1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12 #ifndef _LINUX_SLAB_H 13 #define _LINUX_SLAB_H 14 15 #include <linux/gfp.h> 16 #include <linux/types.h> 17 #include <linux/workqueue.h> 18 19 20 /* 21 * Flags to pass to kmem_cache_create(). 22 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 23 */ 24 /* DEBUG: Perform (expensive) checks on alloc/free */ 25 #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 26 /* DEBUG: Red zone objs in a cache */ 27 #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 28 /* DEBUG: Poison objects */ 29 #define SLAB_POISON ((slab_flags_t __force)0x00000800U) 30 /* Align objs on cache lines */ 31 #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 32 /* Use GFP_DMA memory */ 33 #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 34 /* DEBUG: Store the last owner for bug hunting */ 35 #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 36 /* Panic if kmem_cache_create() fails */ 37 #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 38 /* 39 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 40 * 41 * This delays freeing the SLAB page by a grace period, it does _NOT_ 42 * delay object freeing. This means that if you do kmem_cache_free() 43 * that memory location is free to be reused at any time. Thus it may 44 * be possible to see another object there in the same RCU grace period. 45 * 46 * This feature only ensures the memory location backing the object 47 * stays valid, the trick to using this is relying on an independent 48 * object validation pass. Something like: 49 * 50 * rcu_read_lock() 51 * again: 52 * obj = lockless_lookup(key); 53 * if (obj) { 54 * if (!try_get_ref(obj)) // might fail for free objects 55 * goto again; 56 * 57 * if (obj->key != key) { // not the object we expected 58 * put_ref(obj); 59 * goto again; 60 * } 61 * } 62 * rcu_read_unlock(); 63 * 64 * This is useful if we need to approach a kernel structure obliquely, 65 * from its address obtained without the usual locking. We can lock 66 * the structure to stabilize it and check it's still at the given address, 67 * only if we can be sure that the memory has not been meanwhile reused 68 * for some other kind of object (which our subsystem's lock might corrupt). 69 * 70 * rcu_read_lock before reading the address, then rcu_read_unlock after 71 * taking the spinlock within the structure expected at that address. 72 * 73 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 74 */ 75 /* Defer freeing slabs to RCU */ 76 #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 77 /* Spread some memory over cpuset */ 78 #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 79 /* Trace allocations and frees */ 80 #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 81 82 /* Flag to prevent checks on free */ 83 #ifdef CONFIG_DEBUG_OBJECTS 84 # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 85 #else 86 # define SLAB_DEBUG_OBJECTS 0 87 #endif 88 89 /* Avoid kmemleak tracing */ 90 #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 91 92 /* Fault injection mark */ 93 #ifdef CONFIG_FAILSLAB 94 # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 95 #else 96 # define SLAB_FAILSLAB 0 97 #endif 98 /* Account to memcg */ 99 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 100 # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 101 #else 102 # define SLAB_ACCOUNT 0 103 #endif 104 105 #ifdef CONFIG_KASAN 106 #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 107 #else 108 #define SLAB_KASAN 0 109 #endif 110 111 /* The following flags affect the page allocator grouping pages by mobility */ 112 /* Objects are reclaimable */ 113 #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 114 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 115 /* 116 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 117 * 118 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 119 * 120 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 121 * Both make kfree a no-op. 122 */ 123 #define ZERO_SIZE_PTR ((void *)16) 124 125 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 126 (unsigned long)ZERO_SIZE_PTR) 127 128 #include <linux/kmemleak.h> 129 #include <linux/kasan.h> 130 131 struct mem_cgroup; 132 /* 133 * struct kmem_cache related prototypes 134 */ 135 void __init kmem_cache_init(void); 136 bool slab_is_available(void); 137 138 extern bool usercopy_fallback; 139 140 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 141 size_t align, slab_flags_t flags, 142 void (*ctor)(void *)); 143 struct kmem_cache *kmem_cache_create_usercopy(const char *name, 144 size_t size, size_t align, slab_flags_t flags, 145 size_t useroffset, size_t usersize, 146 void (*ctor)(void *)); 147 void kmem_cache_destroy(struct kmem_cache *); 148 int kmem_cache_shrink(struct kmem_cache *); 149 150 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 151 void memcg_deactivate_kmem_caches(struct mem_cgroup *); 152 void memcg_destroy_kmem_caches(struct mem_cgroup *); 153 154 /* 155 * Please use this macro to create slab caches. Simply specify the 156 * name of the structure and maybe some flags that are listed above. 157 * 158 * The alignment of the struct determines object alignment. If you 159 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 160 * then the objects will be properly aligned in SMP configurations. 161 */ 162 #define KMEM_CACHE(__struct, __flags) \ 163 kmem_cache_create(#__struct, sizeof(struct __struct), \ 164 __alignof__(struct __struct), (__flags), NULL) 165 166 /* 167 * To whitelist a single field for copying to/from usercopy, use this 168 * macro instead for KMEM_CACHE() above. 169 */ 170 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 171 kmem_cache_create_usercopy(#__struct, \ 172 sizeof(struct __struct), \ 173 __alignof__(struct __struct), (__flags), \ 174 offsetof(struct __struct, __field), \ 175 sizeof_field(struct __struct, __field), NULL) 176 177 /* 178 * Common kmalloc functions provided by all allocators 179 */ 180 void * __must_check __krealloc(const void *, size_t, gfp_t); 181 void * __must_check krealloc(const void *, size_t, gfp_t); 182 void kfree(const void *); 183 void kzfree(const void *); 184 size_t ksize(const void *); 185 186 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 187 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 188 bool to_user); 189 #else 190 static inline void __check_heap_object(const void *ptr, unsigned long n, 191 struct page *page, bool to_user) { } 192 #endif 193 194 /* 195 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 196 * alignment larger than the alignment of a 64-bit integer. 197 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 198 */ 199 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 200 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 201 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 202 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 203 #else 204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 205 #endif 206 207 /* 208 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 209 * Intended for arches that get misalignment faults even for 64 bit integer 210 * aligned buffers. 211 */ 212 #ifndef ARCH_SLAB_MINALIGN 213 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 214 #endif 215 216 /* 217 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 218 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 219 * aligned pointers. 220 */ 221 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 222 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 223 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 224 225 /* 226 * Kmalloc array related definitions 227 */ 228 229 #ifdef CONFIG_SLAB 230 /* 231 * The largest kmalloc size supported by the SLAB allocators is 232 * 32 megabyte (2^25) or the maximum allocatable page order if that is 233 * less than 32 MB. 234 * 235 * WARNING: Its not easy to increase this value since the allocators have 236 * to do various tricks to work around compiler limitations in order to 237 * ensure proper constant folding. 238 */ 239 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 240 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 241 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 242 #ifndef KMALLOC_SHIFT_LOW 243 #define KMALLOC_SHIFT_LOW 5 244 #endif 245 #endif 246 247 #ifdef CONFIG_SLUB 248 /* 249 * SLUB directly allocates requests fitting in to an order-1 page 250 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 251 */ 252 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 253 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 254 #ifndef KMALLOC_SHIFT_LOW 255 #define KMALLOC_SHIFT_LOW 3 256 #endif 257 #endif 258 259 #ifdef CONFIG_SLOB 260 /* 261 * SLOB passes all requests larger than one page to the page allocator. 262 * No kmalloc array is necessary since objects of different sizes can 263 * be allocated from the same page. 264 */ 265 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 266 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 267 #ifndef KMALLOC_SHIFT_LOW 268 #define KMALLOC_SHIFT_LOW 3 269 #endif 270 #endif 271 272 /* Maximum allocatable size */ 273 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 274 /* Maximum size for which we actually use a slab cache */ 275 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 276 /* Maximum order allocatable via the slab allocagtor */ 277 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 278 279 /* 280 * Kmalloc subsystem. 281 */ 282 #ifndef KMALLOC_MIN_SIZE 283 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 284 #endif 285 286 /* 287 * This restriction comes from byte sized index implementation. 288 * Page size is normally 2^12 bytes and, in this case, if we want to use 289 * byte sized index which can represent 2^8 entries, the size of the object 290 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 291 * If minimum size of kmalloc is less than 16, we use it as minimum object 292 * size and give up to use byte sized index. 293 */ 294 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 295 (KMALLOC_MIN_SIZE) : 16) 296 297 #ifndef CONFIG_SLOB 298 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 299 #ifdef CONFIG_ZONE_DMA 300 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 301 #endif 302 303 /* 304 * Figure out which kmalloc slab an allocation of a certain size 305 * belongs to. 306 * 0 = zero alloc 307 * 1 = 65 .. 96 bytes 308 * 2 = 129 .. 192 bytes 309 * n = 2^(n-1)+1 .. 2^n 310 */ 311 static __always_inline int kmalloc_index(size_t size) 312 { 313 if (!size) 314 return 0; 315 316 if (size <= KMALLOC_MIN_SIZE) 317 return KMALLOC_SHIFT_LOW; 318 319 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 320 return 1; 321 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 322 return 2; 323 if (size <= 8) return 3; 324 if (size <= 16) return 4; 325 if (size <= 32) return 5; 326 if (size <= 64) return 6; 327 if (size <= 128) return 7; 328 if (size <= 256) return 8; 329 if (size <= 512) return 9; 330 if (size <= 1024) return 10; 331 if (size <= 2 * 1024) return 11; 332 if (size <= 4 * 1024) return 12; 333 if (size <= 8 * 1024) return 13; 334 if (size <= 16 * 1024) return 14; 335 if (size <= 32 * 1024) return 15; 336 if (size <= 64 * 1024) return 16; 337 if (size <= 128 * 1024) return 17; 338 if (size <= 256 * 1024) return 18; 339 if (size <= 512 * 1024) return 19; 340 if (size <= 1024 * 1024) return 20; 341 if (size <= 2 * 1024 * 1024) return 21; 342 if (size <= 4 * 1024 * 1024) return 22; 343 if (size <= 8 * 1024 * 1024) return 23; 344 if (size <= 16 * 1024 * 1024) return 24; 345 if (size <= 32 * 1024 * 1024) return 25; 346 if (size <= 64 * 1024 * 1024) return 26; 347 BUG(); 348 349 /* Will never be reached. Needed because the compiler may complain */ 350 return -1; 351 } 352 #endif /* !CONFIG_SLOB */ 353 354 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 355 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 356 void kmem_cache_free(struct kmem_cache *, void *); 357 358 /* 359 * Bulk allocation and freeing operations. These are accelerated in an 360 * allocator specific way to avoid taking locks repeatedly or building 361 * metadata structures unnecessarily. 362 * 363 * Note that interrupts must be enabled when calling these functions. 364 */ 365 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 366 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 367 368 /* 369 * Caller must not use kfree_bulk() on memory not originally allocated 370 * by kmalloc(), because the SLOB allocator cannot handle this. 371 */ 372 static __always_inline void kfree_bulk(size_t size, void **p) 373 { 374 kmem_cache_free_bulk(NULL, size, p); 375 } 376 377 #ifdef CONFIG_NUMA 378 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 379 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 380 #else 381 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 382 { 383 return __kmalloc(size, flags); 384 } 385 386 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 387 { 388 return kmem_cache_alloc(s, flags); 389 } 390 #endif 391 392 #ifdef CONFIG_TRACING 393 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 394 395 #ifdef CONFIG_NUMA 396 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 397 gfp_t gfpflags, 398 int node, size_t size) __assume_slab_alignment __malloc; 399 #else 400 static __always_inline void * 401 kmem_cache_alloc_node_trace(struct kmem_cache *s, 402 gfp_t gfpflags, 403 int node, size_t size) 404 { 405 return kmem_cache_alloc_trace(s, gfpflags, size); 406 } 407 #endif /* CONFIG_NUMA */ 408 409 #else /* CONFIG_TRACING */ 410 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 411 gfp_t flags, size_t size) 412 { 413 void *ret = kmem_cache_alloc(s, flags); 414 415 kasan_kmalloc(s, ret, size, flags); 416 return ret; 417 } 418 419 static __always_inline void * 420 kmem_cache_alloc_node_trace(struct kmem_cache *s, 421 gfp_t gfpflags, 422 int node, size_t size) 423 { 424 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 425 426 kasan_kmalloc(s, ret, size, gfpflags); 427 return ret; 428 } 429 #endif /* CONFIG_TRACING */ 430 431 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 432 433 #ifdef CONFIG_TRACING 434 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 435 #else 436 static __always_inline void * 437 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 438 { 439 return kmalloc_order(size, flags, order); 440 } 441 #endif 442 443 static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 444 { 445 unsigned int order = get_order(size); 446 return kmalloc_order_trace(size, flags, order); 447 } 448 449 /** 450 * kmalloc - allocate memory 451 * @size: how many bytes of memory are required. 452 * @flags: the type of memory to allocate. 453 * 454 * kmalloc is the normal method of allocating memory 455 * for objects smaller than page size in the kernel. 456 * 457 * The @flags argument may be one of: 458 * 459 * %GFP_USER - Allocate memory on behalf of user. May sleep. 460 * 461 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 462 * 463 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 464 * For example, use this inside interrupt handlers. 465 * 466 * %GFP_HIGHUSER - Allocate pages from high memory. 467 * 468 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 469 * 470 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 471 * 472 * %GFP_NOWAIT - Allocation will not sleep. 473 * 474 * %__GFP_THISNODE - Allocate node-local memory only. 475 * 476 * %GFP_DMA - Allocation suitable for DMA. 477 * Should only be used for kmalloc() caches. Otherwise, use a 478 * slab created with SLAB_DMA. 479 * 480 * Also it is possible to set different flags by OR'ing 481 * in one or more of the following additional @flags: 482 * 483 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 484 * 485 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 486 * (think twice before using). 487 * 488 * %__GFP_NORETRY - If memory is not immediately available, 489 * then give up at once. 490 * 491 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 492 * 493 * %__GFP_RETRY_MAYFAIL - Try really hard to succeed the allocation but fail 494 * eventually. 495 * 496 * There are other flags available as well, but these are not intended 497 * for general use, and so are not documented here. For a full list of 498 * potential flags, always refer to linux/gfp.h. 499 */ 500 static __always_inline void *kmalloc(size_t size, gfp_t flags) 501 { 502 if (__builtin_constant_p(size)) { 503 if (size > KMALLOC_MAX_CACHE_SIZE) 504 return kmalloc_large(size, flags); 505 #ifndef CONFIG_SLOB 506 if (!(flags & GFP_DMA)) { 507 int index = kmalloc_index(size); 508 509 if (!index) 510 return ZERO_SIZE_PTR; 511 512 return kmem_cache_alloc_trace(kmalloc_caches[index], 513 flags, size); 514 } 515 #endif 516 } 517 return __kmalloc(size, flags); 518 } 519 520 /* 521 * Determine size used for the nth kmalloc cache. 522 * return size or 0 if a kmalloc cache for that 523 * size does not exist 524 */ 525 static __always_inline int kmalloc_size(int n) 526 { 527 #ifndef CONFIG_SLOB 528 if (n > 2) 529 return 1 << n; 530 531 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 532 return 96; 533 534 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 535 return 192; 536 #endif 537 return 0; 538 } 539 540 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 541 { 542 #ifndef CONFIG_SLOB 543 if (__builtin_constant_p(size) && 544 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 545 int i = kmalloc_index(size); 546 547 if (!i) 548 return ZERO_SIZE_PTR; 549 550 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 551 flags, node, size); 552 } 553 #endif 554 return __kmalloc_node(size, flags, node); 555 } 556 557 struct memcg_cache_array { 558 struct rcu_head rcu; 559 struct kmem_cache *entries[0]; 560 }; 561 562 /* 563 * This is the main placeholder for memcg-related information in kmem caches. 564 * Both the root cache and the child caches will have it. For the root cache, 565 * this will hold a dynamically allocated array large enough to hold 566 * information about the currently limited memcgs in the system. To allow the 567 * array to be accessed without taking any locks, on relocation we free the old 568 * version only after a grace period. 569 * 570 * Root and child caches hold different metadata. 571 * 572 * @root_cache: Common to root and child caches. NULL for root, pointer to 573 * the root cache for children. 574 * 575 * The following fields are specific to root caches. 576 * 577 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 578 * used to index child cachces during allocation and cleared 579 * early during shutdown. 580 * 581 * @root_caches_node: List node for slab_root_caches list. 582 * 583 * @children: List of all child caches. While the child caches are also 584 * reachable through @memcg_caches, a child cache remains on 585 * this list until it is actually destroyed. 586 * 587 * The following fields are specific to child caches. 588 * 589 * @memcg: Pointer to the memcg this cache belongs to. 590 * 591 * @children_node: List node for @root_cache->children list. 592 * 593 * @kmem_caches_node: List node for @memcg->kmem_caches list. 594 */ 595 struct memcg_cache_params { 596 struct kmem_cache *root_cache; 597 union { 598 struct { 599 struct memcg_cache_array __rcu *memcg_caches; 600 struct list_head __root_caches_node; 601 struct list_head children; 602 }; 603 struct { 604 struct mem_cgroup *memcg; 605 struct list_head children_node; 606 struct list_head kmem_caches_node; 607 608 void (*deact_fn)(struct kmem_cache *); 609 union { 610 struct rcu_head deact_rcu_head; 611 struct work_struct deact_work; 612 }; 613 }; 614 }; 615 }; 616 617 int memcg_update_all_caches(int num_memcgs); 618 619 /** 620 * kmalloc_array - allocate memory for an array. 621 * @n: number of elements. 622 * @size: element size. 623 * @flags: the type of memory to allocate (see kmalloc). 624 */ 625 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 626 { 627 if (size != 0 && n > SIZE_MAX / size) 628 return NULL; 629 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 630 return kmalloc(n * size, flags); 631 return __kmalloc(n * size, flags); 632 } 633 634 /** 635 * kcalloc - allocate memory for an array. The memory is set to zero. 636 * @n: number of elements. 637 * @size: element size. 638 * @flags: the type of memory to allocate (see kmalloc). 639 */ 640 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 641 { 642 return kmalloc_array(n, size, flags | __GFP_ZERO); 643 } 644 645 /* 646 * kmalloc_track_caller is a special version of kmalloc that records the 647 * calling function of the routine calling it for slab leak tracking instead 648 * of just the calling function (confusing, eh?). 649 * It's useful when the call to kmalloc comes from a widely-used standard 650 * allocator where we care about the real place the memory allocation 651 * request comes from. 652 */ 653 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 654 #define kmalloc_track_caller(size, flags) \ 655 __kmalloc_track_caller(size, flags, _RET_IP_) 656 657 static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 658 int node) 659 { 660 if (size != 0 && n > SIZE_MAX / size) 661 return NULL; 662 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 663 return kmalloc_node(n * size, flags, node); 664 return __kmalloc_node(n * size, flags, node); 665 } 666 667 static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 668 { 669 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 670 } 671 672 673 #ifdef CONFIG_NUMA 674 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 675 #define kmalloc_node_track_caller(size, flags, node) \ 676 __kmalloc_node_track_caller(size, flags, node, \ 677 _RET_IP_) 678 679 #else /* CONFIG_NUMA */ 680 681 #define kmalloc_node_track_caller(size, flags, node) \ 682 kmalloc_track_caller(size, flags) 683 684 #endif /* CONFIG_NUMA */ 685 686 /* 687 * Shortcuts 688 */ 689 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 690 { 691 return kmem_cache_alloc(k, flags | __GFP_ZERO); 692 } 693 694 /** 695 * kzalloc - allocate memory. The memory is set to zero. 696 * @size: how many bytes of memory are required. 697 * @flags: the type of memory to allocate (see kmalloc). 698 */ 699 static inline void *kzalloc(size_t size, gfp_t flags) 700 { 701 return kmalloc(size, flags | __GFP_ZERO); 702 } 703 704 /** 705 * kzalloc_node - allocate zeroed memory from a particular memory node. 706 * @size: how many bytes of memory are required. 707 * @flags: the type of memory to allocate (see kmalloc). 708 * @node: memory node from which to allocate 709 */ 710 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 711 { 712 return kmalloc_node(size, flags | __GFP_ZERO, node); 713 } 714 715 unsigned int kmem_cache_size(struct kmem_cache *s); 716 void __init kmem_cache_init_late(void); 717 718 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 719 int slab_prepare_cpu(unsigned int cpu); 720 int slab_dead_cpu(unsigned int cpu); 721 #else 722 #define slab_prepare_cpu NULL 723 #define slab_dead_cpu NULL 724 #endif 725 726 #endif /* _LINUX_SLAB_H */ 727
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.