1 /* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 */ 8 9 #ifndef _LINUX_SLAB_H 10 #define _LINUX_SLAB_H 11 12 #include <linux/gfp.h> 13 #include <linux/types.h> 14 15 /* 16 * Flags to pass to kmem_cache_create(). 17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 18 */ 19 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 20 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 21 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 22 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 23 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 24 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 25 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 26 /* 27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 28 * 29 * This delays freeing the SLAB page by a grace period, it does _NOT_ 30 * delay object freeing. This means that if you do kmem_cache_free() 31 * that memory location is free to be reused at any time. Thus it may 32 * be possible to see another object there in the same RCU grace period. 33 * 34 * This feature only ensures the memory location backing the object 35 * stays valid, the trick to using this is relying on an independent 36 * object validation pass. Something like: 37 * 38 * rcu_read_lock() 39 * again: 40 * obj = lockless_lookup(key); 41 * if (obj) { 42 * if (!try_get_ref(obj)) // might fail for free objects 43 * goto again; 44 * 45 * if (obj->key != key) { // not the object we expected 46 * put_ref(obj); 47 * goto again; 48 * } 49 * } 50 * rcu_read_unlock(); 51 * 52 * See also the comment on struct slab_rcu in mm/slab.c. 53 */ 54 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 55 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 56 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 57 58 /* Flag to prevent checks on free */ 59 #ifdef CONFIG_DEBUG_OBJECTS 60 # define SLAB_DEBUG_OBJECTS 0x00400000UL 61 #else 62 # define SLAB_DEBUG_OBJECTS 0x00000000UL 63 #endif 64 65 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 66 67 /* Don't track use of uninitialized memory */ 68 #ifdef CONFIG_KMEMCHECK 69 # define SLAB_NOTRACK 0x01000000UL 70 #else 71 # define SLAB_NOTRACK 0x00000000UL 72 #endif 73 74 /* The following flags affect the page allocator grouping pages by mobility */ 75 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 76 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 77 /* 78 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 79 * 80 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 81 * 82 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 83 * Both make kfree a no-op. 84 */ 85 #define ZERO_SIZE_PTR ((void *)16) 86 87 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 88 (unsigned long)ZERO_SIZE_PTR) 89 90 /* 91 * struct kmem_cache related prototypes 92 */ 93 void __init kmem_cache_init(void); 94 int slab_is_available(void); 95 96 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 97 unsigned long, 98 void (*)(void *)); 99 void kmem_cache_destroy(struct kmem_cache *); 100 int kmem_cache_shrink(struct kmem_cache *); 101 void kmem_cache_free(struct kmem_cache *, void *); 102 unsigned int kmem_cache_size(struct kmem_cache *); 103 const char *kmem_cache_name(struct kmem_cache *); 104 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr); 105 106 /* 107 * Please use this macro to create slab caches. Simply specify the 108 * name of the structure and maybe some flags that are listed above. 109 * 110 * The alignment of the struct determines object alignment. If you 111 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 112 * then the objects will be properly aligned in SMP configurations. 113 */ 114 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 115 sizeof(struct __struct), __alignof__(struct __struct),\ 116 (__flags), NULL) 117 118 /* 119 * The largest kmalloc size supported by the slab allocators is 120 * 32 megabyte (2^25) or the maximum allocatable page order if that is 121 * less than 32 MB. 122 * 123 * WARNING: Its not easy to increase this value since the allocators have 124 * to do various tricks to work around compiler limitations in order to 125 * ensure proper constant folding. 126 */ 127 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 128 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 129 130 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) 131 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) 132 133 /* 134 * Common kmalloc functions provided by all allocators 135 */ 136 void * __must_check __krealloc(const void *, size_t, gfp_t); 137 void * __must_check krealloc(const void *, size_t, gfp_t); 138 void kfree(const void *); 139 void kzfree(const void *); 140 size_t ksize(const void *); 141 142 /* 143 * Allocator specific definitions. These are mainly used to establish optimized 144 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by 145 * selecting the appropriate general cache at compile time. 146 * 147 * Allocators must define at least: 148 * 149 * kmem_cache_alloc() 150 * __kmalloc() 151 * kmalloc() 152 * 153 * Those wishing to support NUMA must also define: 154 * 155 * kmem_cache_alloc_node() 156 * kmalloc_node() 157 * 158 * See each allocator definition file for additional comments and 159 * implementation notes. 160 */ 161 #ifdef CONFIG_SLUB 162 #include <linux/slub_def.h> 163 #elif defined(CONFIG_SLOB) 164 #include <linux/slob_def.h> 165 #else 166 #include <linux/slab_def.h> 167 #endif 168 169 /** 170 * kcalloc - allocate memory for an array. The memory is set to zero. 171 * @n: number of elements. 172 * @size: element size. 173 * @flags: the type of memory to allocate. 174 * 175 * The @flags argument may be one of: 176 * 177 * %GFP_USER - Allocate memory on behalf of user. May sleep. 178 * 179 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 180 * 181 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 182 * For example, use this inside interrupt handlers. 183 * 184 * %GFP_HIGHUSER - Allocate pages from high memory. 185 * 186 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 187 * 188 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 189 * 190 * %GFP_NOWAIT - Allocation will not sleep. 191 * 192 * %GFP_THISNODE - Allocate node-local memory only. 193 * 194 * %GFP_DMA - Allocation suitable for DMA. 195 * Should only be used for kmalloc() caches. Otherwise, use a 196 * slab created with SLAB_DMA. 197 * 198 * Also it is possible to set different flags by OR'ing 199 * in one or more of the following additional @flags: 200 * 201 * %__GFP_COLD - Request cache-cold pages instead of 202 * trying to return cache-warm pages. 203 * 204 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 205 * 206 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 207 * (think twice before using). 208 * 209 * %__GFP_NORETRY - If memory is not immediately available, 210 * then give up at once. 211 * 212 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 213 * 214 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 215 * 216 * There are other flags available as well, but these are not intended 217 * for general use, and so are not documented here. For a full list of 218 * potential flags, always refer to linux/gfp.h. 219 */ 220 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 221 { 222 if (size != 0 && n > ULONG_MAX / size) 223 return NULL; 224 return __kmalloc(n * size, flags | __GFP_ZERO); 225 } 226 227 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB) 228 /** 229 * kmalloc_node - allocate memory from a specific node 230 * @size: how many bytes of memory are required. 231 * @flags: the type of memory to allocate (see kcalloc). 232 * @node: node to allocate from. 233 * 234 * kmalloc() for non-local nodes, used to allocate from a specific node 235 * if available. Equivalent to kmalloc() in the non-NUMA single-node 236 * case. 237 */ 238 static inline void *kmalloc_node(size_t size, gfp_t flags, int node) 239 { 240 return kmalloc(size, flags); 241 } 242 243 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 244 { 245 return __kmalloc(size, flags); 246 } 247 248 void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 249 250 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep, 251 gfp_t flags, int node) 252 { 253 return kmem_cache_alloc(cachep, flags); 254 } 255 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */ 256 257 /* 258 * kmalloc_track_caller is a special version of kmalloc that records the 259 * calling function of the routine calling it for slab leak tracking instead 260 * of just the calling function (confusing, eh?). 261 * It's useful when the call to kmalloc comes from a widely-used standard 262 * allocator where we care about the real place the memory allocation 263 * request comes from. 264 */ 265 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 266 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 267 #define kmalloc_track_caller(size, flags) \ 268 __kmalloc_track_caller(size, flags, _RET_IP_) 269 #else 270 #define kmalloc_track_caller(size, flags) \ 271 __kmalloc(size, flags) 272 #endif /* DEBUG_SLAB */ 273 274 #ifdef CONFIG_NUMA 275 /* 276 * kmalloc_node_track_caller is a special version of kmalloc_node that 277 * records the calling function of the routine calling it for slab leak 278 * tracking instead of just the calling function (confusing, eh?). 279 * It's useful when the call to kmalloc_node comes from a widely-used 280 * standard allocator where we care about the real place the memory 281 * allocation request comes from. 282 */ 283 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) 284 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 285 #define kmalloc_node_track_caller(size, flags, node) \ 286 __kmalloc_node_track_caller(size, flags, node, \ 287 _RET_IP_) 288 #else 289 #define kmalloc_node_track_caller(size, flags, node) \ 290 __kmalloc_node(size, flags, node) 291 #endif 292 293 #else /* CONFIG_NUMA */ 294 295 #define kmalloc_node_track_caller(size, flags, node) \ 296 kmalloc_track_caller(size, flags) 297 298 #endif /* CONFIG_NUMA */ 299 300 /* 301 * Shortcuts 302 */ 303 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 304 { 305 return kmem_cache_alloc(k, flags | __GFP_ZERO); 306 } 307 308 /** 309 * kzalloc - allocate memory. The memory is set to zero. 310 * @size: how many bytes of memory are required. 311 * @flags: the type of memory to allocate (see kmalloc). 312 */ 313 static inline void *kzalloc(size_t size, gfp_t flags) 314 { 315 return kmalloc(size, flags | __GFP_ZERO); 316 } 317 318 /** 319 * kzalloc_node - allocate zeroed memory from a particular memory node. 320 * @size: how many bytes of memory are required. 321 * @flags: the type of memory to allocate (see kmalloc). 322 * @node: memory node from which to allocate 323 */ 324 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 325 { 326 return kmalloc_node(size, flags | __GFP_ZERO, node); 327 } 328 329 void __init kmem_cache_init_late(void); 330 331 #endif /* _LINUX_SLAB_H */ 332
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.