~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/skbuff.h

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0-or-later */
  2 /*
  3  *      Definitions for the 'struct sk_buff' memory handlers.
  4  *
  5  *      Authors:
  6  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  7  *              Florian La Roche, <rzsfl@rz.uni-sb.de>
  8  */
  9 
 10 #ifndef _LINUX_SKBUFF_H
 11 #define _LINUX_SKBUFF_H
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/compiler.h>
 15 #include <linux/time.h>
 16 #include <linux/bug.h>
 17 #include <linux/bvec.h>
 18 #include <linux/cache.h>
 19 #include <linux/rbtree.h>
 20 #include <linux/socket.h>
 21 #include <linux/refcount.h>
 22 
 23 #include <linux/atomic.h>
 24 #include <asm/types.h>
 25 #include <linux/spinlock.h>
 26 #include <linux/net.h>
 27 #include <linux/textsearch.h>
 28 #include <net/checksum.h>
 29 #include <linux/rcupdate.h>
 30 #include <linux/hrtimer.h>
 31 #include <linux/dma-mapping.h>
 32 #include <linux/netdev_features.h>
 33 #include <linux/sched.h>
 34 #include <linux/sched/clock.h>
 35 #include <net/flow_dissector.h>
 36 #include <linux/splice.h>
 37 #include <linux/in6.h>
 38 #include <linux/if_packet.h>
 39 #include <net/flow.h>
 40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
 41 #include <linux/netfilter/nf_conntrack_common.h>
 42 #endif
 43 
 44 /* The interface for checksum offload between the stack and networking drivers
 45  * is as follows...
 46  *
 47  * A. IP checksum related features
 48  *
 49  * Drivers advertise checksum offload capabilities in the features of a device.
 50  * From the stack's point of view these are capabilities offered by the driver.
 51  * A driver typically only advertises features that it is capable of offloading
 52  * to its device.
 53  *
 54  * The checksum related features are:
 55  *
 56  *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
 57  *                        IP (one's complement) checksum for any combination
 58  *                        of protocols or protocol layering. The checksum is
 59  *                        computed and set in a packet per the CHECKSUM_PARTIAL
 60  *                        interface (see below).
 61  *
 62  *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 63  *                        TCP or UDP packets over IPv4. These are specifically
 64  *                        unencapsulated packets of the form IPv4|TCP or
 65  *                        IPv4|UDP where the Protocol field in the IPv4 header
 66  *                        is TCP or UDP. The IPv4 header may contain IP options.
 67  *                        This feature cannot be set in features for a device
 68  *                        with NETIF_F_HW_CSUM also set. This feature is being
 69  *                        DEPRECATED (see below).
 70  *
 71  *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 72  *                        TCP or UDP packets over IPv6. These are specifically
 73  *                        unencapsulated packets of the form IPv6|TCP or
 74  *                        IPv4|UDP where the Next Header field in the IPv6
 75  *                        header is either TCP or UDP. IPv6 extension headers
 76  *                        are not supported with this feature. This feature
 77  *                        cannot be set in features for a device with
 78  *                        NETIF_F_HW_CSUM also set. This feature is being
 79  *                        DEPRECATED (see below).
 80  *
 81  *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
 82  *                       This flag is only used to disable the RX checksum
 83  *                       feature for a device. The stack will accept receive
 84  *                       checksum indication in packets received on a device
 85  *                       regardless of whether NETIF_F_RXCSUM is set.
 86  *
 87  * B. Checksumming of received packets by device. Indication of checksum
 88  *    verification is set in skb->ip_summed. Possible values are:
 89  *
 90  * CHECKSUM_NONE:
 91  *
 92  *   Device did not checksum this packet e.g. due to lack of capabilities.
 93  *   The packet contains full (though not verified) checksum in packet but
 94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
 95  *
 96  * CHECKSUM_UNNECESSARY:
 97  *
 98  *   The hardware you're dealing with doesn't calculate the full checksum
 99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum or because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills in skb->csum. This means the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, but it should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum -- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note that there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet, presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215  * csum_offset are set to refer to the outermost checksum being offloaded
216  * (two offloaded checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE           0
221 #define CHECKSUM_UNNECESSARY    1
222 #define CHECKSUM_COMPLETE       2
223 #define CHECKSUM_PARTIAL        3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL      3
227 
228 #define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)    \
230         ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232         SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +                                          \
238                          SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
239                          SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252         enum {
253                 BRNF_PROTO_UNCHANGED,
254                 BRNF_PROTO_8021Q,
255                 BRNF_PROTO_PPPOE
256         } orig_proto:8;
257         u8                      pkt_otherhost:1;
258         u8                      in_prerouting:1;
259         u8                      bridged_dnat:1;
260         __u16                   frag_max_size;
261         struct net_device       *physindev;
262 
263         /* always valid & non-NULL from FORWARD on, for physdev match */
264         struct net_device       *physoutdev;
265         union {
266                 /* prerouting: detect dnat in orig/reply direction */
267                 __be32          ipv4_daddr;
268                 struct in6_addr ipv6_daddr;
269 
270                 /* after prerouting + nat detected: store original source
271                  * mac since neigh resolution overwrites it, only used while
272                  * skb is out in neigh layer.
273                  */
274                 char neigh_header[8];
275         };
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285         __u32 chain;
286         __u16 mru;
287 };
288 #endif
289 
290 struct sk_buff_head {
291         /* These two members must be first. */
292         struct sk_buff  *next;
293         struct sk_buff  *prev;
294 
295         __u32           qlen;
296         spinlock_t      lock;
297 };
298 
299 struct sk_buff;
300 
301 /* To allow 64K frame to be packed as single skb without frag_list we
302  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
303  * buffers which do not start on a page boundary.
304  *
305  * Since GRO uses frags we allocate at least 16 regardless of page
306  * size.
307  */
308 #if (65536/PAGE_SIZE + 1) < 16
309 #define MAX_SKB_FRAGS 16UL
310 #else
311 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
312 #endif
313 extern int sysctl_max_skb_frags;
314 
315 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
316  * segment using its current segmentation instead.
317  */
318 #define GSO_BY_FRAGS    0xFFFF
319 
320 typedef struct bio_vec skb_frag_t;
321 
322 /**
323  * skb_frag_size() - Returns the size of a skb fragment
324  * @frag: skb fragment
325  */
326 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
327 {
328         return frag->bv_len;
329 }
330 
331 /**
332  * skb_frag_size_set() - Sets the size of a skb fragment
333  * @frag: skb fragment
334  * @size: size of fragment
335  */
336 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
337 {
338         frag->bv_len = size;
339 }
340 
341 /**
342  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
343  * @frag: skb fragment
344  * @delta: value to add
345  */
346 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
347 {
348         frag->bv_len += delta;
349 }
350 
351 /**
352  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
353  * @frag: skb fragment
354  * @delta: value to subtract
355  */
356 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
357 {
358         frag->bv_len -= delta;
359 }
360 
361 /**
362  * skb_frag_must_loop - Test if %p is a high memory page
363  * @p: fragment's page
364  */
365 static inline bool skb_frag_must_loop(struct page *p)
366 {
367 #if defined(CONFIG_HIGHMEM)
368         if (PageHighMem(p))
369                 return true;
370 #endif
371         return false;
372 }
373 
374 /**
375  *      skb_frag_foreach_page - loop over pages in a fragment
376  *
377  *      @f:             skb frag to operate on
378  *      @f_off:         offset from start of f->bv_page
379  *      @f_len:         length from f_off to loop over
380  *      @p:             (temp var) current page
381  *      @p_off:         (temp var) offset from start of current page,
382  *                                 non-zero only on first page.
383  *      @p_len:         (temp var) length in current page,
384  *                                 < PAGE_SIZE only on first and last page.
385  *      @copied:        (temp var) length so far, excluding current p_len.
386  *
387  *      A fragment can hold a compound page, in which case per-page
388  *      operations, notably kmap_atomic, must be called for each
389  *      regular page.
390  */
391 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
392         for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
393              p_off = (f_off) & (PAGE_SIZE - 1),                         \
394              p_len = skb_frag_must_loop(p) ?                            \
395              min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
396              copied = 0;                                                \
397              copied < f_len;                                            \
398              copied += p_len, p++, p_off = 0,                           \
399              p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
400 
401 #define HAVE_HW_TIME_STAMP
402 
403 /**
404  * struct skb_shared_hwtstamps - hardware time stamps
405  * @hwtstamp:   hardware time stamp transformed into duration
406  *              since arbitrary point in time
407  *
408  * Software time stamps generated by ktime_get_real() are stored in
409  * skb->tstamp.
410  *
411  * hwtstamps can only be compared against other hwtstamps from
412  * the same device.
413  *
414  * This structure is attached to packets as part of the
415  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
416  */
417 struct skb_shared_hwtstamps {
418         ktime_t hwtstamp;
419 };
420 
421 /* Definitions for tx_flags in struct skb_shared_info */
422 enum {
423         /* generate hardware time stamp */
424         SKBTX_HW_TSTAMP = 1 << 0,
425 
426         /* generate software time stamp when queueing packet to NIC */
427         SKBTX_SW_TSTAMP = 1 << 1,
428 
429         /* device driver is going to provide hardware time stamp */
430         SKBTX_IN_PROGRESS = 1 << 2,
431 
432         /* device driver supports TX zero-copy buffers */
433         SKBTX_DEV_ZEROCOPY = 1 << 3,
434 
435         /* generate wifi status information (where possible) */
436         SKBTX_WIFI_STATUS = 1 << 4,
437 
438         /* This indicates at least one fragment might be overwritten
439          * (as in vmsplice(), sendfile() ...)
440          * If we need to compute a TX checksum, we'll need to copy
441          * all frags to avoid possible bad checksum
442          */
443         SKBTX_SHARED_FRAG = 1 << 5,
444 
445         /* generate software time stamp when entering packet scheduling */
446         SKBTX_SCHED_TSTAMP = 1 << 6,
447 };
448 
449 #define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
450 #define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
451                                  SKBTX_SCHED_TSTAMP)
452 #define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
453 
454 /*
455  * The callback notifies userspace to release buffers when skb DMA is done in
456  * lower device, the skb last reference should be 0 when calling this.
457  * The zerocopy_success argument is true if zero copy transmit occurred,
458  * false on data copy or out of memory error caused by data copy attempt.
459  * The ctx field is used to track device context.
460  * The desc field is used to track userspace buffer index.
461  */
462 struct ubuf_info {
463         void (*callback)(struct ubuf_info *, bool zerocopy_success);
464         union {
465                 struct {
466                         unsigned long desc;
467                         void *ctx;
468                 };
469                 struct {
470                         u32 id;
471                         u16 len;
472                         u16 zerocopy:1;
473                         u32 bytelen;
474                 };
475         };
476         refcount_t refcnt;
477 
478         struct mmpin {
479                 struct user_struct *user;
480                 unsigned int num_pg;
481         } mmp;
482 };
483 
484 #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
485 
486 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
487 void mm_unaccount_pinned_pages(struct mmpin *mmp);
488 
489 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
490 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
491                                         struct ubuf_info *uarg);
492 
493 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
494 {
495         refcount_inc(&uarg->refcnt);
496 }
497 
498 void sock_zerocopy_put(struct ubuf_info *uarg);
499 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
500 
501 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
502 
503 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
504 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
505                              struct msghdr *msg, int len,
506                              struct ubuf_info *uarg);
507 
508 /* This data is invariant across clones and lives at
509  * the end of the header data, ie. at skb->end.
510  */
511 struct skb_shared_info {
512         __u8            __unused;
513         __u8            meta_len;
514         __u8            nr_frags;
515         __u8            tx_flags;
516         unsigned short  gso_size;
517         /* Warning: this field is not always filled in (UFO)! */
518         unsigned short  gso_segs;
519         struct sk_buff  *frag_list;
520         struct skb_shared_hwtstamps hwtstamps;
521         unsigned int    gso_type;
522         u32             tskey;
523 
524         /*
525          * Warning : all fields before dataref are cleared in __alloc_skb()
526          */
527         atomic_t        dataref;
528 
529         /* Intermediate layers must ensure that destructor_arg
530          * remains valid until skb destructor */
531         void *          destructor_arg;
532 
533         /* must be last field, see pskb_expand_head() */
534         skb_frag_t      frags[MAX_SKB_FRAGS];
535 };
536 
537 /* We divide dataref into two halves.  The higher 16 bits hold references
538  * to the payload part of skb->data.  The lower 16 bits hold references to
539  * the entire skb->data.  A clone of a headerless skb holds the length of
540  * the header in skb->hdr_len.
541  *
542  * All users must obey the rule that the skb->data reference count must be
543  * greater than or equal to the payload reference count.
544  *
545  * Holding a reference to the payload part means that the user does not
546  * care about modifications to the header part of skb->data.
547  */
548 #define SKB_DATAREF_SHIFT 16
549 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
550 
551 
552 enum {
553         SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
554         SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
555         SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
556 };
557 
558 enum {
559         SKB_GSO_TCPV4 = 1 << 0,
560 
561         /* This indicates the skb is from an untrusted source. */
562         SKB_GSO_DODGY = 1 << 1,
563 
564         /* This indicates the tcp segment has CWR set. */
565         SKB_GSO_TCP_ECN = 1 << 2,
566 
567         SKB_GSO_TCP_FIXEDID = 1 << 3,
568 
569         SKB_GSO_TCPV6 = 1 << 4,
570 
571         SKB_GSO_FCOE = 1 << 5,
572 
573         SKB_GSO_GRE = 1 << 6,
574 
575         SKB_GSO_GRE_CSUM = 1 << 7,
576 
577         SKB_GSO_IPXIP4 = 1 << 8,
578 
579         SKB_GSO_IPXIP6 = 1 << 9,
580 
581         SKB_GSO_UDP_TUNNEL = 1 << 10,
582 
583         SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
584 
585         SKB_GSO_PARTIAL = 1 << 12,
586 
587         SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
588 
589         SKB_GSO_SCTP = 1 << 14,
590 
591         SKB_GSO_ESP = 1 << 15,
592 
593         SKB_GSO_UDP = 1 << 16,
594 
595         SKB_GSO_UDP_L4 = 1 << 17,
596 
597         SKB_GSO_FRAGLIST = 1 << 18,
598 };
599 
600 #if BITS_PER_LONG > 32
601 #define NET_SKBUFF_DATA_USES_OFFSET 1
602 #endif
603 
604 #ifdef NET_SKBUFF_DATA_USES_OFFSET
605 typedef unsigned int sk_buff_data_t;
606 #else
607 typedef unsigned char *sk_buff_data_t;
608 #endif
609 
610 /**
611  *      struct sk_buff - socket buffer
612  *      @next: Next buffer in list
613  *      @prev: Previous buffer in list
614  *      @tstamp: Time we arrived/left
615  *      @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
616  *              for retransmit timer
617  *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
618  *      @list: queue head
619  *      @sk: Socket we are owned by
620  *      @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
621  *              fragmentation management
622  *      @dev: Device we arrived on/are leaving by
623  *      @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
624  *      @cb: Control buffer. Free for use by every layer. Put private vars here
625  *      @_skb_refdst: destination entry (with norefcount bit)
626  *      @sp: the security path, used for xfrm
627  *      @len: Length of actual data
628  *      @data_len: Data length
629  *      @mac_len: Length of link layer header
630  *      @hdr_len: writable header length of cloned skb
631  *      @csum: Checksum (must include start/offset pair)
632  *      @csum_start: Offset from skb->head where checksumming should start
633  *      @csum_offset: Offset from csum_start where checksum should be stored
634  *      @priority: Packet queueing priority
635  *      @ignore_df: allow local fragmentation
636  *      @cloned: Head may be cloned (check refcnt to be sure)
637  *      @ip_summed: Driver fed us an IP checksum
638  *      @nohdr: Payload reference only, must not modify header
639  *      @pkt_type: Packet class
640  *      @fclone: skbuff clone status
641  *      @ipvs_property: skbuff is owned by ipvs
642  *      @inner_protocol_type: whether the inner protocol is
643  *              ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
644  *      @remcsum_offload: remote checksum offload is enabled
645  *      @offload_fwd_mark: Packet was L2-forwarded in hardware
646  *      @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
647  *      @tc_skip_classify: do not classify packet. set by IFB device
648  *      @tc_at_ingress: used within tc_classify to distinguish in/egress
649  *      @redirected: packet was redirected by packet classifier
650  *      @from_ingress: packet was redirected from the ingress path
651  *      @peeked: this packet has been seen already, so stats have been
652  *              done for it, don't do them again
653  *      @nf_trace: netfilter packet trace flag
654  *      @protocol: Packet protocol from driver
655  *      @destructor: Destruct function
656  *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
657  *      @_nfct: Associated connection, if any (with nfctinfo bits)
658  *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
659  *      @skb_iif: ifindex of device we arrived on
660  *      @tc_index: Traffic control index
661  *      @hash: the packet hash
662  *      @queue_mapping: Queue mapping for multiqueue devices
663  *      @head_frag: skb was allocated from page fragments,
664  *              not allocated by kmalloc() or vmalloc().
665  *      @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
666  *      @active_extensions: active extensions (skb_ext_id types)
667  *      @ndisc_nodetype: router type (from link layer)
668  *      @ooo_okay: allow the mapping of a socket to a queue to be changed
669  *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
670  *              ports.
671  *      @sw_hash: indicates hash was computed in software stack
672  *      @wifi_acked_valid: wifi_acked was set
673  *      @wifi_acked: whether frame was acked on wifi or not
674  *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
675  *      @encapsulation: indicates the inner headers in the skbuff are valid
676  *      @encap_hdr_csum: software checksum is needed
677  *      @csum_valid: checksum is already valid
678  *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
679  *      @csum_complete_sw: checksum was completed by software
680  *      @csum_level: indicates the number of consecutive checksums found in
681  *              the packet minus one that have been verified as
682  *              CHECKSUM_UNNECESSARY (max 3)
683  *      @dst_pending_confirm: need to confirm neighbour
684  *      @decrypted: Decrypted SKB
685  *      @napi_id: id of the NAPI struct this skb came from
686  *      @sender_cpu: (aka @napi_id) source CPU in XPS
687  *      @secmark: security marking
688  *      @mark: Generic packet mark
689  *      @reserved_tailroom: (aka @mark) number of bytes of free space available
690  *              at the tail of an sk_buff
691  *      @vlan_present: VLAN tag is present
692  *      @vlan_proto: vlan encapsulation protocol
693  *      @vlan_tci: vlan tag control information
694  *      @inner_protocol: Protocol (encapsulation)
695  *      @inner_ipproto: (aka @inner_protocol) stores ipproto when
696  *              skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
697  *      @inner_transport_header: Inner transport layer header (encapsulation)
698  *      @inner_network_header: Network layer header (encapsulation)
699  *      @inner_mac_header: Link layer header (encapsulation)
700  *      @transport_header: Transport layer header
701  *      @network_header: Network layer header
702  *      @mac_header: Link layer header
703  *      @tail: Tail pointer
704  *      @end: End pointer
705  *      @head: Head of buffer
706  *      @data: Data head pointer
707  *      @truesize: Buffer size
708  *      @users: User count - see {datagram,tcp}.c
709  *      @extensions: allocated extensions, valid if active_extensions is nonzero
710  */
711 
712 struct sk_buff {
713         union {
714                 struct {
715                         /* These two members must be first. */
716                         struct sk_buff          *next;
717                         struct sk_buff          *prev;
718 
719                         union {
720                                 struct net_device       *dev;
721                                 /* Some protocols might use this space to store information,
722                                  * while device pointer would be NULL.
723                                  * UDP receive path is one user.
724                                  */
725                                 unsigned long           dev_scratch;
726                         };
727                 };
728                 struct rb_node          rbnode; /* used in netem, ip4 defrag, and tcp stack */
729                 struct list_head        list;
730         };
731 
732         union {
733                 struct sock             *sk;
734                 int                     ip_defrag_offset;
735         };
736 
737         union {
738                 ktime_t         tstamp;
739                 u64             skb_mstamp_ns; /* earliest departure time */
740         };
741         /*
742          * This is the control buffer. It is free to use for every
743          * layer. Please put your private variables there. If you
744          * want to keep them across layers you have to do a skb_clone()
745          * first. This is owned by whoever has the skb queued ATM.
746          */
747         char                    cb[48] __aligned(8);
748 
749         union {
750                 struct {
751                         unsigned long   _skb_refdst;
752                         void            (*destructor)(struct sk_buff *skb);
753                 };
754                 struct list_head        tcp_tsorted_anchor;
755         };
756 
757 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
758         unsigned long            _nfct;
759 #endif
760         unsigned int            len,
761                                 data_len;
762         __u16                   mac_len,
763                                 hdr_len;
764 
765         /* Following fields are _not_ copied in __copy_skb_header()
766          * Note that queue_mapping is here mostly to fill a hole.
767          */
768         __u16                   queue_mapping;
769 
770 /* if you move cloned around you also must adapt those constants */
771 #ifdef __BIG_ENDIAN_BITFIELD
772 #define CLONED_MASK     (1 << 7)
773 #else
774 #define CLONED_MASK     1
775 #endif
776 #define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
777 
778         /* private: */
779         __u8                    __cloned_offset[0];
780         /* public: */
781         __u8                    cloned:1,
782                                 nohdr:1,
783                                 fclone:2,
784                                 peeked:1,
785                                 head_frag:1,
786                                 pfmemalloc:1;
787 #ifdef CONFIG_SKB_EXTENSIONS
788         __u8                    active_extensions;
789 #endif
790         /* fields enclosed in headers_start/headers_end are copied
791          * using a single memcpy() in __copy_skb_header()
792          */
793         /* private: */
794         __u32                   headers_start[0];
795         /* public: */
796 
797 /* if you move pkt_type around you also must adapt those constants */
798 #ifdef __BIG_ENDIAN_BITFIELD
799 #define PKT_TYPE_MAX    (7 << 5)
800 #else
801 #define PKT_TYPE_MAX    7
802 #endif
803 #define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
804 
805         /* private: */
806         __u8                    __pkt_type_offset[0];
807         /* public: */
808         __u8                    pkt_type:3;
809         __u8                    ignore_df:1;
810         __u8                    nf_trace:1;
811         __u8                    ip_summed:2;
812         __u8                    ooo_okay:1;
813 
814         __u8                    l4_hash:1;
815         __u8                    sw_hash:1;
816         __u8                    wifi_acked_valid:1;
817         __u8                    wifi_acked:1;
818         __u8                    no_fcs:1;
819         /* Indicates the inner headers are valid in the skbuff. */
820         __u8                    encapsulation:1;
821         __u8                    encap_hdr_csum:1;
822         __u8                    csum_valid:1;
823 
824 #ifdef __BIG_ENDIAN_BITFIELD
825 #define PKT_VLAN_PRESENT_BIT    7
826 #else
827 #define PKT_VLAN_PRESENT_BIT    0
828 #endif
829 #define PKT_VLAN_PRESENT_OFFSET()       offsetof(struct sk_buff, __pkt_vlan_present_offset)
830         /* private: */
831         __u8                    __pkt_vlan_present_offset[0];
832         /* public: */
833         __u8                    vlan_present:1;
834         __u8                    csum_complete_sw:1;
835         __u8                    csum_level:2;
836         __u8                    csum_not_inet:1;
837         __u8                    dst_pending_confirm:1;
838 #ifdef CONFIG_IPV6_NDISC_NODETYPE
839         __u8                    ndisc_nodetype:2;
840 #endif
841 
842         __u8                    ipvs_property:1;
843         __u8                    inner_protocol_type:1;
844         __u8                    remcsum_offload:1;
845 #ifdef CONFIG_NET_SWITCHDEV
846         __u8                    offload_fwd_mark:1;
847         __u8                    offload_l3_fwd_mark:1;
848 #endif
849 #ifdef CONFIG_NET_CLS_ACT
850         __u8                    tc_skip_classify:1;
851         __u8                    tc_at_ingress:1;
852 #endif
853 #ifdef CONFIG_NET_REDIRECT
854         __u8                    redirected:1;
855         __u8                    from_ingress:1;
856 #endif
857 #ifdef CONFIG_TLS_DEVICE
858         __u8                    decrypted:1;
859 #endif
860 
861 #ifdef CONFIG_NET_SCHED
862         __u16                   tc_index;       /* traffic control index */
863 #endif
864 
865         union {
866                 __wsum          csum;
867                 struct {
868                         __u16   csum_start;
869                         __u16   csum_offset;
870                 };
871         };
872         __u32                   priority;
873         int                     skb_iif;
874         __u32                   hash;
875         __be16                  vlan_proto;
876         __u16                   vlan_tci;
877 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
878         union {
879                 unsigned int    napi_id;
880                 unsigned int    sender_cpu;
881         };
882 #endif
883 #ifdef CONFIG_NETWORK_SECMARK
884         __u32           secmark;
885 #endif
886 
887         union {
888                 __u32           mark;
889                 __u32           reserved_tailroom;
890         };
891 
892         union {
893                 __be16          inner_protocol;
894                 __u8            inner_ipproto;
895         };
896 
897         __u16                   inner_transport_header;
898         __u16                   inner_network_header;
899         __u16                   inner_mac_header;
900 
901         __be16                  protocol;
902         __u16                   transport_header;
903         __u16                   network_header;
904         __u16                   mac_header;
905 
906         /* private: */
907         __u32                   headers_end[0];
908         /* public: */
909 
910         /* These elements must be at the end, see alloc_skb() for details.  */
911         sk_buff_data_t          tail;
912         sk_buff_data_t          end;
913         unsigned char           *head,
914                                 *data;
915         unsigned int            truesize;
916         refcount_t              users;
917 
918 #ifdef CONFIG_SKB_EXTENSIONS
919         /* only useable after checking ->active_extensions != 0 */
920         struct skb_ext          *extensions;
921 #endif
922 };
923 
924 #ifdef __KERNEL__
925 /*
926  *      Handling routines are only of interest to the kernel
927  */
928 
929 #define SKB_ALLOC_FCLONE        0x01
930 #define SKB_ALLOC_RX            0x02
931 #define SKB_ALLOC_NAPI          0x04
932 
933 /**
934  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
935  * @skb: buffer
936  */
937 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
938 {
939         return unlikely(skb->pfmemalloc);
940 }
941 
942 /*
943  * skb might have a dst pointer attached, refcounted or not.
944  * _skb_refdst low order bit is set if refcount was _not_ taken
945  */
946 #define SKB_DST_NOREF   1UL
947 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
948 
949 /**
950  * skb_dst - returns skb dst_entry
951  * @skb: buffer
952  *
953  * Returns skb dst_entry, regardless of reference taken or not.
954  */
955 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
956 {
957         /* If refdst was not refcounted, check we still are in a
958          * rcu_read_lock section
959          */
960         WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
961                 !rcu_read_lock_held() &&
962                 !rcu_read_lock_bh_held());
963         return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
964 }
965 
966 /**
967  * skb_dst_set - sets skb dst
968  * @skb: buffer
969  * @dst: dst entry
970  *
971  * Sets skb dst, assuming a reference was taken on dst and should
972  * be released by skb_dst_drop()
973  */
974 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
975 {
976         skb->_skb_refdst = (unsigned long)dst;
977 }
978 
979 /**
980  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
981  * @skb: buffer
982  * @dst: dst entry
983  *
984  * Sets skb dst, assuming a reference was not taken on dst.
985  * If dst entry is cached, we do not take reference and dst_release
986  * will be avoided by refdst_drop. If dst entry is not cached, we take
987  * reference, so that last dst_release can destroy the dst immediately.
988  */
989 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
990 {
991         WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
992         skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
993 }
994 
995 /**
996  * skb_dst_is_noref - Test if skb dst isn't refcounted
997  * @skb: buffer
998  */
999 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1000 {
1001         return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1002 }
1003 
1004 /**
1005  * skb_rtable - Returns the skb &rtable
1006  * @skb: buffer
1007  */
1008 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1009 {
1010         return (struct rtable *)skb_dst(skb);
1011 }
1012 
1013 /* For mangling skb->pkt_type from user space side from applications
1014  * such as nft, tc, etc, we only allow a conservative subset of
1015  * possible pkt_types to be set.
1016 */
1017 static inline bool skb_pkt_type_ok(u32 ptype)
1018 {
1019         return ptype <= PACKET_OTHERHOST;
1020 }
1021 
1022 /**
1023  * skb_napi_id - Returns the skb's NAPI id
1024  * @skb: buffer
1025  */
1026 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1027 {
1028 #ifdef CONFIG_NET_RX_BUSY_POLL
1029         return skb->napi_id;
1030 #else
1031         return 0;
1032 #endif
1033 }
1034 
1035 /**
1036  * skb_unref - decrement the skb's reference count
1037  * @skb: buffer
1038  *
1039  * Returns true if we can free the skb.
1040  */
1041 static inline bool skb_unref(struct sk_buff *skb)
1042 {
1043         if (unlikely(!skb))
1044                 return false;
1045         if (likely(refcount_read(&skb->users) == 1))
1046                 smp_rmb();
1047         else if (likely(!refcount_dec_and_test(&skb->users)))
1048                 return false;
1049 
1050         return true;
1051 }
1052 
1053 void skb_release_head_state(struct sk_buff *skb);
1054 void kfree_skb(struct sk_buff *skb);
1055 void kfree_skb_list(struct sk_buff *segs);
1056 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1057 void skb_tx_error(struct sk_buff *skb);
1058 void consume_skb(struct sk_buff *skb);
1059 void __consume_stateless_skb(struct sk_buff *skb);
1060 void  __kfree_skb(struct sk_buff *skb);
1061 extern struct kmem_cache *skbuff_head_cache;
1062 
1063 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1064 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1065                       bool *fragstolen, int *delta_truesize);
1066 
1067 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1068                             int node);
1069 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1070 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1071 struct sk_buff *build_skb_around(struct sk_buff *skb,
1072                                  void *data, unsigned int frag_size);
1073 
1074 /**
1075  * alloc_skb - allocate a network buffer
1076  * @size: size to allocate
1077  * @priority: allocation mask
1078  *
1079  * This function is a convenient wrapper around __alloc_skb().
1080  */
1081 static inline struct sk_buff *alloc_skb(unsigned int size,
1082                                         gfp_t priority)
1083 {
1084         return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1085 }
1086 
1087 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1088                                      unsigned long data_len,
1089                                      int max_page_order,
1090                                      int *errcode,
1091                                      gfp_t gfp_mask);
1092 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1093 
1094 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1095 struct sk_buff_fclones {
1096         struct sk_buff  skb1;
1097 
1098         struct sk_buff  skb2;
1099 
1100         refcount_t      fclone_ref;
1101 };
1102 
1103 /**
1104  *      skb_fclone_busy - check if fclone is busy
1105  *      @sk: socket
1106  *      @skb: buffer
1107  *
1108  * Returns true if skb is a fast clone, and its clone is not freed.
1109  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1110  * so we also check that this didnt happen.
1111  */
1112 static inline bool skb_fclone_busy(const struct sock *sk,
1113                                    const struct sk_buff *skb)
1114 {
1115         const struct sk_buff_fclones *fclones;
1116 
1117         fclones = container_of(skb, struct sk_buff_fclones, skb1);
1118 
1119         return skb->fclone == SKB_FCLONE_ORIG &&
1120                refcount_read(&fclones->fclone_ref) > 1 &&
1121                fclones->skb2.sk == sk;
1122 }
1123 
1124 /**
1125  * alloc_skb_fclone - allocate a network buffer from fclone cache
1126  * @size: size to allocate
1127  * @priority: allocation mask
1128  *
1129  * This function is a convenient wrapper around __alloc_skb().
1130  */
1131 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1132                                                gfp_t priority)
1133 {
1134         return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1135 }
1136 
1137 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1138 void skb_headers_offset_update(struct sk_buff *skb, int off);
1139 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1140 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1141 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1142 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1143 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1144                                    gfp_t gfp_mask, bool fclone);
1145 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1146                                           gfp_t gfp_mask)
1147 {
1148         return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1149 }
1150 
1151 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1152 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1153                                      unsigned int headroom);
1154 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1155                                 int newtailroom, gfp_t priority);
1156 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1157                                      int offset, int len);
1158 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1159                               int offset, int len);
1160 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1161 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1162 
1163 /**
1164  *      skb_pad                 -       zero pad the tail of an skb
1165  *      @skb: buffer to pad
1166  *      @pad: space to pad
1167  *
1168  *      Ensure that a buffer is followed by a padding area that is zero
1169  *      filled. Used by network drivers which may DMA or transfer data
1170  *      beyond the buffer end onto the wire.
1171  *
1172  *      May return error in out of memory cases. The skb is freed on error.
1173  */
1174 static inline int skb_pad(struct sk_buff *skb, int pad)
1175 {
1176         return __skb_pad(skb, pad, true);
1177 }
1178 #define dev_kfree_skb(a)        consume_skb(a)
1179 
1180 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1181                          int offset, size_t size);
1182 
1183 struct skb_seq_state {
1184         __u32           lower_offset;
1185         __u32           upper_offset;
1186         __u32           frag_idx;
1187         __u32           stepped_offset;
1188         struct sk_buff  *root_skb;
1189         struct sk_buff  *cur_skb;
1190         __u8            *frag_data;
1191 };
1192 
1193 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1194                           unsigned int to, struct skb_seq_state *st);
1195 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1196                           struct skb_seq_state *st);
1197 void skb_abort_seq_read(struct skb_seq_state *st);
1198 
1199 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1200                            unsigned int to, struct ts_config *config);
1201 
1202 /*
1203  * Packet hash types specify the type of hash in skb_set_hash.
1204  *
1205  * Hash types refer to the protocol layer addresses which are used to
1206  * construct a packet's hash. The hashes are used to differentiate or identify
1207  * flows of the protocol layer for the hash type. Hash types are either
1208  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1209  *
1210  * Properties of hashes:
1211  *
1212  * 1) Two packets in different flows have different hash values
1213  * 2) Two packets in the same flow should have the same hash value
1214  *
1215  * A hash at a higher layer is considered to be more specific. A driver should
1216  * set the most specific hash possible.
1217  *
1218  * A driver cannot indicate a more specific hash than the layer at which a hash
1219  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1220  *
1221  * A driver may indicate a hash level which is less specific than the
1222  * actual layer the hash was computed on. For instance, a hash computed
1223  * at L4 may be considered an L3 hash. This should only be done if the
1224  * driver can't unambiguously determine that the HW computed the hash at
1225  * the higher layer. Note that the "should" in the second property above
1226  * permits this.
1227  */
1228 enum pkt_hash_types {
1229         PKT_HASH_TYPE_NONE,     /* Undefined type */
1230         PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1231         PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1232         PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1233 };
1234 
1235 static inline void skb_clear_hash(struct sk_buff *skb)
1236 {
1237         skb->hash = 0;
1238         skb->sw_hash = 0;
1239         skb->l4_hash = 0;
1240 }
1241 
1242 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1243 {
1244         if (!skb->l4_hash)
1245                 skb_clear_hash(skb);
1246 }
1247 
1248 static inline void
1249 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1250 {
1251         skb->l4_hash = is_l4;
1252         skb->sw_hash = is_sw;
1253         skb->hash = hash;
1254 }
1255 
1256 static inline void
1257 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1258 {
1259         /* Used by drivers to set hash from HW */
1260         __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1261 }
1262 
1263 static inline void
1264 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1265 {
1266         __skb_set_hash(skb, hash, true, is_l4);
1267 }
1268 
1269 void __skb_get_hash(struct sk_buff *skb);
1270 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1271 u32 skb_get_poff(const struct sk_buff *skb);
1272 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1273                    const struct flow_keys_basic *keys, int hlen);
1274 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1275                             void *data, int hlen_proto);
1276 
1277 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1278                                         int thoff, u8 ip_proto)
1279 {
1280         return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1281 }
1282 
1283 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1284                              const struct flow_dissector_key *key,
1285                              unsigned int key_count);
1286 
1287 #ifdef CONFIG_NET
1288 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1289                                   union bpf_attr __user *uattr);
1290 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1291                                        struct bpf_prog *prog);
1292 
1293 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1294 #else
1295 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1296                                                 union bpf_attr __user *uattr)
1297 {
1298         return -EOPNOTSUPP;
1299 }
1300 
1301 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1302                                                      struct bpf_prog *prog)
1303 {
1304         return -EOPNOTSUPP;
1305 }
1306 
1307 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1308 {
1309         return -EOPNOTSUPP;
1310 }
1311 #endif
1312 
1313 struct bpf_flow_dissector;
1314 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1315                       __be16 proto, int nhoff, int hlen, unsigned int flags);
1316 
1317 bool __skb_flow_dissect(const struct net *net,
1318                         const struct sk_buff *skb,
1319                         struct flow_dissector *flow_dissector,
1320                         void *target_container,
1321                         void *data, __be16 proto, int nhoff, int hlen,
1322                         unsigned int flags);
1323 
1324 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1325                                     struct flow_dissector *flow_dissector,
1326                                     void *target_container, unsigned int flags)
1327 {
1328         return __skb_flow_dissect(NULL, skb, flow_dissector,
1329                                   target_container, NULL, 0, 0, 0, flags);
1330 }
1331 
1332 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1333                                               struct flow_keys *flow,
1334                                               unsigned int flags)
1335 {
1336         memset(flow, 0, sizeof(*flow));
1337         return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1338                                   flow, NULL, 0, 0, 0, flags);
1339 }
1340 
1341 static inline bool
1342 skb_flow_dissect_flow_keys_basic(const struct net *net,
1343                                  const struct sk_buff *skb,
1344                                  struct flow_keys_basic *flow, void *data,
1345                                  __be16 proto, int nhoff, int hlen,
1346                                  unsigned int flags)
1347 {
1348         memset(flow, 0, sizeof(*flow));
1349         return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1350                                   data, proto, nhoff, hlen, flags);
1351 }
1352 
1353 void skb_flow_dissect_meta(const struct sk_buff *skb,
1354                            struct flow_dissector *flow_dissector,
1355                            void *target_container);
1356 
1357 /* Gets a skb connection tracking info, ctinfo map should be a
1358  * a map of mapsize to translate enum ip_conntrack_info states
1359  * to user states.
1360  */
1361 void
1362 skb_flow_dissect_ct(const struct sk_buff *skb,
1363                     struct flow_dissector *flow_dissector,
1364                     void *target_container,
1365                     u16 *ctinfo_map,
1366                     size_t mapsize);
1367 void
1368 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1369                              struct flow_dissector *flow_dissector,
1370                              void *target_container);
1371 
1372 static inline __u32 skb_get_hash(struct sk_buff *skb)
1373 {
1374         if (!skb->l4_hash && !skb->sw_hash)
1375                 __skb_get_hash(skb);
1376 
1377         return skb->hash;
1378 }
1379 
1380 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1381 {
1382         if (!skb->l4_hash && !skb->sw_hash) {
1383                 struct flow_keys keys;
1384                 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1385 
1386                 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1387         }
1388 
1389         return skb->hash;
1390 }
1391 
1392 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1393                            const siphash_key_t *perturb);
1394 
1395 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1396 {
1397         return skb->hash;
1398 }
1399 
1400 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1401 {
1402         to->hash = from->hash;
1403         to->sw_hash = from->sw_hash;
1404         to->l4_hash = from->l4_hash;
1405 };
1406 
1407 static inline void skb_copy_decrypted(struct sk_buff *to,
1408                                       const struct sk_buff *from)
1409 {
1410 #ifdef CONFIG_TLS_DEVICE
1411         to->decrypted = from->decrypted;
1412 #endif
1413 }
1414 
1415 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1416 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1417 {
1418         return skb->head + skb->end;
1419 }
1420 
1421 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1422 {
1423         return skb->end;
1424 }
1425 #else
1426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1427 {
1428         return skb->end;
1429 }
1430 
1431 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1432 {
1433         return skb->end - skb->head;
1434 }
1435 #endif
1436 
1437 /* Internal */
1438 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1439 
1440 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1441 {
1442         return &skb_shinfo(skb)->hwtstamps;
1443 }
1444 
1445 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1446 {
1447         bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1448 
1449         return is_zcopy ? skb_uarg(skb) : NULL;
1450 }
1451 
1452 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1453                                  bool *have_ref)
1454 {
1455         if (skb && uarg && !skb_zcopy(skb)) {
1456                 if (unlikely(have_ref && *have_ref))
1457                         *have_ref = false;
1458                 else
1459                         sock_zerocopy_get(uarg);
1460                 skb_shinfo(skb)->destructor_arg = uarg;
1461                 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1462         }
1463 }
1464 
1465 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1466 {
1467         skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1468         skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1469 }
1470 
1471 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1472 {
1473         return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1474 }
1475 
1476 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1477 {
1478         return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1479 }
1480 
1481 /* Release a reference on a zerocopy structure */
1482 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1483 {
1484         struct ubuf_info *uarg = skb_zcopy(skb);
1485 
1486         if (uarg) {
1487                 if (skb_zcopy_is_nouarg(skb)) {
1488                         /* no notification callback */
1489                 } else if (uarg->callback == sock_zerocopy_callback) {
1490                         uarg->zerocopy = uarg->zerocopy && zerocopy;
1491                         sock_zerocopy_put(uarg);
1492                 } else {
1493                         uarg->callback(uarg, zerocopy);
1494                 }
1495 
1496                 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1497         }
1498 }
1499 
1500 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1501 static inline void skb_zcopy_abort(struct sk_buff *skb)
1502 {
1503         struct ubuf_info *uarg = skb_zcopy(skb);
1504 
1505         if (uarg) {
1506                 sock_zerocopy_put_abort(uarg, false);
1507                 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1508         }
1509 }
1510 
1511 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1512 {
1513         skb->next = NULL;
1514 }
1515 
1516 /* Iterate through singly-linked GSO fragments of an skb. */
1517 #define skb_list_walk_safe(first, skb, next_skb)                               \
1518         for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1519              (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1520 
1521 static inline void skb_list_del_init(struct sk_buff *skb)
1522 {
1523         __list_del_entry(&skb->list);
1524         skb_mark_not_on_list(skb);
1525 }
1526 
1527 /**
1528  *      skb_queue_empty - check if a queue is empty
1529  *      @list: queue head
1530  *
1531  *      Returns true if the queue is empty, false otherwise.
1532  */
1533 static inline int skb_queue_empty(const struct sk_buff_head *list)
1534 {
1535         return list->next == (const struct sk_buff *) list;
1536 }
1537 
1538 /**
1539  *      skb_queue_empty_lockless - check if a queue is empty
1540  *      @list: queue head
1541  *
1542  *      Returns true if the queue is empty, false otherwise.
1543  *      This variant can be used in lockless contexts.
1544  */
1545 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1546 {
1547         return READ_ONCE(list->next) == (const struct sk_buff *) list;
1548 }
1549 
1550 
1551 /**
1552  *      skb_queue_is_last - check if skb is the last entry in the queue
1553  *      @list: queue head
1554  *      @skb: buffer
1555  *
1556  *      Returns true if @skb is the last buffer on the list.
1557  */
1558 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1559                                      const struct sk_buff *skb)
1560 {
1561         return skb->next == (const struct sk_buff *) list;
1562 }
1563 
1564 /**
1565  *      skb_queue_is_first - check if skb is the first entry in the queue
1566  *      @list: queue head
1567  *      @skb: buffer
1568  *
1569  *      Returns true if @skb is the first buffer on the list.
1570  */
1571 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1572                                       const struct sk_buff *skb)
1573 {
1574         return skb->prev == (const struct sk_buff *) list;
1575 }
1576 
1577 /**
1578  *      skb_queue_next - return the next packet in the queue
1579  *      @list: queue head
1580  *      @skb: current buffer
1581  *
1582  *      Return the next packet in @list after @skb.  It is only valid to
1583  *      call this if skb_queue_is_last() evaluates to false.
1584  */
1585 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1586                                              const struct sk_buff *skb)
1587 {
1588         /* This BUG_ON may seem severe, but if we just return then we
1589          * are going to dereference garbage.
1590          */
1591         BUG_ON(skb_queue_is_last(list, skb));
1592         return skb->next;
1593 }
1594 
1595 /**
1596  *      skb_queue_prev - return the prev packet in the queue
1597  *      @list: queue head
1598  *      @skb: current buffer
1599  *
1600  *      Return the prev packet in @list before @skb.  It is only valid to
1601  *      call this if skb_queue_is_first() evaluates to false.
1602  */
1603 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1604                                              const struct sk_buff *skb)
1605 {
1606         /* This BUG_ON may seem severe, but if we just return then we
1607          * are going to dereference garbage.
1608          */
1609         BUG_ON(skb_queue_is_first(list, skb));
1610         return skb->prev;
1611 }
1612 
1613 /**
1614  *      skb_get - reference buffer
1615  *      @skb: buffer to reference
1616  *
1617  *      Makes another reference to a socket buffer and returns a pointer
1618  *      to the buffer.
1619  */
1620 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1621 {
1622         refcount_inc(&skb->users);
1623         return skb;
1624 }
1625 
1626 /*
1627  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1628  */
1629 
1630 /**
1631  *      skb_cloned - is the buffer a clone
1632  *      @skb: buffer to check
1633  *
1634  *      Returns true if the buffer was generated with skb_clone() and is
1635  *      one of multiple shared copies of the buffer. Cloned buffers are
1636  *      shared data so must not be written to under normal circumstances.
1637  */
1638 static inline int skb_cloned(const struct sk_buff *skb)
1639 {
1640         return skb->cloned &&
1641                (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1642 }
1643 
1644 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1645 {
1646         might_sleep_if(gfpflags_allow_blocking(pri));
1647 
1648         if (skb_cloned(skb))
1649                 return pskb_expand_head(skb, 0, 0, pri);
1650 
1651         return 0;
1652 }
1653 
1654 /**
1655  *      skb_header_cloned - is the header a clone
1656  *      @skb: buffer to check
1657  *
1658  *      Returns true if modifying the header part of the buffer requires
1659  *      the data to be copied.
1660  */
1661 static inline int skb_header_cloned(const struct sk_buff *skb)
1662 {
1663         int dataref;
1664 
1665         if (!skb->cloned)
1666                 return 0;
1667 
1668         dataref = atomic_read(&skb_shinfo(skb)->dataref);
1669         dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1670         return dataref != 1;
1671 }
1672 
1673 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1674 {
1675         might_sleep_if(gfpflags_allow_blocking(pri));
1676 
1677         if (skb_header_cloned(skb))
1678                 return pskb_expand_head(skb, 0, 0, pri);
1679 
1680         return 0;
1681 }
1682 
1683 /**
1684  *      __skb_header_release - release reference to header
1685  *      @skb: buffer to operate on
1686  */
1687 static inline void __skb_header_release(struct sk_buff *skb)
1688 {
1689         skb->nohdr = 1;
1690         atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1691 }
1692 
1693 
1694 /**
1695  *      skb_shared - is the buffer shared
1696  *      @skb: buffer to check
1697  *
1698  *      Returns true if more than one person has a reference to this
1699  *      buffer.
1700  */
1701 static inline int skb_shared(const struct sk_buff *skb)
1702 {
1703         return refcount_read(&skb->users) != 1;
1704 }
1705 
1706 /**
1707  *      skb_share_check - check if buffer is shared and if so clone it
1708  *      @skb: buffer to check
1709  *      @pri: priority for memory allocation
1710  *
1711  *      If the buffer is shared the buffer is cloned and the old copy
1712  *      drops a reference. A new clone with a single reference is returned.
1713  *      If the buffer is not shared the original buffer is returned. When
1714  *      being called from interrupt status or with spinlocks held pri must
1715  *      be GFP_ATOMIC.
1716  *
1717  *      NULL is returned on a memory allocation failure.
1718  */
1719 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1720 {
1721         might_sleep_if(gfpflags_allow_blocking(pri));
1722         if (skb_shared(skb)) {
1723                 struct sk_buff *nskb = skb_clone(skb, pri);
1724 
1725                 if (likely(nskb))
1726                         consume_skb(skb);
1727                 else
1728                         kfree_skb(skb);
1729                 skb = nskb;
1730         }
1731         return skb;
1732 }
1733 
1734 /*
1735  *      Copy shared buffers into a new sk_buff. We effectively do COW on
1736  *      packets to handle cases where we have a local reader and forward
1737  *      and a couple of other messy ones. The normal one is tcpdumping
1738  *      a packet thats being forwarded.
1739  */
1740 
1741 /**
1742  *      skb_unshare - make a copy of a shared buffer
1743  *      @skb: buffer to check
1744  *      @pri: priority for memory allocation
1745  *
1746  *      If the socket buffer is a clone then this function creates a new
1747  *      copy of the data, drops a reference count on the old copy and returns
1748  *      the new copy with the reference count at 1. If the buffer is not a clone
1749  *      the original buffer is returned. When called with a spinlock held or
1750  *      from interrupt state @pri must be %GFP_ATOMIC
1751  *
1752  *      %NULL is returned on a memory allocation failure.
1753  */
1754 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1755                                           gfp_t pri)
1756 {
1757         might_sleep_if(gfpflags_allow_blocking(pri));
1758         if (skb_cloned(skb)) {
1759                 struct sk_buff *nskb = skb_copy(skb, pri);
1760 
1761                 /* Free our shared copy */
1762                 if (likely(nskb))
1763                         consume_skb(skb);
1764                 else
1765                         kfree_skb(skb);
1766                 skb = nskb;
1767         }
1768         return skb;
1769 }
1770 
1771 /**
1772  *      skb_peek - peek at the head of an &sk_buff_head
1773  *      @list_: list to peek at
1774  *
1775  *      Peek an &sk_buff. Unlike most other operations you _MUST_
1776  *      be careful with this one. A peek leaves the buffer on the
1777  *      list and someone else may run off with it. You must hold
1778  *      the appropriate locks or have a private queue to do this.
1779  *
1780  *      Returns %NULL for an empty list or a pointer to the head element.
1781  *      The reference count is not incremented and the reference is therefore
1782  *      volatile. Use with caution.
1783  */
1784 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1785 {
1786         struct sk_buff *skb = list_->next;
1787 
1788         if (skb == (struct sk_buff *)list_)
1789                 skb = NULL;
1790         return skb;
1791 }
1792 
1793 /**
1794  *      __skb_peek - peek at the head of a non-empty &sk_buff_head
1795  *      @list_: list to peek at
1796  *
1797  *      Like skb_peek(), but the caller knows that the list is not empty.
1798  */
1799 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1800 {
1801         return list_->next;
1802 }
1803 
1804 /**
1805  *      skb_peek_next - peek skb following the given one from a queue
1806  *      @skb: skb to start from
1807  *      @list_: list to peek at
1808  *
1809  *      Returns %NULL when the end of the list is met or a pointer to the
1810  *      next element. The reference count is not incremented and the
1811  *      reference is therefore volatile. Use with caution.
1812  */
1813 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1814                 const struct sk_buff_head *list_)
1815 {
1816         struct sk_buff *next = skb->next;
1817 
1818         if (next == (struct sk_buff *)list_)
1819                 next = NULL;
1820         return next;
1821 }
1822 
1823 /**
1824  *      skb_peek_tail - peek at the tail of an &sk_buff_head
1825  *      @list_: list to peek at
1826  *
1827  *      Peek an &sk_buff. Unlike most other operations you _MUST_
1828  *      be careful with this one. A peek leaves the buffer on the
1829  *      list and someone else may run off with it. You must hold
1830  *      the appropriate locks or have a private queue to do this.
1831  *
1832  *      Returns %NULL for an empty list or a pointer to the tail element.
1833  *      The reference count is not incremented and the reference is therefore
1834  *      volatile. Use with caution.
1835  */
1836 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1837 {
1838         struct sk_buff *skb = READ_ONCE(list_->prev);
1839 
1840         if (skb == (struct sk_buff *)list_)
1841                 skb = NULL;
1842         return skb;
1843 
1844 }
1845 
1846 /**
1847  *      skb_queue_len   - get queue length
1848  *      @list_: list to measure
1849  *
1850  *      Return the length of an &sk_buff queue.
1851  */
1852 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1853 {
1854         return list_->qlen;
1855 }
1856 
1857 /**
1858  *      skb_queue_len_lockless  - get queue length
1859  *      @list_: list to measure
1860  *
1861  *      Return the length of an &sk_buff queue.
1862  *      This variant can be used in lockless contexts.
1863  */
1864 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1865 {
1866         return READ_ONCE(list_->qlen);
1867 }
1868 
1869 /**
1870  *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1871  *      @list: queue to initialize
1872  *
1873  *      This initializes only the list and queue length aspects of
1874  *      an sk_buff_head object.  This allows to initialize the list
1875  *      aspects of an sk_buff_head without reinitializing things like
1876  *      the spinlock.  It can also be used for on-stack sk_buff_head
1877  *      objects where the spinlock is known to not be used.
1878  */
1879 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1880 {
1881         list->prev = list->next = (struct sk_buff *)list;
1882         list->qlen = 0;
1883 }
1884 
1885 /*
1886  * This function creates a split out lock class for each invocation;
1887  * this is needed for now since a whole lot of users of the skb-queue
1888  * infrastructure in drivers have different locking usage (in hardirq)
1889  * than the networking core (in softirq only). In the long run either the
1890  * network layer or drivers should need annotation to consolidate the
1891  * main types of usage into 3 classes.
1892  */
1893 static inline void skb_queue_head_init(struct sk_buff_head *list)
1894 {
1895         spin_lock_init(&list->lock);
1896         __skb_queue_head_init(list);
1897 }
1898 
1899 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1900                 struct lock_class_key *class)
1901 {
1902         skb_queue_head_init(list);
1903         lockdep_set_class(&list->lock, class);
1904 }
1905 
1906 /*
1907  *      Insert an sk_buff on a list.
1908  *
1909  *      The "__skb_xxxx()" functions are the non-atomic ones that
1910  *      can only be called with interrupts disabled.
1911  */
1912 static inline void __skb_insert(struct sk_buff *newsk,
1913                                 struct sk_buff *prev, struct sk_buff *next,
1914                                 struct sk_buff_head *list)
1915 {
1916         /* See skb_queue_empty_lockless() and skb_peek_tail()
1917          * for the opposite READ_ONCE()
1918          */
1919         WRITE_ONCE(newsk->next, next);
1920         WRITE_ONCE(newsk->prev, prev);
1921         WRITE_ONCE(next->prev, newsk);
1922         WRITE_ONCE(prev->next, newsk);
1923         list->qlen++;
1924 }
1925 
1926 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1927                                       struct sk_buff *prev,
1928                                       struct sk_buff *next)
1929 {
1930         struct sk_buff *first = list->next;
1931         struct sk_buff *last = list->prev;
1932 
1933         WRITE_ONCE(first->prev, prev);
1934         WRITE_ONCE(prev->next, first);
1935 
1936         WRITE_ONCE(last->next, next);
1937         WRITE_ONCE(next->prev, last);
1938 }
1939 
1940 /**
1941  *      skb_queue_splice - join two skb lists, this is designed for stacks
1942  *      @list: the new list to add
1943  *      @head: the place to add it in the first list
1944  */
1945 static inline void skb_queue_splice(const struct sk_buff_head *list,
1946                                     struct sk_buff_head *head)
1947 {
1948         if (!skb_queue_empty(list)) {
1949                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1950                 head->qlen += list->qlen;
1951         }
1952 }
1953 
1954 /**
1955  *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1956  *      @list: the new list to add
1957  *      @head: the place to add it in the first list
1958  *
1959  *      The list at @list is reinitialised
1960  */
1961 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1962                                          struct sk_buff_head *head)
1963 {
1964         if (!skb_queue_empty(list)) {
1965                 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1966                 head->qlen += list->qlen;
1967                 __skb_queue_head_init(list);
1968         }
1969 }
1970 
1971 /**
1972  *      skb_queue_splice_tail - join two skb lists, each list being a queue
1973  *      @list: the new list to add
1974  *      @head: the place to add it in the first list
1975  */
1976 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1977                                          struct sk_buff_head *head)
1978 {
1979         if (!skb_queue_empty(list)) {
1980                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1981                 head->qlen += list->qlen;
1982         }
1983 }
1984 
1985 /**
1986  *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1987  *      @list: the new list to add
1988  *      @head: the place to add it in the first list
1989  *
1990  *      Each of the lists is a queue.
1991  *      The list at @list is reinitialised
1992  */
1993 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1994                                               struct sk_buff_head *head)
1995 {
1996         if (!skb_queue_empty(list)) {
1997                 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1998                 head->qlen += list->qlen;
1999                 __skb_queue_head_init(list);
2000         }
2001 }
2002 
2003 /**
2004  *      __skb_queue_after - queue a buffer at the list head
2005  *      @list: list to use
2006  *      @prev: place after this buffer
2007  *      @newsk: buffer to queue
2008  *
2009  *      Queue a buffer int the middle of a list. This function takes no locks
2010  *      and you must therefore hold required locks before calling it.
2011  *
2012  *      A buffer cannot be placed on two lists at the same time.
2013  */
2014 static inline void __skb_queue_after(struct sk_buff_head *list,
2015                                      struct sk_buff *prev,
2016                                      struct sk_buff *newsk)
2017 {
2018         __skb_insert(newsk, prev, prev->next, list);
2019 }
2020 
2021 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2022                 struct sk_buff_head *list);
2023 
2024 static inline void __skb_queue_before(struct sk_buff_head *list,
2025                                       struct sk_buff *next,
2026                                       struct sk_buff *newsk)
2027 {
2028         __skb_insert(newsk, next->prev, next, list);
2029 }
2030 
2031 /**
2032  *      __skb_queue_head - queue a buffer at the list head
2033  *      @list: list to use
2034  *      @newsk: buffer to queue
2035  *
2036  *      Queue a buffer at the start of a list. This function takes no locks
2037  *      and you must therefore hold required locks before calling it.
2038  *
2039  *      A buffer cannot be placed on two lists at the same time.
2040  */
2041 static inline void __skb_queue_head(struct sk_buff_head *list,
2042                                     struct sk_buff *newsk)
2043 {
2044         __skb_queue_after(list, (struct sk_buff *)list, newsk);
2045 }
2046 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2047 
2048 /**
2049  *      __skb_queue_tail - queue a buffer at the list tail
2050  *      @list: list to use
2051  *      @newsk: buffer to queue
2052  *
2053  *      Queue a buffer at the end of a list. This function takes no locks
2054  *      and you must therefore hold required locks before calling it.
2055  *
2056  *      A buffer cannot be placed on two lists at the same time.
2057  */
2058 static inline void __skb_queue_tail(struct sk_buff_head *list,
2059                                    struct sk_buff *newsk)
2060 {
2061         __skb_queue_before(list, (struct sk_buff *)list, newsk);
2062 }
2063 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2064 
2065 /*
2066  * remove sk_buff from list. _Must_ be called atomically, and with
2067  * the list known..
2068  */
2069 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2070 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2071 {
2072         struct sk_buff *next, *prev;
2073 
2074         WRITE_ONCE(list->qlen, list->qlen - 1);
2075         next       = skb->next;
2076         prev       = skb->prev;
2077         skb->next  = skb->prev = NULL;
2078         WRITE_ONCE(next->prev, prev);
2079         WRITE_ONCE(prev->next, next);
2080 }
2081 
2082 /**
2083  *      __skb_dequeue - remove from the head of the queue
2084  *      @list: list to dequeue from
2085  *
2086  *      Remove the head of the list. This function does not take any locks
2087  *      so must be used with appropriate locks held only. The head item is
2088  *      returned or %NULL if the list is empty.
2089  */
2090 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2091 {
2092         struct sk_buff *skb = skb_peek(list);
2093         if (skb)
2094                 __skb_unlink(skb, list);
2095         return skb;
2096 }
2097 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2098 
2099 /**
2100  *      __skb_dequeue_tail - remove from the tail of the queue
2101  *      @list: list to dequeue from
2102  *
2103  *      Remove the tail of the list. This function does not take any locks
2104  *      so must be used with appropriate locks held only. The tail item is
2105  *      returned or %NULL if the list is empty.
2106  */
2107 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2108 {
2109         struct sk_buff *skb = skb_peek_tail(list);
2110         if (skb)
2111                 __skb_unlink(skb, list);
2112         return skb;
2113 }
2114 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2115 
2116 
2117 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2118 {
2119         return skb->data_len;
2120 }
2121 
2122 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2123 {
2124         return skb->len - skb->data_len;
2125 }
2126 
2127 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2128 {
2129         unsigned int i, len = 0;
2130 
2131         for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2132                 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2133         return len;
2134 }
2135 
2136 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2137 {
2138         return skb_headlen(skb) + __skb_pagelen(skb);
2139 }
2140 
2141 /**
2142  * __skb_fill_page_desc - initialise a paged fragment in an skb
2143  * @skb: buffer containing fragment to be initialised
2144  * @i: paged fragment index to initialise
2145  * @page: the page to use for this fragment
2146  * @off: the offset to the data with @page
2147  * @size: the length of the data
2148  *
2149  * Initialises the @i'th fragment of @skb to point to &size bytes at
2150  * offset @off within @page.
2151  *
2152  * Does not take any additional reference on the fragment.
2153  */
2154 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2155                                         struct page *page, int off, int size)
2156 {
2157         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2158 
2159         /*
2160          * Propagate page pfmemalloc to the skb if we can. The problem is
2161          * that not all callers have unique ownership of the page but rely
2162          * on page_is_pfmemalloc doing the right thing(tm).
2163          */
2164         frag->bv_page             = page;
2165         frag->bv_offset           = off;
2166         skb_frag_size_set(frag, size);
2167 
2168         page = compound_head(page);
2169         if (page_is_pfmemalloc(page))
2170                 skb->pfmemalloc = true;
2171 }
2172 
2173 /**
2174  * skb_fill_page_desc - initialise a paged fragment in an skb
2175  * @skb: buffer containing fragment to be initialised
2176  * @i: paged fragment index to initialise
2177  * @page: the page to use for this fragment
2178  * @off: the offset to the data with @page
2179  * @size: the length of the data
2180  *
2181  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2182  * @skb to point to @size bytes at offset @off within @page. In
2183  * addition updates @skb such that @i is the last fragment.
2184  *
2185  * Does not take any additional reference on the fragment.
2186  */
2187 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2188                                       struct page *page, int off, int size)
2189 {
2190         __skb_fill_page_desc(skb, i, page, off, size);
2191         skb_shinfo(skb)->nr_frags = i + 1;
2192 }
2193 
2194 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2195                      int size, unsigned int truesize);
2196 
2197 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2198                           unsigned int truesize);
2199 
2200 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2201 
2202 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2203 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2204 {
2205         return skb->head + skb->tail;
2206 }
2207 
2208 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2209 {
2210         skb->tail = skb->data - skb->head;
2211 }
2212 
2213 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2214 {
2215         skb_reset_tail_pointer(skb);
2216         skb->tail += offset;
2217 }
2218 
2219 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2220 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2221 {
2222         return skb->tail;
2223 }
2224 
2225 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2226 {
2227         skb->tail = skb->data;
2228 }
2229 
2230 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2231 {
2232         skb->tail = skb->data + offset;
2233 }
2234 
2235 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2236 
2237 /*
2238  *      Add data to an sk_buff
2239  */
2240 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2241 void *skb_put(struct sk_buff *skb, unsigned int len);
2242 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2243 {
2244         void *tmp = skb_tail_pointer(skb);
2245         SKB_LINEAR_ASSERT(skb);
2246         skb->tail += len;
2247         skb->len  += len;
2248         return tmp;
2249 }
2250 
2251 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2252 {
2253         void *tmp = __skb_put(skb, len);
2254 
2255         memset(tmp, 0, len);
2256         return tmp;
2257 }
2258 
2259 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2260                                    unsigned int len)
2261 {
2262         void *tmp = __skb_put(skb, len);
2263 
2264         memcpy(tmp, data, len);
2265         return tmp;
2266 }
2267 
2268 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2269 {
2270         *(u8 *)__skb_put(skb, 1) = val;
2271 }
2272 
2273 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2274 {
2275         void *tmp = skb_put(skb, len);
2276 
2277         memset(tmp, 0, len);
2278 
2279         return tmp;
2280 }
2281 
2282 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2283                                  unsigned int len)
2284 {
2285         void *tmp = skb_put(skb, len);
2286 
2287         memcpy(tmp, data, len);
2288 
2289         return tmp;
2290 }
2291 
2292 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2293 {
2294         *(u8 *)skb_put(skb, 1) = val;
2295 }
2296 
2297 void *skb_push(struct sk_buff *skb, unsigned int len);
2298 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2299 {
2300         skb->data -= len;
2301         skb->len  += len;
2302         return skb->data;
2303 }
2304 
2305 void *skb_pull(struct sk_buff *skb, unsigned int len);
2306 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2307 {
2308         skb->len -= len;
2309         BUG_ON(skb->len < skb->data_len);
2310         return skb->data += len;
2311 }
2312 
2313 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2314 {
2315         return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2316 }
2317 
2318 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2319 
2320 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2321 {
2322         if (len > skb_headlen(skb) &&
2323             !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2324                 return NULL;
2325         skb->len -= len;
2326         return skb->data += len;
2327 }
2328 
2329 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2330 {
2331         return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2332 }
2333 
2334 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2335 {
2336         if (likely(len <= skb_headlen(skb)))
2337                 return true;
2338         if (unlikely(len > skb->len))
2339                 return false;
2340         return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2341 }
2342 
2343 void skb_condense(struct sk_buff *skb);
2344 
2345 /**
2346  *      skb_headroom - bytes at buffer head
2347  *      @skb: buffer to check
2348  *
2349  *      Return the number of bytes of free space at the head of an &sk_buff.
2350  */
2351 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2352 {
2353         return skb->data - skb->head;
2354 }
2355 
2356 /**
2357  *      skb_tailroom - bytes at buffer end
2358  *      @skb: buffer to check
2359  *
2360  *      Return the number of bytes of free space at the tail of an sk_buff
2361  */
2362 static inline int skb_tailroom(const struct sk_buff *skb)
2363 {
2364         return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2365 }
2366 
2367 /**
2368  *      skb_availroom - bytes at buffer end
2369  *      @skb: buffer to check
2370  *
2371  *      Return the number of bytes of free space at the tail of an sk_buff
2372  *      allocated by sk_stream_alloc()
2373  */
2374 static inline int skb_availroom(const struct sk_buff *skb)
2375 {
2376         if (skb_is_nonlinear(skb))
2377                 return 0;
2378 
2379         return skb->end - skb->tail - skb->reserved_tailroom;
2380 }
2381 
2382 /**
2383  *      skb_reserve - adjust headroom
2384  *      @skb: buffer to alter
2385  *      @len: bytes to move
2386  *
2387  *      Increase the headroom of an empty &sk_buff by reducing the tail
2388  *      room. This is only allowed for an empty buffer.
2389  */
2390 static inline void skb_reserve(struct sk_buff *skb, int len)
2391 {
2392         skb->data += len;
2393         skb->tail += len;
2394 }
2395 
2396 /**
2397  *      skb_tailroom_reserve - adjust reserved_tailroom
2398  *      @skb: buffer to alter
2399  *      @mtu: maximum amount of headlen permitted
2400  *      @needed_tailroom: minimum amount of reserved_tailroom
2401  *
2402  *      Set reserved_tailroom so that headlen can be as large as possible but
2403  *      not larger than mtu and tailroom cannot be smaller than
2404  *      needed_tailroom.
2405  *      The required headroom should already have been reserved before using
2406  *      this function.
2407  */
2408 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2409                                         unsigned int needed_tailroom)
2410 {
2411         SKB_LINEAR_ASSERT(skb);
2412         if (mtu < skb_tailroom(skb) - needed_tailroom)
2413                 /* use at most mtu */
2414                 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2415         else
2416                 /* use up to all available space */
2417                 skb->reserved_tailroom = needed_tailroom;
2418 }
2419 
2420 #define ENCAP_TYPE_ETHER        0
2421 #define ENCAP_TYPE_IPPROTO      1
2422 
2423 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2424                                           __be16 protocol)
2425 {
2426         skb->inner_protocol = protocol;
2427         skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2428 }
2429 
2430 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2431                                          __u8 ipproto)
2432 {
2433         skb->inner_ipproto = ipproto;
2434         skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2435 }
2436 
2437 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2438 {
2439         skb->inner_mac_header = skb->mac_header;
2440         skb->inner_network_header = skb->network_header;
2441         skb->inner_transport_header = skb->transport_header;
2442 }
2443 
2444 static inline void skb_reset_mac_len(struct sk_buff *skb)
2445 {
2446         skb->mac_len = skb->network_header - skb->mac_header;
2447 }
2448 
2449 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2450                                                         *skb)
2451 {
2452         return skb->head + skb->inner_transport_header;
2453 }
2454 
2455 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2456 {
2457         return skb_inner_transport_header(skb) - skb->data;
2458 }
2459 
2460 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2461 {
2462         skb->inner_transport_header = skb->data - skb->head;
2463 }
2464 
2465 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2466                                                    const int offset)
2467 {
2468         skb_reset_inner_transport_header(skb);
2469         skb->inner_transport_header += offset;
2470 }
2471 
2472 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2473 {
2474         return skb->head + skb->inner_network_header;
2475 }
2476 
2477 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2478 {
2479         skb->inner_network_header = skb->data - skb->head;
2480 }
2481 
2482 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2483                                                 const int offset)
2484 {
2485         skb_reset_inner_network_header(skb);
2486         skb->inner_network_header += offset;
2487 }
2488 
2489 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2490 {
2491         return skb->head + skb->inner_mac_header;
2492 }
2493 
2494 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2495 {
2496         skb->inner_mac_header = skb->data - skb->head;
2497 }
2498 
2499 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2500                                             const int offset)
2501 {
2502         skb_reset_inner_mac_header(skb);
2503         skb->inner_mac_header += offset;
2504 }
2505 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2506 {
2507         return skb->transport_header != (typeof(skb->transport_header))~0U;
2508 }
2509 
2510 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2511 {
2512         return skb->head + skb->transport_header;
2513 }
2514 
2515 static inline void skb_reset_transport_header(struct sk_buff *skb)
2516 {
2517         skb->transport_header = skb->data - skb->head;
2518 }
2519 
2520 static inline void skb_set_transport_header(struct sk_buff *skb,
2521                                             const int offset)
2522 {
2523         skb_reset_transport_header(skb);
2524         skb->transport_header += offset;
2525 }
2526 
2527 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2528 {
2529         return skb->head + skb->network_header;
2530 }
2531 
2532 static inline void skb_reset_network_header(struct sk_buff *skb)
2533 {
2534         skb->network_header = skb->data - skb->head;
2535 }
2536 
2537 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2538 {
2539         skb_reset_network_header(skb);
2540         skb->network_header += offset;
2541 }
2542 
2543 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2544 {
2545         return skb->head + skb->mac_header;
2546 }
2547 
2548 static inline int skb_mac_offset(const struct sk_buff *skb)
2549 {
2550         return skb_mac_header(skb) - skb->data;
2551 }
2552 
2553 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2554 {
2555         return skb->network_header - skb->mac_header;
2556 }
2557 
2558 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2559 {
2560         return skb->mac_header != (typeof(skb->mac_header))~0U;
2561 }
2562 
2563 static inline void skb_reset_mac_header(struct sk_buff *skb)
2564 {
2565         skb->mac_header = skb->data - skb->head;
2566 }
2567 
2568 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2569 {
2570         skb_reset_mac_header(skb);
2571         skb->mac_header += offset;
2572 }
2573 
2574 static inline void skb_pop_mac_header(struct sk_buff *skb)
2575 {
2576         skb->mac_header = skb->network_header;
2577 }
2578 
2579 static inline void skb_probe_transport_header(struct sk_buff *skb)
2580 {
2581         struct flow_keys_basic keys;
2582 
2583         if (skb_transport_header_was_set(skb))
2584                 return;
2585 
2586         if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2587                                              NULL, 0, 0, 0, 0))
2588                 skb_set_transport_header(skb, keys.control.thoff);
2589 }
2590 
2591 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2592 {
2593         if (skb_mac_header_was_set(skb)) {
2594                 const unsigned char *old_mac = skb_mac_header(skb);
2595 
2596                 skb_set_mac_header(skb, -skb->mac_len);
2597                 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2598         }
2599 }
2600 
2601 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2602 {
2603         return skb->csum_start - skb_headroom(skb);
2604 }
2605 
2606 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2607 {
2608         return skb->head + skb->csum_start;
2609 }
2610 
2611 static inline int skb_transport_offset(const struct sk_buff *skb)
2612 {
2613         return skb_transport_header(skb) - skb->data;
2614 }
2615 
2616 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2617 {
2618         return skb->transport_header - skb->network_header;
2619 }
2620 
2621 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2622 {
2623         return skb->inner_transport_header - skb->inner_network_header;
2624 }
2625 
2626 static inline int skb_network_offset(const struct sk_buff *skb)
2627 {
2628         return skb_network_header(skb) - skb->data;
2629 }
2630 
2631 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2632 {
2633         return skb_inner_network_header(skb) - skb->data;
2634 }
2635 
2636 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2637 {
2638         return pskb_may_pull(skb, skb_network_offset(skb) + len);
2639 }
2640 
2641 /*
2642  * CPUs often take a performance hit when accessing unaligned memory
2643  * locations. The actual performance hit varies, it can be small if the
2644  * hardware handles it or large if we have to take an exception and fix it
2645  * in software.
2646  *
2647  * Since an ethernet header is 14 bytes network drivers often end up with
2648  * the IP header at an unaligned offset. The IP header can be aligned by
2649  * shifting the start of the packet by 2 bytes. Drivers should do this
2650  * with:
2651  *
2652  * skb_reserve(skb, NET_IP_ALIGN);
2653  *
2654  * The downside to this alignment of the IP header is that the DMA is now
2655  * unaligned. On some architectures the cost of an unaligned DMA is high
2656  * and this cost outweighs the gains made by aligning the IP header.
2657  *
2658  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2659  * to be overridden.
2660  */
2661 #ifndef NET_IP_ALIGN
2662 #define NET_IP_ALIGN    2
2663 #endif
2664 
2665 /*
2666  * The networking layer reserves some headroom in skb data (via
2667  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2668  * the header has to grow. In the default case, if the header has to grow
2669  * 32 bytes or less we avoid the reallocation.
2670  *
2671  * Unfortunately this headroom changes the DMA alignment of the resulting
2672  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2673  * on some architectures. An architecture can override this value,
2674  * perhaps setting it to a cacheline in size (since that will maintain
2675  * cacheline alignment of the DMA). It must be a power of 2.
2676  *
2677  * Various parts of the networking layer expect at least 32 bytes of
2678  * headroom, you should not reduce this.
2679  *
2680  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2681  * to reduce average number of cache lines per packet.
2682  * get_rps_cpus() for example only access one 64 bytes aligned block :
2683  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2684  */
2685 #ifndef NET_SKB_PAD
2686 #define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2687 #endif
2688 
2689 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2690 
2691 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2692 {
2693         if (WARN_ON(skb_is_nonlinear(skb)))
2694                 return;
2695         skb->len = len;
2696         skb_set_tail_pointer(skb, len);
2697 }
2698 
2699 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2700 {
2701         __skb_set_length(skb, len);
2702 }
2703 
2704 void skb_trim(struct sk_buff *skb, unsigned int len);
2705 
2706 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2707 {
2708         if (skb->data_len)
2709                 return ___pskb_trim(skb, len);
2710         __skb_trim(skb, len);
2711         return 0;
2712 }
2713 
2714 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2715 {
2716         return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2717 }
2718 
2719 /**
2720  *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2721  *      @skb: buffer to alter
2722  *      @len: new length
2723  *
2724  *      This is identical to pskb_trim except that the caller knows that
2725  *      the skb is not cloned so we should never get an error due to out-
2726  *      of-memory.
2727  */
2728 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2729 {
2730         int err = pskb_trim(skb, len);
2731         BUG_ON(err);
2732 }
2733 
2734 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2735 {
2736         unsigned int diff = len - skb->len;
2737 
2738         if (skb_tailroom(skb) < diff) {
2739                 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2740                                            GFP_ATOMIC);
2741                 if (ret)
2742                         return ret;
2743         }
2744         __skb_set_length(skb, len);
2745         return 0;
2746 }
2747 
2748 /**
2749  *      skb_orphan - orphan a buffer
2750  *      @skb: buffer to orphan
2751  *
2752  *      If a buffer currently has an owner then we call the owner's
2753  *      destructor function and make the @skb unowned. The buffer continues
2754  *      to exist but is no longer charged to its former owner.
2755  */
2756 static inline void skb_orphan(struct sk_buff *skb)
2757 {
2758         if (skb->destructor) {
2759                 skb->destructor(skb);
2760                 skb->destructor = NULL;
2761                 skb->sk         = NULL;
2762         } else {
2763                 BUG_ON(skb->sk);
2764         }
2765 }
2766 
2767 /**
2768  *      skb_orphan_frags - orphan the frags contained in a buffer
2769  *      @skb: buffer to orphan frags from
2770  *      @gfp_mask: allocation mask for replacement pages
2771  *
2772  *      For each frag in the SKB which needs a destructor (i.e. has an
2773  *      owner) create a copy of that frag and release the original
2774  *      page by calling the destructor.
2775  */
2776 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2777 {
2778         if (likely(!skb_zcopy(skb)))
2779                 return 0;
2780         if (!skb_zcopy_is_nouarg(skb) &&
2781             skb_uarg(skb)->callback == sock_zerocopy_callback)
2782                 return 0;
2783         return skb_copy_ubufs(skb, gfp_mask);
2784 }
2785 
2786 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2787 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2788 {
2789         if (likely(!skb_zcopy(skb)))
2790                 return 0;
2791         return skb_copy_ubufs(skb, gfp_mask);
2792 }
2793 
2794 /**
2795  *      __skb_queue_purge - empty a list
2796  *      @list: list to empty
2797  *
2798  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2799  *      the list and one reference dropped. This function does not take the
2800  *      list lock and the caller must hold the relevant locks to use it.
2801  */
2802 static inline void __skb_queue_purge(struct sk_buff_head *list)
2803 {
2804         struct sk_buff *skb;
2805         while ((skb = __skb_dequeue(list)) != NULL)
2806                 kfree_skb(skb);
2807 }
2808 void skb_queue_purge(struct sk_buff_head *list);
2809 
2810 unsigned int skb_rbtree_purge(struct rb_root *root);
2811 
2812 void *netdev_alloc_frag(unsigned int fragsz);
2813 
2814 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2815                                    gfp_t gfp_mask);
2816 
2817 /**
2818  *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2819  *      @dev: network device to receive on
2820  *      @length: length to allocate
2821  *
2822  *      Allocate a new &sk_buff and assign it a usage count of one. The
2823  *      buffer has unspecified headroom built in. Users should allocate
2824  *      the headroom they think they need without accounting for the
2825  *      built in space. The built in space is used for optimisations.
2826  *
2827  *      %NULL is returned if there is no free memory. Although this function
2828  *      allocates memory it can be called from an interrupt.
2829  */
2830 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2831                                                unsigned int length)
2832 {
2833         return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2834 }
2835 
2836 /* legacy helper around __netdev_alloc_skb() */
2837 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2838                                               gfp_t gfp_mask)
2839 {
2840         return __netdev_alloc_skb(NULL, length, gfp_mask);
2841 }
2842 
2843 /* legacy helper around netdev_alloc_skb() */
2844 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2845 {
2846         return netdev_alloc_skb(NULL, length);
2847 }
2848 
2849 
2850 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2851                 unsigned int length, gfp_t gfp)
2852 {
2853         struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2854 
2855         if (NET_IP_ALIGN && skb)
2856                 skb_reserve(skb, NET_IP_ALIGN);
2857         return skb;
2858 }
2859 
2860 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2861                 unsigned int length)
2862 {
2863         return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2864 }
2865 
2866 static inline void skb_free_frag(void *addr)
2867 {
2868         page_frag_free(addr);
2869 }
2870 
2871 void *napi_alloc_frag(unsigned int fragsz);
2872 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2873                                  unsigned int length, gfp_t gfp_mask);
2874 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2875                                              unsigned int length)
2876 {
2877         return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2878 }
2879 void napi_consume_skb(struct sk_buff *skb, int budget);
2880 
2881 void __kfree_skb_flush(void);
2882 void __kfree_skb_defer(struct sk_buff *skb);
2883 
2884 /**
2885  * __dev_alloc_pages - allocate page for network Rx
2886  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2887  * @order: size of the allocation
2888  *
2889  * Allocate a new page.
2890  *
2891  * %NULL is returned if there is no free memory.
2892 */
2893 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2894                                              unsigned int order)
2895 {
2896         /* This piece of code contains several assumptions.
2897          * 1.  This is for device Rx, therefor a cold page is preferred.
2898          * 2.  The expectation is the user wants a compound page.
2899          * 3.  If requesting a order 0 page it will not be compound
2900          *     due to the check to see if order has a value in prep_new_page
2901          * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2902          *     code in gfp_to_alloc_flags that should be enforcing this.
2903          */
2904         gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2905 
2906         return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2907 }
2908 
2909 static inline struct page *dev_alloc_pages(unsigned int order)
2910 {
2911         return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2912 }
2913 
2914 /**
2915  * __dev_alloc_page - allocate a page for network Rx
2916  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2917  *
2918  * Allocate a new page.
2919  *
2920  * %NULL is returned if there is no free memory.
2921  */
2922 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2923 {
2924         return __dev_alloc_pages(gfp_mask, 0);
2925 }
2926 
2927 static inline struct page *dev_alloc_page(void)
2928 {
2929         return dev_alloc_pages(0);
2930 }
2931 
2932 /**
2933  *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2934  *      @page: The page that was allocated from skb_alloc_page
2935  *      @skb: The skb that may need pfmemalloc set
2936  */
2937 static inline void skb_propagate_pfmemalloc(struct page *page,
2938                                              struct sk_buff *skb)
2939 {
2940         if (page_is_pfmemalloc(page))
2941                 skb->pfmemalloc = true;
2942 }
2943 
2944 /**
2945  * skb_frag_off() - Returns the offset of a skb fragment
2946  * @frag: the paged fragment
2947  */
2948 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2949 {
2950         return frag->bv_offset;
2951 }
2952 
2953 /**
2954  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2955  * @frag: skb fragment
2956  * @delta: value to add
2957  */
2958 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2959 {
2960         frag->bv_offset += delta;
2961 }
2962 
2963 /**
2964  * skb_frag_off_set() - Sets the offset of a skb fragment
2965  * @frag: skb fragment
2966  * @offset: offset of fragment
2967  */
2968 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2969 {
2970         frag->bv_offset = offset;
2971 }
2972 
2973 /**
2974  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2975  * @fragto: skb fragment where offset is set
2976  * @fragfrom: skb fragment offset is copied from
2977  */
2978 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2979                                      const skb_frag_t *fragfrom)
2980 {
2981         fragto->bv_offset = fragfrom->bv_offset;
2982 }
2983 
2984 /**
2985  * skb_frag_page - retrieve the page referred to by a paged fragment
2986  * @frag: the paged fragment
2987  *
2988  * Returns the &struct page associated with @frag.
2989  */
2990 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2991 {
2992         return frag->bv_page;
2993 }
2994 
2995 /**
2996  * __skb_frag_ref - take an addition reference on a paged fragment.
2997  * @frag: the paged fragment
2998  *
2999  * Takes an additional reference on the paged fragment @frag.
3000  */
3001 static inline void __skb_frag_ref(skb_frag_t *frag)
3002 {
3003         get_page(skb_frag_page(frag));
3004 }
3005 
3006 /**
3007  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3008  * @skb: the buffer
3009  * @f: the fragment offset.
3010  *
3011  * Takes an additional reference on the @f'th paged fragment of @skb.
3012  */
3013 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3014 {
3015         __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3016 }
3017 
3018 /**
3019  * __skb_frag_unref - release a reference on a paged fragment.
3020  * @frag: the paged fragment
3021  *
3022  * Releases a reference on the paged fragment @frag.
3023  */
3024 static inline void __skb_frag_unref(skb_frag_t *frag)
3025 {
3026         put_page(skb_frag_page(frag));
3027 }
3028 
3029 /**
3030  * skb_frag_unref - release a reference on a paged fragment of an skb.
3031  * @skb: the buffer
3032  * @f: the fragment offset
3033  *
3034  * Releases a reference on the @f'th paged fragment of @skb.
3035  */
3036 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3037 {
3038         __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3039 }
3040 
3041 /**
3042  * skb_frag_address - gets the address of the data contained in a paged fragment
3043  * @frag: the paged fragment buffer
3044  *
3045  * Returns the address of the data within @frag. The page must already
3046  * be mapped.
3047  */
3048 static inline void *skb_frag_address(const skb_frag_t *frag)
3049 {
3050         return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3051 }
3052 
3053 /**
3054  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3055  * @frag: the paged fragment buffer
3056  *
3057  * Returns the address of the data within @frag. Checks that the page
3058  * is mapped and returns %NULL otherwise.
3059  */
3060 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3061 {
3062         void *ptr = page_address(skb_frag_page(frag));
3063         if (unlikely(!ptr))
3064                 return NULL;
3065 
3066         return ptr + skb_frag_off(frag);
3067 }
3068 
3069 /**
3070  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3071  * @fragto: skb fragment where page is set
3072  * @fragfrom: skb fragment page is copied from
3073  */
3074 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3075                                       const skb_frag_t *fragfrom)
3076 {
3077         fragto->bv_page = fragfrom->bv_page;
3078 }
3079 
3080 /**
3081  * __skb_frag_set_page - sets the page contained in a paged fragment
3082  * @frag: the paged fragment
3083  * @page: the page to set
3084  *
3085  * Sets the fragment @frag to contain @page.
3086  */
3087 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3088 {
3089         frag->bv_page = page;
3090 }
3091 
3092 /**
3093  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3094  * @skb: the buffer
3095  * @f: the fragment offset
3096  * @page: the page to set
3097  *
3098  * Sets the @f'th fragment of @skb to contain @page.
3099  */
3100 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3101                                      struct page *page)
3102 {
3103         __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3104 }
3105 
3106 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3107 
3108 /**
3109  * skb_frag_dma_map - maps a paged fragment via the DMA API
3110  * @dev: the device to map the fragment to
3111  * @frag: the paged fragment to map
3112  * @offset: the offset within the fragment (starting at the
3113  *          fragment's own offset)
3114  * @size: the number of bytes to map
3115  * @dir: the direction of the mapping (``PCI_DMA_*``)
3116  *
3117  * Maps the page associated with @frag to @device.
3118  */
3119 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3120                                           const skb_frag_t *frag,
3121                                           size_t offset, size_t size,
3122                                           enum dma_data_direction dir)
3123 {
3124         return dma_map_page(dev, skb_frag_page(frag),
3125                             skb_frag_off(frag) + offset, size, dir);
3126 }
3127 
3128 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3129                                         gfp_t gfp_mask)
3130 {
3131         return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3132 }
3133 
3134 
3135 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3136                                                   gfp_t gfp_mask)
3137 {
3138         return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3139 }
3140 
3141 
3142 /**
3143  *      skb_clone_writable - is the header of a clone writable
3144  *      @skb: buffer to check
3145  *      @len: length up to which to write
3146  *
3147  *      Returns true if modifying the header part of the cloned buffer
3148  *      does not requires the data to be copied.
3149  */
3150 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3151 {
3152         return !skb_header_cloned(skb) &&
3153                skb_headroom(skb) + len <= skb->hdr_len;
3154 }
3155 
3156 static inline int skb_try_make_writable(struct sk_buff *skb,
3157                                         unsigned int write_len)
3158 {
3159         return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3160                pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3161 }
3162 
3163 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3164                             int cloned)
3165 {
3166         int delta = 0;
3167 
3168         if (headroom > skb_headroom(skb))
3169                 delta = headroom - skb_headroom(skb);
3170 
3171         if (delta || cloned)
3172                 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3173                                         GFP_ATOMIC);
3174         return 0;
3175 }
3176 
3177 /**
3178  *      skb_cow - copy header of skb when it is required
3179  *      @skb: buffer to cow
3180  *      @headroom: needed headroom
3181  *
3182  *      If the skb passed lacks sufficient headroom or its data part
3183  *      is shared, data is reallocated. If reallocation fails, an error
3184  *      is returned and original skb is not changed.
3185  *
3186  *      The result is skb with writable area skb->head...skb->tail
3187  *      and at least @headroom of space at head.
3188  */
3189 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3190 {
3191         return __skb_cow(skb, headroom, skb_cloned(skb));
3192 }
3193 
3194 /**
3195  *      skb_cow_head - skb_cow but only making the head writable
3196  *      @skb: buffer to cow
3197  *      @headroom: needed headroom
3198  *
3199  *      This function is identical to skb_cow except that we replace the
3200  *      skb_cloned check by skb_header_cloned.  It should be used when
3201  *      you only need to push on some header and do not need to modify
3202  *      the data.
3203  */
3204 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3205 {
3206         return __skb_cow(skb, headroom, skb_header_cloned(skb));
3207 }
3208 
3209 /**
3210  *      skb_padto       - pad an skbuff up to a minimal size
3211  *      @skb: buffer to pad
3212  *      @len: minimal length
3213  *
3214  *      Pads up a buffer to ensure the trailing bytes exist and are
3215  *      blanked. If the buffer already contains sufficient data it
3216  *      is untouched. Otherwise it is extended. Returns zero on
3217  *      success. The skb is freed on error.
3218  */
3219 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3220 {
3221         unsigned int size = skb->len;
3222         if (likely(size >= len))
3223                 return 0;
3224         return skb_pad(skb, len - size);
3225 }
3226 
3227 /**
3228  *      __skb_put_padto - increase size and pad an skbuff up to a minimal size
3229  *      @skb: buffer to pad
3230  *      @len: minimal length
3231  *      @free_on_error: free buffer on error
3232  *
3233  *      Pads up a buffer to ensure the trailing bytes exist and are
3234  *      blanked. If the buffer already contains sufficient data it
3235  *      is untouched. Otherwise it is extended. Returns zero on
3236  *      success. The skb is freed on error if @free_on_error is true.
3237  */
3238 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3239                                   bool free_on_error)
3240 {
3241         unsigned int size = skb->len;
3242 
3243         if (unlikely(size < len)) {
3244                 len -= size;
3245                 if (__skb_pad(skb, len, free_on_error))
3246                         return -ENOMEM;
3247                 __skb_put(skb, len);
3248         }
3249         return 0;
3250 }
3251 
3252 /**
3253  *      skb_put_padto - increase size and pad an skbuff up to a minimal size
3254  *      @skb: buffer to pad
3255  *      @len: minimal length
3256  *
3257  *      Pads up a buffer to ensure the trailing bytes exist and are
3258  *      blanked. If the buffer already contains sufficient data it
3259  *      is untouched. Otherwise it is extended. Returns zero on
3260  *      success. The skb is freed on error.
3261  */
3262 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3263 {
3264         return __skb_put_padto(skb, len, true);
3265 }
3266 
3267 static inline int skb_add_data(struct sk_buff *skb,
3268                                struct iov_iter *from, int copy)
3269 {
3270         const int off = skb->len;
3271 
3272         if (skb->ip_summed == CHECKSUM_NONE) {
3273                 __wsum csum = 0;
3274                 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3275                                                  &csum, from)) {
3276                         skb->csum = csum_block_add(skb->csum, csum, off);
3277                         return 0;
3278                 }
3279         } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3280                 return 0;
3281 
3282         __skb_trim(skb, off);
3283         return -EFAULT;
3284 }
3285 
3286 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3287                                     const struct page *page, int off)
3288 {
3289         if (skb_zcopy(skb))
3290                 return false;
3291         if (i) {
3292                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3293 
3294                 return page == skb_frag_page(frag) &&
3295                        off == skb_frag_off(frag) + skb_frag_size(frag);
3296         }
3297         return false;
3298 }
3299 
3300 static inline int __skb_linearize(struct sk_buff *skb)
3301 {
3302         return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3303 }
3304 
3305 /**
3306  *      skb_linearize - convert paged skb to linear one
3307  *      @skb: buffer to linarize
3308  *
3309  *      If there is no free memory -ENOMEM is returned, otherwise zero
3310  *      is returned and the old skb data released.
3311  */
3312 static inline int skb_linearize(struct sk_buff *skb)
3313 {
3314         return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3315 }
3316 
3317 /**
3318  * skb_has_shared_frag - can any frag be overwritten
3319  * @skb: buffer to test
3320  *
3321  * Return true if the skb has at least one frag that might be modified
3322  * by an external entity (as in vmsplice()/sendfile())
3323  */
3324 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3325 {
3326         return skb_is_nonlinear(skb) &&
3327                skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3328 }
3329 
3330 /**
3331  *      skb_linearize_cow - make sure skb is linear and writable
3332  *      @skb: buffer to process
3333  *
3334  *      If there is no free memory -ENOMEM is returned, otherwise zero
3335  *      is returned and the old skb data released.
3336  */
3337 static inline int skb_linearize_cow(struct sk_buff *skb)
3338 {
3339         return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3340                __skb_linearize(skb) : 0;
3341 }
3342 
3343 static __always_inline void
3344 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3345                      unsigned int off)
3346 {
3347         if (skb->ip_summed == CHECKSUM_COMPLETE)
3348                 skb->csum = csum_block_sub(skb->csum,
3349                                            csum_partial(start, len, 0), off);
3350         else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3351                  skb_checksum_start_offset(skb) < 0)
3352                 skb->ip_summed = CHECKSUM_NONE;
3353 }
3354 
3355 /**
3356  *      skb_postpull_rcsum - update checksum for received skb after pull
3357  *      @skb: buffer to update
3358  *      @start: start of data before pull
3359  *      @len: length of data pulled
3360  *
3361  *      After doing a pull on a received packet, you need to call this to
3362  *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3363  *      CHECKSUM_NONE so that it can be recomputed from scratch.
3364  */
3365 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3366                                       const void *start, unsigned int len)
3367 {
3368         __skb_postpull_rcsum(skb, start, len, 0);
3369 }
3370 
3371 static __always_inline void
3372 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3373                      unsigned int off)
3374 {
3375         if (skb->ip_summed == CHECKSUM_COMPLETE)
3376                 skb->csum = csum_block_add(skb->csum,
3377                                            csum_partial(start, len, 0), off);
3378 }
3379 
3380 /**
3381  *      skb_postpush_rcsum - update checksum for received skb after push
3382  *      @skb: buffer to update
3383  *      @start: start of data after push
3384  *      @len: length of data pushed
3385  *
3386  *      After doing a push on a received packet, you need to call this to
3387  *      update the CHECKSUM_COMPLETE checksum.
3388  */
3389 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3390                                       const void *start, unsigned int len)
3391 {
3392         __skb_postpush_rcsum(skb, start, len, 0);
3393 }
3394 
3395 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3396 
3397 /**
3398  *      skb_push_rcsum - push skb and update receive checksum
3399  *      @skb: buffer to update
3400  *      @len: length of data pulled
3401  *
3402  *      This function performs an skb_push on the packet and updates
3403  *      the CHECKSUM_COMPLETE checksum.  It should be used on
3404  *      receive path processing instead of skb_push unless you know
3405  *      that the checksum difference is zero (e.g., a valid IP header)
3406  *      or you are setting ip_summed to CHECKSUM_NONE.
3407  */
3408 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3409 {
3410         skb_push(skb, len);
3411         skb_postpush_rcsum(skb, skb->data, len);
3412         return skb->data;
3413 }
3414 
3415 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3416 /**
3417  *      pskb_trim_rcsum - trim received skb and update checksum
3418  *      @skb: buffer to trim
3419  *      @len: new length
3420  *
3421  *      This is exactly the same as pskb_trim except that it ensures the
3422  *      checksum of received packets are still valid after the operation.
3423  *      It can change skb pointers.
3424  */
3425 
3426 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3427 {
3428         if (likely(len >= skb->len))
3429                 return 0;
3430         return pskb_trim_rcsum_slow(skb, len);
3431 }
3432 
3433 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3434 {
3435         if (skb->ip_summed == CHECKSUM_COMPLETE)
3436                 skb->ip_summed = CHECKSUM_NONE;
3437         __skb_trim(skb, len);
3438         return 0;
3439 }
3440 
3441 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3442 {
3443         if (skb->ip_summed == CHECKSUM_COMPLETE)
3444                 skb->ip_summed = CHECKSUM_NONE;
3445         return __skb_grow(skb, len);
3446 }
3447 
3448 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3449 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3450 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3451 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3452 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3453 
3454 #define skb_queue_walk(queue, skb) \
3455                 for (skb = (queue)->next;                                       \
3456                      skb != (struct sk_buff *)(queue);                          \
3457                      skb = skb->next)
3458 
3459 #define skb_queue_walk_safe(queue, skb, tmp)                                    \
3460                 for (skb = (queue)->next, tmp = skb->next;                      \
3461                      skb != (struct sk_buff *)(queue);                          \
3462                      skb = tmp, tmp = skb->next)
3463 
3464 #define skb_queue_walk_from(queue, skb)                                         \
3465                 for (; skb != (struct sk_buff *)(queue);                        \
3466                      skb = skb->next)
3467 
3468 #define skb_rbtree_walk(skb, root)                                              \
3469                 for (skb = skb_rb_first(root); skb != NULL;                     \
3470                      skb = skb_rb_next(skb))
3471 
3472 #define skb_rbtree_walk_from(skb)                                               \
3473                 for (; skb != NULL;                                             \
3474                      skb = skb_rb_next(skb))
3475 
3476 #define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3477                 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3478                      skb = tmp)
3479 
3480 #define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3481                 for (tmp = skb->next;                                           \
3482                      skb != (struct sk_buff *)(queue);                          \
3483                      skb = tmp, tmp = skb->next)
3484 
3485 #define skb_queue_reverse_walk(queue, skb) \
3486                 for (skb = (queue)->prev;                                       \
3487                      skb != (struct sk_buff *)(queue);                          \
3488                      skb = skb->prev)
3489 
3490 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3491                 for (skb = (queue)->prev, tmp = skb->prev;                      \
3492                      skb != (struct sk_buff *)(queue);                          \
3493                      skb = tmp, tmp = skb->prev)
3494 
3495 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3496                 for (tmp = skb->prev;                                           \
3497                      skb != (struct sk_buff *)(queue);                          \
3498                      skb = tmp, tmp = skb->prev)
3499 
3500 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3501 {
3502         return skb_shinfo(skb)->frag_list != NULL;
3503 }
3504 
3505 static inline void skb_frag_list_init(struct sk_buff *skb)
3506 {
3507         skb_shinfo(skb)->frag_list = NULL;
3508 }
3509 
3510 #define skb_walk_frags(skb, iter)       \
3511         for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3512 
3513 
3514 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3515                                 int *err, long *timeo_p,
3516                                 const struct sk_buff *skb);
3517 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3518                                           struct sk_buff_head *queue,
3519                                           unsigned int flags,
3520                                           int *off, int *err,
3521                                           struct sk_buff **last);
3522 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3523                                         struct sk_buff_head *queue,
3524                                         unsigned int flags, int *off, int *err,
3525                                         struct sk_buff **last);
3526 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3527                                     struct sk_buff_head *sk_queue,
3528                                     unsigned int flags, int *off, int *err);
3529 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3530                                   int *err);
3531 __poll_t datagram_poll(struct file *file, struct socket *sock,
3532                            struct poll_table_struct *wait);
3533 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3534                            struct iov_iter *to, int size);
3535 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3536                                         struct msghdr *msg, int size)
3537 {
3538         return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3539 }
3540 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3541                                    struct msghdr *msg);
3542 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3543                            struct iov_iter *to, int len,
3544                            struct ahash_request *hash);
3545 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3546                                  struct iov_iter *from, int len);
3547 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3548 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3549 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3550 static inline void skb_free_datagram_locked(struct sock *sk,
3551                                             struct sk_buff *skb)
3552 {
3553         __skb_free_datagram_locked(sk, skb, 0);
3554 }
3555 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3556 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3557 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3558 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3559                               int len, __wsum csum);
3560 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3561                     struct pipe_inode_info *pipe, unsigned int len,
3562                     unsigned int flags);
3563 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3564                          int len);
3565 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3566 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3567 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3568                  int len, int hlen);
3569 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3570 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3571 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3572 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3573 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3574 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3575 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3576                                  unsigned int offset);
3577 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3578 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3579 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3580 int skb_vlan_pop(struct sk_buff *skb);
3581 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3582 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3583                   int mac_len, bool ethernet);
3584 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3585                  bool ethernet);
3586 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3587 int skb_mpls_dec_ttl(struct sk_buff *skb);
3588 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3589                              gfp_t gfp);
3590 
3591 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3592 {
3593         return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3594 }
3595 
3596 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3597 {
3598         return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3599 }
3600 
3601 struct skb_checksum_ops {
3602         __wsum (*update)(const void *mem, int len, __wsum wsum);
3603         __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3604 };
3605 
3606 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3607 
3608 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3609                       __wsum csum, const struct skb_checksum_ops *ops);
3610 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3611                     __wsum csum);
3612 
3613 static inline void * __must_check
3614 __skb_header_pointer(const struct sk_buff *skb, int offset,
3615                      int len, void *data, int hlen, void *buffer)
3616 {
3617         if (hlen - offset >= len)
3618                 return data + offset;
3619 
3620         if (!skb ||
3621             skb_copy_bits(skb, offset, buffer, len) < 0)
3622                 return NULL;
3623 
3624         return buffer;
3625 }
3626 
3627 static inline void * __must_check
3628 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3629 {
3630         return __skb_header_pointer(skb, offset, len, skb->data,
3631                                     skb_headlen(skb), buffer);
3632 }
3633 
3634 /**
3635  *      skb_needs_linearize - check if we need to linearize a given skb
3636  *                            depending on the given device features.
3637  *      @skb: socket buffer to check
3638  *      @features: net device features
3639  *
3640  *      Returns true if either:
3641  *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3642  *      2. skb is fragmented and the device does not support SG.
3643  */
3644 static inline bool skb_needs_linearize(struct sk_buff *skb,
3645                                        netdev_features_t features)
3646 {
3647         return skb_is_nonlinear(skb) &&
3648                ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3649                 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3650 }
3651 
3652 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3653                                              void *to,
3654                                              const unsigned int len)
3655 {
3656         memcpy(to, skb->data, len);
3657 }
3658 
3659 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3660                                                     const int offset, void *to,
3661                                                     const unsigned int len)
3662 {
3663         memcpy(to, skb->data + offset, len);
3664 }
3665 
3666 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3667                                            const void *from,
3668                                            const unsigned int len)
3669 {
3670         memcpy(skb->data, from, len);
3671 }
3672 
3673 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3674                                                   const int offset,
3675                                                   const void *from,
3676                                                   const unsigned int len)
3677 {
3678         memcpy(skb->data + offset, from, len);
3679 }
3680 
3681 void skb_init(void);
3682 
3683 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3684 {
3685         return skb->tstamp;
3686 }
3687 
3688 /**
3689  *      skb_get_timestamp - get timestamp from a skb
3690  *      @skb: skb to get stamp from
3691  *      @stamp: pointer to struct __kernel_old_timeval to store stamp in
3692  *
3693  *      Timestamps are stored in the skb as offsets to a base timestamp.
3694  *      This function converts the offset back to a struct timeval and stores
3695  *      it in stamp.
3696  */
3697 static inline void skb_get_timestamp(const struct sk_buff *skb,
3698                                      struct __kernel_old_timeval *stamp)
3699 {
3700         *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3701 }
3702 
3703 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3704                                          struct __kernel_sock_timeval *stamp)
3705 {
3706         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3707 
3708         stamp->tv_sec = ts.tv_sec;
3709         stamp->tv_usec = ts.tv_nsec / 1000;
3710 }
3711 
3712 static inline void skb_get_timestampns(const struct sk_buff *skb,
3713                                        struct __kernel_old_timespec *stamp)
3714 {
3715         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3716 
3717         stamp->tv_sec = ts.tv_sec;
3718         stamp->tv_nsec = ts.tv_nsec;
3719 }
3720 
3721 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3722                                            struct __kernel_timespec *stamp)
3723 {
3724         struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3725 
3726         stamp->tv_sec = ts.tv_sec;
3727         stamp->tv_nsec = ts.tv_nsec;
3728 }
3729 
3730 static inline void __net_timestamp(struct sk_buff *skb)
3731 {
3732         skb->tstamp = ktime_get_real();
3733 }
3734 
3735 static inline ktime_t net_timedelta(ktime_t t)
3736 {
3737         return ktime_sub(ktime_get_real(), t);
3738 }
3739 
3740 static inline ktime_t net_invalid_timestamp(void)
3741 {
3742         return 0;
3743 }
3744 
3745 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3746 {
3747         return skb_shinfo(skb)->meta_len;
3748 }
3749 
3750 static inline void *skb_metadata_end(const struct sk_buff *skb)
3751 {
3752         return skb_mac_header(skb);
3753 }
3754 
3755 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3756                                           const struct sk_buff *skb_b,
3757                                           u8 meta_len)
3758 {
3759         const void *a = skb_metadata_end(skb_a);
3760         const void *b = skb_metadata_end(skb_b);
3761         /* Using more efficient varaiant than plain call to memcmp(). */
3762 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3763         u64 diffs = 0;
3764 
3765         switch (meta_len) {
3766 #define __it(x, op) (x -= sizeof(u##op))
3767 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3768         case 32: diffs |= __it_diff(a, b, 64);
3769                  /* fall through */
3770         case 24: diffs |= __it_diff(a, b, 64);
3771                  /* fall through */
3772         case 16: diffs |= __it_diff(a, b, 64);
3773                  /* fall through */
3774         case  8: diffs |= __it_diff(a, b, 64);
3775                 break;
3776         case 28: diffs |= __it_diff(a, b, 64);
3777                  /* fall through */
3778         case 20: diffs |= __it_diff(a, b, 64);
3779                  /* fall through */
3780         case 12: diffs |= __it_diff(a, b, 64);
3781                  /* fall through */
3782         case  4: diffs |= __it_diff(a, b, 32);
3783                 break;
3784         }
3785         return diffs;
3786 #else
3787         return memcmp(a - meta_len, b - meta_len, meta_len);
3788 #endif
3789 }
3790 
3791 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3792                                         const struct sk_buff *skb_b)
3793 {
3794         u8 len_a = skb_metadata_len(skb_a);
3795         u8 len_b = skb_metadata_len(skb_b);
3796 
3797         if (!(len_a | len_b))
3798                 return false;
3799 
3800         return len_a != len_b ?
3801                true : __skb_metadata_differs(skb_a, skb_b, len_a);
3802 }
3803 
3804 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3805 {
3806         skb_shinfo(skb)->meta_len = meta_len;
3807 }
3808 
3809 static inline void skb_metadata_clear(struct sk_buff *skb)
3810 {
3811         skb_metadata_set(skb, 0);
3812 }
3813 
3814 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3815 
3816 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3817 
3818 void skb_clone_tx_timestamp(struct sk_buff *skb);
3819 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3820 
3821 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3822 
3823 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3824 {
3825 }
3826 
3827 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3828 {
3829         return false;
3830 }
3831 
3832 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3833 
3834 /**
3835  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3836  *
3837  * PHY drivers may accept clones of transmitted packets for
3838  * timestamping via their phy_driver.txtstamp method. These drivers
3839  * must call this function to return the skb back to the stack with a
3840  * timestamp.
3841  *
3842  * @skb: clone of the the original outgoing packet
3843  * @hwtstamps: hardware time stamps
3844  *
3845  */
3846 void skb_complete_tx_timestamp(struct sk_buff *skb,
3847                                struct skb_shared_hwtstamps *hwtstamps);
3848 
3849 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3850                      struct skb_shared_hwtstamps *hwtstamps,
3851                      struct sock *sk, int tstype);
3852 
3853 /**
3854  * skb_tstamp_tx - queue clone of skb with send time stamps
3855  * @orig_skb:   the original outgoing packet
3856  * @hwtstamps:  hardware time stamps, may be NULL if not available
3857  *
3858  * If the skb has a socket associated, then this function clones the
3859  * skb (thus sharing the actual data and optional structures), stores
3860  * the optional hardware time stamping information (if non NULL) or
3861  * generates a software time stamp (otherwise), then queues the clone
3862  * to the error queue of the socket.  Errors are silently ignored.
3863  */
3864 void skb_tstamp_tx(struct sk_buff *orig_skb,
3865                    struct skb_shared_hwtstamps *hwtstamps);
3866 
3867 /**
3868  * skb_tx_timestamp() - Driver hook for transmit timestamping
3869  *
3870  * Ethernet MAC Drivers should call this function in their hard_xmit()
3871  * function immediately before giving the sk_buff to the MAC hardware.
3872  *
3873  * Specifically, one should make absolutely sure that this function is
3874  * called before TX completion of this packet can trigger.  Otherwise
3875  * the packet could potentially already be freed.
3876  *
3877  * @skb: A socket buffer.
3878  */
3879 static inline void skb_tx_timestamp(struct sk_buff *skb)
3880 {
3881         skb_clone_tx_timestamp(skb);
3882         if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3883                 skb_tstamp_tx(skb, NULL);
3884 }
3885 
3886 /**
3887  * skb_complete_wifi_ack - deliver skb with wifi status
3888  *
3889  * @skb: the original outgoing packet
3890  * @acked: ack status
3891  *
3892  */
3893 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3894 
3895 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3896 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3897 
3898 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3899 {
3900         return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3901                 skb->csum_valid ||
3902                 (skb->ip_summed == CHECKSUM_PARTIAL &&
3903                  skb_checksum_start_offset(skb) >= 0));
3904 }
3905 
3906 /**
3907  *      skb_checksum_complete - Calculate checksum of an entire packet
3908  *      @skb: packet to process
3909  *
3910  *      This function calculates the checksum over the entire packet plus
3911  *      the value of skb->csum.  The latter can be used to supply the
3912  *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3913  *      checksum.
3914  *
3915  *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3916  *      this function can be used to verify that checksum on received
3917  *      packets.  In that case the function should return zero if the
3918  *      checksum is correct.  In particular, this function will return zero
3919  *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3920  *      hardware has already verified the correctness of the checksum.
3921  */
3922 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3923 {
3924         return skb_csum_unnecessary(skb) ?
3925                0 : __skb_checksum_complete(skb);
3926 }
3927 
3928 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3929 {
3930         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3931                 if (skb->csum_level == 0)
3932                         skb->ip_summed = CHECKSUM_NONE;
3933                 else
3934                         skb->csum_level--;
3935         }
3936 }
3937 
3938 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3939 {
3940         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3941                 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3942                         skb->csum_level++;
3943         } else if (skb->ip_summed == CHECKSUM_NONE) {
3944                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3945                 skb->csum_level = 0;
3946         }
3947 }
3948 
3949 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3950 {
3951         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3952                 skb->ip_summed = CHECKSUM_NONE;
3953                 skb->csum_level = 0;
3954         }
3955 }
3956 
3957 /* Check if we need to perform checksum complete validation.
3958  *
3959  * Returns true if checksum complete is needed, false otherwise
3960  * (either checksum is unnecessary or zero checksum is allowed).
3961  */
3962 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3963                                                   bool zero_okay,
3964                                                   __sum16 check)
3965 {
3966         if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3967                 skb->csum_valid = 1;
3968                 __skb_decr_checksum_unnecessary(skb);
3969                 return false;
3970         }
3971 
3972         return true;
3973 }
3974 
3975 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3976  * in checksum_init.
3977  */
3978 #define CHECKSUM_BREAK 76
3979 
3980 /* Unset checksum-complete
3981  *
3982  * Unset checksum complete can be done when packet is being modified
3983  * (uncompressed for instance) and checksum-complete value is
3984  * invalidated.
3985  */
3986 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3987 {
3988         if (skb->ip_summed == CHECKSUM_COMPLETE)
3989                 skb->ip_summed = CHECKSUM_NONE;
3990 }
3991 
3992 /* Validate (init) checksum based on checksum complete.
3993  *
3994  * Return values:
3995  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3996  *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3997  *      checksum is stored in skb->csum for use in __skb_checksum_complete
3998  *   non-zero: value of invalid checksum
3999  *
4000  */
4001 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4002                                                        bool complete,
4003                                                        __wsum psum)
4004 {
4005         if (skb->ip_summed == CHECKSUM_COMPLETE) {
4006                 if (!csum_fold(csum_add(psum, skb->csum))) {
4007                         skb->csum_valid = 1;
4008                         return 0;
4009                 }
4010         }
4011 
4012         skb->csum = psum;
4013 
4014         if (complete || skb->len <= CHECKSUM_BREAK) {
4015                 __sum16 csum;
4016 
4017                 csum = __skb_checksum_complete(skb);
4018                 skb->csum_valid = !csum;
4019                 return csum;
4020         }
4021 
4022         return 0;
4023 }
4024 
4025 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4026 {
4027         return 0;
4028 }
4029 
4030 /* Perform checksum validate (init). Note that this is a macro since we only
4031  * want to calculate the pseudo header which is an input function if necessary.
4032  * First we try to validate without any computation (checksum unnecessary) and
4033  * then calculate based on checksum complete calling the function to compute
4034  * pseudo header.
4035  *
4036  * Return values:
4037  *   0: checksum is validated or try to in skb_checksum_complete
4038  *   non-zero: value of invalid checksum
4039  */
4040 #define __skb_checksum_validate(skb, proto, complete,                   \
4041                                 zero_okay, check, compute_pseudo)       \
4042 ({                                                                      \
4043         __sum16 __ret = 0;                                              \
4044         skb->csum_valid = 0;                                            \
4045         if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
4046                 __ret = __skb_checksum_validate_complete(skb,           \
4047                                 complete, compute_pseudo(skb, proto));  \
4048         __ret;                                                          \
4049 })
4050 
4051 #define skb_checksum_init(skb, proto, compute_pseudo)                   \
4052         __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4053 
4054 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4055         __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4056 
4057 #define skb_checksum_validate(skb, proto, compute_pseudo)               \
4058         __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4059 
4060 #define skb_checksum_validate_zero_check(skb, proto, check,             \
4061                                          compute_pseudo)                \
4062         __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4063 
4064 #define skb_checksum_simple_validate(skb)                               \
4065         __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4066 
4067 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4068 {
4069         return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4070 }
4071 
4072 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4073 {
4074         skb->csum = ~pseudo;
4075         skb->ip_summed = CHECKSUM_COMPLETE;
4076 }
4077 
4078 #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4079 do {                                                                    \
4080         if (__skb_checksum_convert_check(skb))                          \
4081                 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4082 } while (0)
4083 
4084 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4085                                               u16 start, u16 offset)
4086 {
4087         skb->ip_summed = CHECKSUM_PARTIAL;
4088         skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4089         skb->csum_offset = offset - start;
4090 }
4091 
4092 /* Update skbuf and packet to reflect the remote checksum offload operation.
4093  * When called, ptr indicates the starting point for skb->csum when
4094  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4095  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4096  */
4097 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4098                                        int start, int offset, bool nopartial)
4099 {
4100         __wsum delta;
4101 
4102         if (!nopartial) {
4103                 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4104                 return;
4105         }
4106 
4107          if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4108                 __skb_checksum_complete(skb);
4109                 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4110         }
4111 
4112         delta = remcsum_adjust(ptr, skb->csum, start, offset);
4113 
4114         /* Adjust skb->csum since we changed the packet */
4115         skb->csum = csum_add(skb->csum, delta);
4116 }
4117 
4118 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4119 {
4120 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4121         return (void *)(skb->_nfct & NFCT_PTRMASK);
4122 #else
4123         return NULL;
4124 #endif
4125 }
4126 
4127 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4128 {
4129 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4130         return skb->_nfct;
4131 #else
4132         return 0UL;
4133 #endif
4134 }
4135 
4136 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4137 {
4138 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4139         skb->_nfct = nfct;
4140 #endif
4141 }
4142 
4143 #ifdef CONFIG_SKB_EXTENSIONS
4144 enum skb_ext_id {
4145 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4146         SKB_EXT_BRIDGE_NF,
4147 #endif
4148 #ifdef CONFIG_XFRM
4149         SKB_EXT_SEC_PATH,
4150 #endif
4151 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4152         TC_SKB_EXT,
4153 #endif
4154 #if IS_ENABLED(CONFIG_MPTCP)
4155         SKB_EXT_MPTCP,
4156 #endif
4157         SKB_EXT_NUM, /* must be last */
4158 };
4159 
4160 /**
4161  *      struct skb_ext - sk_buff extensions
4162  *      @refcnt: 1 on allocation, deallocated on 0
4163  *      @offset: offset to add to @data to obtain extension address
4164  *      @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4165  *      @data: start of extension data, variable sized
4166  *
4167  *      Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4168  *      to use 'u8' types while allowing up to 2kb worth of extension data.
4169  */
4170 struct skb_ext {
4171         refcount_t refcnt;
4172         u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4173         u8 chunks;              /* same */
4174         char data[] __aligned(8);
4175 };
4176 
4177 struct skb_ext *__skb_ext_alloc(void);
4178 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4179                     struct skb_ext *ext);
4180 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4181 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4182 void __skb_ext_put(struct skb_ext *ext);
4183 
4184 static inline void skb_ext_put(struct sk_buff *skb)
4185 {
4186         if (skb->active_extensions)
4187                 __skb_ext_put(skb->extensions);
4188 }
4189 
4190 static inline void __skb_ext_copy(struct sk_buff *dst,
4191                                   const struct sk_buff *src)
4192 {
4193         dst->active_extensions = src->active_extensions;
4194 
4195         if (src->active_extensions) {
4196                 struct skb_ext *ext = src->extensions;
4197 
4198                 refcount_inc(&ext->refcnt);
4199                 dst->extensions = ext;
4200         }
4201 }
4202 
4203 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4204 {
4205         skb_ext_put(dst);
4206         __skb_ext_copy(dst, src);
4207 }
4208 
4209 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4210 {
4211         return !!ext->offset[i];
4212 }
4213 
4214 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4215 {
4216         return skb->active_extensions & (1 << id);
4217 }
4218 
4219 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4220 {
4221         if (skb_ext_exist(skb, id))
4222                 __skb_ext_del(skb, id);
4223 }
4224 
4225 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4226 {
4227         if (skb_ext_exist(skb, id)) {
4228                 struct skb_ext *ext = skb->extensions;
4229 
4230                 return (void *)ext + (ext->offset[id] << 3);
4231         }
4232 
4233         return NULL;
4234 }
4235 
4236 static inline void skb_ext_reset(struct sk_buff *skb)
4237 {
4238         if (unlikely(skb->active_extensions)) {
4239                 __skb_ext_put(skb->extensions);
4240                 skb->active_extensions = 0;
4241         }
4242 }
4243 
4244 static inline bool skb_has_extensions(struct sk_buff *skb)
4245 {
4246         return unlikely(skb->active_extensions);
4247 }
4248 #else
4249 static inline void skb_ext_put(struct sk_buff *skb) {}
4250 static inline void skb_ext_reset(struct sk_buff *skb) {}
4251 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4252 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4253 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4254 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4255 #endif /* CONFIG_SKB_EXTENSIONS */
4256 
4257 static inline void nf_reset_ct(struct sk_buff *skb)
4258 {
4259 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4260         nf_conntrack_put(skb_nfct(skb));
4261         skb->_nfct = 0;
4262 #endif
4263 }
4264 
4265 static inline void nf_reset_trace(struct sk_buff *skb)
4266 {
4267 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4268         skb->nf_trace = 0;
4269 #endif
4270 }
4271 
4272 static inline void ipvs_reset(struct sk_buff *skb)
4273 {
4274 #if IS_ENABLED(CONFIG_IP_VS)
4275         skb->ipvs_property = 0;
4276 #endif
4277 }
4278 
4279 /* Note: This doesn't put any conntrack info in dst. */
4280 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4281                              bool copy)
4282 {
4283 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4284         dst->_nfct = src->_nfct;
4285         nf_conntrack_get(skb_nfct(src));
4286 #endif
4287 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4288         if (copy)
4289                 dst->nf_trace = src->nf_trace;
4290 #endif
4291 }
4292 
4293 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4294 {
4295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4296         nf_conntrack_put(skb_nfct(dst));
4297 #endif
4298         __nf_copy(dst, src, true);
4299 }
4300 
4301 #ifdef CONFIG_NETWORK_SECMARK
4302 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4303 {
4304         to->secmark = from->secmark;
4305 }
4306 
4307 static inline void skb_init_secmark(struct sk_buff *skb)
4308 {
4309         skb->secmark = 0;
4310 }
4311 #else
4312 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4313 { }
4314 
4315 static inline void skb_init_secmark(struct sk_buff *skb)
4316 { }
4317 #endif
4318 
4319 static inline int secpath_exists(const struct sk_buff *skb)
4320 {
4321 #ifdef CONFIG_XFRM
4322         return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4323 #else
4324         return 0;
4325 #endif
4326 }
4327 
4328 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4329 {
4330         return !skb->destructor &&
4331                 !secpath_exists(skb) &&
4332                 !skb_nfct(skb) &&
4333                 !skb->_skb_refdst &&
4334                 !skb_has_frag_list(skb);
4335 }
4336 
4337 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4338 {
4339         skb->queue_mapping = queue_mapping;
4340 }
4341 
4342 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4343 {
4344         return skb->queue_mapping;
4345 }
4346 
4347 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4348 {
4349         to->queue_mapping = from->queue_mapping;
4350 }
4351 
4352 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4353 {
4354         skb->queue_mapping = rx_queue + 1;
4355 }
4356 
4357 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4358 {
4359         return skb->queue_mapping - 1;
4360 }
4361 
4362 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4363 {
4364         return skb->queue_mapping != 0;
4365 }
4366 
4367 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4368 {
4369         skb->dst_pending_confirm = val;
4370 }
4371 
4372 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4373 {
4374         return skb->dst_pending_confirm != 0;
4375 }
4376 
4377 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4378 {
4379 #ifdef CONFIG_XFRM
4380         return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4381 #else
4382         return NULL;
4383 #endif
4384 }
4385 
4386 /* Keeps track of mac header offset relative to skb->head.
4387  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4388  * For non-tunnel skb it points to skb_mac_header() and for
4389  * tunnel skb it points to outer mac header.
4390  * Keeps track of level of encapsulation of network headers.
4391  */
4392 struct skb_gso_cb {
4393         union {
4394                 int     mac_offset;
4395                 int     data_offset;
4396         };
4397         int     encap_level;
4398         __wsum  csum;
4399         __u16   csum_start;
4400 };
4401 #define SKB_GSO_CB_OFFSET       32
4402 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4403 
4404 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4405 {
4406         return (skb_mac_header(inner_skb) - inner_skb->head) -
4407                 SKB_GSO_CB(inner_skb)->mac_offset;
4408 }
4409 
4410 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4411 {
4412         int new_headroom, headroom;
4413         int ret;
4414 
4415         headroom = skb_headroom(skb);
4416         ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4417         if (ret)
4418                 return ret;
4419 
4420         new_headroom = skb_headroom(skb);
4421         SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4422         return 0;
4423 }
4424 
4425 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4426 {
4427         /* Do not update partial checksums if remote checksum is enabled. */
4428         if (skb->remcsum_offload)
4429                 return;
4430 
4431         SKB_GSO_CB(skb)->csum = res;
4432         SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4433 }
4434 
4435 /* Compute the checksum for a gso segment. First compute the checksum value
4436  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4437  * then add in skb->csum (checksum from csum_start to end of packet).
4438  * skb->csum and csum_start are then updated to reflect the checksum of the
4439  * resultant packet starting from the transport header-- the resultant checksum
4440  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4441  * header.
4442  */
4443 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4444 {
4445         unsigned char *csum_start = skb_transport_header(skb);
4446         int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4447         __wsum partial = SKB_GSO_CB(skb)->csum;
4448 
4449         SKB_GSO_CB(skb)->csum = res;
4450         SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4451 
4452         return csum_fold(csum_partial(csum_start, plen, partial));
4453 }
4454 
4455 static inline bool skb_is_gso(const struct sk_buff *skb)
4456 {
4457         return skb_shinfo(skb)->gso_size;
4458 }
4459 
4460 /* Note: Should be called only if skb_is_gso(skb) is true */
4461 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4462 {
4463         return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4464 }
4465 
4466 /* Note: Should be called only if skb_is_gso(skb) is true */
4467 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4468 {
4469         return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4470 }
4471 
4472 /* Note: Should be called only if skb_is_gso(skb) is true */
4473 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4474 {
4475         return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4476 }
4477 
4478 static inline void skb_gso_reset(struct sk_buff *skb)
4479 {
4480         skb_shinfo(skb)->gso_size = 0;
4481         skb_shinfo(skb)->gso_segs = 0;
4482         skb_shinfo(skb)->gso_type = 0;
4483 }
4484 
4485 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4486                                          u16 increment)
4487 {
4488         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4489                 return;
4490         shinfo->gso_size += increment;
4491 }
4492 
4493 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4494                                          u16 decrement)
4495 {
4496         if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4497                 return;
4498         shinfo->gso_size -= decrement;
4499 }
4500 
4501 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4502 
4503 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4504 {
4505         /* LRO sets gso_size but not gso_type, whereas if GSO is really
4506          * wanted then gso_type will be set. */
4507         const struct skb_shared_info *shinfo = skb_shinfo(skb);
4508 
4509         if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4510             unlikely(shinfo->gso_type == 0)) {
4511                 __skb_warn_lro_forwarding(skb);
4512                 return true;
4513         }
4514         return false;
4515 }
4516 
4517 static inline void skb_forward_csum(struct sk_buff *skb)
4518 {
4519         /* Unfortunately we don't support this one.  Any brave souls? */
4520         if (skb->ip_summed == CHECKSUM_COMPLETE)
4521                 skb->ip_summed = CHECKSUM_NONE;
4522 }
4523 
4524 /**
4525  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4526  * @skb: skb to check
4527  *
4528  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4529  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4530  * use this helper, to document places where we make this assertion.
4531  */
4532 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4533 {
4534 #ifdef DEBUG
4535         BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4536 #endif
4537 }
4538 
4539 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4540 
4541 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4542 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4543                                      unsigned int transport_len,
4544                                      __sum16(*skb_chkf)(struct sk_buff *skb));
4545 
4546 /**
4547  * skb_head_is_locked - Determine if the skb->head is locked down
4548  * @skb: skb to check
4549  *
4550  * The head on skbs build around a head frag can be removed if they are
4551  * not cloned.  This function returns true if the skb head is locked down
4552  * due to either being allocated via kmalloc, or by being a clone with
4553  * multiple references to the head.
4554  */
4555 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4556 {
4557         return !skb->head_frag || skb_cloned(skb);
4558 }
4559 
4560 /* Local Checksum Offload.
4561  * Compute outer checksum based on the assumption that the
4562  * inner checksum will be offloaded later.
4563  * See Documentation/networking/checksum-offloads.rst for
4564  * explanation of how this works.
4565  * Fill in outer checksum adjustment (e.g. with sum of outer
4566  * pseudo-header) before calling.
4567  * Also ensure that inner checksum is in linear data area.
4568  */
4569 static inline __wsum lco_csum(struct sk_buff *skb)
4570 {
4571         unsigned char *csum_start = skb_checksum_start(skb);
4572         unsigned char *l4_hdr = skb_transport_header(skb);
4573         __wsum partial;
4574 
4575         /* Start with complement of inner checksum adjustment */
4576         partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4577                                                     skb->csum_offset));
4578 
4579         /* Add in checksum of our headers (incl. outer checksum
4580          * adjustment filled in by caller) and return result.
4581          */
4582         return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4583 }
4584 
4585 static inline bool skb_is_redirected(const struct sk_buff *skb)
4586 {
4587 #ifdef CONFIG_NET_REDIRECT
4588         return skb->redirected;
4589 #else
4590         return false;
4591 #endif
4592 }
4593 
4594 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4595 {
4596 #ifdef CONFIG_NET_REDIRECT
4597         skb->redirected = 1;
4598         skb->from_ingress = from_ingress;
4599         if (skb->from_ingress)
4600                 skb->tstamp = 0;
4601 #endif
4602 }
4603 
4604 static inline void skb_reset_redirect(struct sk_buff *skb)
4605 {
4606 #ifdef CONFIG_NET_REDIRECT
4607         skb->redirected = 0;
4608 #endif
4609 }
4610 
4611 #endif  /* __KERNEL__ */
4612 #endif  /* _LINUX_SKBUFF_H */
4613 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp