~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/linux/usb.h

Version: ~ [ linux-5.6 ] ~ [ linux-5.5.13 ] ~ [ linux-5.4.28 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.113 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.174 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.217 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.217 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 #ifndef __LINUX_USB_H
  3 #define __LINUX_USB_H
  4 
  5 #include <linux/mod_devicetable.h>
  6 #include <linux/usb/ch9.h>
  7 
  8 #define USB_MAJOR                       180
  9 #define USB_DEVICE_MAJOR                189
 10 
 11 
 12 #ifdef __KERNEL__
 13 
 14 #include <linux/errno.h>        /* for -ENODEV */
 15 #include <linux/delay.h>        /* for mdelay() */
 16 #include <linux/interrupt.h>    /* for in_interrupt() */
 17 #include <linux/list.h>         /* for struct list_head */
 18 #include <linux/kref.h>         /* for struct kref */
 19 #include <linux/device.h>       /* for struct device */
 20 #include <linux/fs.h>           /* for struct file_operations */
 21 #include <linux/completion.h>   /* for struct completion */
 22 #include <linux/sched.h>        /* for current && schedule_timeout */
 23 #include <linux/mutex.h>        /* for struct mutex */
 24 #include <linux/pm_runtime.h>   /* for runtime PM */
 25 
 26 struct usb_device;
 27 struct usb_driver;
 28 struct wusb_dev;
 29 
 30 /*-------------------------------------------------------------------------*/
 31 
 32 /*
 33  * Host-side wrappers for standard USB descriptors ... these are parsed
 34  * from the data provided by devices.  Parsing turns them from a flat
 35  * sequence of descriptors into a hierarchy:
 36  *
 37  *  - devices have one (usually) or more configs;
 38  *  - configs have one (often) or more interfaces;
 39  *  - interfaces have one (usually) or more settings;
 40  *  - each interface setting has zero or (usually) more endpoints.
 41  *  - a SuperSpeed endpoint has a companion descriptor
 42  *
 43  * And there might be other descriptors mixed in with those.
 44  *
 45  * Devices may also have class-specific or vendor-specific descriptors.
 46  */
 47 
 48 struct ep_device;
 49 
 50 /**
 51  * struct usb_host_endpoint - host-side endpoint descriptor and queue
 52  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
 53  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
 54  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
 55  * @urb_list: urbs queued to this endpoint; maintained by usbcore
 56  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
 57  *      with one or more transfer descriptors (TDs) per urb
 58  * @ep_dev: ep_device for sysfs info
 59  * @extra: descriptors following this endpoint in the configuration
 60  * @extralen: how many bytes of "extra" are valid
 61  * @enabled: URBs may be submitted to this endpoint
 62  * @streams: number of USB-3 streams allocated on the endpoint
 63  *
 64  * USB requests are always queued to a given endpoint, identified by a
 65  * descriptor within an active interface in a given USB configuration.
 66  */
 67 struct usb_host_endpoint {
 68         struct usb_endpoint_descriptor          desc;
 69         struct usb_ss_ep_comp_descriptor        ss_ep_comp;
 70         struct usb_ssp_isoc_ep_comp_descriptor  ssp_isoc_ep_comp;
 71         struct list_head                urb_list;
 72         void                            *hcpriv;
 73         struct ep_device                *ep_dev;        /* For sysfs info */
 74 
 75         unsigned char *extra;   /* Extra descriptors */
 76         int extralen;
 77         int enabled;
 78         int streams;
 79 };
 80 
 81 /* host-side wrapper for one interface setting's parsed descriptors */
 82 struct usb_host_interface {
 83         struct usb_interface_descriptor desc;
 84 
 85         int extralen;
 86         unsigned char *extra;   /* Extra descriptors */
 87 
 88         /* array of desc.bNumEndpoints endpoints associated with this
 89          * interface setting.  these will be in no particular order.
 90          */
 91         struct usb_host_endpoint *endpoint;
 92 
 93         char *string;           /* iInterface string, if present */
 94 };
 95 
 96 enum usb_interface_condition {
 97         USB_INTERFACE_UNBOUND = 0,
 98         USB_INTERFACE_BINDING,
 99         USB_INTERFACE_BOUND,
100         USB_INTERFACE_UNBINDING,
101 };
102 
103 int __must_check
104 usb_find_common_endpoints(struct usb_host_interface *alt,
105                 struct usb_endpoint_descriptor **bulk_in,
106                 struct usb_endpoint_descriptor **bulk_out,
107                 struct usb_endpoint_descriptor **int_in,
108                 struct usb_endpoint_descriptor **int_out);
109 
110 int __must_check
111 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112                 struct usb_endpoint_descriptor **bulk_in,
113                 struct usb_endpoint_descriptor **bulk_out,
114                 struct usb_endpoint_descriptor **int_in,
115                 struct usb_endpoint_descriptor **int_out);
116 
117 static inline int __must_check
118 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119                 struct usb_endpoint_descriptor **bulk_in)
120 {
121         return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122 }
123 
124 static inline int __must_check
125 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126                 struct usb_endpoint_descriptor **bulk_out)
127 {
128         return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129 }
130 
131 static inline int __must_check
132 usb_find_int_in_endpoint(struct usb_host_interface *alt,
133                 struct usb_endpoint_descriptor **int_in)
134 {
135         return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136 }
137 
138 static inline int __must_check
139 usb_find_int_out_endpoint(struct usb_host_interface *alt,
140                 struct usb_endpoint_descriptor **int_out)
141 {
142         return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143 }
144 
145 static inline int __must_check
146 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147                 struct usb_endpoint_descriptor **bulk_in)
148 {
149         return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150 }
151 
152 static inline int __must_check
153 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154                 struct usb_endpoint_descriptor **bulk_out)
155 {
156         return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157 }
158 
159 static inline int __must_check
160 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161                 struct usb_endpoint_descriptor **int_in)
162 {
163         return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164 }
165 
166 static inline int __must_check
167 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168                 struct usb_endpoint_descriptor **int_out)
169 {
170         return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171 }
172 
173 /**
174  * struct usb_interface - what usb device drivers talk to
175  * @altsetting: array of interface structures, one for each alternate
176  *      setting that may be selected.  Each one includes a set of
177  *      endpoint configurations.  They will be in no particular order.
178  * @cur_altsetting: the current altsetting.
179  * @num_altsetting: number of altsettings defined.
180  * @intf_assoc: interface association descriptor
181  * @minor: the minor number assigned to this interface, if this
182  *      interface is bound to a driver that uses the USB major number.
183  *      If this interface does not use the USB major, this field should
184  *      be unused.  The driver should set this value in the probe()
185  *      function of the driver, after it has been assigned a minor
186  *      number from the USB core by calling usb_register_dev().
187  * @condition: binding state of the interface: not bound, binding
188  *      (in probe()), bound to a driver, or unbinding (in disconnect())
189  * @sysfs_files_created: sysfs attributes exist
190  * @ep_devs_created: endpoint child pseudo-devices exist
191  * @unregistering: flag set when the interface is being unregistered
192  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193  *      capability during autosuspend.
194  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195  *      has been deferred.
196  * @needs_binding: flag set when the driver should be re-probed or unbound
197  *      following a reset or suspend operation it doesn't support.
198  * @authorized: This allows to (de)authorize individual interfaces instead
199  *      a whole device in contrast to the device authorization.
200  * @dev: driver model's view of this device
201  * @usb_dev: if an interface is bound to the USB major, this will point
202  *      to the sysfs representation for that device.
203  * @reset_ws: Used for scheduling resets from atomic context.
204  * @resetting_device: USB core reset the device, so use alt setting 0 as
205  *      current; needs bandwidth alloc after reset.
206  *
207  * USB device drivers attach to interfaces on a physical device.  Each
208  * interface encapsulates a single high level function, such as feeding
209  * an audio stream to a speaker or reporting a change in a volume control.
210  * Many USB devices only have one interface.  The protocol used to talk to
211  * an interface's endpoints can be defined in a usb "class" specification,
212  * or by a product's vendor.  The (default) control endpoint is part of
213  * every interface, but is never listed among the interface's descriptors.
214  *
215  * The driver that is bound to the interface can use standard driver model
216  * calls such as dev_get_drvdata() on the dev member of this structure.
217  *
218  * Each interface may have alternate settings.  The initial configuration
219  * of a device sets altsetting 0, but the device driver can change
220  * that setting using usb_set_interface().  Alternate settings are often
221  * used to control the use of periodic endpoints, such as by having
222  * different endpoints use different amounts of reserved USB bandwidth.
223  * All standards-conformant USB devices that use isochronous endpoints
224  * will use them in non-default settings.
225  *
226  * The USB specification says that alternate setting numbers must run from
227  * 0 to one less than the total number of alternate settings.  But some
228  * devices manage to mess this up, and the structures aren't necessarily
229  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
230  * look up an alternate setting in the altsetting array based on its number.
231  */
232 struct usb_interface {
233         /* array of alternate settings for this interface,
234          * stored in no particular order */
235         struct usb_host_interface *altsetting;
236 
237         struct usb_host_interface *cur_altsetting;      /* the currently
238                                          * active alternate setting */
239         unsigned num_altsetting;        /* number of alternate settings */
240 
241         /* If there is an interface association descriptor then it will list
242          * the associated interfaces */
243         struct usb_interface_assoc_descriptor *intf_assoc;
244 
245         int minor;                      /* minor number this interface is
246                                          * bound to */
247         enum usb_interface_condition condition;         /* state of binding */
248         unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249         unsigned ep_devs_created:1;     /* endpoint "devices" exist */
250         unsigned unregistering:1;       /* unregistration is in progress */
251         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252         unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
253         unsigned needs_binding:1;       /* needs delayed unbind/rebind */
254         unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
255         unsigned authorized:1;          /* used for interface authorization */
256 
257         struct device dev;              /* interface specific device info */
258         struct device *usb_dev;
259         struct work_struct reset_ws;    /* for resets in atomic context */
260 };
261 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
262 
263 static inline void *usb_get_intfdata(struct usb_interface *intf)
264 {
265         return dev_get_drvdata(&intf->dev);
266 }
267 
268 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
269 {
270         dev_set_drvdata(&intf->dev, data);
271 }
272 
273 struct usb_interface *usb_get_intf(struct usb_interface *intf);
274 void usb_put_intf(struct usb_interface *intf);
275 
276 /* Hard limit */
277 #define USB_MAXENDPOINTS        30
278 /* this maximum is arbitrary */
279 #define USB_MAXINTERFACES       32
280 #define USB_MAXIADS             (USB_MAXINTERFACES/2)
281 
282 /*
283  * USB Resume Timer: Every Host controller driver should drive the resume
284  * signalling on the bus for the amount of time defined by this macro.
285  *
286  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
287  *
288  * Note that the USB Specification states we should drive resume for *at least*
289  * 20 ms, but it doesn't give an upper bound. This creates two possible
290  * situations which we want to avoid:
291  *
292  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
293  * us to fail USB Electrical Tests, thus failing Certification
294  *
295  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
296  * and while we can argue that's against the USB Specification, we don't have
297  * control over which devices a certification laboratory will be using for
298  * certification. If CertLab uses a device which was tested against Windows and
299  * that happens to have relaxed resume signalling rules, we might fall into
300  * situations where we fail interoperability and electrical tests.
301  *
302  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
303  * should cope with both LPJ calibration errors and devices not following every
304  * detail of the USB Specification.
305  */
306 #define USB_RESUME_TIMEOUT      40 /* ms */
307 
308 /**
309  * struct usb_interface_cache - long-term representation of a device interface
310  * @num_altsetting: number of altsettings defined.
311  * @ref: reference counter.
312  * @altsetting: variable-length array of interface structures, one for
313  *      each alternate setting that may be selected.  Each one includes a
314  *      set of endpoint configurations.  They will be in no particular order.
315  *
316  * These structures persist for the lifetime of a usb_device, unlike
317  * struct usb_interface (which persists only as long as its configuration
318  * is installed).  The altsetting arrays can be accessed through these
319  * structures at any time, permitting comparison of configurations and
320  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
321  */
322 struct usb_interface_cache {
323         unsigned num_altsetting;        /* number of alternate settings */
324         struct kref ref;                /* reference counter */
325 
326         /* variable-length array of alternate settings for this interface,
327          * stored in no particular order */
328         struct usb_host_interface altsetting[0];
329 };
330 #define ref_to_usb_interface_cache(r) \
331                 container_of(r, struct usb_interface_cache, ref)
332 #define altsetting_to_usb_interface_cache(a) \
333                 container_of(a, struct usb_interface_cache, altsetting[0])
334 
335 /**
336  * struct usb_host_config - representation of a device's configuration
337  * @desc: the device's configuration descriptor.
338  * @string: pointer to the cached version of the iConfiguration string, if
339  *      present for this configuration.
340  * @intf_assoc: list of any interface association descriptors in this config
341  * @interface: array of pointers to usb_interface structures, one for each
342  *      interface in the configuration.  The number of interfaces is stored
343  *      in desc.bNumInterfaces.  These pointers are valid only while the
344  *      the configuration is active.
345  * @intf_cache: array of pointers to usb_interface_cache structures, one
346  *      for each interface in the configuration.  These structures exist
347  *      for the entire life of the device.
348  * @extra: pointer to buffer containing all extra descriptors associated
349  *      with this configuration (those preceding the first interface
350  *      descriptor).
351  * @extralen: length of the extra descriptors buffer.
352  *
353  * USB devices may have multiple configurations, but only one can be active
354  * at any time.  Each encapsulates a different operational environment;
355  * for example, a dual-speed device would have separate configurations for
356  * full-speed and high-speed operation.  The number of configurations
357  * available is stored in the device descriptor as bNumConfigurations.
358  *
359  * A configuration can contain multiple interfaces.  Each corresponds to
360  * a different function of the USB device, and all are available whenever
361  * the configuration is active.  The USB standard says that interfaces
362  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
363  * of devices get this wrong.  In addition, the interface array is not
364  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
365  * look up an interface entry based on its number.
366  *
367  * Device drivers should not attempt to activate configurations.  The choice
368  * of which configuration to install is a policy decision based on such
369  * considerations as available power, functionality provided, and the user's
370  * desires (expressed through userspace tools).  However, drivers can call
371  * usb_reset_configuration() to reinitialize the current configuration and
372  * all its interfaces.
373  */
374 struct usb_host_config {
375         struct usb_config_descriptor    desc;
376 
377         char *string;           /* iConfiguration string, if present */
378 
379         /* List of any Interface Association Descriptors in this
380          * configuration. */
381         struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
382 
383         /* the interfaces associated with this configuration,
384          * stored in no particular order */
385         struct usb_interface *interface[USB_MAXINTERFACES];
386 
387         /* Interface information available even when this is not the
388          * active configuration */
389         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
390 
391         unsigned char *extra;   /* Extra descriptors */
392         int extralen;
393 };
394 
395 /* USB2.0 and USB3.0 device BOS descriptor set */
396 struct usb_host_bos {
397         struct usb_bos_descriptor       *desc;
398 
399         /* wireless cap descriptor is handled by wusb */
400         struct usb_ext_cap_descriptor   *ext_cap;
401         struct usb_ss_cap_descriptor    *ss_cap;
402         struct usb_ssp_cap_descriptor   *ssp_cap;
403         struct usb_ss_container_id_descriptor   *ss_id;
404         struct usb_ptm_cap_descriptor   *ptm_cap;
405 };
406 
407 int __usb_get_extra_descriptor(char *buffer, unsigned size,
408         unsigned char type, void **ptr, size_t min);
409 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
410                                 __usb_get_extra_descriptor((ifpoint)->extra, \
411                                 (ifpoint)->extralen, \
412                                 type, (void **)ptr, sizeof(**(ptr)))
413 
414 /* ----------------------------------------------------------------------- */
415 
416 /* USB device number allocation bitmap */
417 struct usb_devmap {
418         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
419 };
420 
421 /*
422  * Allocated per bus (tree of devices) we have:
423  */
424 struct usb_bus {
425         struct device *controller;      /* host/master side hardware */
426         struct device *sysdev;          /* as seen from firmware or bus */
427         int busnum;                     /* Bus number (in order of reg) */
428         const char *bus_name;           /* stable id (PCI slot_name etc) */
429         u8 uses_dma;                    /* Does the host controller use DMA? */
430         u8 uses_pio_for_control;        /*
431                                          * Does the host controller use PIO
432                                          * for control transfers?
433                                          */
434         u8 otg_port;                    /* 0, or number of OTG/HNP port */
435         unsigned is_b_host:1;           /* true during some HNP roleswitches */
436         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
437         unsigned no_stop_on_short:1;    /*
438                                          * Quirk: some controllers don't stop
439                                          * the ep queue on a short transfer
440                                          * with the URB_SHORT_NOT_OK flag set.
441                                          */
442         unsigned no_sg_constraint:1;    /* no sg constraint */
443         unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
444 
445         int devnum_next;                /* Next open device number in
446                                          * round-robin allocation */
447         struct mutex devnum_next_mutex; /* devnum_next mutex */
448 
449         struct usb_devmap devmap;       /* device address allocation map */
450         struct usb_device *root_hub;    /* Root hub */
451         struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
452 
453         int bandwidth_allocated;        /* on this bus: how much of the time
454                                          * reserved for periodic (intr/iso)
455                                          * requests is used, on average?
456                                          * Units: microseconds/frame.
457                                          * Limits: Full/low speed reserve 90%,
458                                          * while high speed reserves 80%.
459                                          */
460         int bandwidth_int_reqs;         /* number of Interrupt requests */
461         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
462 
463         unsigned resuming_ports;        /* bit array: resuming root-hub ports */
464 
465 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
466         struct mon_bus *mon_bus;        /* non-null when associated */
467         int monitored;                  /* non-zero when monitored */
468 #endif
469 };
470 
471 struct usb_dev_state;
472 
473 /* ----------------------------------------------------------------------- */
474 
475 struct usb_tt;
476 
477 enum usb_device_removable {
478         USB_DEVICE_REMOVABLE_UNKNOWN = 0,
479         USB_DEVICE_REMOVABLE,
480         USB_DEVICE_FIXED,
481 };
482 
483 enum usb_port_connect_type {
484         USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
485         USB_PORT_CONNECT_TYPE_HOT_PLUG,
486         USB_PORT_CONNECT_TYPE_HARD_WIRED,
487         USB_PORT_NOT_USED,
488 };
489 
490 /*
491  * USB port quirks.
492  */
493 
494 /* For the given port, prefer the old (faster) enumeration scheme. */
495 #define USB_PORT_QUIRK_OLD_SCHEME       BIT(0)
496 
497 /* Decrease TRSTRCY to 10ms during device enumeration. */
498 #define USB_PORT_QUIRK_FAST_ENUM        BIT(1)
499 
500 /*
501  * USB 2.0 Link Power Management (LPM) parameters.
502  */
503 struct usb2_lpm_parameters {
504         /* Best effort service latency indicate how long the host will drive
505          * resume on an exit from L1.
506          */
507         unsigned int besl;
508 
509         /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
510          * When the timer counts to zero, the parent hub will initiate a LPM
511          * transition to L1.
512          */
513         int timeout;
514 };
515 
516 /*
517  * USB 3.0 Link Power Management (LPM) parameters.
518  *
519  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
520  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
521  * All three are stored in nanoseconds.
522  */
523 struct usb3_lpm_parameters {
524         /*
525          * Maximum exit latency (MEL) for the host to send a packet to the
526          * device (either a Ping for isoc endpoints, or a data packet for
527          * interrupt endpoints), the hubs to decode the packet, and for all hubs
528          * in the path to transition the links to U0.
529          */
530         unsigned int mel;
531         /*
532          * Maximum exit latency for a device-initiated LPM transition to bring
533          * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
534          * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
535          */
536         unsigned int pel;
537 
538         /*
539          * The System Exit Latency (SEL) includes PEL, and three other
540          * latencies.  After a device initiates a U0 transition, it will take
541          * some time from when the device sends the ERDY to when it will finally
542          * receive the data packet.  Basically, SEL should be the worse-case
543          * latency from when a device starts initiating a U0 transition to when
544          * it will get data.
545          */
546         unsigned int sel;
547         /*
548          * The idle timeout value that is currently programmed into the parent
549          * hub for this device.  When the timer counts to zero, the parent hub
550          * will initiate an LPM transition to either U1 or U2.
551          */
552         int timeout;
553 };
554 
555 /**
556  * struct usb_device - kernel's representation of a USB device
557  * @devnum: device number; address on a USB bus
558  * @devpath: device ID string for use in messages (e.g., /port/...)
559  * @route: tree topology hex string for use with xHCI
560  * @state: device state: configured, not attached, etc.
561  * @speed: device speed: high/full/low (or error)
562  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
563  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
564  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
565  * @ttport: device port on that tt hub
566  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
567  * @parent: our hub, unless we're the root
568  * @bus: bus we're part of
569  * @ep0: endpoint 0 data (default control pipe)
570  * @dev: generic device interface
571  * @descriptor: USB device descriptor
572  * @bos: USB device BOS descriptor set
573  * @config: all of the device's configs
574  * @actconfig: the active configuration
575  * @ep_in: array of IN endpoints
576  * @ep_out: array of OUT endpoints
577  * @rawdescriptors: raw descriptors for each config
578  * @bus_mA: Current available from the bus
579  * @portnum: parent port number (origin 1)
580  * @level: number of USB hub ancestors
581  * @can_submit: URBs may be submitted
582  * @persist_enabled:  USB_PERSIST enabled for this device
583  * @have_langid: whether string_langid is valid
584  * @authorized: policy has said we can use it;
585  *      (user space) policy determines if we authorize this device to be
586  *      used or not. By default, wired USB devices are authorized.
587  *      WUSB devices are not, until we authorize them from user space.
588  *      FIXME -- complete doc
589  * @authenticated: Crypto authentication passed
590  * @wusb: device is Wireless USB
591  * @lpm_capable: device supports LPM
592  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
593  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
594  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
595  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
596  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
597  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
598  * @string_langid: language ID for strings
599  * @product: iProduct string, if present (static)
600  * @manufacturer: iManufacturer string, if present (static)
601  * @serial: iSerialNumber string, if present (static)
602  * @filelist: usbfs files that are open to this device
603  * @maxchild: number of ports if hub
604  * @quirks: quirks of the whole device
605  * @urbnum: number of URBs submitted for the whole device
606  * @active_duration: total time device is not suspended
607  * @connect_time: time device was first connected
608  * @do_remote_wakeup:  remote wakeup should be enabled
609  * @reset_resume: needs reset instead of resume
610  * @port_is_suspended: the upstream port is suspended (L2 or U3)
611  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
612  *      specific data for the device.
613  * @slot_id: Slot ID assigned by xHCI
614  * @removable: Device can be physically removed from this port
615  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
616  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
617  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
618  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
619  *      to keep track of the number of functions that require USB 3.0 Link Power
620  *      Management to be disabled for this usb_device.  This count should only
621  *      be manipulated by those functions, with the bandwidth_mutex is held.
622  * @hub_delay: cached value consisting of:
623  *              parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
624  *
625  *      Will be used as wValue for SetIsochDelay requests.
626  *
627  * Notes:
628  * Usbcore drivers should not set usbdev->state directly.  Instead use
629  * usb_set_device_state().
630  */
631 struct usb_device {
632         int             devnum;
633         char            devpath[16];
634         u32             route;
635         enum usb_device_state   state;
636         enum usb_device_speed   speed;
637         unsigned int            rx_lanes;
638         unsigned int            tx_lanes;
639 
640         struct usb_tt   *tt;
641         int             ttport;
642 
643         unsigned int toggle[2];
644 
645         struct usb_device *parent;
646         struct usb_bus *bus;
647         struct usb_host_endpoint ep0;
648 
649         struct device dev;
650 
651         struct usb_device_descriptor descriptor;
652         struct usb_host_bos *bos;
653         struct usb_host_config *config;
654 
655         struct usb_host_config *actconfig;
656         struct usb_host_endpoint *ep_in[16];
657         struct usb_host_endpoint *ep_out[16];
658 
659         char **rawdescriptors;
660 
661         unsigned short bus_mA;
662         u8 portnum;
663         u8 level;
664 
665         unsigned can_submit:1;
666         unsigned persist_enabled:1;
667         unsigned have_langid:1;
668         unsigned authorized:1;
669         unsigned authenticated:1;
670         unsigned wusb:1;
671         unsigned lpm_capable:1;
672         unsigned usb2_hw_lpm_capable:1;
673         unsigned usb2_hw_lpm_besl_capable:1;
674         unsigned usb2_hw_lpm_enabled:1;
675         unsigned usb2_hw_lpm_allowed:1;
676         unsigned usb3_lpm_u1_enabled:1;
677         unsigned usb3_lpm_u2_enabled:1;
678         int string_langid;
679 
680         /* static strings from the device */
681         char *product;
682         char *manufacturer;
683         char *serial;
684 
685         struct list_head filelist;
686 
687         int maxchild;
688 
689         u32 quirks;
690         atomic_t urbnum;
691 
692         unsigned long active_duration;
693 
694 #ifdef CONFIG_PM
695         unsigned long connect_time;
696 
697         unsigned do_remote_wakeup:1;
698         unsigned reset_resume:1;
699         unsigned port_is_suspended:1;
700 #endif
701         struct wusb_dev *wusb_dev;
702         int slot_id;
703         enum usb_device_removable removable;
704         struct usb2_lpm_parameters l1_params;
705         struct usb3_lpm_parameters u1_params;
706         struct usb3_lpm_parameters u2_params;
707         unsigned lpm_disable_count;
708 
709         u16 hub_delay;
710 };
711 #define to_usb_device(d) container_of(d, struct usb_device, dev)
712 
713 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
714 {
715         return to_usb_device(intf->dev.parent);
716 }
717 
718 extern struct usb_device *usb_get_dev(struct usb_device *dev);
719 extern void usb_put_dev(struct usb_device *dev);
720 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
721         int port1);
722 
723 /**
724  * usb_hub_for_each_child - iterate over all child devices on the hub
725  * @hdev:  USB device belonging to the usb hub
726  * @port1: portnum associated with child device
727  * @child: child device pointer
728  */
729 #define usb_hub_for_each_child(hdev, port1, child) \
730         for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
731                         port1 <= hdev->maxchild; \
732                         child = usb_hub_find_child(hdev, ++port1)) \
733                 if (!child) continue; else
734 
735 /* USB device locking */
736 #define usb_lock_device(udev)                   device_lock(&(udev)->dev)
737 #define usb_unlock_device(udev)                 device_unlock(&(udev)->dev)
738 #define usb_lock_device_interruptible(udev)     device_lock_interruptible(&(udev)->dev)
739 #define usb_trylock_device(udev)                device_trylock(&(udev)->dev)
740 extern int usb_lock_device_for_reset(struct usb_device *udev,
741                                      const struct usb_interface *iface);
742 
743 /* USB port reset for device reinitialization */
744 extern int usb_reset_device(struct usb_device *dev);
745 extern void usb_queue_reset_device(struct usb_interface *dev);
746 
747 #ifdef CONFIG_ACPI
748 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
749         bool enable);
750 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
751 #else
752 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
753         bool enable) { return 0; }
754 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
755         { return true; }
756 #endif
757 
758 /* USB autosuspend and autoresume */
759 #ifdef CONFIG_PM
760 extern void usb_enable_autosuspend(struct usb_device *udev);
761 extern void usb_disable_autosuspend(struct usb_device *udev);
762 
763 extern int usb_autopm_get_interface(struct usb_interface *intf);
764 extern void usb_autopm_put_interface(struct usb_interface *intf);
765 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
766 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
767 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
768 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
769 
770 static inline void usb_mark_last_busy(struct usb_device *udev)
771 {
772         pm_runtime_mark_last_busy(&udev->dev);
773 }
774 
775 #else
776 
777 static inline int usb_enable_autosuspend(struct usb_device *udev)
778 { return 0; }
779 static inline int usb_disable_autosuspend(struct usb_device *udev)
780 { return 0; }
781 
782 static inline int usb_autopm_get_interface(struct usb_interface *intf)
783 { return 0; }
784 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
785 { return 0; }
786 
787 static inline void usb_autopm_put_interface(struct usb_interface *intf)
788 { }
789 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
790 { }
791 static inline void usb_autopm_get_interface_no_resume(
792                 struct usb_interface *intf)
793 { }
794 static inline void usb_autopm_put_interface_no_suspend(
795                 struct usb_interface *intf)
796 { }
797 static inline void usb_mark_last_busy(struct usb_device *udev)
798 { }
799 #endif
800 
801 extern int usb_disable_lpm(struct usb_device *udev);
802 extern void usb_enable_lpm(struct usb_device *udev);
803 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
804 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
805 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
806 
807 extern int usb_disable_ltm(struct usb_device *udev);
808 extern void usb_enable_ltm(struct usb_device *udev);
809 
810 static inline bool usb_device_supports_ltm(struct usb_device *udev)
811 {
812         if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
813                 return false;
814         return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
815 }
816 
817 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
818 {
819         return udev && udev->bus && udev->bus->no_sg_constraint;
820 }
821 
822 
823 /*-------------------------------------------------------------------------*/
824 
825 /* for drivers using iso endpoints */
826 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
827 
828 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
829 extern int usb_alloc_streams(struct usb_interface *interface,
830                 struct usb_host_endpoint **eps, unsigned int num_eps,
831                 unsigned int num_streams, gfp_t mem_flags);
832 
833 /* Reverts a group of bulk endpoints back to not using stream IDs. */
834 extern int usb_free_streams(struct usb_interface *interface,
835                 struct usb_host_endpoint **eps, unsigned int num_eps,
836                 gfp_t mem_flags);
837 
838 /* used these for multi-interface device registration */
839 extern int usb_driver_claim_interface(struct usb_driver *driver,
840                         struct usb_interface *iface, void *priv);
841 
842 /**
843  * usb_interface_claimed - returns true iff an interface is claimed
844  * @iface: the interface being checked
845  *
846  * Return: %true (nonzero) iff the interface is claimed, else %false
847  * (zero).
848  *
849  * Note:
850  * Callers must own the driver model's usb bus readlock.  So driver
851  * probe() entries don't need extra locking, but other call contexts
852  * may need to explicitly claim that lock.
853  *
854  */
855 static inline int usb_interface_claimed(struct usb_interface *iface)
856 {
857         return (iface->dev.driver != NULL);
858 }
859 
860 extern void usb_driver_release_interface(struct usb_driver *driver,
861                         struct usb_interface *iface);
862 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
863                                          const struct usb_device_id *id);
864 extern int usb_match_one_id(struct usb_interface *interface,
865                             const struct usb_device_id *id);
866 
867 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
868 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
869                 int minor);
870 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
871                 unsigned ifnum);
872 extern struct usb_host_interface *usb_altnum_to_altsetting(
873                 const struct usb_interface *intf, unsigned int altnum);
874 extern struct usb_host_interface *usb_find_alt_setting(
875                 struct usb_host_config *config,
876                 unsigned int iface_num,
877                 unsigned int alt_num);
878 
879 /* port claiming functions */
880 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
881                 struct usb_dev_state *owner);
882 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
883                 struct usb_dev_state *owner);
884 
885 /**
886  * usb_make_path - returns stable device path in the usb tree
887  * @dev: the device whose path is being constructed
888  * @buf: where to put the string
889  * @size: how big is "buf"?
890  *
891  * Return: Length of the string (> 0) or negative if size was too small.
892  *
893  * Note:
894  * This identifier is intended to be "stable", reflecting physical paths in
895  * hardware such as physical bus addresses for host controllers or ports on
896  * USB hubs.  That makes it stay the same until systems are physically
897  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
898  * controllers.  Adding and removing devices, including virtual root hubs
899  * in host controller driver modules, does not change these path identifiers;
900  * neither does rebooting or re-enumerating.  These are more useful identifiers
901  * than changeable ("unstable") ones like bus numbers or device addresses.
902  *
903  * With a partial exception for devices connected to USB 2.0 root hubs, these
904  * identifiers are also predictable.  So long as the device tree isn't changed,
905  * plugging any USB device into a given hub port always gives it the same path.
906  * Because of the use of "companion" controllers, devices connected to ports on
907  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
908  * high speed, and a different one if they are full or low speed.
909  */
910 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
911 {
912         int actual;
913         actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
914                           dev->devpath);
915         return (actual >= (int)size) ? -1 : actual;
916 }
917 
918 /*-------------------------------------------------------------------------*/
919 
920 #define USB_DEVICE_ID_MATCH_DEVICE \
921                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
922 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
923                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
924 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
925                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
926 #define USB_DEVICE_ID_MATCH_DEV_INFO \
927                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
928                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
929                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
930 #define USB_DEVICE_ID_MATCH_INT_INFO \
931                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
932                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
933                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
934 
935 /**
936  * USB_DEVICE - macro used to describe a specific usb device
937  * @vend: the 16 bit USB Vendor ID
938  * @prod: the 16 bit USB Product ID
939  *
940  * This macro is used to create a struct usb_device_id that matches a
941  * specific device.
942  */
943 #define USB_DEVICE(vend, prod) \
944         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
945         .idVendor = (vend), \
946         .idProduct = (prod)
947 /**
948  * USB_DEVICE_VER - describe a specific usb device with a version range
949  * @vend: the 16 bit USB Vendor ID
950  * @prod: the 16 bit USB Product ID
951  * @lo: the bcdDevice_lo value
952  * @hi: the bcdDevice_hi value
953  *
954  * This macro is used to create a struct usb_device_id that matches a
955  * specific device, with a version range.
956  */
957 #define USB_DEVICE_VER(vend, prod, lo, hi) \
958         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
959         .idVendor = (vend), \
960         .idProduct = (prod), \
961         .bcdDevice_lo = (lo), \
962         .bcdDevice_hi = (hi)
963 
964 /**
965  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
966  * @vend: the 16 bit USB Vendor ID
967  * @prod: the 16 bit USB Product ID
968  * @cl: bInterfaceClass value
969  *
970  * This macro is used to create a struct usb_device_id that matches a
971  * specific interface class of devices.
972  */
973 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
974         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
975                        USB_DEVICE_ID_MATCH_INT_CLASS, \
976         .idVendor = (vend), \
977         .idProduct = (prod), \
978         .bInterfaceClass = (cl)
979 
980 /**
981  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
982  * @vend: the 16 bit USB Vendor ID
983  * @prod: the 16 bit USB Product ID
984  * @pr: bInterfaceProtocol value
985  *
986  * This macro is used to create a struct usb_device_id that matches a
987  * specific interface protocol of devices.
988  */
989 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
990         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
991                        USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
992         .idVendor = (vend), \
993         .idProduct = (prod), \
994         .bInterfaceProtocol = (pr)
995 
996 /**
997  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
998  * @vend: the 16 bit USB Vendor ID
999  * @prod: the 16 bit USB Product ID
1000  * @num: bInterfaceNumber value
1001  *
1002  * This macro is used to create a struct usb_device_id that matches a
1003  * specific interface number of devices.
1004  */
1005 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1006         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1007                        USB_DEVICE_ID_MATCH_INT_NUMBER, \
1008         .idVendor = (vend), \
1009         .idProduct = (prod), \
1010         .bInterfaceNumber = (num)
1011 
1012 /**
1013  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1014  * @cl: bDeviceClass value
1015  * @sc: bDeviceSubClass value
1016  * @pr: bDeviceProtocol value
1017  *
1018  * This macro is used to create a struct usb_device_id that matches a
1019  * specific class of devices.
1020  */
1021 #define USB_DEVICE_INFO(cl, sc, pr) \
1022         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1023         .bDeviceClass = (cl), \
1024         .bDeviceSubClass = (sc), \
1025         .bDeviceProtocol = (pr)
1026 
1027 /**
1028  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1029  * @cl: bInterfaceClass value
1030  * @sc: bInterfaceSubClass value
1031  * @pr: bInterfaceProtocol value
1032  *
1033  * This macro is used to create a struct usb_device_id that matches a
1034  * specific class of interfaces.
1035  */
1036 #define USB_INTERFACE_INFO(cl, sc, pr) \
1037         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1038         .bInterfaceClass = (cl), \
1039         .bInterfaceSubClass = (sc), \
1040         .bInterfaceProtocol = (pr)
1041 
1042 /**
1043  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1044  * @vend: the 16 bit USB Vendor ID
1045  * @prod: the 16 bit USB Product ID
1046  * @cl: bInterfaceClass value
1047  * @sc: bInterfaceSubClass value
1048  * @pr: bInterfaceProtocol value
1049  *
1050  * This macro is used to create a struct usb_device_id that matches a
1051  * specific device with a specific class of interfaces.
1052  *
1053  * This is especially useful when explicitly matching devices that have
1054  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1055  */
1056 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1057         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1058                 | USB_DEVICE_ID_MATCH_DEVICE, \
1059         .idVendor = (vend), \
1060         .idProduct = (prod), \
1061         .bInterfaceClass = (cl), \
1062         .bInterfaceSubClass = (sc), \
1063         .bInterfaceProtocol = (pr)
1064 
1065 /**
1066  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1067  * @vend: the 16 bit USB Vendor ID
1068  * @cl: bInterfaceClass value
1069  * @sc: bInterfaceSubClass value
1070  * @pr: bInterfaceProtocol value
1071  *
1072  * This macro is used to create a struct usb_device_id that matches a
1073  * specific vendor with a specific class of interfaces.
1074  *
1075  * This is especially useful when explicitly matching devices that have
1076  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1077  */
1078 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1079         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1080                 | USB_DEVICE_ID_MATCH_VENDOR, \
1081         .idVendor = (vend), \
1082         .bInterfaceClass = (cl), \
1083         .bInterfaceSubClass = (sc), \
1084         .bInterfaceProtocol = (pr)
1085 
1086 /* ----------------------------------------------------------------------- */
1087 
1088 /* Stuff for dynamic usb ids */
1089 struct usb_dynids {
1090         spinlock_t lock;
1091         struct list_head list;
1092 };
1093 
1094 struct usb_dynid {
1095         struct list_head node;
1096         struct usb_device_id id;
1097 };
1098 
1099 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1100                                 const struct usb_device_id *id_table,
1101                                 struct device_driver *driver,
1102                                 const char *buf, size_t count);
1103 
1104 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1105 
1106 /**
1107  * struct usbdrv_wrap - wrapper for driver-model structure
1108  * @driver: The driver-model core driver structure.
1109  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1110  */
1111 struct usbdrv_wrap {
1112         struct device_driver driver;
1113         int for_devices;
1114 };
1115 
1116 /**
1117  * struct usb_driver - identifies USB interface driver to usbcore
1118  * @name: The driver name should be unique among USB drivers,
1119  *      and should normally be the same as the module name.
1120  * @probe: Called to see if the driver is willing to manage a particular
1121  *      interface on a device.  If it is, probe returns zero and uses
1122  *      usb_set_intfdata() to associate driver-specific data with the
1123  *      interface.  It may also use usb_set_interface() to specify the
1124  *      appropriate altsetting.  If unwilling to manage the interface,
1125  *      return -ENODEV, if genuine IO errors occurred, an appropriate
1126  *      negative errno value.
1127  * @disconnect: Called when the interface is no longer accessible, usually
1128  *      because its device has been (or is being) disconnected or the
1129  *      driver module is being unloaded.
1130  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1131  *      the "usbfs" filesystem.  This lets devices provide ways to
1132  *      expose information to user space regardless of where they
1133  *      do (or don't) show up otherwise in the filesystem.
1134  * @suspend: Called when the device is going to be suspended by the
1135  *      system either from system sleep or runtime suspend context. The
1136  *      return value will be ignored in system sleep context, so do NOT
1137  *      try to continue using the device if suspend fails in this case.
1138  *      Instead, let the resume or reset-resume routine recover from
1139  *      the failure.
1140  * @resume: Called when the device is being resumed by the system.
1141  * @reset_resume: Called when the suspended device has been reset instead
1142  *      of being resumed.
1143  * @pre_reset: Called by usb_reset_device() when the device is about to be
1144  *      reset.  This routine must not return until the driver has no active
1145  *      URBs for the device, and no more URBs may be submitted until the
1146  *      post_reset method is called.
1147  * @post_reset: Called by usb_reset_device() after the device
1148  *      has been reset
1149  * @id_table: USB drivers use ID table to support hotplugging.
1150  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1151  *      or your driver's probe function will never get called.
1152  * @dynids: used internally to hold the list of dynamically added device
1153  *      ids for this driver.
1154  * @drvwrap: Driver-model core structure wrapper.
1155  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1156  *      added to this driver by preventing the sysfs file from being created.
1157  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1158  *      for interfaces bound to this driver.
1159  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1160  *      endpoints before calling the driver's disconnect method.
1161  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1162  *      to initiate lower power link state transitions when an idle timeout
1163  *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1164  *
1165  * USB interface drivers must provide a name, probe() and disconnect()
1166  * methods, and an id_table.  Other driver fields are optional.
1167  *
1168  * The id_table is used in hotplugging.  It holds a set of descriptors,
1169  * and specialized data may be associated with each entry.  That table
1170  * is used by both user and kernel mode hotplugging support.
1171  *
1172  * The probe() and disconnect() methods are called in a context where
1173  * they can sleep, but they should avoid abusing the privilege.  Most
1174  * work to connect to a device should be done when the device is opened,
1175  * and undone at the last close.  The disconnect code needs to address
1176  * concurrency issues with respect to open() and close() methods, as
1177  * well as forcing all pending I/O requests to complete (by unlinking
1178  * them as necessary, and blocking until the unlinks complete).
1179  */
1180 struct usb_driver {
1181         const char *name;
1182 
1183         int (*probe) (struct usb_interface *intf,
1184                       const struct usb_device_id *id);
1185 
1186         void (*disconnect) (struct usb_interface *intf);
1187 
1188         int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1189                         void *buf);
1190 
1191         int (*suspend) (struct usb_interface *intf, pm_message_t message);
1192         int (*resume) (struct usb_interface *intf);
1193         int (*reset_resume)(struct usb_interface *intf);
1194 
1195         int (*pre_reset)(struct usb_interface *intf);
1196         int (*post_reset)(struct usb_interface *intf);
1197 
1198         const struct usb_device_id *id_table;
1199 
1200         struct usb_dynids dynids;
1201         struct usbdrv_wrap drvwrap;
1202         unsigned int no_dynamic_id:1;
1203         unsigned int supports_autosuspend:1;
1204         unsigned int disable_hub_initiated_lpm:1;
1205         unsigned int soft_unbind:1;
1206 };
1207 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1208 
1209 /**
1210  * struct usb_device_driver - identifies USB device driver to usbcore
1211  * @name: The driver name should be unique among USB drivers,
1212  *      and should normally be the same as the module name.
1213  * @probe: Called to see if the driver is willing to manage a particular
1214  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1215  *      to associate driver-specific data with the device.  If unwilling
1216  *      to manage the device, return a negative errno value.
1217  * @disconnect: Called when the device is no longer accessible, usually
1218  *      because it has been (or is being) disconnected or the driver's
1219  *      module is being unloaded.
1220  * @suspend: Called when the device is going to be suspended by the system.
1221  * @resume: Called when the device is being resumed by the system.
1222  * @drvwrap: Driver-model core structure wrapper.
1223  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1224  *      for devices bound to this driver.
1225  *
1226  * USB drivers must provide all the fields listed above except drvwrap.
1227  */
1228 struct usb_device_driver {
1229         const char *name;
1230 
1231         int (*probe) (struct usb_device *udev);
1232         void (*disconnect) (struct usb_device *udev);
1233 
1234         int (*suspend) (struct usb_device *udev, pm_message_t message);
1235         int (*resume) (struct usb_device *udev, pm_message_t message);
1236         struct usbdrv_wrap drvwrap;
1237         unsigned int supports_autosuspend:1;
1238 };
1239 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1240                 drvwrap.driver)
1241 
1242 extern struct bus_type usb_bus_type;
1243 
1244 /**
1245  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1246  * @name: the usb class device name for this driver.  Will show up in sysfs.
1247  * @devnode: Callback to provide a naming hint for a possible
1248  *      device node to create.
1249  * @fops: pointer to the struct file_operations of this driver.
1250  * @minor_base: the start of the minor range for this driver.
1251  *
1252  * This structure is used for the usb_register_dev() and
1253  * usb_deregister_dev() functions, to consolidate a number of the
1254  * parameters used for them.
1255  */
1256 struct usb_class_driver {
1257         char *name;
1258         char *(*devnode)(struct device *dev, umode_t *mode);
1259         const struct file_operations *fops;
1260         int minor_base;
1261 };
1262 
1263 /*
1264  * use these in module_init()/module_exit()
1265  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1266  */
1267 extern int usb_register_driver(struct usb_driver *, struct module *,
1268                                const char *);
1269 
1270 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1271 #define usb_register(driver) \
1272         usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1273 
1274 extern void usb_deregister(struct usb_driver *);
1275 
1276 /**
1277  * module_usb_driver() - Helper macro for registering a USB driver
1278  * @__usb_driver: usb_driver struct
1279  *
1280  * Helper macro for USB drivers which do not do anything special in module
1281  * init/exit. This eliminates a lot of boilerplate. Each module may only
1282  * use this macro once, and calling it replaces module_init() and module_exit()
1283  */
1284 #define module_usb_driver(__usb_driver) \
1285         module_driver(__usb_driver, usb_register, \
1286                        usb_deregister)
1287 
1288 extern int usb_register_device_driver(struct usb_device_driver *,
1289                         struct module *);
1290 extern void usb_deregister_device_driver(struct usb_device_driver *);
1291 
1292 extern int usb_register_dev(struct usb_interface *intf,
1293                             struct usb_class_driver *class_driver);
1294 extern void usb_deregister_dev(struct usb_interface *intf,
1295                                struct usb_class_driver *class_driver);
1296 
1297 extern int usb_disabled(void);
1298 
1299 /* ----------------------------------------------------------------------- */
1300 
1301 /*
1302  * URB support, for asynchronous request completions
1303  */
1304 
1305 /*
1306  * urb->transfer_flags:
1307  *
1308  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1309  */
1310 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1311 #define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1312                                          * slot in the schedule */
1313 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1314 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1315 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1316                                          * needed */
1317 #define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1318 
1319 /* The following flags are used internally by usbcore and HCDs */
1320 #define URB_DIR_IN              0x0200  /* Transfer from device to host */
1321 #define URB_DIR_OUT             0
1322 #define URB_DIR_MASK            URB_DIR_IN
1323 
1324 #define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1325 #define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1326 #define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1327 #define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1328 #define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1329 #define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1330 #define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1331 #define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1332 
1333 struct usb_iso_packet_descriptor {
1334         unsigned int offset;
1335         unsigned int length;            /* expected length */
1336         unsigned int actual_length;
1337         int status;
1338 };
1339 
1340 struct urb;
1341 
1342 struct usb_anchor {
1343         struct list_head urb_list;
1344         wait_queue_head_t wait;
1345         spinlock_t lock;
1346         atomic_t suspend_wakeups;
1347         unsigned int poisoned:1;
1348 };
1349 
1350 static inline void init_usb_anchor(struct usb_anchor *anchor)
1351 {
1352         memset(anchor, 0, sizeof(*anchor));
1353         INIT_LIST_HEAD(&anchor->urb_list);
1354         init_waitqueue_head(&anchor->wait);
1355         spin_lock_init(&anchor->lock);
1356 }
1357 
1358 typedef void (*usb_complete_t)(struct urb *);
1359 
1360 /**
1361  * struct urb - USB Request Block
1362  * @urb_list: For use by current owner of the URB.
1363  * @anchor_list: membership in the list of an anchor
1364  * @anchor: to anchor URBs to a common mooring
1365  * @ep: Points to the endpoint's data structure.  Will eventually
1366  *      replace @pipe.
1367  * @pipe: Holds endpoint number, direction, type, and more.
1368  *      Create these values with the eight macros available;
1369  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1370  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1371  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1372  *      numbers range from zero to fifteen.  Note that "in" endpoint two
1373  *      is a different endpoint (and pipe) from "out" endpoint two.
1374  *      The current configuration controls the existence, type, and
1375  *      maximum packet size of any given endpoint.
1376  * @stream_id: the endpoint's stream ID for bulk streams
1377  * @dev: Identifies the USB device to perform the request.
1378  * @status: This is read in non-iso completion functions to get the
1379  *      status of the particular request.  ISO requests only use it
1380  *      to tell whether the URB was unlinked; detailed status for
1381  *      each frame is in the fields of the iso_frame-desc.
1382  * @transfer_flags: A variety of flags may be used to affect how URB
1383  *      submission, unlinking, or operation are handled.  Different
1384  *      kinds of URB can use different flags.
1385  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1386  *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1387  *      (however, do not leave garbage in transfer_buffer even then).
1388  *      This buffer must be suitable for DMA; allocate it with
1389  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1390  *      of this buffer will be modified.  This buffer is used for the data
1391  *      stage of control transfers.
1392  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1393  *      the device driver is saying that it provided this DMA address,
1394  *      which the host controller driver should use in preference to the
1395  *      transfer_buffer.
1396  * @sg: scatter gather buffer list, the buffer size of each element in
1397  *      the list (except the last) must be divisible by the endpoint's
1398  *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1399  * @num_mapped_sgs: (internal) number of mapped sg entries
1400  * @num_sgs: number of entries in the sg list
1401  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1402  *      be broken up into chunks according to the current maximum packet
1403  *      size for the endpoint, which is a function of the configuration
1404  *      and is encoded in the pipe.  When the length is zero, neither
1405  *      transfer_buffer nor transfer_dma is used.
1406  * @actual_length: This is read in non-iso completion functions, and
1407  *      it tells how many bytes (out of transfer_buffer_length) were
1408  *      transferred.  It will normally be the same as requested, unless
1409  *      either an error was reported or a short read was performed.
1410  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1411  *      short reads be reported as errors.
1412  * @setup_packet: Only used for control transfers, this points to eight bytes
1413  *      of setup data.  Control transfers always start by sending this data
1414  *      to the device.  Then transfer_buffer is read or written, if needed.
1415  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1416  *      this field; setup_packet must point to a valid buffer.
1417  * @start_frame: Returns the initial frame for isochronous transfers.
1418  * @number_of_packets: Lists the number of ISO transfer buffers.
1419  * @interval: Specifies the polling interval for interrupt or isochronous
1420  *      transfers.  The units are frames (milliseconds) for full and low
1421  *      speed devices, and microframes (1/8 millisecond) for highspeed
1422  *      and SuperSpeed devices.
1423  * @error_count: Returns the number of ISO transfers that reported errors.
1424  * @context: For use in completion functions.  This normally points to
1425  *      request-specific driver context.
1426  * @complete: Completion handler. This URB is passed as the parameter to the
1427  *      completion function.  The completion function may then do what
1428  *      it likes with the URB, including resubmitting or freeing it.
1429  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1430  *      collect the transfer status for each buffer.
1431  *
1432  * This structure identifies USB transfer requests.  URBs must be allocated by
1433  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1434  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1435  * are submitted using usb_submit_urb(), and pending requests may be canceled
1436  * using usb_unlink_urb() or usb_kill_urb().
1437  *
1438  * Data Transfer Buffers:
1439  *
1440  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1441  * taken from the general page pool.  That is provided by transfer_buffer
1442  * (control requests also use setup_packet), and host controller drivers
1443  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1444  * mapping operations can be expensive on some platforms (perhaps using a dma
1445  * bounce buffer or talking to an IOMMU),
1446  * although they're cheap on commodity x86 and ppc hardware.
1447  *
1448  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1449  * which tells the host controller driver that no such mapping is needed for
1450  * the transfer_buffer since
1451  * the device driver is DMA-aware.  For example, a device driver might
1452  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1453  * When this transfer flag is provided, host controller drivers will
1454  * attempt to use the dma address found in the transfer_dma
1455  * field rather than determining a dma address themselves.
1456  *
1457  * Note that transfer_buffer must still be set if the controller
1458  * does not support DMA (as indicated by bus.uses_dma) and when talking
1459  * to root hub. If you have to trasfer between highmem zone and the device
1460  * on such controller, create a bounce buffer or bail out with an error.
1461  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1462  * capable, assign NULL to it, so that usbmon knows not to use the value.
1463  * The setup_packet must always be set, so it cannot be located in highmem.
1464  *
1465  * Initialization:
1466  *
1467  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1468  * zero), and complete fields.  All URBs must also initialize
1469  * transfer_buffer and transfer_buffer_length.  They may provide the
1470  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1471  * to be treated as errors; that flag is invalid for write requests.
1472  *
1473  * Bulk URBs may
1474  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1475  * should always terminate with a short packet, even if it means adding an
1476  * extra zero length packet.
1477  *
1478  * Control URBs must provide a valid pointer in the setup_packet field.
1479  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1480  * beforehand.
1481  *
1482  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1483  * or, for highspeed devices, 125 microsecond units)
1484  * to poll for transfers.  After the URB has been submitted, the interval
1485  * field reflects how the transfer was actually scheduled.
1486  * The polling interval may be more frequent than requested.
1487  * For example, some controllers have a maximum interval of 32 milliseconds,
1488  * while others support intervals of up to 1024 milliseconds.
1489  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1490  * endpoints, as well as high speed interrupt endpoints, the encoding of
1491  * the transfer interval in the endpoint descriptor is logarithmic.
1492  * Device drivers must convert that value to linear units themselves.)
1493  *
1494  * If an isochronous endpoint queue isn't already running, the host
1495  * controller will schedule a new URB to start as soon as bandwidth
1496  * utilization allows.  If the queue is running then a new URB will be
1497  * scheduled to start in the first transfer slot following the end of the
1498  * preceding URB, if that slot has not already expired.  If the slot has
1499  * expired (which can happen when IRQ delivery is delayed for a long time),
1500  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1501  * is clear then the URB will be scheduled to start in the expired slot,
1502  * implying that some of its packets will not be transferred; if the flag
1503  * is set then the URB will be scheduled in the first unexpired slot,
1504  * breaking the queue's synchronization.  Upon URB completion, the
1505  * start_frame field will be set to the (micro)frame number in which the
1506  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1507  * and can go from as low as 256 to as high as 65536 frames.
1508  *
1509  * Isochronous URBs have a different data transfer model, in part because
1510  * the quality of service is only "best effort".  Callers provide specially
1511  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1512  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1513  * URBs are normally queued, submitted by drivers to arrange that
1514  * transfers are at least double buffered, and then explicitly resubmitted
1515  * in completion handlers, so
1516  * that data (such as audio or video) streams at as constant a rate as the
1517  * host controller scheduler can support.
1518  *
1519  * Completion Callbacks:
1520  *
1521  * The completion callback is made in_interrupt(), and one of the first
1522  * things that a completion handler should do is check the status field.
1523  * The status field is provided for all URBs.  It is used to report
1524  * unlinked URBs, and status for all non-ISO transfers.  It should not
1525  * be examined before the URB is returned to the completion handler.
1526  *
1527  * The context field is normally used to link URBs back to the relevant
1528  * driver or request state.
1529  *
1530  * When the completion callback is invoked for non-isochronous URBs, the
1531  * actual_length field tells how many bytes were transferred.  This field
1532  * is updated even when the URB terminated with an error or was unlinked.
1533  *
1534  * ISO transfer status is reported in the status and actual_length fields
1535  * of the iso_frame_desc array, and the number of errors is reported in
1536  * error_count.  Completion callbacks for ISO transfers will normally
1537  * (re)submit URBs to ensure a constant transfer rate.
1538  *
1539  * Note that even fields marked "public" should not be touched by the driver
1540  * when the urb is owned by the hcd, that is, since the call to
1541  * usb_submit_urb() till the entry into the completion routine.
1542  */
1543 struct urb {
1544         /* private: usb core and host controller only fields in the urb */
1545         struct kref kref;               /* reference count of the URB */
1546         void *hcpriv;                   /* private data for host controller */
1547         atomic_t use_count;             /* concurrent submissions counter */
1548         atomic_t reject;                /* submissions will fail */
1549         int unlinked;                   /* unlink error code */
1550 
1551         /* public: documented fields in the urb that can be used by drivers */
1552         struct list_head urb_list;      /* list head for use by the urb's
1553                                          * current owner */
1554         struct list_head anchor_list;   /* the URB may be anchored */
1555         struct usb_anchor *anchor;
1556         struct usb_device *dev;         /* (in) pointer to associated device */
1557         struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1558         unsigned int pipe;              /* (in) pipe information */
1559         unsigned int stream_id;         /* (in) stream ID */
1560         int status;                     /* (return) non-ISO status */
1561         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1562         void *transfer_buffer;          /* (in) associated data buffer */
1563         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1564         struct scatterlist *sg;         /* (in) scatter gather buffer list */
1565         int num_mapped_sgs;             /* (internal) mapped sg entries */
1566         int num_sgs;                    /* (in) number of entries in the sg list */
1567         u32 transfer_buffer_length;     /* (in) data buffer length */
1568         u32 actual_length;              /* (return) actual transfer length */
1569         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1570         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1571         int start_frame;                /* (modify) start frame (ISO) */
1572         int number_of_packets;          /* (in) number of ISO packets */
1573         int interval;                   /* (modify) transfer interval
1574                                          * (INT/ISO) */
1575         int error_count;                /* (return) number of ISO errors */
1576         void *context;                  /* (in) context for completion */
1577         usb_complete_t complete;        /* (in) completion routine */
1578         struct usb_iso_packet_descriptor iso_frame_desc[0];
1579                                         /* (in) ISO ONLY */
1580 };
1581 
1582 /* ----------------------------------------------------------------------- */
1583 
1584 /**
1585  * usb_fill_control_urb - initializes a control urb
1586  * @urb: pointer to the urb to initialize.
1587  * @dev: pointer to the struct usb_device for this urb.
1588  * @pipe: the endpoint pipe
1589  * @setup_packet: pointer to the setup_packet buffer
1590  * @transfer_buffer: pointer to the transfer buffer
1591  * @buffer_length: length of the transfer buffer
1592  * @complete_fn: pointer to the usb_complete_t function
1593  * @context: what to set the urb context to.
1594  *
1595  * Initializes a control urb with the proper information needed to submit
1596  * it to a device.
1597  */
1598 static inline void usb_fill_control_urb(struct urb *urb,
1599                                         struct usb_device *dev,
1600                                         unsigned int pipe,
1601                                         unsigned char *setup_packet,
1602                                         void *transfer_buffer,
1603                                         int buffer_length,
1604                                         usb_complete_t complete_fn,
1605                                         void *context)
1606 {
1607         urb->dev = dev;
1608         urb->pipe = pipe;
1609         urb->setup_packet = setup_packet;
1610         urb->transfer_buffer = transfer_buffer;
1611         urb->transfer_buffer_length = buffer_length;
1612         urb->complete = complete_fn;
1613         urb->context = context;
1614 }
1615 
1616 /**
1617  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1618  * @urb: pointer to the urb to initialize.
1619  * @dev: pointer to the struct usb_device for this urb.
1620  * @pipe: the endpoint pipe
1621  * @transfer_buffer: pointer to the transfer buffer
1622  * @buffer_length: length of the transfer buffer
1623  * @complete_fn: pointer to the usb_complete_t function
1624  * @context: what to set the urb context to.
1625  *
1626  * Initializes a bulk urb with the proper information needed to submit it
1627  * to a device.
1628  */
1629 static inline void usb_fill_bulk_urb(struct urb *urb,
1630                                      struct usb_device *dev,
1631                                      unsigned int pipe,
1632                                      void *transfer_buffer,
1633                                      int buffer_length,
1634                                      usb_complete_t complete_fn,
1635                                      void *context)
1636 {
1637         urb->dev = dev;
1638         urb->pipe = pipe;
1639         urb->transfer_buffer = transfer_buffer;
1640         urb->transfer_buffer_length = buffer_length;
1641         urb->complete = complete_fn;
1642         urb->context = context;
1643 }
1644 
1645 /**
1646  * usb_fill_int_urb - macro to help initialize a interrupt urb
1647  * @urb: pointer to the urb to initialize.
1648  * @dev: pointer to the struct usb_device for this urb.
1649  * @pipe: the endpoint pipe
1650  * @transfer_buffer: pointer to the transfer buffer
1651  * @buffer_length: length of the transfer buffer
1652  * @complete_fn: pointer to the usb_complete_t function
1653  * @context: what to set the urb context to.
1654  * @interval: what to set the urb interval to, encoded like
1655  *      the endpoint descriptor's bInterval value.
1656  *
1657  * Initializes a interrupt urb with the proper information needed to submit
1658  * it to a device.
1659  *
1660  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1661  * encoding of the endpoint interval, and express polling intervals in
1662  * microframes (eight per millisecond) rather than in frames (one per
1663  * millisecond).
1664  *
1665  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1666  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1667  * through to the host controller, rather than being translated into microframe
1668  * units.
1669  */
1670 static inline void usb_fill_int_urb(struct urb *urb,
1671                                     struct usb_device *dev,
1672                                     unsigned int pipe,
1673                                     void *transfer_buffer,
1674                                     int buffer_length,
1675                                     usb_complete_t complete_fn,
1676                                     void *context,
1677                                     int interval)
1678 {
1679         urb->dev = dev;
1680         urb->pipe = pipe;
1681         urb->transfer_buffer = transfer_buffer;
1682         urb->transfer_buffer_length = buffer_length;
1683         urb->complete = complete_fn;
1684         urb->context = context;
1685 
1686         if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1687                 /* make sure interval is within allowed range */
1688                 interval = clamp(interval, 1, 16);
1689 
1690                 urb->interval = 1 << (interval - 1);
1691         } else {
1692                 urb->interval = interval;
1693         }
1694 
1695         urb->start_frame = -1;
1696 }
1697 
1698 extern void usb_init_urb(struct urb *urb);
1699 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1700 extern void usb_free_urb(struct urb *urb);
1701 #define usb_put_urb usb_free_urb
1702 extern struct urb *usb_get_urb(struct urb *urb);
1703 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1704 extern int usb_unlink_urb(struct urb *urb);
1705 extern void usb_kill_urb(struct urb *urb);
1706 extern void usb_poison_urb(struct urb *urb);
1707 extern void usb_unpoison_urb(struct urb *urb);
1708 extern void usb_block_urb(struct urb *urb);
1709 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1710 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1711 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1712 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1713 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1714 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1715 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1716 extern void usb_unanchor_urb(struct urb *urb);
1717 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1718                                          unsigned int timeout);
1719 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1720 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1721 extern int usb_anchor_empty(struct usb_anchor *anchor);
1722 
1723 #define usb_unblock_urb usb_unpoison_urb
1724 
1725 /**
1726  * usb_urb_dir_in - check if an URB describes an IN transfer
1727  * @urb: URB to be checked
1728  *
1729  * Return: 1 if @urb describes an IN transfer (device-to-host),
1730  * otherwise 0.
1731  */
1732 static inline int usb_urb_dir_in(struct urb *urb)
1733 {
1734         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1735 }
1736 
1737 /**
1738  * usb_urb_dir_out - check if an URB describes an OUT transfer
1739  * @urb: URB to be checked
1740  *
1741  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1742  * otherwise 0.
1743  */
1744 static inline int usb_urb_dir_out(struct urb *urb)
1745 {
1746         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1747 }
1748 
1749 int usb_urb_ep_type_check(const struct urb *urb);
1750 
1751 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1752         gfp_t mem_flags, dma_addr_t *dma);
1753 void usb_free_coherent(struct usb_device *dev, size_t size,
1754         void *addr, dma_addr_t dma);
1755 
1756 #if 0
1757 struct urb *usb_buffer_map(struct urb *urb);
1758 void usb_buffer_dmasync(struct urb *urb);
1759 void usb_buffer_unmap(struct urb *urb);
1760 #endif
1761 
1762 struct scatterlist;
1763 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1764                       struct scatterlist *sg, int nents);
1765 #if 0
1766 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1767                            struct scatterlist *sg, int n_hw_ents);
1768 #endif
1769 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1770                          struct scatterlist *sg, int n_hw_ents);
1771 
1772 /*-------------------------------------------------------------------*
1773  *                         SYNCHRONOUS CALL SUPPORT                  *
1774  *-------------------------------------------------------------------*/
1775 
1776 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1777         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1778         void *data, __u16 size, int timeout);
1779 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1780         void *data, int len, int *actual_length, int timeout);
1781 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1782         void *data, int len, int *actual_length,
1783         int timeout);
1784 
1785 /* wrappers around usb_control_msg() for the most common standard requests */
1786 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1787         unsigned char descindex, void *buf, int size);
1788 extern int usb_get_status(struct usb_device *dev,
1789         int recip, int type, int target, void *data);
1790 
1791 static inline int usb_get_std_status(struct usb_device *dev,
1792         int recip, int target, void *data)
1793 {
1794         return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1795                 data);
1796 }
1797 
1798 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1799 {
1800         return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1801                 0, data);
1802 }
1803 
1804 extern int usb_string(struct usb_device *dev, int index,
1805         char *buf, size_t size);
1806 
1807 /* wrappers that also update important state inside usbcore */
1808 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1809 extern int usb_reset_configuration(struct usb_device *dev);
1810 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1811 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1812 
1813 /* this request isn't really synchronous, but it belongs with the others */
1814 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1815 
1816 /* choose and set configuration for device */
1817 extern int usb_choose_configuration(struct usb_device *udev);
1818 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1819 
1820 /*
1821  * timeouts, in milliseconds, used for sending/receiving control messages
1822  * they typically complete within a few frames (msec) after they're issued
1823  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1824  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1825  */
1826 #define USB_CTRL_GET_TIMEOUT    5000
1827 #define USB_CTRL_SET_TIMEOUT    5000
1828 
1829 
1830 /**
1831  * struct usb_sg_request - support for scatter/gather I/O
1832  * @status: zero indicates success, else negative errno
1833  * @bytes: counts bytes transferred.
1834  *
1835  * These requests are initialized using usb_sg_init(), and then are used
1836  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1837  * members of the request object aren't for driver access.
1838  *
1839  * The status and bytecount values are valid only after usb_sg_wait()
1840  * returns.  If the status is zero, then the bytecount matches the total
1841  * from the request.
1842  *
1843  * After an error completion, drivers may need to clear a halt condition
1844  * on the endpoint.
1845  */
1846 struct usb_sg_request {
1847         int                     status;
1848         size_t                  bytes;
1849 
1850         /* private:
1851          * members below are private to usbcore,
1852          * and are not provided for driver access!
1853          */
1854         spinlock_t              lock;
1855 
1856         struct usb_device       *dev;
1857         int                     pipe;
1858 
1859         int                     entries;
1860         struct urb              **urbs;
1861 
1862         int                     count;
1863         struct completion       complete;
1864 };
1865 
1866 int usb_sg_init(
1867         struct usb_sg_request   *io,
1868         struct usb_device       *dev,
1869         unsigned                pipe,
1870         unsigned                period,
1871         struct scatterlist      *sg,
1872         int                     nents,
1873         size_t                  length,
1874         gfp_t                   mem_flags
1875 );
1876 void usb_sg_cancel(struct usb_sg_request *io);
1877 void usb_sg_wait(struct usb_sg_request *io);
1878 
1879 
1880 /* ----------------------------------------------------------------------- */
1881 
1882 /*
1883  * For various legacy reasons, Linux has a small cookie that's paired with
1884  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1885  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1886  * an unsigned int encoded as:
1887  *
1888  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1889  *                                       1 = Device-to-Host [In] ...
1890  *                                      like endpoint bEndpointAddress)
1891  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1892  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1893  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1894  *                                       10 = control, 11 = bulk)
1895  *
1896  * Given the device address and endpoint descriptor, pipes are redundant.
1897  */
1898 
1899 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1900 /* (yet ... they're the values used by usbfs) */
1901 #define PIPE_ISOCHRONOUS                0
1902 #define PIPE_INTERRUPT                  1
1903 #define PIPE_CONTROL                    2
1904 #define PIPE_BULK                       3
1905 
1906 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1907 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1908 
1909 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1910 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1911 
1912 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1913 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1914 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1915 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1916 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1917 
1918 static inline unsigned int __create_pipe(struct usb_device *dev,
1919                 unsigned int endpoint)
1920 {
1921         return (dev->devnum << 8) | (endpoint << 15);
1922 }
1923 
1924 /* Create various pipes... */
1925 #define usb_sndctrlpipe(dev, endpoint)  \
1926         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1927 #define usb_rcvctrlpipe(dev, endpoint)  \
1928         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1929 #define usb_sndisocpipe(dev, endpoint)  \
1930         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1931 #define usb_rcvisocpipe(dev, endpoint)  \
1932         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1933 #define usb_sndbulkpipe(dev, endpoint)  \
1934         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1935 #define usb_rcvbulkpipe(dev, endpoint)  \
1936         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1937 #define usb_sndintpipe(dev, endpoint)   \
1938         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1939 #define usb_rcvintpipe(dev, endpoint)   \
1940         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1941 
1942 static inline struct usb_host_endpoint *
1943 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1944 {
1945         struct usb_host_endpoint **eps;
1946         eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1947         return eps[usb_pipeendpoint(pipe)];
1948 }
1949 
1950 /*-------------------------------------------------------------------------*/
1951 
1952 static inline __u16
1953 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1954 {
1955         struct usb_host_endpoint        *ep;
1956         unsigned                        epnum = usb_pipeendpoint(pipe);
1957 
1958         if (is_out) {
1959                 WARN_ON(usb_pipein(pipe));
1960                 ep = udev->ep_out[epnum];
1961         } else {
1962                 WARN_ON(usb_pipeout(pipe));
1963                 ep = udev->ep_in[epnum];
1964         }
1965         if (!ep)
1966                 return 0;
1967 
1968         /* NOTE:  only 0x07ff bits are for packet size... */
1969         return usb_endpoint_maxp(&ep->desc);
1970 }
1971 
1972 /* ----------------------------------------------------------------------- */
1973 
1974 /* translate USB error codes to codes user space understands */
1975 static inline int usb_translate_errors(int error_code)
1976 {
1977         switch (error_code) {
1978         case 0:
1979         case -ENOMEM:
1980         case -ENODEV:
1981         case -EOPNOTSUPP:
1982                 return error_code;
1983         default:
1984                 return -EIO;
1985         }
1986 }
1987 
1988 /* Events from the usb core */
1989 #define USB_DEVICE_ADD          0x0001
1990 #define USB_DEVICE_REMOVE       0x0002
1991 #define USB_BUS_ADD             0x0003
1992 #define USB_BUS_REMOVE          0x0004
1993 extern void usb_register_notify(struct notifier_block *nb);
1994 extern void usb_unregister_notify(struct notifier_block *nb);
1995 
1996 /* debugfs stuff */
1997 extern struct dentry *usb_debug_root;
1998 
1999 /* LED triggers */
2000 enum usb_led_event {
2001         USB_LED_EVENT_HOST = 0,
2002         USB_LED_EVENT_GADGET = 1,
2003 };
2004 
2005 #ifdef CONFIG_USB_LED_TRIG
2006 extern void usb_led_activity(enum usb_led_event ev);
2007 #else
2008 static inline void usb_led_activity(enum usb_led_event ev) {}
2009 #endif
2010 
2011 #endif  /* __KERNEL__ */
2012 
2013 #endif
2014 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp