1 #ifndef __LINUX_USB_H 2 #define __LINUX_USB_H 3 4 #include <linux/mod_devicetable.h> 5 #include <linux/usb/ch9.h> 6 7 #define USB_MAJOR 180 8 #define USB_DEVICE_MAJOR 189 9 10 11 #ifdef __KERNEL__ 12 13 #include <linux/errno.h> /* for -ENODEV */ 14 #include <linux/delay.h> /* for mdelay() */ 15 #include <linux/interrupt.h> /* for in_interrupt() */ 16 #include <linux/list.h> /* for struct list_head */ 17 #include <linux/kref.h> /* for struct kref */ 18 #include <linux/device.h> /* for struct device */ 19 #include <linux/fs.h> /* for struct file_operations */ 20 #include <linux/completion.h> /* for struct completion */ 21 #include <linux/sched.h> /* for current && schedule_timeout */ 22 #include <linux/mutex.h> /* for struct mutex */ 23 #include <linux/pm_runtime.h> /* for runtime PM */ 24 25 struct usb_device; 26 struct usb_driver; 27 struct wusb_dev; 28 29 /*-------------------------------------------------------------------------*/ 30 31 /* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47 struct ep_device; 48 49 /** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 54 * @urb_list: urbs queued to this endpoint; maintained by usbcore 55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 56 * with one or more transfer descriptors (TDs) per urb 57 * @ep_dev: ep_device for sysfs info 58 * @extra: descriptors following this endpoint in the configuration 59 * @extralen: how many bytes of "extra" are valid 60 * @enabled: URBs may be submitted to this endpoint 61 * @streams: number of USB-3 streams allocated on the endpoint 62 * 63 * USB requests are always queued to a given endpoint, identified by a 64 * descriptor within an active interface in a given USB configuration. 65 */ 66 struct usb_host_endpoint { 67 struct usb_endpoint_descriptor desc; 68 struct usb_ss_ep_comp_descriptor ss_ep_comp; 69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 70 struct list_head urb_list; 71 void *hcpriv; 72 struct ep_device *ep_dev; /* For sysfs info */ 73 74 unsigned char *extra; /* Extra descriptors */ 75 int extralen; 76 int enabled; 77 int streams; 78 }; 79 80 /* host-side wrapper for one interface setting's parsed descriptors */ 81 struct usb_host_interface { 82 struct usb_interface_descriptor desc; 83 84 int extralen; 85 unsigned char *extra; /* Extra descriptors */ 86 87 /* array of desc.bNumEndpoints endpoints associated with this 88 * interface setting. these will be in no particular order. 89 */ 90 struct usb_host_endpoint *endpoint; 91 92 char *string; /* iInterface string, if present */ 93 }; 94 95 enum usb_interface_condition { 96 USB_INTERFACE_UNBOUND = 0, 97 USB_INTERFACE_BINDING, 98 USB_INTERFACE_BOUND, 99 USB_INTERFACE_UNBINDING, 100 }; 101 102 int __must_check 103 usb_find_common_endpoints(struct usb_host_interface *alt, 104 struct usb_endpoint_descriptor **bulk_in, 105 struct usb_endpoint_descriptor **bulk_out, 106 struct usb_endpoint_descriptor **int_in, 107 struct usb_endpoint_descriptor **int_out); 108 109 int __must_check 110 usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 111 struct usb_endpoint_descriptor **bulk_in, 112 struct usb_endpoint_descriptor **bulk_out, 113 struct usb_endpoint_descriptor **int_in, 114 struct usb_endpoint_descriptor **int_out); 115 116 static inline int __must_check 117 usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 118 struct usb_endpoint_descriptor **bulk_in) 119 { 120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 121 } 122 123 static inline int __must_check 124 usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 125 struct usb_endpoint_descriptor **bulk_out) 126 { 127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 128 } 129 130 static inline int __must_check 131 usb_find_int_in_endpoint(struct usb_host_interface *alt, 132 struct usb_endpoint_descriptor **int_in) 133 { 134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 135 } 136 137 static inline int __must_check 138 usb_find_int_out_endpoint(struct usb_host_interface *alt, 139 struct usb_endpoint_descriptor **int_out) 140 { 141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 142 } 143 144 static inline int __must_check 145 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 146 struct usb_endpoint_descriptor **bulk_in) 147 { 148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 149 } 150 151 static inline int __must_check 152 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 153 struct usb_endpoint_descriptor **bulk_out) 154 { 155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 156 } 157 158 static inline int __must_check 159 usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 160 struct usb_endpoint_descriptor **int_in) 161 { 162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 163 } 164 165 static inline int __must_check 166 usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 167 struct usb_endpoint_descriptor **int_out) 168 { 169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 170 } 171 172 /** 173 * struct usb_interface - what usb device drivers talk to 174 * @altsetting: array of interface structures, one for each alternate 175 * setting that may be selected. Each one includes a set of 176 * endpoint configurations. They will be in no particular order. 177 * @cur_altsetting: the current altsetting. 178 * @num_altsetting: number of altsettings defined. 179 * @intf_assoc: interface association descriptor 180 * @minor: the minor number assigned to this interface, if this 181 * interface is bound to a driver that uses the USB major number. 182 * If this interface does not use the USB major, this field should 183 * be unused. The driver should set this value in the probe() 184 * function of the driver, after it has been assigned a minor 185 * number from the USB core by calling usb_register_dev(). 186 * @condition: binding state of the interface: not bound, binding 187 * (in probe()), bound to a driver, or unbinding (in disconnect()) 188 * @sysfs_files_created: sysfs attributes exist 189 * @ep_devs_created: endpoint child pseudo-devices exist 190 * @unregistering: flag set when the interface is being unregistered 191 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 192 * capability during autosuspend. 193 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 194 * has been deferred. 195 * @needs_binding: flag set when the driver should be re-probed or unbound 196 * following a reset or suspend operation it doesn't support. 197 * @authorized: This allows to (de)authorize individual interfaces instead 198 * a whole device in contrast to the device authorization. 199 * @dev: driver model's view of this device 200 * @usb_dev: if an interface is bound to the USB major, this will point 201 * to the sysfs representation for that device. 202 * @pm_usage_cnt: PM usage counter for this interface 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232 struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 260 struct work_struct reset_ws; /* for resets in atomic context */ 261 }; 262 #define to_usb_interface(d) container_of(d, struct usb_interface, dev) 263 264 static inline void *usb_get_intfdata(struct usb_interface *intf) 265 { 266 return dev_get_drvdata(&intf->dev); 267 } 268 269 static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 270 { 271 dev_set_drvdata(&intf->dev, data); 272 } 273 274 struct usb_interface *usb_get_intf(struct usb_interface *intf); 275 void usb_put_intf(struct usb_interface *intf); 276 277 /* Hard limit */ 278 #define USB_MAXENDPOINTS 30 279 /* this maximum is arbitrary */ 280 #define USB_MAXINTERFACES 32 281 #define USB_MAXIADS (USB_MAXINTERFACES/2) 282 283 /* 284 * USB Resume Timer: Every Host controller driver should drive the resume 285 * signalling on the bus for the amount of time defined by this macro. 286 * 287 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 288 * 289 * Note that the USB Specification states we should drive resume for *at least* 290 * 20 ms, but it doesn't give an upper bound. This creates two possible 291 * situations which we want to avoid: 292 * 293 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 294 * us to fail USB Electrical Tests, thus failing Certification 295 * 296 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 297 * and while we can argue that's against the USB Specification, we don't have 298 * control over which devices a certification laboratory will be using for 299 * certification. If CertLab uses a device which was tested against Windows and 300 * that happens to have relaxed resume signalling rules, we might fall into 301 * situations where we fail interoperability and electrical tests. 302 * 303 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 304 * should cope with both LPJ calibration errors and devices not following every 305 * detail of the USB Specification. 306 */ 307 #define USB_RESUME_TIMEOUT 40 /* ms */ 308 309 /** 310 * struct usb_interface_cache - long-term representation of a device interface 311 * @num_altsetting: number of altsettings defined. 312 * @ref: reference counter. 313 * @altsetting: variable-length array of interface structures, one for 314 * each alternate setting that may be selected. Each one includes a 315 * set of endpoint configurations. They will be in no particular order. 316 * 317 * These structures persist for the lifetime of a usb_device, unlike 318 * struct usb_interface (which persists only as long as its configuration 319 * is installed). The altsetting arrays can be accessed through these 320 * structures at any time, permitting comparison of configurations and 321 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 322 */ 323 struct usb_interface_cache { 324 unsigned num_altsetting; /* number of alternate settings */ 325 struct kref ref; /* reference counter */ 326 327 /* variable-length array of alternate settings for this interface, 328 * stored in no particular order */ 329 struct usb_host_interface altsetting[0]; 330 }; 331 #define ref_to_usb_interface_cache(r) \ 332 container_of(r, struct usb_interface_cache, ref) 333 #define altsetting_to_usb_interface_cache(a) \ 334 container_of(a, struct usb_interface_cache, altsetting[0]) 335 336 /** 337 * struct usb_host_config - representation of a device's configuration 338 * @desc: the device's configuration descriptor. 339 * @string: pointer to the cached version of the iConfiguration string, if 340 * present for this configuration. 341 * @intf_assoc: list of any interface association descriptors in this config 342 * @interface: array of pointers to usb_interface structures, one for each 343 * interface in the configuration. The number of interfaces is stored 344 * in desc.bNumInterfaces. These pointers are valid only while the 345 * the configuration is active. 346 * @intf_cache: array of pointers to usb_interface_cache structures, one 347 * for each interface in the configuration. These structures exist 348 * for the entire life of the device. 349 * @extra: pointer to buffer containing all extra descriptors associated 350 * with this configuration (those preceding the first interface 351 * descriptor). 352 * @extralen: length of the extra descriptors buffer. 353 * 354 * USB devices may have multiple configurations, but only one can be active 355 * at any time. Each encapsulates a different operational environment; 356 * for example, a dual-speed device would have separate configurations for 357 * full-speed and high-speed operation. The number of configurations 358 * available is stored in the device descriptor as bNumConfigurations. 359 * 360 * A configuration can contain multiple interfaces. Each corresponds to 361 * a different function of the USB device, and all are available whenever 362 * the configuration is active. The USB standard says that interfaces 363 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 364 * of devices get this wrong. In addition, the interface array is not 365 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 366 * look up an interface entry based on its number. 367 * 368 * Device drivers should not attempt to activate configurations. The choice 369 * of which configuration to install is a policy decision based on such 370 * considerations as available power, functionality provided, and the user's 371 * desires (expressed through userspace tools). However, drivers can call 372 * usb_reset_configuration() to reinitialize the current configuration and 373 * all its interfaces. 374 */ 375 struct usb_host_config { 376 struct usb_config_descriptor desc; 377 378 char *string; /* iConfiguration string, if present */ 379 380 /* List of any Interface Association Descriptors in this 381 * configuration. */ 382 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 383 384 /* the interfaces associated with this configuration, 385 * stored in no particular order */ 386 struct usb_interface *interface[USB_MAXINTERFACES]; 387 388 /* Interface information available even when this is not the 389 * active configuration */ 390 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 391 392 unsigned char *extra; /* Extra descriptors */ 393 int extralen; 394 }; 395 396 /* USB2.0 and USB3.0 device BOS descriptor set */ 397 struct usb_host_bos { 398 struct usb_bos_descriptor *desc; 399 400 /* wireless cap descriptor is handled by wusb */ 401 struct usb_ext_cap_descriptor *ext_cap; 402 struct usb_ss_cap_descriptor *ss_cap; 403 struct usb_ssp_cap_descriptor *ssp_cap; 404 struct usb_ss_container_id_descriptor *ss_id; 405 struct usb_ptm_cap_descriptor *ptm_cap; 406 }; 407 408 int __usb_get_extra_descriptor(char *buffer, unsigned size, 409 unsigned char type, void **ptr); 410 #define usb_get_extra_descriptor(ifpoint, type, ptr) \ 411 __usb_get_extra_descriptor((ifpoint)->extra, \ 412 (ifpoint)->extralen, \ 413 type, (void **)ptr) 414 415 /* ----------------------------------------------------------------------- */ 416 417 /* USB device number allocation bitmap */ 418 struct usb_devmap { 419 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 420 }; 421 422 /* 423 * Allocated per bus (tree of devices) we have: 424 */ 425 struct usb_bus { 426 struct device *controller; /* host/master side hardware */ 427 struct device *sysdev; /* as seen from firmware or bus */ 428 int busnum; /* Bus number (in order of reg) */ 429 const char *bus_name; /* stable id (PCI slot_name etc) */ 430 u8 uses_dma; /* Does the host controller use DMA? */ 431 u8 uses_pio_for_control; /* 432 * Does the host controller use PIO 433 * for control transfers? 434 */ 435 u8 otg_port; /* 0, or number of OTG/HNP port */ 436 unsigned is_b_host:1; /* true during some HNP roleswitches */ 437 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 438 unsigned no_stop_on_short:1; /* 439 * Quirk: some controllers don't stop 440 * the ep queue on a short transfer 441 * with the URB_SHORT_NOT_OK flag set. 442 */ 443 unsigned no_sg_constraint:1; /* no sg constraint */ 444 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 445 446 int devnum_next; /* Next open device number in 447 * round-robin allocation */ 448 struct mutex devnum_next_mutex; /* devnum_next mutex */ 449 450 struct usb_devmap devmap; /* device address allocation map */ 451 struct usb_device *root_hub; /* Root hub */ 452 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 453 454 int bandwidth_allocated; /* on this bus: how much of the time 455 * reserved for periodic (intr/iso) 456 * requests is used, on average? 457 * Units: microseconds/frame. 458 * Limits: Full/low speed reserve 90%, 459 * while high speed reserves 80%. 460 */ 461 int bandwidth_int_reqs; /* number of Interrupt requests */ 462 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 463 464 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 465 466 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 467 struct mon_bus *mon_bus; /* non-null when associated */ 468 int monitored; /* non-zero when monitored */ 469 #endif 470 }; 471 472 struct usb_dev_state; 473 474 /* ----------------------------------------------------------------------- */ 475 476 struct usb_tt; 477 478 enum usb_device_removable { 479 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 480 USB_DEVICE_REMOVABLE, 481 USB_DEVICE_FIXED, 482 }; 483 484 enum usb_port_connect_type { 485 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 486 USB_PORT_CONNECT_TYPE_HOT_PLUG, 487 USB_PORT_CONNECT_TYPE_HARD_WIRED, 488 USB_PORT_NOT_USED, 489 }; 490 491 /* 492 * USB 2.0 Link Power Management (LPM) parameters. 493 */ 494 struct usb2_lpm_parameters { 495 /* Best effort service latency indicate how long the host will drive 496 * resume on an exit from L1. 497 */ 498 unsigned int besl; 499 500 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 501 * When the timer counts to zero, the parent hub will initiate a LPM 502 * transition to L1. 503 */ 504 int timeout; 505 }; 506 507 /* 508 * USB 3.0 Link Power Management (LPM) parameters. 509 * 510 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 511 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 512 * All three are stored in nanoseconds. 513 */ 514 struct usb3_lpm_parameters { 515 /* 516 * Maximum exit latency (MEL) for the host to send a packet to the 517 * device (either a Ping for isoc endpoints, or a data packet for 518 * interrupt endpoints), the hubs to decode the packet, and for all hubs 519 * in the path to transition the links to U0. 520 */ 521 unsigned int mel; 522 /* 523 * Maximum exit latency for a device-initiated LPM transition to bring 524 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 525 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 526 */ 527 unsigned int pel; 528 529 /* 530 * The System Exit Latency (SEL) includes PEL, and three other 531 * latencies. After a device initiates a U0 transition, it will take 532 * some time from when the device sends the ERDY to when it will finally 533 * receive the data packet. Basically, SEL should be the worse-case 534 * latency from when a device starts initiating a U0 transition to when 535 * it will get data. 536 */ 537 unsigned int sel; 538 /* 539 * The idle timeout value that is currently programmed into the parent 540 * hub for this device. When the timer counts to zero, the parent hub 541 * will initiate an LPM transition to either U1 or U2. 542 */ 543 int timeout; 544 }; 545 546 /** 547 * struct usb_device - kernel's representation of a USB device 548 * @devnum: device number; address on a USB bus 549 * @devpath: device ID string for use in messages (e.g., /port/...) 550 * @route: tree topology hex string for use with xHCI 551 * @state: device state: configured, not attached, etc. 552 * @speed: device speed: high/full/low (or error) 553 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 554 * @ttport: device port on that tt hub 555 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 556 * @parent: our hub, unless we're the root 557 * @bus: bus we're part of 558 * @ep0: endpoint 0 data (default control pipe) 559 * @dev: generic device interface 560 * @descriptor: USB device descriptor 561 * @bos: USB device BOS descriptor set 562 * @config: all of the device's configs 563 * @actconfig: the active configuration 564 * @ep_in: array of IN endpoints 565 * @ep_out: array of OUT endpoints 566 * @rawdescriptors: raw descriptors for each config 567 * @bus_mA: Current available from the bus 568 * @portnum: parent port number (origin 1) 569 * @level: number of USB hub ancestors 570 * @can_submit: URBs may be submitted 571 * @persist_enabled: USB_PERSIST enabled for this device 572 * @have_langid: whether string_langid is valid 573 * @authorized: policy has said we can use it; 574 * (user space) policy determines if we authorize this device to be 575 * used or not. By default, wired USB devices are authorized. 576 * WUSB devices are not, until we authorize them from user space. 577 * FIXME -- complete doc 578 * @authenticated: Crypto authentication passed 579 * @wusb: device is Wireless USB 580 * @lpm_capable: device supports LPM 581 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 582 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 583 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 584 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 585 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 586 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 587 * @string_langid: language ID for strings 588 * @product: iProduct string, if present (static) 589 * @manufacturer: iManufacturer string, if present (static) 590 * @serial: iSerialNumber string, if present (static) 591 * @filelist: usbfs files that are open to this device 592 * @maxchild: number of ports if hub 593 * @quirks: quirks of the whole device 594 * @urbnum: number of URBs submitted for the whole device 595 * @active_duration: total time device is not suspended 596 * @connect_time: time device was first connected 597 * @do_remote_wakeup: remote wakeup should be enabled 598 * @reset_resume: needs reset instead of resume 599 * @port_is_suspended: the upstream port is suspended (L2 or U3) 600 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 601 * specific data for the device. 602 * @slot_id: Slot ID assigned by xHCI 603 * @removable: Device can be physically removed from this port 604 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 605 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 606 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 607 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 608 * to keep track of the number of functions that require USB 3.0 Link Power 609 * Management to be disabled for this usb_device. This count should only 610 * be manipulated by those functions, with the bandwidth_mutex is held. 611 * 612 * Notes: 613 * Usbcore drivers should not set usbdev->state directly. Instead use 614 * usb_set_device_state(). 615 */ 616 struct usb_device { 617 int devnum; 618 char devpath[16]; 619 u32 route; 620 enum usb_device_state state; 621 enum usb_device_speed speed; 622 623 struct usb_tt *tt; 624 int ttport; 625 626 unsigned int toggle[2]; 627 628 struct usb_device *parent; 629 struct usb_bus *bus; 630 struct usb_host_endpoint ep0; 631 632 struct device dev; 633 634 struct usb_device_descriptor descriptor; 635 struct usb_host_bos *bos; 636 struct usb_host_config *config; 637 638 struct usb_host_config *actconfig; 639 struct usb_host_endpoint *ep_in[16]; 640 struct usb_host_endpoint *ep_out[16]; 641 642 char **rawdescriptors; 643 644 unsigned short bus_mA; 645 u8 portnum; 646 u8 level; 647 648 unsigned can_submit:1; 649 unsigned persist_enabled:1; 650 unsigned have_langid:1; 651 unsigned authorized:1; 652 unsigned authenticated:1; 653 unsigned wusb:1; 654 unsigned lpm_capable:1; 655 unsigned usb2_hw_lpm_capable:1; 656 unsigned usb2_hw_lpm_besl_capable:1; 657 unsigned usb2_hw_lpm_enabled:1; 658 unsigned usb2_hw_lpm_allowed:1; 659 unsigned usb3_lpm_u1_enabled:1; 660 unsigned usb3_lpm_u2_enabled:1; 661 int string_langid; 662 663 /* static strings from the device */ 664 char *product; 665 char *manufacturer; 666 char *serial; 667 668 struct list_head filelist; 669 670 int maxchild; 671 672 u32 quirks; 673 atomic_t urbnum; 674 675 unsigned long active_duration; 676 677 #ifdef CONFIG_PM 678 unsigned long connect_time; 679 680 unsigned do_remote_wakeup:1; 681 unsigned reset_resume:1; 682 unsigned port_is_suspended:1; 683 #endif 684 struct wusb_dev *wusb_dev; 685 int slot_id; 686 enum usb_device_removable removable; 687 struct usb2_lpm_parameters l1_params; 688 struct usb3_lpm_parameters u1_params; 689 struct usb3_lpm_parameters u2_params; 690 unsigned lpm_disable_count; 691 }; 692 #define to_usb_device(d) container_of(d, struct usb_device, dev) 693 694 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 695 { 696 return to_usb_device(intf->dev.parent); 697 } 698 699 extern struct usb_device *usb_get_dev(struct usb_device *dev); 700 extern void usb_put_dev(struct usb_device *dev); 701 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 702 int port1); 703 704 /** 705 * usb_hub_for_each_child - iterate over all child devices on the hub 706 * @hdev: USB device belonging to the usb hub 707 * @port1: portnum associated with child device 708 * @child: child device pointer 709 */ 710 #define usb_hub_for_each_child(hdev, port1, child) \ 711 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 712 port1 <= hdev->maxchild; \ 713 child = usb_hub_find_child(hdev, ++port1)) \ 714 if (!child) continue; else 715 716 /* USB device locking */ 717 #define usb_lock_device(udev) device_lock(&(udev)->dev) 718 #define usb_unlock_device(udev) device_unlock(&(udev)->dev) 719 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 720 #define usb_trylock_device(udev) device_trylock(&(udev)->dev) 721 extern int usb_lock_device_for_reset(struct usb_device *udev, 722 const struct usb_interface *iface); 723 724 /* USB port reset for device reinitialization */ 725 extern int usb_reset_device(struct usb_device *dev); 726 extern void usb_queue_reset_device(struct usb_interface *dev); 727 728 #ifdef CONFIG_ACPI 729 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 730 bool enable); 731 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 732 #else 733 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 734 bool enable) { return 0; } 735 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 736 { return true; } 737 #endif 738 739 /* USB autosuspend and autoresume */ 740 #ifdef CONFIG_PM 741 extern void usb_enable_autosuspend(struct usb_device *udev); 742 extern void usb_disable_autosuspend(struct usb_device *udev); 743 744 extern int usb_autopm_get_interface(struct usb_interface *intf); 745 extern void usb_autopm_put_interface(struct usb_interface *intf); 746 extern int usb_autopm_get_interface_async(struct usb_interface *intf); 747 extern void usb_autopm_put_interface_async(struct usb_interface *intf); 748 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 749 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 750 751 static inline void usb_mark_last_busy(struct usb_device *udev) 752 { 753 pm_runtime_mark_last_busy(&udev->dev); 754 } 755 756 #else 757 758 static inline int usb_enable_autosuspend(struct usb_device *udev) 759 { return 0; } 760 static inline int usb_disable_autosuspend(struct usb_device *udev) 761 { return 0; } 762 763 static inline int usb_autopm_get_interface(struct usb_interface *intf) 764 { return 0; } 765 static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 766 { return 0; } 767 768 static inline void usb_autopm_put_interface(struct usb_interface *intf) 769 { } 770 static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 771 { } 772 static inline void usb_autopm_get_interface_no_resume( 773 struct usb_interface *intf) 774 { } 775 static inline void usb_autopm_put_interface_no_suspend( 776 struct usb_interface *intf) 777 { } 778 static inline void usb_mark_last_busy(struct usb_device *udev) 779 { } 780 #endif 781 782 extern int usb_disable_lpm(struct usb_device *udev); 783 extern void usb_enable_lpm(struct usb_device *udev); 784 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 785 extern int usb_unlocked_disable_lpm(struct usb_device *udev); 786 extern void usb_unlocked_enable_lpm(struct usb_device *udev); 787 788 extern int usb_disable_ltm(struct usb_device *udev); 789 extern void usb_enable_ltm(struct usb_device *udev); 790 791 static inline bool usb_device_supports_ltm(struct usb_device *udev) 792 { 793 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 794 return false; 795 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 796 } 797 798 static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 799 { 800 return udev && udev->bus && udev->bus->no_sg_constraint; 801 } 802 803 804 /*-------------------------------------------------------------------------*/ 805 806 /* for drivers using iso endpoints */ 807 extern int usb_get_current_frame_number(struct usb_device *usb_dev); 808 809 /* Sets up a group of bulk endpoints to support multiple stream IDs. */ 810 extern int usb_alloc_streams(struct usb_interface *interface, 811 struct usb_host_endpoint **eps, unsigned int num_eps, 812 unsigned int num_streams, gfp_t mem_flags); 813 814 /* Reverts a group of bulk endpoints back to not using stream IDs. */ 815 extern int usb_free_streams(struct usb_interface *interface, 816 struct usb_host_endpoint **eps, unsigned int num_eps, 817 gfp_t mem_flags); 818 819 /* used these for multi-interface device registration */ 820 extern int usb_driver_claim_interface(struct usb_driver *driver, 821 struct usb_interface *iface, void *priv); 822 823 /** 824 * usb_interface_claimed - returns true iff an interface is claimed 825 * @iface: the interface being checked 826 * 827 * Return: %true (nonzero) iff the interface is claimed, else %false 828 * (zero). 829 * 830 * Note: 831 * Callers must own the driver model's usb bus readlock. So driver 832 * probe() entries don't need extra locking, but other call contexts 833 * may need to explicitly claim that lock. 834 * 835 */ 836 static inline int usb_interface_claimed(struct usb_interface *iface) 837 { 838 return (iface->dev.driver != NULL); 839 } 840 841 extern void usb_driver_release_interface(struct usb_driver *driver, 842 struct usb_interface *iface); 843 const struct usb_device_id *usb_match_id(struct usb_interface *interface, 844 const struct usb_device_id *id); 845 extern int usb_match_one_id(struct usb_interface *interface, 846 const struct usb_device_id *id); 847 848 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 849 extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 850 int minor); 851 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 852 unsigned ifnum); 853 extern struct usb_host_interface *usb_altnum_to_altsetting( 854 const struct usb_interface *intf, unsigned int altnum); 855 extern struct usb_host_interface *usb_find_alt_setting( 856 struct usb_host_config *config, 857 unsigned int iface_num, 858 unsigned int alt_num); 859 860 /* port claiming functions */ 861 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 862 struct usb_dev_state *owner); 863 int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 864 struct usb_dev_state *owner); 865 866 /** 867 * usb_make_path - returns stable device path in the usb tree 868 * @dev: the device whose path is being constructed 869 * @buf: where to put the string 870 * @size: how big is "buf"? 871 * 872 * Return: Length of the string (> 0) or negative if size was too small. 873 * 874 * Note: 875 * This identifier is intended to be "stable", reflecting physical paths in 876 * hardware such as physical bus addresses for host controllers or ports on 877 * USB hubs. That makes it stay the same until systems are physically 878 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 879 * controllers. Adding and removing devices, including virtual root hubs 880 * in host controller driver modules, does not change these path identifiers; 881 * neither does rebooting or re-enumerating. These are more useful identifiers 882 * than changeable ("unstable") ones like bus numbers or device addresses. 883 * 884 * With a partial exception for devices connected to USB 2.0 root hubs, these 885 * identifiers are also predictable. So long as the device tree isn't changed, 886 * plugging any USB device into a given hub port always gives it the same path. 887 * Because of the use of "companion" controllers, devices connected to ports on 888 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 889 * high speed, and a different one if they are full or low speed. 890 */ 891 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 892 { 893 int actual; 894 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 895 dev->devpath); 896 return (actual >= (int)size) ? -1 : actual; 897 } 898 899 /*-------------------------------------------------------------------------*/ 900 901 #define USB_DEVICE_ID_MATCH_DEVICE \ 902 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 903 #define USB_DEVICE_ID_MATCH_DEV_RANGE \ 904 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 905 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 906 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 907 #define USB_DEVICE_ID_MATCH_DEV_INFO \ 908 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 909 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 910 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 911 #define USB_DEVICE_ID_MATCH_INT_INFO \ 912 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 913 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 914 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 915 916 /** 917 * USB_DEVICE - macro used to describe a specific usb device 918 * @vend: the 16 bit USB Vendor ID 919 * @prod: the 16 bit USB Product ID 920 * 921 * This macro is used to create a struct usb_device_id that matches a 922 * specific device. 923 */ 924 #define USB_DEVICE(vend, prod) \ 925 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 926 .idVendor = (vend), \ 927 .idProduct = (prod) 928 /** 929 * USB_DEVICE_VER - describe a specific usb device with a version range 930 * @vend: the 16 bit USB Vendor ID 931 * @prod: the 16 bit USB Product ID 932 * @lo: the bcdDevice_lo value 933 * @hi: the bcdDevice_hi value 934 * 935 * This macro is used to create a struct usb_device_id that matches a 936 * specific device, with a version range. 937 */ 938 #define USB_DEVICE_VER(vend, prod, lo, hi) \ 939 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 940 .idVendor = (vend), \ 941 .idProduct = (prod), \ 942 .bcdDevice_lo = (lo), \ 943 .bcdDevice_hi = (hi) 944 945 /** 946 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 947 * @vend: the 16 bit USB Vendor ID 948 * @prod: the 16 bit USB Product ID 949 * @cl: bInterfaceClass value 950 * 951 * This macro is used to create a struct usb_device_id that matches a 952 * specific interface class of devices. 953 */ 954 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 955 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 956 USB_DEVICE_ID_MATCH_INT_CLASS, \ 957 .idVendor = (vend), \ 958 .idProduct = (prod), \ 959 .bInterfaceClass = (cl) 960 961 /** 962 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 963 * @vend: the 16 bit USB Vendor ID 964 * @prod: the 16 bit USB Product ID 965 * @pr: bInterfaceProtocol value 966 * 967 * This macro is used to create a struct usb_device_id that matches a 968 * specific interface protocol of devices. 969 */ 970 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 971 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 972 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 973 .idVendor = (vend), \ 974 .idProduct = (prod), \ 975 .bInterfaceProtocol = (pr) 976 977 /** 978 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 979 * @vend: the 16 bit USB Vendor ID 980 * @prod: the 16 bit USB Product ID 981 * @num: bInterfaceNumber value 982 * 983 * This macro is used to create a struct usb_device_id that matches a 984 * specific interface number of devices. 985 */ 986 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 987 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 988 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 989 .idVendor = (vend), \ 990 .idProduct = (prod), \ 991 .bInterfaceNumber = (num) 992 993 /** 994 * USB_DEVICE_INFO - macro used to describe a class of usb devices 995 * @cl: bDeviceClass value 996 * @sc: bDeviceSubClass value 997 * @pr: bDeviceProtocol value 998 * 999 * This macro is used to create a struct usb_device_id that matches a 1000 * specific class of devices. 1001 */ 1002 #define USB_DEVICE_INFO(cl, sc, pr) \ 1003 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1004 .bDeviceClass = (cl), \ 1005 .bDeviceSubClass = (sc), \ 1006 .bDeviceProtocol = (pr) 1007 1008 /** 1009 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1010 * @cl: bInterfaceClass value 1011 * @sc: bInterfaceSubClass value 1012 * @pr: bInterfaceProtocol value 1013 * 1014 * This macro is used to create a struct usb_device_id that matches a 1015 * specific class of interfaces. 1016 */ 1017 #define USB_INTERFACE_INFO(cl, sc, pr) \ 1018 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1019 .bInterfaceClass = (cl), \ 1020 .bInterfaceSubClass = (sc), \ 1021 .bInterfaceProtocol = (pr) 1022 1023 /** 1024 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1025 * @vend: the 16 bit USB Vendor ID 1026 * @prod: the 16 bit USB Product ID 1027 * @cl: bInterfaceClass value 1028 * @sc: bInterfaceSubClass value 1029 * @pr: bInterfaceProtocol value 1030 * 1031 * This macro is used to create a struct usb_device_id that matches a 1032 * specific device with a specific class of interfaces. 1033 * 1034 * This is especially useful when explicitly matching devices that have 1035 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1036 */ 1037 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1038 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1039 | USB_DEVICE_ID_MATCH_DEVICE, \ 1040 .idVendor = (vend), \ 1041 .idProduct = (prod), \ 1042 .bInterfaceClass = (cl), \ 1043 .bInterfaceSubClass = (sc), \ 1044 .bInterfaceProtocol = (pr) 1045 1046 /** 1047 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1048 * @vend: the 16 bit USB Vendor ID 1049 * @cl: bInterfaceClass value 1050 * @sc: bInterfaceSubClass value 1051 * @pr: bInterfaceProtocol value 1052 * 1053 * This macro is used to create a struct usb_device_id that matches a 1054 * specific vendor with a specific class of interfaces. 1055 * 1056 * This is especially useful when explicitly matching devices that have 1057 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1058 */ 1059 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1060 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1061 | USB_DEVICE_ID_MATCH_VENDOR, \ 1062 .idVendor = (vend), \ 1063 .bInterfaceClass = (cl), \ 1064 .bInterfaceSubClass = (sc), \ 1065 .bInterfaceProtocol = (pr) 1066 1067 /* ----------------------------------------------------------------------- */ 1068 1069 /* Stuff for dynamic usb ids */ 1070 struct usb_dynids { 1071 spinlock_t lock; 1072 struct list_head list; 1073 }; 1074 1075 struct usb_dynid { 1076 struct list_head node; 1077 struct usb_device_id id; 1078 }; 1079 1080 extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1081 const struct usb_device_id *id_table, 1082 struct device_driver *driver, 1083 const char *buf, size_t count); 1084 1085 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1086 1087 /** 1088 * struct usbdrv_wrap - wrapper for driver-model structure 1089 * @driver: The driver-model core driver structure. 1090 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1091 */ 1092 struct usbdrv_wrap { 1093 struct device_driver driver; 1094 int for_devices; 1095 }; 1096 1097 /** 1098 * struct usb_driver - identifies USB interface driver to usbcore 1099 * @name: The driver name should be unique among USB drivers, 1100 * and should normally be the same as the module name. 1101 * @probe: Called to see if the driver is willing to manage a particular 1102 * interface on a device. If it is, probe returns zero and uses 1103 * usb_set_intfdata() to associate driver-specific data with the 1104 * interface. It may also use usb_set_interface() to specify the 1105 * appropriate altsetting. If unwilling to manage the interface, 1106 * return -ENODEV, if genuine IO errors occurred, an appropriate 1107 * negative errno value. 1108 * @disconnect: Called when the interface is no longer accessible, usually 1109 * because its device has been (or is being) disconnected or the 1110 * driver module is being unloaded. 1111 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1112 * the "usbfs" filesystem. This lets devices provide ways to 1113 * expose information to user space regardless of where they 1114 * do (or don't) show up otherwise in the filesystem. 1115 * @suspend: Called when the device is going to be suspended by the 1116 * system either from system sleep or runtime suspend context. The 1117 * return value will be ignored in system sleep context, so do NOT 1118 * try to continue using the device if suspend fails in this case. 1119 * Instead, let the resume or reset-resume routine recover from 1120 * the failure. 1121 * @resume: Called when the device is being resumed by the system. 1122 * @reset_resume: Called when the suspended device has been reset instead 1123 * of being resumed. 1124 * @pre_reset: Called by usb_reset_device() when the device is about to be 1125 * reset. This routine must not return until the driver has no active 1126 * URBs for the device, and no more URBs may be submitted until the 1127 * post_reset method is called. 1128 * @post_reset: Called by usb_reset_device() after the device 1129 * has been reset 1130 * @id_table: USB drivers use ID table to support hotplugging. 1131 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1132 * or your driver's probe function will never get called. 1133 * @dynids: used internally to hold the list of dynamically added device 1134 * ids for this driver. 1135 * @drvwrap: Driver-model core structure wrapper. 1136 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1137 * added to this driver by preventing the sysfs file from being created. 1138 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1139 * for interfaces bound to this driver. 1140 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1141 * endpoints before calling the driver's disconnect method. 1142 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1143 * to initiate lower power link state transitions when an idle timeout 1144 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1145 * 1146 * USB interface drivers must provide a name, probe() and disconnect() 1147 * methods, and an id_table. Other driver fields are optional. 1148 * 1149 * The id_table is used in hotplugging. It holds a set of descriptors, 1150 * and specialized data may be associated with each entry. That table 1151 * is used by both user and kernel mode hotplugging support. 1152 * 1153 * The probe() and disconnect() methods are called in a context where 1154 * they can sleep, but they should avoid abusing the privilege. Most 1155 * work to connect to a device should be done when the device is opened, 1156 * and undone at the last close. The disconnect code needs to address 1157 * concurrency issues with respect to open() and close() methods, as 1158 * well as forcing all pending I/O requests to complete (by unlinking 1159 * them as necessary, and blocking until the unlinks complete). 1160 */ 1161 struct usb_driver { 1162 const char *name; 1163 1164 int (*probe) (struct usb_interface *intf, 1165 const struct usb_device_id *id); 1166 1167 void (*disconnect) (struct usb_interface *intf); 1168 1169 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1170 void *buf); 1171 1172 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1173 int (*resume) (struct usb_interface *intf); 1174 int (*reset_resume)(struct usb_interface *intf); 1175 1176 int (*pre_reset)(struct usb_interface *intf); 1177 int (*post_reset)(struct usb_interface *intf); 1178 1179 const struct usb_device_id *id_table; 1180 1181 struct usb_dynids dynids; 1182 struct usbdrv_wrap drvwrap; 1183 unsigned int no_dynamic_id:1; 1184 unsigned int supports_autosuspend:1; 1185 unsigned int disable_hub_initiated_lpm:1; 1186 unsigned int soft_unbind:1; 1187 }; 1188 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1189 1190 /** 1191 * struct usb_device_driver - identifies USB device driver to usbcore 1192 * @name: The driver name should be unique among USB drivers, 1193 * and should normally be the same as the module name. 1194 * @probe: Called to see if the driver is willing to manage a particular 1195 * device. If it is, probe returns zero and uses dev_set_drvdata() 1196 * to associate driver-specific data with the device. If unwilling 1197 * to manage the device, return a negative errno value. 1198 * @disconnect: Called when the device is no longer accessible, usually 1199 * because it has been (or is being) disconnected or the driver's 1200 * module is being unloaded. 1201 * @suspend: Called when the device is going to be suspended by the system. 1202 * @resume: Called when the device is being resumed by the system. 1203 * @drvwrap: Driver-model core structure wrapper. 1204 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1205 * for devices bound to this driver. 1206 * 1207 * USB drivers must provide all the fields listed above except drvwrap. 1208 */ 1209 struct usb_device_driver { 1210 const char *name; 1211 1212 int (*probe) (struct usb_device *udev); 1213 void (*disconnect) (struct usb_device *udev); 1214 1215 int (*suspend) (struct usb_device *udev, pm_message_t message); 1216 int (*resume) (struct usb_device *udev, pm_message_t message); 1217 struct usbdrv_wrap drvwrap; 1218 unsigned int supports_autosuspend:1; 1219 }; 1220 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1221 drvwrap.driver) 1222 1223 extern struct bus_type usb_bus_type; 1224 1225 /** 1226 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1227 * @name: the usb class device name for this driver. Will show up in sysfs. 1228 * @devnode: Callback to provide a naming hint for a possible 1229 * device node to create. 1230 * @fops: pointer to the struct file_operations of this driver. 1231 * @minor_base: the start of the minor range for this driver. 1232 * 1233 * This structure is used for the usb_register_dev() and 1234 * usb_deregister_dev() functions, to consolidate a number of the 1235 * parameters used for them. 1236 */ 1237 struct usb_class_driver { 1238 char *name; 1239 char *(*devnode)(struct device *dev, umode_t *mode); 1240 const struct file_operations *fops; 1241 int minor_base; 1242 }; 1243 1244 /* 1245 * use these in module_init()/module_exit() 1246 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1247 */ 1248 extern int usb_register_driver(struct usb_driver *, struct module *, 1249 const char *); 1250 1251 /* use a define to avoid include chaining to get THIS_MODULE & friends */ 1252 #define usb_register(driver) \ 1253 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1254 1255 extern void usb_deregister(struct usb_driver *); 1256 1257 /** 1258 * module_usb_driver() - Helper macro for registering a USB driver 1259 * @__usb_driver: usb_driver struct 1260 * 1261 * Helper macro for USB drivers which do not do anything special in module 1262 * init/exit. This eliminates a lot of boilerplate. Each module may only 1263 * use this macro once, and calling it replaces module_init() and module_exit() 1264 */ 1265 #define module_usb_driver(__usb_driver) \ 1266 module_driver(__usb_driver, usb_register, \ 1267 usb_deregister) 1268 1269 extern int usb_register_device_driver(struct usb_device_driver *, 1270 struct module *); 1271 extern void usb_deregister_device_driver(struct usb_device_driver *); 1272 1273 extern int usb_register_dev(struct usb_interface *intf, 1274 struct usb_class_driver *class_driver); 1275 extern void usb_deregister_dev(struct usb_interface *intf, 1276 struct usb_class_driver *class_driver); 1277 1278 extern int usb_disabled(void); 1279 1280 /* ----------------------------------------------------------------------- */ 1281 1282 /* 1283 * URB support, for asynchronous request completions 1284 */ 1285 1286 /* 1287 * urb->transfer_flags: 1288 * 1289 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1290 */ 1291 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1292 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1293 * slot in the schedule */ 1294 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1295 #define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1296 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1297 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1298 * needed */ 1299 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1300 1301 /* The following flags are used internally by usbcore and HCDs */ 1302 #define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1303 #define URB_DIR_OUT 0 1304 #define URB_DIR_MASK URB_DIR_IN 1305 1306 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1307 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1308 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1309 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1310 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1311 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1312 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1313 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1314 1315 struct usb_iso_packet_descriptor { 1316 unsigned int offset; 1317 unsigned int length; /* expected length */ 1318 unsigned int actual_length; 1319 int status; 1320 }; 1321 1322 struct urb; 1323 1324 struct usb_anchor { 1325 struct list_head urb_list; 1326 wait_queue_head_t wait; 1327 spinlock_t lock; 1328 atomic_t suspend_wakeups; 1329 unsigned int poisoned:1; 1330 }; 1331 1332 static inline void init_usb_anchor(struct usb_anchor *anchor) 1333 { 1334 memset(anchor, 0, sizeof(*anchor)); 1335 INIT_LIST_HEAD(&anchor->urb_list); 1336 init_waitqueue_head(&anchor->wait); 1337 spin_lock_init(&anchor->lock); 1338 } 1339 1340 typedef void (*usb_complete_t)(struct urb *); 1341 1342 /** 1343 * struct urb - USB Request Block 1344 * @urb_list: For use by current owner of the URB. 1345 * @anchor_list: membership in the list of an anchor 1346 * @anchor: to anchor URBs to a common mooring 1347 * @ep: Points to the endpoint's data structure. Will eventually 1348 * replace @pipe. 1349 * @pipe: Holds endpoint number, direction, type, and more. 1350 * Create these values with the eight macros available; 1351 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1352 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1353 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1354 * numbers range from zero to fifteen. Note that "in" endpoint two 1355 * is a different endpoint (and pipe) from "out" endpoint two. 1356 * The current configuration controls the existence, type, and 1357 * maximum packet size of any given endpoint. 1358 * @stream_id: the endpoint's stream ID for bulk streams 1359 * @dev: Identifies the USB device to perform the request. 1360 * @status: This is read in non-iso completion functions to get the 1361 * status of the particular request. ISO requests only use it 1362 * to tell whether the URB was unlinked; detailed status for 1363 * each frame is in the fields of the iso_frame-desc. 1364 * @transfer_flags: A variety of flags may be used to affect how URB 1365 * submission, unlinking, or operation are handled. Different 1366 * kinds of URB can use different flags. 1367 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1368 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1369 * (however, do not leave garbage in transfer_buffer even then). 1370 * This buffer must be suitable for DMA; allocate it with 1371 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1372 * of this buffer will be modified. This buffer is used for the data 1373 * stage of control transfers. 1374 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1375 * the device driver is saying that it provided this DMA address, 1376 * which the host controller driver should use in preference to the 1377 * transfer_buffer. 1378 * @sg: scatter gather buffer list, the buffer size of each element in 1379 * the list (except the last) must be divisible by the endpoint's 1380 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1381 * @num_mapped_sgs: (internal) number of mapped sg entries 1382 * @num_sgs: number of entries in the sg list 1383 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1384 * be broken up into chunks according to the current maximum packet 1385 * size for the endpoint, which is a function of the configuration 1386 * and is encoded in the pipe. When the length is zero, neither 1387 * transfer_buffer nor transfer_dma is used. 1388 * @actual_length: This is read in non-iso completion functions, and 1389 * it tells how many bytes (out of transfer_buffer_length) were 1390 * transferred. It will normally be the same as requested, unless 1391 * either an error was reported or a short read was performed. 1392 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1393 * short reads be reported as errors. 1394 * @setup_packet: Only used for control transfers, this points to eight bytes 1395 * of setup data. Control transfers always start by sending this data 1396 * to the device. Then transfer_buffer is read or written, if needed. 1397 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1398 * this field; setup_packet must point to a valid buffer. 1399 * @start_frame: Returns the initial frame for isochronous transfers. 1400 * @number_of_packets: Lists the number of ISO transfer buffers. 1401 * @interval: Specifies the polling interval for interrupt or isochronous 1402 * transfers. The units are frames (milliseconds) for full and low 1403 * speed devices, and microframes (1/8 millisecond) for highspeed 1404 * and SuperSpeed devices. 1405 * @error_count: Returns the number of ISO transfers that reported errors. 1406 * @context: For use in completion functions. This normally points to 1407 * request-specific driver context. 1408 * @complete: Completion handler. This URB is passed as the parameter to the 1409 * completion function. The completion function may then do what 1410 * it likes with the URB, including resubmitting or freeing it. 1411 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1412 * collect the transfer status for each buffer. 1413 * 1414 * This structure identifies USB transfer requests. URBs must be allocated by 1415 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1416 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1417 * are submitted using usb_submit_urb(), and pending requests may be canceled 1418 * using usb_unlink_urb() or usb_kill_urb(). 1419 * 1420 * Data Transfer Buffers: 1421 * 1422 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1423 * taken from the general page pool. That is provided by transfer_buffer 1424 * (control requests also use setup_packet), and host controller drivers 1425 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1426 * mapping operations can be expensive on some platforms (perhaps using a dma 1427 * bounce buffer or talking to an IOMMU), 1428 * although they're cheap on commodity x86 and ppc hardware. 1429 * 1430 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1431 * which tells the host controller driver that no such mapping is needed for 1432 * the transfer_buffer since 1433 * the device driver is DMA-aware. For example, a device driver might 1434 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1435 * When this transfer flag is provided, host controller drivers will 1436 * attempt to use the dma address found in the transfer_dma 1437 * field rather than determining a dma address themselves. 1438 * 1439 * Note that transfer_buffer must still be set if the controller 1440 * does not support DMA (as indicated by bus.uses_dma) and when talking 1441 * to root hub. If you have to trasfer between highmem zone and the device 1442 * on such controller, create a bounce buffer or bail out with an error. 1443 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1444 * capable, assign NULL to it, so that usbmon knows not to use the value. 1445 * The setup_packet must always be set, so it cannot be located in highmem. 1446 * 1447 * Initialization: 1448 * 1449 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1450 * zero), and complete fields. All URBs must also initialize 1451 * transfer_buffer and transfer_buffer_length. They may provide the 1452 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1453 * to be treated as errors; that flag is invalid for write requests. 1454 * 1455 * Bulk URBs may 1456 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1457 * should always terminate with a short packet, even if it means adding an 1458 * extra zero length packet. 1459 * 1460 * Control URBs must provide a valid pointer in the setup_packet field. 1461 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1462 * beforehand. 1463 * 1464 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1465 * or, for highspeed devices, 125 microsecond units) 1466 * to poll for transfers. After the URB has been submitted, the interval 1467 * field reflects how the transfer was actually scheduled. 1468 * The polling interval may be more frequent than requested. 1469 * For example, some controllers have a maximum interval of 32 milliseconds, 1470 * while others support intervals of up to 1024 milliseconds. 1471 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1472 * endpoints, as well as high speed interrupt endpoints, the encoding of 1473 * the transfer interval in the endpoint descriptor is logarithmic. 1474 * Device drivers must convert that value to linear units themselves.) 1475 * 1476 * If an isochronous endpoint queue isn't already running, the host 1477 * controller will schedule a new URB to start as soon as bandwidth 1478 * utilization allows. If the queue is running then a new URB will be 1479 * scheduled to start in the first transfer slot following the end of the 1480 * preceding URB, if that slot has not already expired. If the slot has 1481 * expired (which can happen when IRQ delivery is delayed for a long time), 1482 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1483 * is clear then the URB will be scheduled to start in the expired slot, 1484 * implying that some of its packets will not be transferred; if the flag 1485 * is set then the URB will be scheduled in the first unexpired slot, 1486 * breaking the queue's synchronization. Upon URB completion, the 1487 * start_frame field will be set to the (micro)frame number in which the 1488 * transfer was scheduled. Ranges for frame counter values are HC-specific 1489 * and can go from as low as 256 to as high as 65536 frames. 1490 * 1491 * Isochronous URBs have a different data transfer model, in part because 1492 * the quality of service is only "best effort". Callers provide specially 1493 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1494 * at the end. Each such packet is an individual ISO transfer. Isochronous 1495 * URBs are normally queued, submitted by drivers to arrange that 1496 * transfers are at least double buffered, and then explicitly resubmitted 1497 * in completion handlers, so 1498 * that data (such as audio or video) streams at as constant a rate as the 1499 * host controller scheduler can support. 1500 * 1501 * Completion Callbacks: 1502 * 1503 * The completion callback is made in_interrupt(), and one of the first 1504 * things that a completion handler should do is check the status field. 1505 * The status field is provided for all URBs. It is used to report 1506 * unlinked URBs, and status for all non-ISO transfers. It should not 1507 * be examined before the URB is returned to the completion handler. 1508 * 1509 * The context field is normally used to link URBs back to the relevant 1510 * driver or request state. 1511 * 1512 * When the completion callback is invoked for non-isochronous URBs, the 1513 * actual_length field tells how many bytes were transferred. This field 1514 * is updated even when the URB terminated with an error or was unlinked. 1515 * 1516 * ISO transfer status is reported in the status and actual_length fields 1517 * of the iso_frame_desc array, and the number of errors is reported in 1518 * error_count. Completion callbacks for ISO transfers will normally 1519 * (re)submit URBs to ensure a constant transfer rate. 1520 * 1521 * Note that even fields marked "public" should not be touched by the driver 1522 * when the urb is owned by the hcd, that is, since the call to 1523 * usb_submit_urb() till the entry into the completion routine. 1524 */ 1525 struct urb { 1526 /* private: usb core and host controller only fields in the urb */ 1527 struct kref kref; /* reference count of the URB */ 1528 void *hcpriv; /* private data for host controller */ 1529 atomic_t use_count; /* concurrent submissions counter */ 1530 atomic_t reject; /* submissions will fail */ 1531 int unlinked; /* unlink error code */ 1532 1533 /* public: documented fields in the urb that can be used by drivers */ 1534 struct list_head urb_list; /* list head for use by the urb's 1535 * current owner */ 1536 struct list_head anchor_list; /* the URB may be anchored */ 1537 struct usb_anchor *anchor; 1538 struct usb_device *dev; /* (in) pointer to associated device */ 1539 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1540 unsigned int pipe; /* (in) pipe information */ 1541 unsigned int stream_id; /* (in) stream ID */ 1542 int status; /* (return) non-ISO status */ 1543 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1544 void *transfer_buffer; /* (in) associated data buffer */ 1545 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1546 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1547 int num_mapped_sgs; /* (internal) mapped sg entries */ 1548 int num_sgs; /* (in) number of entries in the sg list */ 1549 u32 transfer_buffer_length; /* (in) data buffer length */ 1550 u32 actual_length; /* (return) actual transfer length */ 1551 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1552 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1553 int start_frame; /* (modify) start frame (ISO) */ 1554 int number_of_packets; /* (in) number of ISO packets */ 1555 int interval; /* (modify) transfer interval 1556 * (INT/ISO) */ 1557 int error_count; /* (return) number of ISO errors */ 1558 void *context; /* (in) context for completion */ 1559 usb_complete_t complete; /* (in) completion routine */ 1560 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1561 /* (in) ISO ONLY */ 1562 }; 1563 1564 /* ----------------------------------------------------------------------- */ 1565 1566 /** 1567 * usb_fill_control_urb - initializes a control urb 1568 * @urb: pointer to the urb to initialize. 1569 * @dev: pointer to the struct usb_device for this urb. 1570 * @pipe: the endpoint pipe 1571 * @setup_packet: pointer to the setup_packet buffer 1572 * @transfer_buffer: pointer to the transfer buffer 1573 * @buffer_length: length of the transfer buffer 1574 * @complete_fn: pointer to the usb_complete_t function 1575 * @context: what to set the urb context to. 1576 * 1577 * Initializes a control urb with the proper information needed to submit 1578 * it to a device. 1579 */ 1580 static inline void usb_fill_control_urb(struct urb *urb, 1581 struct usb_device *dev, 1582 unsigned int pipe, 1583 unsigned char *setup_packet, 1584 void *transfer_buffer, 1585 int buffer_length, 1586 usb_complete_t complete_fn, 1587 void *context) 1588 { 1589 urb->dev = dev; 1590 urb->pipe = pipe; 1591 urb->setup_packet = setup_packet; 1592 urb->transfer_buffer = transfer_buffer; 1593 urb->transfer_buffer_length = buffer_length; 1594 urb->complete = complete_fn; 1595 urb->context = context; 1596 } 1597 1598 /** 1599 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1600 * @urb: pointer to the urb to initialize. 1601 * @dev: pointer to the struct usb_device for this urb. 1602 * @pipe: the endpoint pipe 1603 * @transfer_buffer: pointer to the transfer buffer 1604 * @buffer_length: length of the transfer buffer 1605 * @complete_fn: pointer to the usb_complete_t function 1606 * @context: what to set the urb context to. 1607 * 1608 * Initializes a bulk urb with the proper information needed to submit it 1609 * to a device. 1610 */ 1611 static inline void usb_fill_bulk_urb(struct urb *urb, 1612 struct usb_device *dev, 1613 unsigned int pipe, 1614 void *transfer_buffer, 1615 int buffer_length, 1616 usb_complete_t complete_fn, 1617 void *context) 1618 { 1619 urb->dev = dev; 1620 urb->pipe = pipe; 1621 urb->transfer_buffer = transfer_buffer; 1622 urb->transfer_buffer_length = buffer_length; 1623 urb->complete = complete_fn; 1624 urb->context = context; 1625 } 1626 1627 /** 1628 * usb_fill_int_urb - macro to help initialize a interrupt urb 1629 * @urb: pointer to the urb to initialize. 1630 * @dev: pointer to the struct usb_device for this urb. 1631 * @pipe: the endpoint pipe 1632 * @transfer_buffer: pointer to the transfer buffer 1633 * @buffer_length: length of the transfer buffer 1634 * @complete_fn: pointer to the usb_complete_t function 1635 * @context: what to set the urb context to. 1636 * @interval: what to set the urb interval to, encoded like 1637 * the endpoint descriptor's bInterval value. 1638 * 1639 * Initializes a interrupt urb with the proper information needed to submit 1640 * it to a device. 1641 * 1642 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1643 * encoding of the endpoint interval, and express polling intervals in 1644 * microframes (eight per millisecond) rather than in frames (one per 1645 * millisecond). 1646 * 1647 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1648 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1649 * through to the host controller, rather than being translated into microframe 1650 * units. 1651 */ 1652 static inline void usb_fill_int_urb(struct urb *urb, 1653 struct usb_device *dev, 1654 unsigned int pipe, 1655 void *transfer_buffer, 1656 int buffer_length, 1657 usb_complete_t complete_fn, 1658 void *context, 1659 int interval) 1660 { 1661 urb->dev = dev; 1662 urb->pipe = pipe; 1663 urb->transfer_buffer = transfer_buffer; 1664 urb->transfer_buffer_length = buffer_length; 1665 urb->complete = complete_fn; 1666 urb->context = context; 1667 1668 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1669 /* make sure interval is within allowed range */ 1670 interval = clamp(interval, 1, 16); 1671 1672 urb->interval = 1 << (interval - 1); 1673 } else { 1674 urb->interval = interval; 1675 } 1676 1677 urb->start_frame = -1; 1678 } 1679 1680 extern void usb_init_urb(struct urb *urb); 1681 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1682 extern void usb_free_urb(struct urb *urb); 1683 #define usb_put_urb usb_free_urb 1684 extern struct urb *usb_get_urb(struct urb *urb); 1685 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1686 extern int usb_unlink_urb(struct urb *urb); 1687 extern void usb_kill_urb(struct urb *urb); 1688 extern void usb_poison_urb(struct urb *urb); 1689 extern void usb_unpoison_urb(struct urb *urb); 1690 extern void usb_block_urb(struct urb *urb); 1691 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1692 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1693 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1694 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1695 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1696 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1697 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1698 extern void usb_unanchor_urb(struct urb *urb); 1699 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1700 unsigned int timeout); 1701 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1702 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1703 extern int usb_anchor_empty(struct usb_anchor *anchor); 1704 1705 #define usb_unblock_urb usb_unpoison_urb 1706 1707 /** 1708 * usb_urb_dir_in - check if an URB describes an IN transfer 1709 * @urb: URB to be checked 1710 * 1711 * Return: 1 if @urb describes an IN transfer (device-to-host), 1712 * otherwise 0. 1713 */ 1714 static inline int usb_urb_dir_in(struct urb *urb) 1715 { 1716 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1717 } 1718 1719 /** 1720 * usb_urb_dir_out - check if an URB describes an OUT transfer 1721 * @urb: URB to be checked 1722 * 1723 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1724 * otherwise 0. 1725 */ 1726 static inline int usb_urb_dir_out(struct urb *urb) 1727 { 1728 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1729 } 1730 1731 void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1732 gfp_t mem_flags, dma_addr_t *dma); 1733 void usb_free_coherent(struct usb_device *dev, size_t size, 1734 void *addr, dma_addr_t dma); 1735 1736 #if 0 1737 struct urb *usb_buffer_map(struct urb *urb); 1738 void usb_buffer_dmasync(struct urb *urb); 1739 void usb_buffer_unmap(struct urb *urb); 1740 #endif 1741 1742 struct scatterlist; 1743 int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1744 struct scatterlist *sg, int nents); 1745 #if 0 1746 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1747 struct scatterlist *sg, int n_hw_ents); 1748 #endif 1749 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1750 struct scatterlist *sg, int n_hw_ents); 1751 1752 /*-------------------------------------------------------------------* 1753 * SYNCHRONOUS CALL SUPPORT * 1754 *-------------------------------------------------------------------*/ 1755 1756 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1757 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1758 void *data, __u16 size, int timeout); 1759 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1760 void *data, int len, int *actual_length, int timeout); 1761 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1762 void *data, int len, int *actual_length, 1763 int timeout); 1764 1765 /* wrappers around usb_control_msg() for the most common standard requests */ 1766 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1767 unsigned char descindex, void *buf, int size); 1768 extern int usb_get_status(struct usb_device *dev, 1769 int type, int target, void *data); 1770 extern int usb_string(struct usb_device *dev, int index, 1771 char *buf, size_t size); 1772 1773 /* wrappers that also update important state inside usbcore */ 1774 extern int usb_clear_halt(struct usb_device *dev, int pipe); 1775 extern int usb_reset_configuration(struct usb_device *dev); 1776 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1777 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1778 1779 /* this request isn't really synchronous, but it belongs with the others */ 1780 extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1781 1782 /* choose and set configuration for device */ 1783 extern int usb_choose_configuration(struct usb_device *udev); 1784 extern int usb_set_configuration(struct usb_device *dev, int configuration); 1785 1786 /* 1787 * timeouts, in milliseconds, used for sending/receiving control messages 1788 * they typically complete within a few frames (msec) after they're issued 1789 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1790 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1791 */ 1792 #define USB_CTRL_GET_TIMEOUT 5000 1793 #define USB_CTRL_SET_TIMEOUT 5000 1794 1795 1796 /** 1797 * struct usb_sg_request - support for scatter/gather I/O 1798 * @status: zero indicates success, else negative errno 1799 * @bytes: counts bytes transferred. 1800 * 1801 * These requests are initialized using usb_sg_init(), and then are used 1802 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1803 * members of the request object aren't for driver access. 1804 * 1805 * The status and bytecount values are valid only after usb_sg_wait() 1806 * returns. If the status is zero, then the bytecount matches the total 1807 * from the request. 1808 * 1809 * After an error completion, drivers may need to clear a halt condition 1810 * on the endpoint. 1811 */ 1812 struct usb_sg_request { 1813 int status; 1814 size_t bytes; 1815 1816 /* private: 1817 * members below are private to usbcore, 1818 * and are not provided for driver access! 1819 */ 1820 spinlock_t lock; 1821 1822 struct usb_device *dev; 1823 int pipe; 1824 1825 int entries; 1826 struct urb **urbs; 1827 1828 int count; 1829 struct completion complete; 1830 }; 1831 1832 int usb_sg_init( 1833 struct usb_sg_request *io, 1834 struct usb_device *dev, 1835 unsigned pipe, 1836 unsigned period, 1837 struct scatterlist *sg, 1838 int nents, 1839 size_t length, 1840 gfp_t mem_flags 1841 ); 1842 void usb_sg_cancel(struct usb_sg_request *io); 1843 void usb_sg_wait(struct usb_sg_request *io); 1844 1845 1846 /* ----------------------------------------------------------------------- */ 1847 1848 /* 1849 * For various legacy reasons, Linux has a small cookie that's paired with 1850 * a struct usb_device to identify an endpoint queue. Queue characteristics 1851 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1852 * an unsigned int encoded as: 1853 * 1854 * - direction: bit 7 (0 = Host-to-Device [Out], 1855 * 1 = Device-to-Host [In] ... 1856 * like endpoint bEndpointAddress) 1857 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1858 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1859 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1860 * 10 = control, 11 = bulk) 1861 * 1862 * Given the device address and endpoint descriptor, pipes are redundant. 1863 */ 1864 1865 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1866 /* (yet ... they're the values used by usbfs) */ 1867 #define PIPE_ISOCHRONOUS 0 1868 #define PIPE_INTERRUPT 1 1869 #define PIPE_CONTROL 2 1870 #define PIPE_BULK 3 1871 1872 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1873 #define usb_pipeout(pipe) (!usb_pipein(pipe)) 1874 1875 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1876 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1877 1878 #define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1879 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1880 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1881 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1882 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1883 1884 static inline unsigned int __create_pipe(struct usb_device *dev, 1885 unsigned int endpoint) 1886 { 1887 return (dev->devnum << 8) | (endpoint << 15); 1888 } 1889 1890 /* Create various pipes... */ 1891 #define usb_sndctrlpipe(dev, endpoint) \ 1892 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1893 #define usb_rcvctrlpipe(dev, endpoint) \ 1894 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1895 #define usb_sndisocpipe(dev, endpoint) \ 1896 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1897 #define usb_rcvisocpipe(dev, endpoint) \ 1898 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1899 #define usb_sndbulkpipe(dev, endpoint) \ 1900 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1901 #define usb_rcvbulkpipe(dev, endpoint) \ 1902 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1903 #define usb_sndintpipe(dev, endpoint) \ 1904 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1905 #define usb_rcvintpipe(dev, endpoint) \ 1906 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1907 1908 static inline struct usb_host_endpoint * 1909 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1910 { 1911 struct usb_host_endpoint **eps; 1912 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1913 return eps[usb_pipeendpoint(pipe)]; 1914 } 1915 1916 /*-------------------------------------------------------------------------*/ 1917 1918 static inline __u16 1919 usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1920 { 1921 struct usb_host_endpoint *ep; 1922 unsigned epnum = usb_pipeendpoint(pipe); 1923 1924 if (is_out) { 1925 WARN_ON(usb_pipein(pipe)); 1926 ep = udev->ep_out[epnum]; 1927 } else { 1928 WARN_ON(usb_pipeout(pipe)); 1929 ep = udev->ep_in[epnum]; 1930 } 1931 if (!ep) 1932 return 0; 1933 1934 /* NOTE: only 0x07ff bits are for packet size... */ 1935 return usb_endpoint_maxp(&ep->desc); 1936 } 1937 1938 /* ----------------------------------------------------------------------- */ 1939 1940 /* translate USB error codes to codes user space understands */ 1941 static inline int usb_translate_errors(int error_code) 1942 { 1943 switch (error_code) { 1944 case 0: 1945 case -ENOMEM: 1946 case -ENODEV: 1947 case -EOPNOTSUPP: 1948 return error_code; 1949 default: 1950 return -EIO; 1951 } 1952 } 1953 1954 /* Events from the usb core */ 1955 #define USB_DEVICE_ADD 0x0001 1956 #define USB_DEVICE_REMOVE 0x0002 1957 #define USB_BUS_ADD 0x0003 1958 #define USB_BUS_REMOVE 0x0004 1959 extern void usb_register_notify(struct notifier_block *nb); 1960 extern void usb_unregister_notify(struct notifier_block *nb); 1961 1962 /* debugfs stuff */ 1963 extern struct dentry *usb_debug_root; 1964 1965 /* LED triggers */ 1966 enum usb_led_event { 1967 USB_LED_EVENT_HOST = 0, 1968 USB_LED_EVENT_GADGET = 1, 1969 }; 1970 1971 #ifdef CONFIG_USB_LED_TRIG 1972 extern void usb_led_activity(enum usb_led_event ev); 1973 #else 1974 static inline void usb_led_activity(enum usb_led_event ev) {} 1975 #endif 1976 1977 #endif /* __KERNEL__ */ 1978 1979 #endif 1980
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.