1 /* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 #ifndef _LINUX_SKBUFF_H 15 #define _LINUX_SKBUFF_H 16 17 #include <linux/kernel.h> 18 #include <linux/kmemcheck.h> 19 #include <linux/compiler.h> 20 #include <linux/time.h> 21 #include <linux/bug.h> 22 #include <linux/cache.h> 23 24 #include <linux/atomic.h> 25 #include <asm/types.h> 26 #include <linux/spinlock.h> 27 #include <linux/net.h> 28 #include <linux/textsearch.h> 29 #include <net/checksum.h> 30 #include <linux/rcupdate.h> 31 #include <linux/dmaengine.h> 32 #include <linux/hrtimer.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/netdev_features.h> 35 #include <net/flow_keys.h> 36 37 /* Don't change this without changing skb_csum_unnecessary! */ 38 #define CHECKSUM_NONE 0 39 #define CHECKSUM_UNNECESSARY 1 40 #define CHECKSUM_COMPLETE 2 41 #define CHECKSUM_PARTIAL 3 42 43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 44 ~(SMP_CACHE_BYTES - 1)) 45 #define SKB_WITH_OVERHEAD(X) \ 46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 47 #define SKB_MAX_ORDER(X, ORDER) \ 48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 51 52 /* return minimum truesize of one skb containing X bytes of data */ 53 #define SKB_TRUESIZE(X) ((X) + \ 54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 56 57 /* A. Checksumming of received packets by device. 58 * 59 * NONE: device failed to checksum this packet. 60 * skb->csum is undefined. 61 * 62 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 63 * skb->csum is undefined. 64 * It is bad option, but, unfortunately, many of vendors do this. 65 * Apparently with secret goal to sell you new device, when you 66 * will add new protocol to your host. F.e. IPv6. 8) 67 * 68 * COMPLETE: the most generic way. Device supplied checksum of _all_ 69 * the packet as seen by netif_rx in skb->csum. 70 * NOTE: Even if device supports only some protocols, but 71 * is able to produce some skb->csum, it MUST use COMPLETE, 72 * not UNNECESSARY. 73 * 74 * PARTIAL: identical to the case for output below. This may occur 75 * on a packet received directly from another Linux OS, e.g., 76 * a virtualised Linux kernel on the same host. The packet can 77 * be treated in the same way as UNNECESSARY except that on 78 * output (i.e., forwarding) the checksum must be filled in 79 * by the OS or the hardware. 80 * 81 * B. Checksumming on output. 82 * 83 * NONE: skb is checksummed by protocol or csum is not required. 84 * 85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit 86 * from skb->csum_start to the end and to record the checksum 87 * at skb->csum_start + skb->csum_offset. 88 * 89 * Device must show its capabilities in dev->features, set 90 * at device setup time. 91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 92 * everything. 93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 94 * TCP/UDP over IPv4. Sigh. Vendors like this 95 * way by an unknown reason. Though, see comment above 96 * about CHECKSUM_UNNECESSARY. 8) 97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. 98 * 99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers 100 * that do not want net to perform the checksum calculation should use 101 * this flag in their outgoing skbs. 102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109 struct net_device; 110 struct scatterlist; 111 struct pipe_inode_info; 112 113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 114 struct nf_conntrack { 115 atomic_t use; 116 }; 117 #endif 118 119 #ifdef CONFIG_BRIDGE_NETFILTER 120 struct nf_bridge_info { 121 atomic_t use; 122 unsigned int mask; 123 struct net_device *physindev; 124 struct net_device *physoutdev; 125 unsigned long data[32 / sizeof(unsigned long)]; 126 }; 127 #endif 128 129 struct sk_buff_head { 130 /* These two members must be first. */ 131 struct sk_buff *next; 132 struct sk_buff *prev; 133 134 __u32 qlen; 135 spinlock_t lock; 136 }; 137 138 struct sk_buff; 139 140 /* To allow 64K frame to be packed as single skb without frag_list we 141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 142 * buffers which do not start on a page boundary. 143 * 144 * Since GRO uses frags we allocate at least 16 regardless of page 145 * size. 146 */ 147 #if (65536/PAGE_SIZE + 1) < 16 148 #define MAX_SKB_FRAGS 16UL 149 #else 150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 151 #endif 152 153 typedef struct skb_frag_struct skb_frag_t; 154 155 struct skb_frag_struct { 156 struct { 157 struct page *p; 158 } page; 159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 160 __u32 page_offset; 161 __u32 size; 162 #else 163 __u16 page_offset; 164 __u16 size; 165 #endif 166 }; 167 168 static inline unsigned int skb_frag_size(const skb_frag_t *frag) 169 { 170 return frag->size; 171 } 172 173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 174 { 175 frag->size = size; 176 } 177 178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 179 { 180 frag->size += delta; 181 } 182 183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 184 { 185 frag->size -= delta; 186 } 187 188 #define HAVE_HW_TIME_STAMP 189 190 /** 191 * struct skb_shared_hwtstamps - hardware time stamps 192 * @hwtstamp: hardware time stamp transformed into duration 193 * since arbitrary point in time 194 * @syststamp: hwtstamp transformed to system time base 195 * 196 * Software time stamps generated by ktime_get_real() are stored in 197 * skb->tstamp. The relation between the different kinds of time 198 * stamps is as follows: 199 * 200 * syststamp and tstamp can be compared against each other in 201 * arbitrary combinations. The accuracy of a 202 * syststamp/tstamp/"syststamp from other device" comparison is 203 * limited by the accuracy of the transformation into system time 204 * base. This depends on the device driver and its underlying 205 * hardware. 206 * 207 * hwtstamps can only be compared against other hwtstamps from 208 * the same device. 209 * 210 * This structure is attached to packets as part of the 211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 212 */ 213 struct skb_shared_hwtstamps { 214 ktime_t hwtstamp; 215 ktime_t syststamp; 216 }; 217 218 /* Definitions for tx_flags in struct skb_shared_info */ 219 enum { 220 /* generate hardware time stamp */ 221 SKBTX_HW_TSTAMP = 1 << 0, 222 223 /* generate software time stamp */ 224 SKBTX_SW_TSTAMP = 1 << 1, 225 226 /* device driver is going to provide hardware time stamp */ 227 SKBTX_IN_PROGRESS = 1 << 2, 228 229 /* device driver supports TX zero-copy buffers */ 230 SKBTX_DEV_ZEROCOPY = 1 << 3, 231 232 /* generate wifi status information (where possible) */ 233 SKBTX_WIFI_STATUS = 1 << 4, 234 235 /* This indicates at least one fragment might be overwritten 236 * (as in vmsplice(), sendfile() ...) 237 * If we need to compute a TX checksum, we'll need to copy 238 * all frags to avoid possible bad checksum 239 */ 240 SKBTX_SHARED_FRAG = 1 << 5, 241 }; 242 243 /* 244 * The callback notifies userspace to release buffers when skb DMA is done in 245 * lower device, the skb last reference should be 0 when calling this. 246 * The zerocopy_success argument is true if zero copy transmit occurred, 247 * false on data copy or out of memory error caused by data copy attempt. 248 * The ctx field is used to track device context. 249 * The desc field is used to track userspace buffer index. 250 */ 251 struct ubuf_info { 252 void (*callback)(struct ubuf_info *, bool zerocopy_success); 253 void *ctx; 254 unsigned long desc; 255 }; 256 257 /* This data is invariant across clones and lives at 258 * the end of the header data, ie. at skb->end. 259 */ 260 struct skb_shared_info { 261 unsigned char nr_frags; 262 __u8 tx_flags; 263 unsigned short gso_size; 264 /* Warning: this field is not always filled in (UFO)! */ 265 unsigned short gso_segs; 266 unsigned short gso_type; 267 struct sk_buff *frag_list; 268 struct skb_shared_hwtstamps hwtstamps; 269 __be32 ip6_frag_id; 270 271 /* 272 * Warning : all fields before dataref are cleared in __alloc_skb() 273 */ 274 atomic_t dataref; 275 276 /* Intermediate layers must ensure that destructor_arg 277 * remains valid until skb destructor */ 278 void * destructor_arg; 279 280 /* must be last field, see pskb_expand_head() */ 281 skb_frag_t frags[MAX_SKB_FRAGS]; 282 }; 283 284 /* We divide dataref into two halves. The higher 16 bits hold references 285 * to the payload part of skb->data. The lower 16 bits hold references to 286 * the entire skb->data. A clone of a headerless skb holds the length of 287 * the header in skb->hdr_len. 288 * 289 * All users must obey the rule that the skb->data reference count must be 290 * greater than or equal to the payload reference count. 291 * 292 * Holding a reference to the payload part means that the user does not 293 * care about modifications to the header part of skb->data. 294 */ 295 #define SKB_DATAREF_SHIFT 16 296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 297 298 299 enum { 300 SKB_FCLONE_UNAVAILABLE, 301 SKB_FCLONE_ORIG, 302 SKB_FCLONE_CLONE, 303 }; 304 305 enum { 306 SKB_GSO_TCPV4 = 1 << 0, 307 SKB_GSO_UDP = 1 << 1, 308 309 /* This indicates the skb is from an untrusted source. */ 310 SKB_GSO_DODGY = 1 << 2, 311 312 /* This indicates the tcp segment has CWR set. */ 313 SKB_GSO_TCP_ECN = 1 << 3, 314 315 SKB_GSO_TCPV6 = 1 << 4, 316 317 SKB_GSO_FCOE = 1 << 5, 318 319 SKB_GSO_GRE = 1 << 6, 320 321 SKB_GSO_UDP_TUNNEL = 1 << 7, 322 323 SKB_GSO_MPLS = 1 << 8, 324 }; 325 326 #if BITS_PER_LONG > 32 327 #define NET_SKBUFF_DATA_USES_OFFSET 1 328 #endif 329 330 #ifdef NET_SKBUFF_DATA_USES_OFFSET 331 typedef unsigned int sk_buff_data_t; 332 #else 333 typedef unsigned char *sk_buff_data_t; 334 #endif 335 336 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ 337 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) 338 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 339 #endif 340 341 /** 342 * struct sk_buff - socket buffer 343 * @next: Next buffer in list 344 * @prev: Previous buffer in list 345 * @tstamp: Time we arrived 346 * @sk: Socket we are owned by 347 * @dev: Device we arrived on/are leaving by 348 * @cb: Control buffer. Free for use by every layer. Put private vars here 349 * @_skb_refdst: destination entry (with norefcount bit) 350 * @sp: the security path, used for xfrm 351 * @len: Length of actual data 352 * @data_len: Data length 353 * @mac_len: Length of link layer header 354 * @hdr_len: writable header length of cloned skb 355 * @csum: Checksum (must include start/offset pair) 356 * @csum_start: Offset from skb->head where checksumming should start 357 * @csum_offset: Offset from csum_start where checksum should be stored 358 * @priority: Packet queueing priority 359 * @local_df: allow local fragmentation 360 * @cloned: Head may be cloned (check refcnt to be sure) 361 * @ip_summed: Driver fed us an IP checksum 362 * @nohdr: Payload reference only, must not modify header 363 * @nfctinfo: Relationship of this skb to the connection 364 * @pkt_type: Packet class 365 * @fclone: skbuff clone status 366 * @ipvs_property: skbuff is owned by ipvs 367 * @peeked: this packet has been seen already, so stats have been 368 * done for it, don't do them again 369 * @nf_trace: netfilter packet trace flag 370 * @protocol: Packet protocol from driver 371 * @destructor: Destruct function 372 * @nfct: Associated connection, if any 373 * @nfct_reasm: netfilter conntrack re-assembly pointer 374 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 375 * @skb_iif: ifindex of device we arrived on 376 * @tc_index: Traffic control index 377 * @tc_verd: traffic control verdict 378 * @rxhash: the packet hash computed on receive 379 * @queue_mapping: Queue mapping for multiqueue devices 380 * @ndisc_nodetype: router type (from link layer) 381 * @ooo_okay: allow the mapping of a socket to a queue to be changed 382 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport 383 * ports. 384 * @wifi_acked_valid: wifi_acked was set 385 * @wifi_acked: whether frame was acked on wifi or not 386 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 387 * @dma_cookie: a cookie to one of several possible DMA operations 388 * done by skb DMA functions 389 * @napi_id: id of the NAPI struct this skb came from 390 * @secmark: security marking 391 * @mark: Generic packet mark 392 * @dropcount: total number of sk_receive_queue overflows 393 * @vlan_proto: vlan encapsulation protocol 394 * @vlan_tci: vlan tag control information 395 * @inner_protocol: Protocol (encapsulation) 396 * @inner_transport_header: Inner transport layer header (encapsulation) 397 * @inner_network_header: Network layer header (encapsulation) 398 * @inner_mac_header: Link layer header (encapsulation) 399 * @transport_header: Transport layer header 400 * @network_header: Network layer header 401 * @mac_header: Link layer header 402 * @tail: Tail pointer 403 * @end: End pointer 404 * @head: Head of buffer 405 * @data: Data head pointer 406 * @truesize: Buffer size 407 * @users: User count - see {datagram,tcp}.c 408 */ 409 410 struct sk_buff { 411 /* These two members must be first. */ 412 struct sk_buff *next; 413 struct sk_buff *prev; 414 415 ktime_t tstamp; 416 417 struct sock *sk; 418 struct net_device *dev; 419 420 /* 421 * This is the control buffer. It is free to use for every 422 * layer. Please put your private variables there. If you 423 * want to keep them across layers you have to do a skb_clone() 424 * first. This is owned by whoever has the skb queued ATM. 425 */ 426 char cb[48] __aligned(8); 427 428 unsigned long _skb_refdst; 429 #ifdef CONFIG_XFRM 430 struct sec_path *sp; 431 #endif 432 unsigned int len, 433 data_len; 434 __u16 mac_len, 435 hdr_len; 436 union { 437 __wsum csum; 438 struct { 439 __u16 csum_start; 440 __u16 csum_offset; 441 }; 442 }; 443 __u32 priority; 444 kmemcheck_bitfield_begin(flags1); 445 __u8 local_df:1, 446 cloned:1, 447 ip_summed:2, 448 nohdr:1, 449 nfctinfo:3; 450 __u8 pkt_type:3, 451 fclone:2, 452 ipvs_property:1, 453 peeked:1, 454 nf_trace:1; 455 kmemcheck_bitfield_end(flags1); 456 __be16 protocol; 457 458 void (*destructor)(struct sk_buff *skb); 459 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 460 struct nf_conntrack *nfct; 461 #endif 462 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 463 struct sk_buff *nfct_reasm; 464 #endif 465 #ifdef CONFIG_BRIDGE_NETFILTER 466 struct nf_bridge_info *nf_bridge; 467 #endif 468 469 int skb_iif; 470 471 __u32 rxhash; 472 473 __be16 vlan_proto; 474 __u16 vlan_tci; 475 476 #ifdef CONFIG_NET_SCHED 477 __u16 tc_index; /* traffic control index */ 478 #ifdef CONFIG_NET_CLS_ACT 479 __u16 tc_verd; /* traffic control verdict */ 480 #endif 481 #endif 482 483 __u16 queue_mapping; 484 kmemcheck_bitfield_begin(flags2); 485 #ifdef CONFIG_IPV6_NDISC_NODETYPE 486 __u8 ndisc_nodetype:2; 487 #endif 488 __u8 pfmemalloc:1; 489 __u8 ooo_okay:1; 490 __u8 l4_rxhash:1; 491 __u8 wifi_acked_valid:1; 492 __u8 wifi_acked:1; 493 __u8 no_fcs:1; 494 __u8 head_frag:1; 495 /* Encapsulation protocol and NIC drivers should use 496 * this flag to indicate to each other if the skb contains 497 * encapsulated packet or not and maybe use the inner packet 498 * headers if needed 499 */ 500 __u8 encapsulation:1; 501 /* 7/9 bit hole (depending on ndisc_nodetype presence) */ 502 kmemcheck_bitfield_end(flags2); 503 504 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 505 union { 506 unsigned int napi_id; 507 dma_cookie_t dma_cookie; 508 }; 509 #endif 510 #ifdef CONFIG_NETWORK_SECMARK 511 __u32 secmark; 512 #endif 513 union { 514 __u32 mark; 515 __u32 dropcount; 516 __u32 reserved_tailroom; 517 }; 518 519 __be16 inner_protocol; 520 __u16 inner_transport_header; 521 __u16 inner_network_header; 522 __u16 inner_mac_header; 523 __u16 transport_header; 524 __u16 network_header; 525 __u16 mac_header; 526 /* These elements must be at the end, see alloc_skb() for details. */ 527 sk_buff_data_t tail; 528 sk_buff_data_t end; 529 unsigned char *head, 530 *data; 531 unsigned int truesize; 532 atomic_t users; 533 }; 534 535 #ifdef __KERNEL__ 536 /* 537 * Handling routines are only of interest to the kernel 538 */ 539 #include <linux/slab.h> 540 541 542 #define SKB_ALLOC_FCLONE 0x01 543 #define SKB_ALLOC_RX 0x02 544 545 /* Returns true if the skb was allocated from PFMEMALLOC reserves */ 546 static inline bool skb_pfmemalloc(const struct sk_buff *skb) 547 { 548 return unlikely(skb->pfmemalloc); 549 } 550 551 /* 552 * skb might have a dst pointer attached, refcounted or not. 553 * _skb_refdst low order bit is set if refcount was _not_ taken 554 */ 555 #define SKB_DST_NOREF 1UL 556 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 557 558 /** 559 * skb_dst - returns skb dst_entry 560 * @skb: buffer 561 * 562 * Returns skb dst_entry, regardless of reference taken or not. 563 */ 564 static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 565 { 566 /* If refdst was not refcounted, check we still are in a 567 * rcu_read_lock section 568 */ 569 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 570 !rcu_read_lock_held() && 571 !rcu_read_lock_bh_held()); 572 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 573 } 574 575 /** 576 * skb_dst_set - sets skb dst 577 * @skb: buffer 578 * @dst: dst entry 579 * 580 * Sets skb dst, assuming a reference was taken on dst and should 581 * be released by skb_dst_drop() 582 */ 583 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 584 { 585 skb->_skb_refdst = (unsigned long)dst; 586 } 587 588 extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 589 bool force); 590 591 /** 592 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 593 * @skb: buffer 594 * @dst: dst entry 595 * 596 * Sets skb dst, assuming a reference was not taken on dst. 597 * If dst entry is cached, we do not take reference and dst_release 598 * will be avoided by refdst_drop. If dst entry is not cached, we take 599 * reference, so that last dst_release can destroy the dst immediately. 600 */ 601 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 602 { 603 __skb_dst_set_noref(skb, dst, false); 604 } 605 606 /** 607 * skb_dst_set_noref_force - sets skb dst, without taking reference 608 * @skb: buffer 609 * @dst: dst entry 610 * 611 * Sets skb dst, assuming a reference was not taken on dst. 612 * No reference is taken and no dst_release will be called. While for 613 * cached dsts deferred reclaim is a basic feature, for entries that are 614 * not cached it is caller's job to guarantee that last dst_release for 615 * provided dst happens when nobody uses it, eg. after a RCU grace period. 616 */ 617 static inline void skb_dst_set_noref_force(struct sk_buff *skb, 618 struct dst_entry *dst) 619 { 620 __skb_dst_set_noref(skb, dst, true); 621 } 622 623 /** 624 * skb_dst_is_noref - Test if skb dst isn't refcounted 625 * @skb: buffer 626 */ 627 static inline bool skb_dst_is_noref(const struct sk_buff *skb) 628 { 629 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 630 } 631 632 static inline struct rtable *skb_rtable(const struct sk_buff *skb) 633 { 634 return (struct rtable *)skb_dst(skb); 635 } 636 637 extern void kfree_skb(struct sk_buff *skb); 638 extern void kfree_skb_list(struct sk_buff *segs); 639 extern void skb_tx_error(struct sk_buff *skb); 640 extern void consume_skb(struct sk_buff *skb); 641 extern void __kfree_skb(struct sk_buff *skb); 642 extern struct kmem_cache *skbuff_head_cache; 643 644 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 645 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 646 bool *fragstolen, int *delta_truesize); 647 648 extern struct sk_buff *__alloc_skb(unsigned int size, 649 gfp_t priority, int flags, int node); 650 extern struct sk_buff *build_skb(void *data, unsigned int frag_size); 651 static inline struct sk_buff *alloc_skb(unsigned int size, 652 gfp_t priority) 653 { 654 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 655 } 656 657 static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 658 gfp_t priority) 659 { 660 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 661 } 662 663 extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 664 static inline struct sk_buff *alloc_skb_head(gfp_t priority) 665 { 666 return __alloc_skb_head(priority, -1); 667 } 668 669 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 670 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 671 extern struct sk_buff *skb_clone(struct sk_buff *skb, 672 gfp_t priority); 673 extern struct sk_buff *skb_copy(const struct sk_buff *skb, 674 gfp_t priority); 675 extern struct sk_buff *__pskb_copy(struct sk_buff *skb, 676 int headroom, gfp_t gfp_mask); 677 678 extern int pskb_expand_head(struct sk_buff *skb, 679 int nhead, int ntail, 680 gfp_t gfp_mask); 681 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 682 unsigned int headroom); 683 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 684 int newheadroom, int newtailroom, 685 gfp_t priority); 686 extern int skb_to_sgvec(struct sk_buff *skb, 687 struct scatterlist *sg, int offset, 688 int len); 689 extern int skb_cow_data(struct sk_buff *skb, int tailbits, 690 struct sk_buff **trailer); 691 extern int skb_pad(struct sk_buff *skb, int pad); 692 #define dev_kfree_skb(a) consume_skb(a) 693 694 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 695 int getfrag(void *from, char *to, int offset, 696 int len,int odd, struct sk_buff *skb), 697 void *from, int length); 698 699 struct skb_seq_state { 700 __u32 lower_offset; 701 __u32 upper_offset; 702 __u32 frag_idx; 703 __u32 stepped_offset; 704 struct sk_buff *root_skb; 705 struct sk_buff *cur_skb; 706 __u8 *frag_data; 707 }; 708 709 extern void skb_prepare_seq_read(struct sk_buff *skb, 710 unsigned int from, unsigned int to, 711 struct skb_seq_state *st); 712 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 713 struct skb_seq_state *st); 714 extern void skb_abort_seq_read(struct skb_seq_state *st); 715 716 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 717 unsigned int to, struct ts_config *config, 718 struct ts_state *state); 719 720 extern void __skb_get_rxhash(struct sk_buff *skb); 721 static inline __u32 skb_get_rxhash(struct sk_buff *skb) 722 { 723 if (!skb->l4_rxhash) 724 __skb_get_rxhash(skb); 725 726 return skb->rxhash; 727 } 728 729 #ifdef NET_SKBUFF_DATA_USES_OFFSET 730 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 731 { 732 return skb->head + skb->end; 733 } 734 735 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 736 { 737 return skb->end; 738 } 739 #else 740 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 741 { 742 return skb->end; 743 } 744 745 static inline unsigned int skb_end_offset(const struct sk_buff *skb) 746 { 747 return skb->end - skb->head; 748 } 749 #endif 750 751 /* Internal */ 752 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 753 754 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 755 { 756 return &skb_shinfo(skb)->hwtstamps; 757 } 758 759 /** 760 * skb_queue_empty - check if a queue is empty 761 * @list: queue head 762 * 763 * Returns true if the queue is empty, false otherwise. 764 */ 765 static inline int skb_queue_empty(const struct sk_buff_head *list) 766 { 767 return list->next == (struct sk_buff *)list; 768 } 769 770 /** 771 * skb_queue_is_last - check if skb is the last entry in the queue 772 * @list: queue head 773 * @skb: buffer 774 * 775 * Returns true if @skb is the last buffer on the list. 776 */ 777 static inline bool skb_queue_is_last(const struct sk_buff_head *list, 778 const struct sk_buff *skb) 779 { 780 return skb->next == (struct sk_buff *)list; 781 } 782 783 /** 784 * skb_queue_is_first - check if skb is the first entry in the queue 785 * @list: queue head 786 * @skb: buffer 787 * 788 * Returns true if @skb is the first buffer on the list. 789 */ 790 static inline bool skb_queue_is_first(const struct sk_buff_head *list, 791 const struct sk_buff *skb) 792 { 793 return skb->prev == (struct sk_buff *)list; 794 } 795 796 /** 797 * skb_queue_next - return the next packet in the queue 798 * @list: queue head 799 * @skb: current buffer 800 * 801 * Return the next packet in @list after @skb. It is only valid to 802 * call this if skb_queue_is_last() evaluates to false. 803 */ 804 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 805 const struct sk_buff *skb) 806 { 807 /* This BUG_ON may seem severe, but if we just return then we 808 * are going to dereference garbage. 809 */ 810 BUG_ON(skb_queue_is_last(list, skb)); 811 return skb->next; 812 } 813 814 /** 815 * skb_queue_prev - return the prev packet in the queue 816 * @list: queue head 817 * @skb: current buffer 818 * 819 * Return the prev packet in @list before @skb. It is only valid to 820 * call this if skb_queue_is_first() evaluates to false. 821 */ 822 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 823 const struct sk_buff *skb) 824 { 825 /* This BUG_ON may seem severe, but if we just return then we 826 * are going to dereference garbage. 827 */ 828 BUG_ON(skb_queue_is_first(list, skb)); 829 return skb->prev; 830 } 831 832 /** 833 * skb_get - reference buffer 834 * @skb: buffer to reference 835 * 836 * Makes another reference to a socket buffer and returns a pointer 837 * to the buffer. 838 */ 839 static inline struct sk_buff *skb_get(struct sk_buff *skb) 840 { 841 atomic_inc(&skb->users); 842 return skb; 843 } 844 845 /* 846 * If users == 1, we are the only owner and are can avoid redundant 847 * atomic change. 848 */ 849 850 /** 851 * skb_cloned - is the buffer a clone 852 * @skb: buffer to check 853 * 854 * Returns true if the buffer was generated with skb_clone() and is 855 * one of multiple shared copies of the buffer. Cloned buffers are 856 * shared data so must not be written to under normal circumstances. 857 */ 858 static inline int skb_cloned(const struct sk_buff *skb) 859 { 860 return skb->cloned && 861 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 862 } 863 864 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 865 { 866 might_sleep_if(pri & __GFP_WAIT); 867 868 if (skb_cloned(skb)) 869 return pskb_expand_head(skb, 0, 0, pri); 870 871 return 0; 872 } 873 874 /** 875 * skb_header_cloned - is the header a clone 876 * @skb: buffer to check 877 * 878 * Returns true if modifying the header part of the buffer requires 879 * the data to be copied. 880 */ 881 static inline int skb_header_cloned(const struct sk_buff *skb) 882 { 883 int dataref; 884 885 if (!skb->cloned) 886 return 0; 887 888 dataref = atomic_read(&skb_shinfo(skb)->dataref); 889 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 890 return dataref != 1; 891 } 892 893 /** 894 * skb_header_release - release reference to header 895 * @skb: buffer to operate on 896 * 897 * Drop a reference to the header part of the buffer. This is done 898 * by acquiring a payload reference. You must not read from the header 899 * part of skb->data after this. 900 */ 901 static inline void skb_header_release(struct sk_buff *skb) 902 { 903 BUG_ON(skb->nohdr); 904 skb->nohdr = 1; 905 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 906 } 907 908 /** 909 * skb_shared - is the buffer shared 910 * @skb: buffer to check 911 * 912 * Returns true if more than one person has a reference to this 913 * buffer. 914 */ 915 static inline int skb_shared(const struct sk_buff *skb) 916 { 917 return atomic_read(&skb->users) != 1; 918 } 919 920 /** 921 * skb_share_check - check if buffer is shared and if so clone it 922 * @skb: buffer to check 923 * @pri: priority for memory allocation 924 * 925 * If the buffer is shared the buffer is cloned and the old copy 926 * drops a reference. A new clone with a single reference is returned. 927 * If the buffer is not shared the original buffer is returned. When 928 * being called from interrupt status or with spinlocks held pri must 929 * be GFP_ATOMIC. 930 * 931 * NULL is returned on a memory allocation failure. 932 */ 933 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 934 { 935 might_sleep_if(pri & __GFP_WAIT); 936 if (skb_shared(skb)) { 937 struct sk_buff *nskb = skb_clone(skb, pri); 938 939 if (likely(nskb)) 940 consume_skb(skb); 941 else 942 kfree_skb(skb); 943 skb = nskb; 944 } 945 return skb; 946 } 947 948 /* 949 * Copy shared buffers into a new sk_buff. We effectively do COW on 950 * packets to handle cases where we have a local reader and forward 951 * and a couple of other messy ones. The normal one is tcpdumping 952 * a packet thats being forwarded. 953 */ 954 955 /** 956 * skb_unshare - make a copy of a shared buffer 957 * @skb: buffer to check 958 * @pri: priority for memory allocation 959 * 960 * If the socket buffer is a clone then this function creates a new 961 * copy of the data, drops a reference count on the old copy and returns 962 * the new copy with the reference count at 1. If the buffer is not a clone 963 * the original buffer is returned. When called with a spinlock held or 964 * from interrupt state @pri must be %GFP_ATOMIC 965 * 966 * %NULL is returned on a memory allocation failure. 967 */ 968 static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 969 gfp_t pri) 970 { 971 might_sleep_if(pri & __GFP_WAIT); 972 if (skb_cloned(skb)) { 973 struct sk_buff *nskb = skb_copy(skb, pri); 974 kfree_skb(skb); /* Free our shared copy */ 975 skb = nskb; 976 } 977 return skb; 978 } 979 980 /** 981 * skb_peek - peek at the head of an &sk_buff_head 982 * @list_: list to peek at 983 * 984 * Peek an &sk_buff. Unlike most other operations you _MUST_ 985 * be careful with this one. A peek leaves the buffer on the 986 * list and someone else may run off with it. You must hold 987 * the appropriate locks or have a private queue to do this. 988 * 989 * Returns %NULL for an empty list or a pointer to the head element. 990 * The reference count is not incremented and the reference is therefore 991 * volatile. Use with caution. 992 */ 993 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 994 { 995 struct sk_buff *skb = list_->next; 996 997 if (skb == (struct sk_buff *)list_) 998 skb = NULL; 999 return skb; 1000 } 1001 1002 /** 1003 * skb_peek_next - peek skb following the given one from a queue 1004 * @skb: skb to start from 1005 * @list_: list to peek at 1006 * 1007 * Returns %NULL when the end of the list is met or a pointer to the 1008 * next element. The reference count is not incremented and the 1009 * reference is therefore volatile. Use with caution. 1010 */ 1011 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1012 const struct sk_buff_head *list_) 1013 { 1014 struct sk_buff *next = skb->next; 1015 1016 if (next == (struct sk_buff *)list_) 1017 next = NULL; 1018 return next; 1019 } 1020 1021 /** 1022 * skb_peek_tail - peek at the tail of an &sk_buff_head 1023 * @list_: list to peek at 1024 * 1025 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1026 * be careful with this one. A peek leaves the buffer on the 1027 * list and someone else may run off with it. You must hold 1028 * the appropriate locks or have a private queue to do this. 1029 * 1030 * Returns %NULL for an empty list or a pointer to the tail element. 1031 * The reference count is not incremented and the reference is therefore 1032 * volatile. Use with caution. 1033 */ 1034 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1035 { 1036 struct sk_buff *skb = list_->prev; 1037 1038 if (skb == (struct sk_buff *)list_) 1039 skb = NULL; 1040 return skb; 1041 1042 } 1043 1044 /** 1045 * skb_queue_len - get queue length 1046 * @list_: list to measure 1047 * 1048 * Return the length of an &sk_buff queue. 1049 */ 1050 static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1051 { 1052 return list_->qlen; 1053 } 1054 1055 /** 1056 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1057 * @list: queue to initialize 1058 * 1059 * This initializes only the list and queue length aspects of 1060 * an sk_buff_head object. This allows to initialize the list 1061 * aspects of an sk_buff_head without reinitializing things like 1062 * the spinlock. It can also be used for on-stack sk_buff_head 1063 * objects where the spinlock is known to not be used. 1064 */ 1065 static inline void __skb_queue_head_init(struct sk_buff_head *list) 1066 { 1067 list->prev = list->next = (struct sk_buff *)list; 1068 list->qlen = 0; 1069 } 1070 1071 /* 1072 * This function creates a split out lock class for each invocation; 1073 * this is needed for now since a whole lot of users of the skb-queue 1074 * infrastructure in drivers have different locking usage (in hardirq) 1075 * than the networking core (in softirq only). In the long run either the 1076 * network layer or drivers should need annotation to consolidate the 1077 * main types of usage into 3 classes. 1078 */ 1079 static inline void skb_queue_head_init(struct sk_buff_head *list) 1080 { 1081 spin_lock_init(&list->lock); 1082 __skb_queue_head_init(list); 1083 } 1084 1085 static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1086 struct lock_class_key *class) 1087 { 1088 skb_queue_head_init(list); 1089 lockdep_set_class(&list->lock, class); 1090 } 1091 1092 /* 1093 * Insert an sk_buff on a list. 1094 * 1095 * The "__skb_xxxx()" functions are the non-atomic ones that 1096 * can only be called with interrupts disabled. 1097 */ 1098 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 1099 static inline void __skb_insert(struct sk_buff *newsk, 1100 struct sk_buff *prev, struct sk_buff *next, 1101 struct sk_buff_head *list) 1102 { 1103 newsk->next = next; 1104 newsk->prev = prev; 1105 next->prev = prev->next = newsk; 1106 list->qlen++; 1107 } 1108 1109 static inline void __skb_queue_splice(const struct sk_buff_head *list, 1110 struct sk_buff *prev, 1111 struct sk_buff *next) 1112 { 1113 struct sk_buff *first = list->next; 1114 struct sk_buff *last = list->prev; 1115 1116 first->prev = prev; 1117 prev->next = first; 1118 1119 last->next = next; 1120 next->prev = last; 1121 } 1122 1123 /** 1124 * skb_queue_splice - join two skb lists, this is designed for stacks 1125 * @list: the new list to add 1126 * @head: the place to add it in the first list 1127 */ 1128 static inline void skb_queue_splice(const struct sk_buff_head *list, 1129 struct sk_buff_head *head) 1130 { 1131 if (!skb_queue_empty(list)) { 1132 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1133 head->qlen += list->qlen; 1134 } 1135 } 1136 1137 /** 1138 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1139 * @list: the new list to add 1140 * @head: the place to add it in the first list 1141 * 1142 * The list at @list is reinitialised 1143 */ 1144 static inline void skb_queue_splice_init(struct sk_buff_head *list, 1145 struct sk_buff_head *head) 1146 { 1147 if (!skb_queue_empty(list)) { 1148 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1149 head->qlen += list->qlen; 1150 __skb_queue_head_init(list); 1151 } 1152 } 1153 1154 /** 1155 * skb_queue_splice_tail - join two skb lists, each list being a queue 1156 * @list: the new list to add 1157 * @head: the place to add it in the first list 1158 */ 1159 static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1160 struct sk_buff_head *head) 1161 { 1162 if (!skb_queue_empty(list)) { 1163 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1164 head->qlen += list->qlen; 1165 } 1166 } 1167 1168 /** 1169 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1170 * @list: the new list to add 1171 * @head: the place to add it in the first list 1172 * 1173 * Each of the lists is a queue. 1174 * The list at @list is reinitialised 1175 */ 1176 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1177 struct sk_buff_head *head) 1178 { 1179 if (!skb_queue_empty(list)) { 1180 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1181 head->qlen += list->qlen; 1182 __skb_queue_head_init(list); 1183 } 1184 } 1185 1186 /** 1187 * __skb_queue_after - queue a buffer at the list head 1188 * @list: list to use 1189 * @prev: place after this buffer 1190 * @newsk: buffer to queue 1191 * 1192 * Queue a buffer int the middle of a list. This function takes no locks 1193 * and you must therefore hold required locks before calling it. 1194 * 1195 * A buffer cannot be placed on two lists at the same time. 1196 */ 1197 static inline void __skb_queue_after(struct sk_buff_head *list, 1198 struct sk_buff *prev, 1199 struct sk_buff *newsk) 1200 { 1201 __skb_insert(newsk, prev, prev->next, list); 1202 } 1203 1204 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1205 struct sk_buff_head *list); 1206 1207 static inline void __skb_queue_before(struct sk_buff_head *list, 1208 struct sk_buff *next, 1209 struct sk_buff *newsk) 1210 { 1211 __skb_insert(newsk, next->prev, next, list); 1212 } 1213 1214 /** 1215 * __skb_queue_head - queue a buffer at the list head 1216 * @list: list to use 1217 * @newsk: buffer to queue 1218 * 1219 * Queue a buffer at the start of a list. This function takes no locks 1220 * and you must therefore hold required locks before calling it. 1221 * 1222 * A buffer cannot be placed on two lists at the same time. 1223 */ 1224 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1225 static inline void __skb_queue_head(struct sk_buff_head *list, 1226 struct sk_buff *newsk) 1227 { 1228 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1229 } 1230 1231 /** 1232 * __skb_queue_tail - queue a buffer at the list tail 1233 * @list: list to use 1234 * @newsk: buffer to queue 1235 * 1236 * Queue a buffer at the end of a list. This function takes no locks 1237 * and you must therefore hold required locks before calling it. 1238 * 1239 * A buffer cannot be placed on two lists at the same time. 1240 */ 1241 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1242 static inline void __skb_queue_tail(struct sk_buff_head *list, 1243 struct sk_buff *newsk) 1244 { 1245 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1246 } 1247 1248 /* 1249 * remove sk_buff from list. _Must_ be called atomically, and with 1250 * the list known.. 1251 */ 1252 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1253 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1254 { 1255 struct sk_buff *next, *prev; 1256 1257 list->qlen--; 1258 next = skb->next; 1259 prev = skb->prev; 1260 skb->next = skb->prev = NULL; 1261 next->prev = prev; 1262 prev->next = next; 1263 } 1264 1265 /** 1266 * __skb_dequeue - remove from the head of the queue 1267 * @list: list to dequeue from 1268 * 1269 * Remove the head of the list. This function does not take any locks 1270 * so must be used with appropriate locks held only. The head item is 1271 * returned or %NULL if the list is empty. 1272 */ 1273 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1274 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1275 { 1276 struct sk_buff *skb = skb_peek(list); 1277 if (skb) 1278 __skb_unlink(skb, list); 1279 return skb; 1280 } 1281 1282 /** 1283 * __skb_dequeue_tail - remove from the tail of the queue 1284 * @list: list to dequeue from 1285 * 1286 * Remove the tail of the list. This function does not take any locks 1287 * so must be used with appropriate locks held only. The tail item is 1288 * returned or %NULL if the list is empty. 1289 */ 1290 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1291 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1292 { 1293 struct sk_buff *skb = skb_peek_tail(list); 1294 if (skb) 1295 __skb_unlink(skb, list); 1296 return skb; 1297 } 1298 1299 1300 static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1301 { 1302 return skb->data_len; 1303 } 1304 1305 static inline unsigned int skb_headlen(const struct sk_buff *skb) 1306 { 1307 return skb->len - skb->data_len; 1308 } 1309 1310 static inline int skb_pagelen(const struct sk_buff *skb) 1311 { 1312 int i, len = 0; 1313 1314 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1315 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1316 return len + skb_headlen(skb); 1317 } 1318 1319 static inline bool skb_has_frags(const struct sk_buff *skb) 1320 { 1321 return skb_shinfo(skb)->nr_frags; 1322 } 1323 1324 /** 1325 * __skb_fill_page_desc - initialise a paged fragment in an skb 1326 * @skb: buffer containing fragment to be initialised 1327 * @i: paged fragment index to initialise 1328 * @page: the page to use for this fragment 1329 * @off: the offset to the data with @page 1330 * @size: the length of the data 1331 * 1332 * Initialises the @i'th fragment of @skb to point to &size bytes at 1333 * offset @off within @page. 1334 * 1335 * Does not take any additional reference on the fragment. 1336 */ 1337 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1338 struct page *page, int off, int size) 1339 { 1340 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1341 1342 /* 1343 * Propagate page->pfmemalloc to the skb if we can. The problem is 1344 * that not all callers have unique ownership of the page. If 1345 * pfmemalloc is set, we check the mapping as a mapping implies 1346 * page->index is set (index and pfmemalloc share space). 1347 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1348 * do not lose pfmemalloc information as the pages would not be 1349 * allocated using __GFP_MEMALLOC. 1350 */ 1351 frag->page.p = page; 1352 frag->page_offset = off; 1353 skb_frag_size_set(frag, size); 1354 1355 page = compound_head(page); 1356 if (page->pfmemalloc && !page->mapping) 1357 skb->pfmemalloc = true; 1358 } 1359 1360 /** 1361 * skb_fill_page_desc - initialise a paged fragment in an skb 1362 * @skb: buffer containing fragment to be initialised 1363 * @i: paged fragment index to initialise 1364 * @page: the page to use for this fragment 1365 * @off: the offset to the data with @page 1366 * @size: the length of the data 1367 * 1368 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1369 * @skb to point to &size bytes at offset @off within @page. In 1370 * addition updates @skb such that @i is the last fragment. 1371 * 1372 * Does not take any additional reference on the fragment. 1373 */ 1374 static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1375 struct page *page, int off, int size) 1376 { 1377 __skb_fill_page_desc(skb, i, page, off, size); 1378 skb_shinfo(skb)->nr_frags = i + 1; 1379 } 1380 1381 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, 1382 int off, int size, unsigned int truesize); 1383 1384 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1385 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1386 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1387 1388 #ifdef NET_SKBUFF_DATA_USES_OFFSET 1389 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1390 { 1391 return skb->head + skb->tail; 1392 } 1393 1394 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1395 { 1396 skb->tail = skb->data - skb->head; 1397 } 1398 1399 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1400 { 1401 skb_reset_tail_pointer(skb); 1402 skb->tail += offset; 1403 } 1404 1405 #else /* NET_SKBUFF_DATA_USES_OFFSET */ 1406 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1407 { 1408 return skb->tail; 1409 } 1410 1411 static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1412 { 1413 skb->tail = skb->data; 1414 } 1415 1416 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1417 { 1418 skb->tail = skb->data + offset; 1419 } 1420 1421 #endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1422 1423 /* 1424 * Add data to an sk_buff 1425 */ 1426 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1427 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1428 { 1429 unsigned char *tmp = skb_tail_pointer(skb); 1430 SKB_LINEAR_ASSERT(skb); 1431 skb->tail += len; 1432 skb->len += len; 1433 return tmp; 1434 } 1435 1436 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1437 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1438 { 1439 skb->data -= len; 1440 skb->len += len; 1441 return skb->data; 1442 } 1443 1444 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1445 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1446 { 1447 skb->len -= len; 1448 BUG_ON(skb->len < skb->data_len); 1449 return skb->data += len; 1450 } 1451 1452 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1453 { 1454 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1455 } 1456 1457 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1458 1459 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1460 { 1461 if (len > skb_headlen(skb) && 1462 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1463 return NULL; 1464 skb->len -= len; 1465 return skb->data += len; 1466 } 1467 1468 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1469 { 1470 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1471 } 1472 1473 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1474 { 1475 if (likely(len <= skb_headlen(skb))) 1476 return 1; 1477 if (unlikely(len > skb->len)) 1478 return 0; 1479 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1480 } 1481 1482 /** 1483 * skb_headroom - bytes at buffer head 1484 * @skb: buffer to check 1485 * 1486 * Return the number of bytes of free space at the head of an &sk_buff. 1487 */ 1488 static inline unsigned int skb_headroom(const struct sk_buff *skb) 1489 { 1490 return skb->data - skb->head; 1491 } 1492 1493 /** 1494 * skb_tailroom - bytes at buffer end 1495 * @skb: buffer to check 1496 * 1497 * Return the number of bytes of free space at the tail of an sk_buff 1498 */ 1499 static inline int skb_tailroom(const struct sk_buff *skb) 1500 { 1501 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1502 } 1503 1504 /** 1505 * skb_availroom - bytes at buffer end 1506 * @skb: buffer to check 1507 * 1508 * Return the number of bytes of free space at the tail of an sk_buff 1509 * allocated by sk_stream_alloc() 1510 */ 1511 static inline int skb_availroom(const struct sk_buff *skb) 1512 { 1513 if (skb_is_nonlinear(skb)) 1514 return 0; 1515 1516 return skb->end - skb->tail - skb->reserved_tailroom; 1517 } 1518 1519 /** 1520 * skb_reserve - adjust headroom 1521 * @skb: buffer to alter 1522 * @len: bytes to move 1523 * 1524 * Increase the headroom of an empty &sk_buff by reducing the tail 1525 * room. This is only allowed for an empty buffer. 1526 */ 1527 static inline void skb_reserve(struct sk_buff *skb, int len) 1528 { 1529 skb->data += len; 1530 skb->tail += len; 1531 } 1532 1533 static inline void skb_reset_inner_headers(struct sk_buff *skb) 1534 { 1535 skb->inner_mac_header = skb->mac_header; 1536 skb->inner_network_header = skb->network_header; 1537 skb->inner_transport_header = skb->transport_header; 1538 } 1539 1540 static inline void skb_reset_mac_len(struct sk_buff *skb) 1541 { 1542 skb->mac_len = skb->network_header - skb->mac_header; 1543 } 1544 1545 static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1546 *skb) 1547 { 1548 return skb->head + skb->inner_transport_header; 1549 } 1550 1551 static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1552 { 1553 skb->inner_transport_header = skb->data - skb->head; 1554 } 1555 1556 static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1557 const int offset) 1558 { 1559 skb_reset_inner_transport_header(skb); 1560 skb->inner_transport_header += offset; 1561 } 1562 1563 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1564 { 1565 return skb->head + skb->inner_network_header; 1566 } 1567 1568 static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1569 { 1570 skb->inner_network_header = skb->data - skb->head; 1571 } 1572 1573 static inline void skb_set_inner_network_header(struct sk_buff *skb, 1574 const int offset) 1575 { 1576 skb_reset_inner_network_header(skb); 1577 skb->inner_network_header += offset; 1578 } 1579 1580 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1581 { 1582 return skb->head + skb->inner_mac_header; 1583 } 1584 1585 static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1586 { 1587 skb->inner_mac_header = skb->data - skb->head; 1588 } 1589 1590 static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1591 const int offset) 1592 { 1593 skb_reset_inner_mac_header(skb); 1594 skb->inner_mac_header += offset; 1595 } 1596 static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1597 { 1598 return skb->transport_header != (typeof(skb->transport_header))~0U; 1599 } 1600 1601 static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1602 { 1603 return skb->head + skb->transport_header; 1604 } 1605 1606 static inline void skb_reset_transport_header(struct sk_buff *skb) 1607 { 1608 skb->transport_header = skb->data - skb->head; 1609 } 1610 1611 static inline void skb_set_transport_header(struct sk_buff *skb, 1612 const int offset) 1613 { 1614 skb_reset_transport_header(skb); 1615 skb->transport_header += offset; 1616 } 1617 1618 static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1619 { 1620 return skb->head + skb->network_header; 1621 } 1622 1623 static inline void skb_reset_network_header(struct sk_buff *skb) 1624 { 1625 skb->network_header = skb->data - skb->head; 1626 } 1627 1628 static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1629 { 1630 skb_reset_network_header(skb); 1631 skb->network_header += offset; 1632 } 1633 1634 static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1635 { 1636 return skb->head + skb->mac_header; 1637 } 1638 1639 static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1640 { 1641 return skb->mac_header != (typeof(skb->mac_header))~0U; 1642 } 1643 1644 static inline void skb_reset_mac_header(struct sk_buff *skb) 1645 { 1646 skb->mac_header = skb->data - skb->head; 1647 } 1648 1649 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1650 { 1651 skb_reset_mac_header(skb); 1652 skb->mac_header += offset; 1653 } 1654 1655 static inline void skb_probe_transport_header(struct sk_buff *skb, 1656 const int offset_hint) 1657 { 1658 struct flow_keys keys; 1659 1660 if (skb_transport_header_was_set(skb)) 1661 return; 1662 else if (skb_flow_dissect(skb, &keys)) 1663 skb_set_transport_header(skb, keys.thoff); 1664 else 1665 skb_set_transport_header(skb, offset_hint); 1666 } 1667 1668 static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1669 { 1670 if (skb_mac_header_was_set(skb)) { 1671 const unsigned char *old_mac = skb_mac_header(skb); 1672 1673 skb_set_mac_header(skb, -skb->mac_len); 1674 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1675 } 1676 } 1677 1678 static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1679 { 1680 return skb->csum_start - skb_headroom(skb); 1681 } 1682 1683 static inline int skb_transport_offset(const struct sk_buff *skb) 1684 { 1685 return skb_transport_header(skb) - skb->data; 1686 } 1687 1688 static inline u32 skb_network_header_len(const struct sk_buff *skb) 1689 { 1690 return skb->transport_header - skb->network_header; 1691 } 1692 1693 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1694 { 1695 return skb->inner_transport_header - skb->inner_network_header; 1696 } 1697 1698 static inline int skb_network_offset(const struct sk_buff *skb) 1699 { 1700 return skb_network_header(skb) - skb->data; 1701 } 1702 1703 static inline int skb_inner_network_offset(const struct sk_buff *skb) 1704 { 1705 return skb_inner_network_header(skb) - skb->data; 1706 } 1707 1708 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1709 { 1710 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1711 } 1712 1713 /* 1714 * CPUs often take a performance hit when accessing unaligned memory 1715 * locations. The actual performance hit varies, it can be small if the 1716 * hardware handles it or large if we have to take an exception and fix it 1717 * in software. 1718 * 1719 * Since an ethernet header is 14 bytes network drivers often end up with 1720 * the IP header at an unaligned offset. The IP header can be aligned by 1721 * shifting the start of the packet by 2 bytes. Drivers should do this 1722 * with: 1723 * 1724 * skb_reserve(skb, NET_IP_ALIGN); 1725 * 1726 * The downside to this alignment of the IP header is that the DMA is now 1727 * unaligned. On some architectures the cost of an unaligned DMA is high 1728 * and this cost outweighs the gains made by aligning the IP header. 1729 * 1730 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1731 * to be overridden. 1732 */ 1733 #ifndef NET_IP_ALIGN 1734 #define NET_IP_ALIGN 2 1735 #endif 1736 1737 /* 1738 * The networking layer reserves some headroom in skb data (via 1739 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1740 * the header has to grow. In the default case, if the header has to grow 1741 * 32 bytes or less we avoid the reallocation. 1742 * 1743 * Unfortunately this headroom changes the DMA alignment of the resulting 1744 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1745 * on some architectures. An architecture can override this value, 1746 * perhaps setting it to a cacheline in size (since that will maintain 1747 * cacheline alignment of the DMA). It must be a power of 2. 1748 * 1749 * Various parts of the networking layer expect at least 32 bytes of 1750 * headroom, you should not reduce this. 1751 * 1752 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1753 * to reduce average number of cache lines per packet. 1754 * get_rps_cpus() for example only access one 64 bytes aligned block : 1755 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1756 */ 1757 #ifndef NET_SKB_PAD 1758 #define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1759 #endif 1760 1761 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1762 1763 static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1764 { 1765 if (unlikely(skb_is_nonlinear(skb))) { 1766 WARN_ON(1); 1767 return; 1768 } 1769 skb->len = len; 1770 skb_set_tail_pointer(skb, len); 1771 } 1772 1773 extern void skb_trim(struct sk_buff *skb, unsigned int len); 1774 1775 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1776 { 1777 if (skb->data_len) 1778 return ___pskb_trim(skb, len); 1779 __skb_trim(skb, len); 1780 return 0; 1781 } 1782 1783 static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1784 { 1785 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1786 } 1787 1788 /** 1789 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1790 * @skb: buffer to alter 1791 * @len: new length 1792 * 1793 * This is identical to pskb_trim except that the caller knows that 1794 * the skb is not cloned so we should never get an error due to out- 1795 * of-memory. 1796 */ 1797 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1798 { 1799 int err = pskb_trim(skb, len); 1800 BUG_ON(err); 1801 } 1802 1803 /** 1804 * skb_orphan - orphan a buffer 1805 * @skb: buffer to orphan 1806 * 1807 * If a buffer currently has an owner then we call the owner's 1808 * destructor function and make the @skb unowned. The buffer continues 1809 * to exist but is no longer charged to its former owner. 1810 */ 1811 static inline void skb_orphan(struct sk_buff *skb) 1812 { 1813 if (skb->destructor) 1814 skb->destructor(skb); 1815 skb->destructor = NULL; 1816 skb->sk = NULL; 1817 } 1818 1819 /** 1820 * skb_orphan_frags - orphan the frags contained in a buffer 1821 * @skb: buffer to orphan frags from 1822 * @gfp_mask: allocation mask for replacement pages 1823 * 1824 * For each frag in the SKB which needs a destructor (i.e. has an 1825 * owner) create a copy of that frag and release the original 1826 * page by calling the destructor. 1827 */ 1828 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1829 { 1830 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1831 return 0; 1832 return skb_copy_ubufs(skb, gfp_mask); 1833 } 1834 1835 /** 1836 * __skb_queue_purge - empty a list 1837 * @list: list to empty 1838 * 1839 * Delete all buffers on an &sk_buff list. Each buffer is removed from 1840 * the list and one reference dropped. This function does not take the 1841 * list lock and the caller must hold the relevant locks to use it. 1842 */ 1843 extern void skb_queue_purge(struct sk_buff_head *list); 1844 static inline void __skb_queue_purge(struct sk_buff_head *list) 1845 { 1846 struct sk_buff *skb; 1847 while ((skb = __skb_dequeue(list)) != NULL) 1848 kfree_skb(skb); 1849 } 1850 1851 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 1852 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 1853 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 1854 1855 extern void *netdev_alloc_frag(unsigned int fragsz); 1856 1857 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, 1858 unsigned int length, 1859 gfp_t gfp_mask); 1860 1861 /** 1862 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 1863 * @dev: network device to receive on 1864 * @length: length to allocate 1865 * 1866 * Allocate a new &sk_buff and assign it a usage count of one. The 1867 * buffer has unspecified headroom built in. Users should allocate 1868 * the headroom they think they need without accounting for the 1869 * built in space. The built in space is used for optimisations. 1870 * 1871 * %NULL is returned if there is no free memory. Although this function 1872 * allocates memory it can be called from an interrupt. 1873 */ 1874 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 1875 unsigned int length) 1876 { 1877 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 1878 } 1879 1880 /* legacy helper around __netdev_alloc_skb() */ 1881 static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1882 gfp_t gfp_mask) 1883 { 1884 return __netdev_alloc_skb(NULL, length, gfp_mask); 1885 } 1886 1887 /* legacy helper around netdev_alloc_skb() */ 1888 static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1889 { 1890 return netdev_alloc_skb(NULL, length); 1891 } 1892 1893 1894 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 1895 unsigned int length, gfp_t gfp) 1896 { 1897 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 1898 1899 if (NET_IP_ALIGN && skb) 1900 skb_reserve(skb, NET_IP_ALIGN); 1901 return skb; 1902 } 1903 1904 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 1905 unsigned int length) 1906 { 1907 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 1908 } 1909 1910 /* 1911 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data 1912 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1913 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1914 * @order: size of the allocation 1915 * 1916 * Allocate a new page. 1917 * 1918 * %NULL is returned if there is no free memory. 1919 */ 1920 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 1921 struct sk_buff *skb, 1922 unsigned int order) 1923 { 1924 struct page *page; 1925 1926 gfp_mask |= __GFP_COLD; 1927 1928 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1929 gfp_mask |= __GFP_MEMALLOC; 1930 1931 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 1932 if (skb && page && page->pfmemalloc) 1933 skb->pfmemalloc = true; 1934 1935 return page; 1936 } 1937 1938 /** 1939 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 1940 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 1941 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 1942 * 1943 * Allocate a new page. 1944 * 1945 * %NULL is returned if there is no free memory. 1946 */ 1947 static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 1948 struct sk_buff *skb) 1949 { 1950 return __skb_alloc_pages(gfp_mask, skb, 0); 1951 } 1952 1953 /** 1954 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 1955 * @page: The page that was allocated from skb_alloc_page 1956 * @skb: The skb that may need pfmemalloc set 1957 */ 1958 static inline void skb_propagate_pfmemalloc(struct page *page, 1959 struct sk_buff *skb) 1960 { 1961 if (page && page->pfmemalloc) 1962 skb->pfmemalloc = true; 1963 } 1964 1965 /** 1966 * skb_frag_page - retrieve the page refered to by a paged fragment 1967 * @frag: the paged fragment 1968 * 1969 * Returns the &struct page associated with @frag. 1970 */ 1971 static inline struct page *skb_frag_page(const skb_frag_t *frag) 1972 { 1973 return frag->page.p; 1974 } 1975 1976 /** 1977 * __skb_frag_ref - take an addition reference on a paged fragment. 1978 * @frag: the paged fragment 1979 * 1980 * Takes an additional reference on the paged fragment @frag. 1981 */ 1982 static inline void __skb_frag_ref(skb_frag_t *frag) 1983 { 1984 get_page(skb_frag_page(frag)); 1985 } 1986 1987 /** 1988 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 1989 * @skb: the buffer 1990 * @f: the fragment offset. 1991 * 1992 * Takes an additional reference on the @f'th paged fragment of @skb. 1993 */ 1994 static inline void skb_frag_ref(struct sk_buff *skb, int f) 1995 { 1996 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 1997 } 1998 1999 /** 2000 * __skb_frag_unref - release a reference on a paged fragment. 2001 * @frag: the paged fragment 2002 * 2003 * Releases a reference on the paged fragment @frag. 2004 */ 2005 static inline void __skb_frag_unref(skb_frag_t *frag) 2006 { 2007 put_page(skb_frag_page(frag)); 2008 } 2009 2010 /** 2011 * skb_frag_unref - release a reference on a paged fragment of an skb. 2012 * @skb: the buffer 2013 * @f: the fragment offset 2014 * 2015 * Releases a reference on the @f'th paged fragment of @skb. 2016 */ 2017 static inline void skb_frag_unref(struct sk_buff *skb, int f) 2018 { 2019 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2020 } 2021 2022 /** 2023 * skb_frag_address - gets the address of the data contained in a paged fragment 2024 * @frag: the paged fragment buffer 2025 * 2026 * Returns the address of the data within @frag. The page must already 2027 * be mapped. 2028 */ 2029 static inline void *skb_frag_address(const skb_frag_t *frag) 2030 { 2031 return page_address(skb_frag_page(frag)) + frag->page_offset; 2032 } 2033 2034 /** 2035 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2036 * @frag: the paged fragment buffer 2037 * 2038 * Returns the address of the data within @frag. Checks that the page 2039 * is mapped and returns %NULL otherwise. 2040 */ 2041 static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2042 { 2043 void *ptr = page_address(skb_frag_page(frag)); 2044 if (unlikely(!ptr)) 2045 return NULL; 2046 2047 return ptr + frag->page_offset; 2048 } 2049 2050 /** 2051 * __skb_frag_set_page - sets the page contained in a paged fragment 2052 * @frag: the paged fragment 2053 * @page: the page to set 2054 * 2055 * Sets the fragment @frag to contain @page. 2056 */ 2057 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2058 { 2059 frag->page.p = page; 2060 } 2061 2062 /** 2063 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2064 * @skb: the buffer 2065 * @f: the fragment offset 2066 * @page: the page to set 2067 * 2068 * Sets the @f'th fragment of @skb to contain @page. 2069 */ 2070 static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2071 struct page *page) 2072 { 2073 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2074 } 2075 2076 /** 2077 * skb_frag_dma_map - maps a paged fragment via the DMA API 2078 * @dev: the device to map the fragment to 2079 * @frag: the paged fragment to map 2080 * @offset: the offset within the fragment (starting at the 2081 * fragment's own offset) 2082 * @size: the number of bytes to map 2083 * @dir: the direction of the mapping (%PCI_DMA_*) 2084 * 2085 * Maps the page associated with @frag to @device. 2086 */ 2087 static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2088 const skb_frag_t *frag, 2089 size_t offset, size_t size, 2090 enum dma_data_direction dir) 2091 { 2092 return dma_map_page(dev, skb_frag_page(frag), 2093 frag->page_offset + offset, size, dir); 2094 } 2095 2096 static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2097 gfp_t gfp_mask) 2098 { 2099 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2100 } 2101 2102 /** 2103 * skb_clone_writable - is the header of a clone writable 2104 * @skb: buffer to check 2105 * @len: length up to which to write 2106 * 2107 * Returns true if modifying the header part of the cloned buffer 2108 * does not requires the data to be copied. 2109 */ 2110 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2111 { 2112 return !skb_header_cloned(skb) && 2113 skb_headroom(skb) + len <= skb->hdr_len; 2114 } 2115 2116 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2117 int cloned) 2118 { 2119 int delta = 0; 2120 2121 if (headroom > skb_headroom(skb)) 2122 delta = headroom - skb_headroom(skb); 2123 2124 if (delta || cloned) 2125 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2126 GFP_ATOMIC); 2127 return 0; 2128 } 2129 2130 /** 2131 * skb_cow - copy header of skb when it is required 2132 * @skb: buffer to cow 2133 * @headroom: needed headroom 2134 * 2135 * If the skb passed lacks sufficient headroom or its data part 2136 * is shared, data is reallocated. If reallocation fails, an error 2137 * is returned and original skb is not changed. 2138 * 2139 * The result is skb with writable area skb->head...skb->tail 2140 * and at least @headroom of space at head. 2141 */ 2142 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2143 { 2144 return __skb_cow(skb, headroom, skb_cloned(skb)); 2145 } 2146 2147 /** 2148 * skb_cow_head - skb_cow but only making the head writable 2149 * @skb: buffer to cow 2150 * @headroom: needed headroom 2151 * 2152 * This function is identical to skb_cow except that we replace the 2153 * skb_cloned check by skb_header_cloned. It should be used when 2154 * you only need to push on some header and do not need to modify 2155 * the data. 2156 */ 2157 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2158 { 2159 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2160 } 2161 2162 /** 2163 * skb_padto - pad an skbuff up to a minimal size 2164 * @skb: buffer to pad 2165 * @len: minimal length 2166 * 2167 * Pads up a buffer to ensure the trailing bytes exist and are 2168 * blanked. If the buffer already contains sufficient data it 2169 * is untouched. Otherwise it is extended. Returns zero on 2170 * success. The skb is freed on error. 2171 */ 2172 2173 static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2174 { 2175 unsigned int size = skb->len; 2176 if (likely(size >= len)) 2177 return 0; 2178 return skb_pad(skb, len - size); 2179 } 2180 2181 static inline int skb_add_data(struct sk_buff *skb, 2182 char __user *from, int copy) 2183 { 2184 const int off = skb->len; 2185 2186 if (skb->ip_summed == CHECKSUM_NONE) { 2187 int err = 0; 2188 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2189 copy, 0, &err); 2190 if (!err) { 2191 skb->csum = csum_block_add(skb->csum, csum, off); 2192 return 0; 2193 } 2194 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2195 return 0; 2196 2197 __skb_trim(skb, off); 2198 return -EFAULT; 2199 } 2200 2201 static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2202 const struct page *page, int off) 2203 { 2204 if (i) { 2205 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2206 2207 return page == skb_frag_page(frag) && 2208 off == frag->page_offset + skb_frag_size(frag); 2209 } 2210 return false; 2211 } 2212 2213 static inline int __skb_linearize(struct sk_buff *skb) 2214 { 2215 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2216 } 2217 2218 /** 2219 * skb_linearize - convert paged skb to linear one 2220 * @skb: buffer to linarize 2221 * 2222 * If there is no free memory -ENOMEM is returned, otherwise zero 2223 * is returned and the old skb data released. 2224 */ 2225 static inline int skb_linearize(struct sk_buff *skb) 2226 { 2227 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2228 } 2229 2230 /** 2231 * skb_has_shared_frag - can any frag be overwritten 2232 * @skb: buffer to test 2233 * 2234 * Return true if the skb has at least one frag that might be modified 2235 * by an external entity (as in vmsplice()/sendfile()) 2236 */ 2237 static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2238 { 2239 return skb_is_nonlinear(skb) && 2240 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2241 } 2242 2243 /** 2244 * skb_linearize_cow - make sure skb is linear and writable 2245 * @skb: buffer to process 2246 * 2247 * If there is no free memory -ENOMEM is returned, otherwise zero 2248 * is returned and the old skb data released. 2249 */ 2250 static inline int skb_linearize_cow(struct sk_buff *skb) 2251 { 2252 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2253 __skb_linearize(skb) : 0; 2254 } 2255 2256 /** 2257 * skb_postpull_rcsum - update checksum for received skb after pull 2258 * @skb: buffer to update 2259 * @start: start of data before pull 2260 * @len: length of data pulled 2261 * 2262 * After doing a pull on a received packet, you need to call this to 2263 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2264 * CHECKSUM_NONE so that it can be recomputed from scratch. 2265 */ 2266 2267 static inline void skb_postpull_rcsum(struct sk_buff *skb, 2268 const void *start, unsigned int len) 2269 { 2270 if (skb->ip_summed == CHECKSUM_COMPLETE) 2271 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2272 } 2273 2274 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2275 2276 /** 2277 * pskb_trim_rcsum - trim received skb and update checksum 2278 * @skb: buffer to trim 2279 * @len: new length 2280 * 2281 * This is exactly the same as pskb_trim except that it ensures the 2282 * checksum of received packets are still valid after the operation. 2283 */ 2284 2285 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2286 { 2287 if (likely(len >= skb->len)) 2288 return 0; 2289 if (skb->ip_summed == CHECKSUM_COMPLETE) 2290 skb->ip_summed = CHECKSUM_NONE; 2291 return __pskb_trim(skb, len); 2292 } 2293 2294 #define skb_queue_walk(queue, skb) \ 2295 for (skb = (queue)->next; \ 2296 skb != (struct sk_buff *)(queue); \ 2297 skb = skb->next) 2298 2299 #define skb_queue_walk_safe(queue, skb, tmp) \ 2300 for (skb = (queue)->next, tmp = skb->next; \ 2301 skb != (struct sk_buff *)(queue); \ 2302 skb = tmp, tmp = skb->next) 2303 2304 #define skb_queue_walk_from(queue, skb) \ 2305 for (; skb != (struct sk_buff *)(queue); \ 2306 skb = skb->next) 2307 2308 #define skb_queue_walk_from_safe(queue, skb, tmp) \ 2309 for (tmp = skb->next; \ 2310 skb != (struct sk_buff *)(queue); \ 2311 skb = tmp, tmp = skb->next) 2312 2313 #define skb_queue_reverse_walk(queue, skb) \ 2314 for (skb = (queue)->prev; \ 2315 skb != (struct sk_buff *)(queue); \ 2316 skb = skb->prev) 2317 2318 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2319 for (skb = (queue)->prev, tmp = skb->prev; \ 2320 skb != (struct sk_buff *)(queue); \ 2321 skb = tmp, tmp = skb->prev) 2322 2323 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2324 for (tmp = skb->prev; \ 2325 skb != (struct sk_buff *)(queue); \ 2326 skb = tmp, tmp = skb->prev) 2327 2328 static inline bool skb_has_frag_list(const struct sk_buff *skb) 2329 { 2330 return skb_shinfo(skb)->frag_list != NULL; 2331 } 2332 2333 static inline void skb_frag_list_init(struct sk_buff *skb) 2334 { 2335 skb_shinfo(skb)->frag_list = NULL; 2336 } 2337 2338 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2339 { 2340 frag->next = skb_shinfo(skb)->frag_list; 2341 skb_shinfo(skb)->frag_list = frag; 2342 } 2343 2344 #define skb_walk_frags(skb, iter) \ 2345 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2346 2347 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2348 int *peeked, int *off, int *err); 2349 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 2350 int noblock, int *err); 2351 extern unsigned int datagram_poll(struct file *file, struct socket *sock, 2352 struct poll_table_struct *wait); 2353 extern int skb_copy_datagram_iovec(const struct sk_buff *from, 2354 int offset, struct iovec *to, 2355 int size); 2356 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, 2357 int hlen, 2358 struct iovec *iov); 2359 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, 2360 int offset, 2361 const struct iovec *from, 2362 int from_offset, 2363 int len); 2364 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, 2365 int offset, 2366 const struct iovec *to, 2367 int to_offset, 2368 int size); 2369 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2370 extern void skb_free_datagram_locked(struct sock *sk, 2371 struct sk_buff *skb); 2372 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, 2373 unsigned int flags); 2374 extern __wsum skb_checksum(const struct sk_buff *skb, int offset, 2375 int len, __wsum csum); 2376 extern int skb_copy_bits(const struct sk_buff *skb, int offset, 2377 void *to, int len); 2378 extern int skb_store_bits(struct sk_buff *skb, int offset, 2379 const void *from, int len); 2380 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, 2381 int offset, u8 *to, int len, 2382 __wsum csum); 2383 extern int skb_splice_bits(struct sk_buff *skb, 2384 unsigned int offset, 2385 struct pipe_inode_info *pipe, 2386 unsigned int len, 2387 unsigned int flags); 2388 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2389 extern void skb_split(struct sk_buff *skb, 2390 struct sk_buff *skb1, const u32 len); 2391 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, 2392 int shiftlen); 2393 extern void skb_scrub_packet(struct sk_buff *skb); 2394 2395 extern struct sk_buff *skb_segment(struct sk_buff *skb, 2396 netdev_features_t features); 2397 2398 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2399 int len, void *buffer) 2400 { 2401 int hlen = skb_headlen(skb); 2402 2403 if (hlen - offset >= len) 2404 return skb->data + offset; 2405 2406 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2407 return NULL; 2408 2409 return buffer; 2410 } 2411 2412 static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2413 void *to, 2414 const unsigned int len) 2415 { 2416 memcpy(to, skb->data, len); 2417 } 2418 2419 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2420 const int offset, void *to, 2421 const unsigned int len) 2422 { 2423 memcpy(to, skb->data + offset, len); 2424 } 2425 2426 static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2427 const void *from, 2428 const unsigned int len) 2429 { 2430 memcpy(skb->data, from, len); 2431 } 2432 2433 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2434 const int offset, 2435 const void *from, 2436 const unsigned int len) 2437 { 2438 memcpy(skb->data + offset, from, len); 2439 } 2440 2441 extern void skb_init(void); 2442 2443 static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2444 { 2445 return skb->tstamp; 2446 } 2447 2448 /** 2449 * skb_get_timestamp - get timestamp from a skb 2450 * @skb: skb to get stamp from 2451 * @stamp: pointer to struct timeval to store stamp in 2452 * 2453 * Timestamps are stored in the skb as offsets to a base timestamp. 2454 * This function converts the offset back to a struct timeval and stores 2455 * it in stamp. 2456 */ 2457 static inline void skb_get_timestamp(const struct sk_buff *skb, 2458 struct timeval *stamp) 2459 { 2460 *stamp = ktime_to_timeval(skb->tstamp); 2461 } 2462 2463 static inline void skb_get_timestampns(const struct sk_buff *skb, 2464 struct timespec *stamp) 2465 { 2466 *stamp = ktime_to_timespec(skb->tstamp); 2467 } 2468 2469 static inline void __net_timestamp(struct sk_buff *skb) 2470 { 2471 skb->tstamp = ktime_get_real(); 2472 } 2473 2474 static inline ktime_t net_timedelta(ktime_t t) 2475 { 2476 return ktime_sub(ktime_get_real(), t); 2477 } 2478 2479 static inline ktime_t net_invalid_timestamp(void) 2480 { 2481 return ktime_set(0, 0); 2482 } 2483 2484 extern void skb_timestamping_init(void); 2485 2486 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2487 2488 extern void skb_clone_tx_timestamp(struct sk_buff *skb); 2489 extern bool skb_defer_rx_timestamp(struct sk_buff *skb); 2490 2491 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2492 2493 static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2494 { 2495 } 2496 2497 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2498 { 2499 return false; 2500 } 2501 2502 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2503 2504 /** 2505 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2506 * 2507 * PHY drivers may accept clones of transmitted packets for 2508 * timestamping via their phy_driver.txtstamp method. These drivers 2509 * must call this function to return the skb back to the stack, with 2510 * or without a timestamp. 2511 * 2512 * @skb: clone of the the original outgoing packet 2513 * @hwtstamps: hardware time stamps, may be NULL if not available 2514 * 2515 */ 2516 void skb_complete_tx_timestamp(struct sk_buff *skb, 2517 struct skb_shared_hwtstamps *hwtstamps); 2518 2519 /** 2520 * skb_tstamp_tx - queue clone of skb with send time stamps 2521 * @orig_skb: the original outgoing packet 2522 * @hwtstamps: hardware time stamps, may be NULL if not available 2523 * 2524 * If the skb has a socket associated, then this function clones the 2525 * skb (thus sharing the actual data and optional structures), stores 2526 * the optional hardware time stamping information (if non NULL) or 2527 * generates a software time stamp (otherwise), then queues the clone 2528 * to the error queue of the socket. Errors are silently ignored. 2529 */ 2530 extern void skb_tstamp_tx(struct sk_buff *orig_skb, 2531 struct skb_shared_hwtstamps *hwtstamps); 2532 2533 static inline void sw_tx_timestamp(struct sk_buff *skb) 2534 { 2535 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2536 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2537 skb_tstamp_tx(skb, NULL); 2538 } 2539 2540 /** 2541 * skb_tx_timestamp() - Driver hook for transmit timestamping 2542 * 2543 * Ethernet MAC Drivers should call this function in their hard_xmit() 2544 * function immediately before giving the sk_buff to the MAC hardware. 2545 * 2546 * @skb: A socket buffer. 2547 */ 2548 static inline void skb_tx_timestamp(struct sk_buff *skb) 2549 { 2550 skb_clone_tx_timestamp(skb); 2551 sw_tx_timestamp(skb); 2552 } 2553 2554 /** 2555 * skb_complete_wifi_ack - deliver skb with wifi status 2556 * 2557 * @skb: the original outgoing packet 2558 * @acked: ack status 2559 * 2560 */ 2561 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2562 2563 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2564 extern __sum16 __skb_checksum_complete(struct sk_buff *skb); 2565 2566 static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2567 { 2568 return skb->ip_summed & CHECKSUM_UNNECESSARY; 2569 } 2570 2571 /** 2572 * skb_checksum_complete - Calculate checksum of an entire packet 2573 * @skb: packet to process 2574 * 2575 * This function calculates the checksum over the entire packet plus 2576 * the value of skb->csum. The latter can be used to supply the 2577 * checksum of a pseudo header as used by TCP/UDP. It returns the 2578 * checksum. 2579 * 2580 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2581 * this function can be used to verify that checksum on received 2582 * packets. In that case the function should return zero if the 2583 * checksum is correct. In particular, this function will return zero 2584 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2585 * hardware has already verified the correctness of the checksum. 2586 */ 2587 static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2588 { 2589 return skb_csum_unnecessary(skb) ? 2590 0 : __skb_checksum_complete(skb); 2591 } 2592 2593 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2594 extern void nf_conntrack_destroy(struct nf_conntrack *nfct); 2595 static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2596 { 2597 if (nfct && atomic_dec_and_test(&nfct->use)) 2598 nf_conntrack_destroy(nfct); 2599 } 2600 static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2601 { 2602 if (nfct) 2603 atomic_inc(&nfct->use); 2604 } 2605 #endif 2606 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2607 static inline void nf_conntrack_get_reasm(struct sk_buff *skb) 2608 { 2609 if (skb) 2610 atomic_inc(&skb->users); 2611 } 2612 static inline void nf_conntrack_put_reasm(struct sk_buff *skb) 2613 { 2614 if (skb) 2615 kfree_skb(skb); 2616 } 2617 #endif 2618 #ifdef CONFIG_BRIDGE_NETFILTER 2619 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2620 { 2621 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2622 kfree(nf_bridge); 2623 } 2624 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2625 { 2626 if (nf_bridge) 2627 atomic_inc(&nf_bridge->use); 2628 } 2629 #endif /* CONFIG_BRIDGE_NETFILTER */ 2630 static inline void nf_reset(struct sk_buff *skb) 2631 { 2632 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2633 nf_conntrack_put(skb->nfct); 2634 skb->nfct = NULL; 2635 #endif 2636 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2637 nf_conntrack_put_reasm(skb->nfct_reasm); 2638 skb->nfct_reasm = NULL; 2639 #endif 2640 #ifdef CONFIG_BRIDGE_NETFILTER 2641 nf_bridge_put(skb->nf_bridge); 2642 skb->nf_bridge = NULL; 2643 #endif 2644 } 2645 2646 static inline void nf_reset_trace(struct sk_buff *skb) 2647 { 2648 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) 2649 skb->nf_trace = 0; 2650 #endif 2651 } 2652 2653 /* Note: This doesn't put any conntrack and bridge info in dst. */ 2654 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2655 { 2656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2657 dst->nfct = src->nfct; 2658 nf_conntrack_get(src->nfct); 2659 dst->nfctinfo = src->nfctinfo; 2660 #endif 2661 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2662 dst->nfct_reasm = src->nfct_reasm; 2663 nf_conntrack_get_reasm(src->nfct_reasm); 2664 #endif 2665 #ifdef CONFIG_BRIDGE_NETFILTER 2666 dst->nf_bridge = src->nf_bridge; 2667 nf_bridge_get(src->nf_bridge); 2668 #endif 2669 } 2670 2671 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2672 { 2673 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2674 nf_conntrack_put(dst->nfct); 2675 #endif 2676 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED 2677 nf_conntrack_put_reasm(dst->nfct_reasm); 2678 #endif 2679 #ifdef CONFIG_BRIDGE_NETFILTER 2680 nf_bridge_put(dst->nf_bridge); 2681 #endif 2682 __nf_copy(dst, src); 2683 } 2684 2685 #ifdef CONFIG_NETWORK_SECMARK 2686 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2687 { 2688 to->secmark = from->secmark; 2689 } 2690 2691 static inline void skb_init_secmark(struct sk_buff *skb) 2692 { 2693 skb->secmark = 0; 2694 } 2695 #else 2696 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2697 { } 2698 2699 static inline void skb_init_secmark(struct sk_buff *skb) 2700 { } 2701 #endif 2702 2703 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2704 { 2705 skb->queue_mapping = queue_mapping; 2706 } 2707 2708 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2709 { 2710 return skb->queue_mapping; 2711 } 2712 2713 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 2714 { 2715 to->queue_mapping = from->queue_mapping; 2716 } 2717 2718 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 2719 { 2720 skb->queue_mapping = rx_queue + 1; 2721 } 2722 2723 static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 2724 { 2725 return skb->queue_mapping - 1; 2726 } 2727 2728 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 2729 { 2730 return skb->queue_mapping != 0; 2731 } 2732 2733 extern u16 __skb_tx_hash(const struct net_device *dev, 2734 const struct sk_buff *skb, 2735 unsigned int num_tx_queues); 2736 2737 #ifdef CONFIG_XFRM 2738 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2739 { 2740 return skb->sp; 2741 } 2742 #else 2743 static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 2744 { 2745 return NULL; 2746 } 2747 #endif 2748 2749 /* Keeps track of mac header offset relative to skb->head. 2750 * It is useful for TSO of Tunneling protocol. e.g. GRE. 2751 * For non-tunnel skb it points to skb_mac_header() and for 2752 * tunnel skb it points to outer mac header. */ 2753 struct skb_gso_cb { 2754 int mac_offset; 2755 }; 2756 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 2757 2758 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 2759 { 2760 return (skb_mac_header(inner_skb) - inner_skb->head) - 2761 SKB_GSO_CB(inner_skb)->mac_offset; 2762 } 2763 2764 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 2765 { 2766 int new_headroom, headroom; 2767 int ret; 2768 2769 headroom = skb_headroom(skb); 2770 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 2771 if (ret) 2772 return ret; 2773 2774 new_headroom = skb_headroom(skb); 2775 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 2776 return 0; 2777 } 2778 2779 static inline bool skb_is_gso(const struct sk_buff *skb) 2780 { 2781 return skb_shinfo(skb)->gso_size; 2782 } 2783 2784 static inline bool skb_is_gso_v6(const struct sk_buff *skb) 2785 { 2786 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 2787 } 2788 2789 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); 2790 2791 static inline bool skb_warn_if_lro(const struct sk_buff *skb) 2792 { 2793 /* LRO sets gso_size but not gso_type, whereas if GSO is really 2794 * wanted then gso_type will be set. */ 2795 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2796 2797 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 2798 unlikely(shinfo->gso_type == 0)) { 2799 __skb_warn_lro_forwarding(skb); 2800 return true; 2801 } 2802 return false; 2803 } 2804 2805 static inline void skb_forward_csum(struct sk_buff *skb) 2806 { 2807 /* Unfortunately we don't support this one. Any brave souls? */ 2808 if (skb->ip_summed == CHECKSUM_COMPLETE) 2809 skb->ip_summed = CHECKSUM_NONE; 2810 } 2811 2812 /** 2813 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 2814 * @skb: skb to check 2815 * 2816 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 2817 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 2818 * use this helper, to document places where we make this assertion. 2819 */ 2820 static inline void skb_checksum_none_assert(const struct sk_buff *skb) 2821 { 2822 #ifdef DEBUG 2823 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 2824 #endif 2825 } 2826 2827 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 2828 2829 u32 __skb_get_poff(const struct sk_buff *skb); 2830 2831 /** 2832 * skb_head_is_locked - Determine if the skb->head is locked down 2833 * @skb: skb to check 2834 * 2835 * The head on skbs build around a head frag can be removed if they are 2836 * not cloned. This function returns true if the skb head is locked down 2837 * due to either being allocated via kmalloc, or by being a clone with 2838 * multiple references to the head. 2839 */ 2840 static inline bool skb_head_is_locked(const struct sk_buff *skb) 2841 { 2842 return !skb->head_frag || skb_cloned(skb); 2843 } 2844 #endif /* __KERNEL__ */ 2845 #endif /* _LINUX_SKBUFF_H */ 2846
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.