 443 * True if we are on the alternate signal stack. 444 */ 445 static inline int on_sig_stack(unsigned long sp) 446 { 447 /* 448 * If the signal stack is SS_AUTODISARM then, by construction, we 449 * can't be on the signal stack unless user code deliberately set 450 * SS_AUTODISARM when we were already on it. 451 * 452 * This improves reliability: if user state gets corrupted such that 453 * the stack pointer points very close to the end of the signal stack, 454 * then this check will enable the signal to be handled anyway. 455 */ 456 if (current->sas_ss_flags & SS_AUTODISARM) 457 return 0; 458 459 #ifdef CONFIG_STACK_GROWSUP 460 return sp >= current->sas_ss_sp && 461 sp - current->sas_ss_sp < current->sas_ss_size; 462 #else 463 return sp > current->sas_ss_sp && 464 sp - current->sas_ss_sp <= current->sas_ss_size; 465 #endif 466 } 467 468 static inline int sas_ss_flags(unsigned long sp) 469 { 470 if (!current->sas_ss_size) 471 return SS_DISABLE; 472 473 return on_sig_stack(sp) ? SS_ONSTACK : 0; 474 } 475 476 static inline void sas_ss_reset(struct task_struct *p) 477 { 478 p->sas_ss_sp = 0; 479 p->sas_ss_size = 0; 480 p->sas_ss_flags = SS_DISABLE; 481 } 482 483 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 484 { 485 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 486 #ifdef CONFIG_STACK_GROWSUP 487 return current->sas_ss_sp; 488 #else 489 return current->sas_ss_sp + current->sas_ss_size; 490 #endif 491 return sp; 492 } 493 494 extern void __cleanup_sighand(struct sighand_struct *); 495 extern void flush_itimer_signals(void); 496 497 #define tasklist_empty() \ 498 list_empty(&init_task.tasks) 499 500 #define next_task(p) \ 501 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 502 503 #define for_each_process(p) \ 504 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 505 506 extern bool current_is_single_threaded(void); 507 508 /* 509 * Careful: do_each_thread/while_each_thread is a double loop so 510 * 'break' will not work as expected - use goto instead. 511 */ 512 #define do_each_thread(g, t) \ 513 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 514 515 #define while_each_thread(g, t) \ 516 while ((t = next_thread(t)) != g) 517 518 #define __for_each_thread(signal, t) \ 519 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 520 521 #define for_each_thread(p, t) \ 522 __for_each_thread((p)->signal, t) 523 524 /* Careful: this is a double loop, 'break' won't work as expected. */ 525 #define for_each_process_thread(p, t) \ 526 for_each_process(p) for_each_thread(p, t) 527 528 typedef int (*proc_visitor)(struct task_struct *p, void *data); 529 void walk_process_tree(struct task_struct *top, proc_visitor, void *); 530 531 static inline int get_nr_threads(struct task_struct *tsk) 532 { 533 return tsk->signal->nr_threads; 534 } 535 536 static inline bool thread_group_leader(struct task_struct *p) 537 { 538 return p->exit_signal >= 0; 539 } 540 541 /* Do to the insanities of de_thread it is possible for a process 542 * to have the pid of the thread group leader without actually being 543 * the thread group leader. For iteration through the pids in proc 544 * all we care about is that we have a task with the appropriate 545 * pid, we don't actually care if we have the right task. 546 */ 547 static inline bool has_group_leader_pid(struct task_struct *p) 548 { 549 return task_pid(p) == p->signal->leader_pid; 550 } 551 552 static inline 553 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 554 { 555 return p1->signal == p2->signal; 556 } 557 558 static inline struct task_struct *next_thread(const struct task_struct *p) 559 { 560 return list_entry_rcu(p->thread_group.next, 561 struct task_struct, thread_group); 562 } 563 564 static inline int thread_group_empty(struct task_struct *p) 565 { 566 return list_empty(&p->thread_group); 567 } 568 569 #define delay_group_leader(p) \ 570 (thread_group_leader(p) && !thread_group_empty(p)) 571 572 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 573 unsigned long *flags); 574 575 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 576 unsigned long *flags) 577 { 578 struct sighand_struct *ret; 579 580 ret = __lock_task_sighand(tsk, flags); 581 (void)__cond_lock(&tsk->sighand->siglock, ret); 582 return ret; 583 } 584 585 static inline void unlock_task_sighand(struct task_struct *tsk, 586 unsigned long *flags) 587 { 588 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 589 } 590 591 static inline unsigned long task_rlimit(const struct task_struct *tsk, 592 unsigned int limit) 593 { 594 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 595 } 596 597 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 598 unsigned int limit) 599 { 600 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 601 } 602 603 static inline unsigned long rlimit(unsigned int limit) 604 { 605 return task_rlimit(current, limit); 606 } 607 608 static inline unsigned long rlimit_max(unsigned int limit) 609 { 610 return task_rlimit_max(current, limit); 611 } 612 613 #endif /* _LINUX_SCHED_SIGNAL_H */ 614
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.