~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/sched/signal.h

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _LINUX_SCHED_SIGNAL_H
  2 #define _LINUX_SCHED_SIGNAL_H
  3 
  4 #include <linux/rculist.h>
  5 #include <linux/signal.h>
  6 #include <linux/sched.h>
  7 #include <linux/sched/jobctl.h>
  8 #include <linux/sched/task.h>
  9 #include <linux/cred.h>
 10 
 11 /*
 12  * Types defining task->signal and task->sighand and APIs using them:
 13  */
 14 
 15 struct sighand_struct {
 16         atomic_t                count;
 17         struct k_sigaction      action[_NSIG];
 18         spinlock_t              siglock;
 19         wait_queue_head_t       signalfd_wqh;
 20 };
 21 
 22 /*
 23  * Per-process accounting stats:
 24  */
 25 struct pacct_struct {
 26         int                     ac_flag;
 27         long                    ac_exitcode;
 28         unsigned long           ac_mem;
 29         u64                     ac_utime, ac_stime;
 30         unsigned long           ac_minflt, ac_majflt;
 31 };
 32 
 33 struct cpu_itimer {
 34         u64 expires;
 35         u64 incr;
 36 };
 37 
 38 /*
 39  * This is the atomic variant of task_cputime, which can be used for
 40  * storing and updating task_cputime statistics without locking.
 41  */
 42 struct task_cputime_atomic {
 43         atomic64_t utime;
 44         atomic64_t stime;
 45         atomic64_t sum_exec_runtime;
 46 };
 47 
 48 #define INIT_CPUTIME_ATOMIC \
 49         (struct task_cputime_atomic) {                          \
 50                 .utime = ATOMIC64_INIT(0),                      \
 51                 .stime = ATOMIC64_INIT(0),                      \
 52                 .sum_exec_runtime = ATOMIC64_INIT(0),           \
 53         }
 54 /**
 55  * struct thread_group_cputimer - thread group interval timer counts
 56  * @cputime_atomic:     atomic thread group interval timers.
 57  * @running:            true when there are timers running and
 58  *                      @cputime_atomic receives updates.
 59  * @checking_timer:     true when a thread in the group is in the
 60  *                      process of checking for thread group timers.
 61  *
 62  * This structure contains the version of task_cputime, above, that is
 63  * used for thread group CPU timer calculations.
 64  */
 65 struct thread_group_cputimer {
 66         struct task_cputime_atomic cputime_atomic;
 67         bool running;
 68         bool checking_timer;
 69 };
 70 
 71 /*
 72  * NOTE! "signal_struct" does not have its own
 73  * locking, because a shared signal_struct always
 74  * implies a shared sighand_struct, so locking
 75  * sighand_struct is always a proper superset of
 76  * the locking of signal_struct.
 77  */
 78 struct signal_struct {
 79         atomic_t                sigcnt;
 80         atomic_t                live;
 81         int                     nr_threads;
 82         struct list_head        thread_head;
 83 
 84         wait_queue_head_t       wait_chldexit;  /* for wait4() */
 85 
 86         /* current thread group signal load-balancing target: */
 87         struct task_struct      *curr_target;
 88 
 89         /* shared signal handling: */
 90         struct sigpending       shared_pending;
 91 
 92         /* thread group exit support */
 93         int                     group_exit_code;
 94         /* overloaded:
 95          * - notify group_exit_task when ->count is equal to notify_count
 96          * - everyone except group_exit_task is stopped during signal delivery
 97          *   of fatal signals, group_exit_task processes the signal.
 98          */
 99         int                     notify_count;
100         struct task_struct      *group_exit_task;
101 
102         /* thread group stop support, overloads group_exit_code too */
103         int                     group_stop_count;
104         unsigned int            flags; /* see SIGNAL_* flags below */
105 
106         /*
107          * PR_SET_CHILD_SUBREAPER marks a process, like a service
108          * manager, to re-parent orphan (double-forking) child processes
109          * to this process instead of 'init'. The service manager is
110          * able to receive SIGCHLD signals and is able to investigate
111          * the process until it calls wait(). All children of this
112          * process will inherit a flag if they should look for a
113          * child_subreaper process at exit.
114          */
115         unsigned int            is_child_subreaper:1;
116         unsigned int            has_child_subreaper:1;
117 
118 #ifdef CONFIG_POSIX_TIMERS
119 
120         /* POSIX.1b Interval Timers */
121         int                     posix_timer_id;
122         struct list_head        posix_timers;
123 
124         /* ITIMER_REAL timer for the process */
125         struct hrtimer real_timer;
126         ktime_t it_real_incr;
127 
128         /*
129          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
130          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
131          * values are defined to 0 and 1 respectively
132          */
133         struct cpu_itimer it[2];
134 
135         /*
136          * Thread group totals for process CPU timers.
137          * See thread_group_cputimer(), et al, for details.
138          */
139         struct thread_group_cputimer cputimer;
140 
141         /* Earliest-expiration cache. */
142         struct task_cputime cputime_expires;
143 
144         struct list_head cpu_timers[3];
145 
146 #endif
147 
148         struct pid *leader_pid;
149 
150 #ifdef CONFIG_NO_HZ_FULL
151         atomic_t tick_dep_mask;
152 #endif
153 
154         struct pid *tty_old_pgrp;
155 
156         /* boolean value for session group leader */
157         int leader;
158 
159         struct tty_struct *tty; /* NULL if no tty */
160 
161 #ifdef CONFIG_SCHED_AUTOGROUP
162         struct autogroup *autogroup;
163 #endif
164         /*
165          * Cumulative resource counters for dead threads in the group,
166          * and for reaped dead child processes forked by this group.
167          * Live threads maintain their own counters and add to these
168          * in __exit_signal, except for the group leader.
169          */
170         seqlock_t stats_lock;
171         u64 utime, stime, cutime, cstime;
172         u64 gtime;
173         u64 cgtime;
174         struct prev_cputime prev_cputime;
175         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
176         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
177         unsigned long inblock, oublock, cinblock, coublock;
178         unsigned long maxrss, cmaxrss;
179         struct task_io_accounting ioac;
180 
181         /*
182          * Cumulative ns of schedule CPU time fo dead threads in the
183          * group, not including a zombie group leader, (This only differs
184          * from jiffies_to_ns(utime + stime) if sched_clock uses something
185          * other than jiffies.)
186          */
187         unsigned long long sum_sched_runtime;
188 
189         /*
190          * We don't bother to synchronize most readers of this at all,
191          * because there is no reader checking a limit that actually needs
192          * to get both rlim_cur and rlim_max atomically, and either one
193          * alone is a single word that can safely be read normally.
194          * getrlimit/setrlimit use task_lock(current->group_leader) to
195          * protect this instead of the siglock, because they really
196          * have no need to disable irqs.
197          */
198         struct rlimit rlim[RLIM_NLIMITS];
199 
200 #ifdef CONFIG_BSD_PROCESS_ACCT
201         struct pacct_struct pacct;      /* per-process accounting information */
202 #endif
203 #ifdef CONFIG_TASKSTATS
204         struct taskstats *stats;
205 #endif
206 #ifdef CONFIG_AUDIT
207         unsigned audit_tty;
208         struct tty_audit_buf *tty_audit_buf;
209 #endif
210 
211         /*
212          * Thread is the potential origin of an oom condition; kill first on
213          * oom
214          */
215         bool oom_flag_origin;
216         short oom_score_adj;            /* OOM kill score adjustment */
217         short oom_score_adj_min;        /* OOM kill score adjustment min value.
218                                          * Only settable by CAP_SYS_RESOURCE. */
219         struct mm_struct *oom_mm;       /* recorded mm when the thread group got
220                                          * killed by the oom killer */
221 
222         struct mutex cred_guard_mutex;  /* guard against foreign influences on
223                                          * credential calculations
224                                          * (notably. ptrace) */
225 };
226 
227 /*
228  * Bits in flags field of signal_struct.
229  */
230 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
231 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
232 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
233 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
234 /*
235  * Pending notifications to parent.
236  */
237 #define SIGNAL_CLD_STOPPED      0x00000010
238 #define SIGNAL_CLD_CONTINUED    0x00000020
239 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
240 
241 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
242 
243 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
244                           SIGNAL_STOP_CONTINUED)
245 
246 static inline void signal_set_stop_flags(struct signal_struct *sig,
247                                          unsigned int flags)
248 {
249         WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
250         sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
251 }
252 
253 /* If true, all threads except ->group_exit_task have pending SIGKILL */
254 static inline int signal_group_exit(const struct signal_struct *sig)
255 {
256         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
257                 (sig->group_exit_task != NULL);
258 }
259 
260 extern void flush_signals(struct task_struct *);
261 extern void ignore_signals(struct task_struct *);
262 extern void flush_signal_handlers(struct task_struct *, int force_default);
263 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
264 
265 static inline int kernel_dequeue_signal(siginfo_t *info)
266 {
267         struct task_struct *tsk = current;
268         siginfo_t __info;
269         int ret;
270 
271         spin_lock_irq(&tsk->sighand->siglock);
272         ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
273         spin_unlock_irq(&tsk->sighand->siglock);
274 
275         return ret;
276 }
277 
278 static inline void kernel_signal_stop(void)
279 {
280         spin_lock_irq(&current->sighand->siglock);
281         if (current->jobctl & JOBCTL_STOP_DEQUEUED)
282                 __set_current_state(TASK_STOPPED);
283         spin_unlock_irq(&current->sighand->siglock);
284 
285         schedule();
286 }
287 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
288 extern int force_sigsegv(int, struct task_struct *);
289 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
290 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
291 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
292 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
293                                 const struct cred *, u32);
294 extern int kill_pgrp(struct pid *pid, int sig, int priv);
295 extern int kill_pid(struct pid *pid, int sig, int priv);
296 extern int kill_proc_info(int, struct siginfo *, pid_t);
297 extern __must_check bool do_notify_parent(struct task_struct *, int);
298 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
299 extern void force_sig(int, struct task_struct *);
300 extern int send_sig(int, struct task_struct *, int);
301 extern int zap_other_threads(struct task_struct *p);
302 extern struct sigqueue *sigqueue_alloc(void);
303 extern void sigqueue_free(struct sigqueue *);
304 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
305 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
306 
307 static inline int restart_syscall(void)
308 {
309         set_tsk_thread_flag(current, TIF_SIGPENDING);
310         return -ERESTARTNOINTR;
311 }
312 
313 static inline int signal_pending(struct task_struct *p)
314 {
315         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
316 }
317 
318 static inline int __fatal_signal_pending(struct task_struct *p)
319 {
320         return unlikely(sigismember(&p->pending.signal, SIGKILL));
321 }
322 
323 static inline int fatal_signal_pending(struct task_struct *p)
324 {
325         return signal_pending(p) && __fatal_signal_pending(p);
326 }
327 
328 static inline int signal_pending_state(long state, struct task_struct *p)
329 {
330         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
331                 return 0;
332         if (!signal_pending(p))
333                 return 0;
334 
335         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
336 }
337 
338 /*
339  * Reevaluate whether the task has signals pending delivery.
340  * Wake the task if so.
341  * This is required every time the blocked sigset_t changes.
342  * callers must hold sighand->siglock.
343  */
344 extern void recalc_sigpending_and_wake(struct task_struct *t);
345 extern void recalc_sigpending(void);
346 
347 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
348 
349 static inline void signal_wake_up(struct task_struct *t, bool resume)
350 {
351         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
352 }
353 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
354 {
355         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
356 }
357 
358 #ifdef TIF_RESTORE_SIGMASK
359 /*
360  * Legacy restore_sigmask accessors.  These are inefficient on
361  * SMP architectures because they require atomic operations.
362  */
363 
364 /**
365  * set_restore_sigmask() - make sure saved_sigmask processing gets done
366  *
367  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
368  * will run before returning to user mode, to process the flag.  For
369  * all callers, TIF_SIGPENDING is already set or it's no harm to set
370  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
371  * arch code will notice on return to user mode, in case those bits
372  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
373  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
374  */
375 static inline void set_restore_sigmask(void)
376 {
377         set_thread_flag(TIF_RESTORE_SIGMASK);
378         WARN_ON(!test_thread_flag(TIF_SIGPENDING));
379 }
380 static inline void clear_restore_sigmask(void)
381 {
382         clear_thread_flag(TIF_RESTORE_SIGMASK);
383 }
384 static inline bool test_restore_sigmask(void)
385 {
386         return test_thread_flag(TIF_RESTORE_SIGMASK);
387 }
388 static inline bool test_and_clear_restore_sigmask(void)
389 {
390         return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
391 }
392 
393 #else   /* TIF_RESTORE_SIGMASK */
394 
395 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
396 static inline void set_restore_sigmask(void)
397 {
398         current->restore_sigmask = true;
399         WARN_ON(!test_thread_flag(TIF_SIGPENDING));
400 }
401 static inline void clear_restore_sigmask(void)
402 {
403         current->restore_sigmask = false;
404 }
405 static inline bool test_restore_sigmask(void)
406 {
407         return current->restore_sigmask;
408 }
409 static inline bool test_and_clear_restore_sigmask(void)
410 {
411         if (!current->restore_sigmask)
412                 return false;
413         current->restore_sigmask = false;
414         return true;
415 }
416 #endif
417 
418 static inline void restore_saved_sigmask(void)
419 {
420         if (test_and_clear_restore_sigmask())
421                 __set_current_blocked(&current->saved_sigmask);
422 }
423 
424 static inline sigset_t *sigmask_to_save(void)
425 {
426         sigset_t *res = &current->blocked;
427         if (unlikely(test_restore_sigmask()))
428                 res = &current->saved_sigmask;
429         return res;
430 }
431 
432 static inline int kill_cad_pid(int sig, int priv)
433 {
434         return kill_pid(cad_pid, sig, priv);
435 }
436 
437 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
438 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
439 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
440 #define SEND_SIG_FORCED ((struct siginfo *) 2)
441 
442 /*
443  * True if we are on the alternate signal stack.
444  */
445 static inline int on_sig_stack(unsigned long sp)
446 {
447         /*
448          * If the signal stack is SS_AUTODISARM then, by construction, we
449          * can't be on the signal stack unless user code deliberately set
450          * SS_AUTODISARM when we were already on it.
451          *
452          * This improves reliability: if user state gets corrupted such that
453          * the stack pointer points very close to the end of the signal stack,
454          * then this check will enable the signal to be handled anyway.
455          */
456         if (current->sas_ss_flags & SS_AUTODISARM)
457                 return 0;
458 
459 #ifdef CONFIG_STACK_GROWSUP
460         return sp >= current->sas_ss_sp &&
461                 sp - current->sas_ss_sp < current->sas_ss_size;
462 #else
463         return sp > current->sas_ss_sp &&
464                 sp - current->sas_ss_sp <= current->sas_ss_size;
465 #endif
466 }
467 
468 static inline int sas_ss_flags(unsigned long sp)
469 {
470         if (!current->sas_ss_size)
471                 return SS_DISABLE;
472 
473         return on_sig_stack(sp) ? SS_ONSTACK : 0;
474 }
475 
476 static inline void sas_ss_reset(struct task_struct *p)
477 {
478         p->sas_ss_sp = 0;
479         p->sas_ss_size = 0;
480         p->sas_ss_flags = SS_DISABLE;
481 }
482 
483 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
484 {
485         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
486 #ifdef CONFIG_STACK_GROWSUP
487                 return current->sas_ss_sp;
488 #else
489                 return current->sas_ss_sp + current->sas_ss_size;
490 #endif
491         return sp;
492 }
493 
494 extern void __cleanup_sighand(struct sighand_struct *);
495 extern void flush_itimer_signals(void);
496 
497 #define tasklist_empty() \
498         list_empty(&init_task.tasks)
499 
500 #define next_task(p) \
501         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
502 
503 #define for_each_process(p) \
504         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
505 
506 extern bool current_is_single_threaded(void);
507 
508 /*
509  * Careful: do_each_thread/while_each_thread is a double loop so
510  *          'break' will not work as expected - use goto instead.
511  */
512 #define do_each_thread(g, t) \
513         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
514 
515 #define while_each_thread(g, t) \
516         while ((t = next_thread(t)) != g)
517 
518 #define __for_each_thread(signal, t)    \
519         list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
520 
521 #define for_each_thread(p, t)           \
522         __for_each_thread((p)->signal, t)
523 
524 /* Careful: this is a double loop, 'break' won't work as expected. */
525 #define for_each_process_thread(p, t)   \
526         for_each_process(p) for_each_thread(p, t)
527 
528 typedef int (*proc_visitor)(struct task_struct *p, void *data);
529 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
530 
531 static inline int get_nr_threads(struct task_struct *tsk)
532 {
533         return tsk->signal->nr_threads;
534 }
535 
536 static inline bool thread_group_leader(struct task_struct *p)
537 {
538         return p->exit_signal >= 0;
539 }
540 
541 /* Do to the insanities of de_thread it is possible for a process
542  * to have the pid of the thread group leader without actually being
543  * the thread group leader.  For iteration through the pids in proc
544  * all we care about is that we have a task with the appropriate
545  * pid, we don't actually care if we have the right task.
546  */
547 static inline bool has_group_leader_pid(struct task_struct *p)
548 {
549         return task_pid(p) == p->signal->leader_pid;
550 }
551 
552 static inline
553 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
554 {
555         return p1->signal == p2->signal;
556 }
557 
558 static inline struct task_struct *next_thread(const struct task_struct *p)
559 {
560         return list_entry_rcu(p->thread_group.next,
561                               struct task_struct, thread_group);
562 }
563 
564 static inline int thread_group_empty(struct task_struct *p)
565 {
566         return list_empty(&p->thread_group);
567 }
568 
569 #define delay_group_leader(p) \
570                 (thread_group_leader(p) && !thread_group_empty(p))
571 
572 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
573                                                         unsigned long *flags);
574 
575 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
576                                                        unsigned long *flags)
577 {
578         struct sighand_struct *ret;
579 
580         ret = __lock_task_sighand(tsk, flags);
581         (void)__cond_lock(&tsk->sighand->siglock, ret);
582         return ret;
583 }
584 
585 static inline void unlock_task_sighand(struct task_struct *tsk,
586                                                 unsigned long *flags)
587 {
588         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
589 }
590 
591 static inline unsigned long task_rlimit(const struct task_struct *tsk,
592                 unsigned int limit)
593 {
594         return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
595 }
596 
597 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
598                 unsigned int limit)
599 {
600         return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
601 }
602 
603 static inline unsigned long rlimit(unsigned int limit)
604 {
605         return task_rlimit(current, limit);
606 }
607 
608 static inline unsigned long rlimit_max(unsigned int limit)
609 {
610         return task_rlimit_max(current, limit);
611 }
612 
613 #endif /* _LINUX_SCHED_SIGNAL_H */
614 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp