1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/kernel.h> 44 #include <linux/list.h> 45 #include <linux/list_nulls.h> 46 #include <linux/timer.h> 47 #include <linux/cache.h> 48 #include <linux/module.h> 49 #include <linux/lockdep.h> 50 #include <linux/netdevice.h> 51 #include <linux/skbuff.h> /* struct sk_buff */ 52 #include <linux/mm.h> 53 #include <linux/security.h> 54 55 #include <linux/filter.h> 56 #include <linux/rculist_nulls.h> 57 #include <linux/poll.h> 58 59 #include <asm/atomic.h> 60 #include <net/dst.h> 61 #include <net/checksum.h> 62 63 /* 64 * This structure really needs to be cleaned up. 65 * Most of it is for TCP, and not used by any of 66 * the other protocols. 67 */ 68 69 /* Define this to get the SOCK_DBG debugging facility. */ 70 #define SOCK_DEBUGGING 71 #ifdef SOCK_DEBUGGING 72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 73 printk(KERN_DEBUG msg); } while (0) 74 #else 75 /* Validate arguments and do nothing */ 76 static void inline int __attribute__ ((format (printf, 2, 3))) 77 SOCK_DEBUG(struct sock *sk, const char *msg, ...) 78 { 79 } 80 #endif 81 82 /* This is the per-socket lock. The spinlock provides a synchronization 83 * between user contexts and software interrupt processing, whereas the 84 * mini-semaphore synchronizes multiple users amongst themselves. 85 */ 86 typedef struct { 87 spinlock_t slock; 88 int owned; 89 wait_queue_head_t wq; 90 /* 91 * We express the mutex-alike socket_lock semantics 92 * to the lock validator by explicitly managing 93 * the slock as a lock variant (in addition to 94 * the slock itself): 95 */ 96 #ifdef CONFIG_DEBUG_LOCK_ALLOC 97 struct lockdep_map dep_map; 98 #endif 99 } socket_lock_t; 100 101 struct sock; 102 struct proto; 103 struct net; 104 105 /** 106 * struct sock_common - minimal network layer representation of sockets 107 * @skc_node: main hash linkage for various protocol lookup tables 108 * @skc_nulls_node: main hash linkage for UDP/UDP-Lite protocol 109 * @skc_refcnt: reference count 110 * @skc_hash: hash value used with various protocol lookup tables 111 * @skc_family: network address family 112 * @skc_state: Connection state 113 * @skc_reuse: %SO_REUSEADDR setting 114 * @skc_bound_dev_if: bound device index if != 0 115 * @skc_bind_node: bind hash linkage for various protocol lookup tables 116 * @skc_prot: protocol handlers inside a network family 117 * @skc_net: reference to the network namespace of this socket 118 * 119 * This is the minimal network layer representation of sockets, the header 120 * for struct sock and struct inet_timewait_sock. 121 */ 122 struct sock_common { 123 /* 124 * first fields are not copied in sock_copy() 125 */ 126 union { 127 struct hlist_node skc_node; 128 struct hlist_nulls_node skc_nulls_node; 129 }; 130 atomic_t skc_refcnt; 131 132 unsigned int skc_hash; 133 unsigned short skc_family; 134 volatile unsigned char skc_state; 135 unsigned char skc_reuse; 136 int skc_bound_dev_if; 137 struct hlist_node skc_bind_node; 138 struct proto *skc_prot; 139 #ifdef CONFIG_NET_NS 140 struct net *skc_net; 141 #endif 142 }; 143 144 /** 145 * struct sock - network layer representation of sockets 146 * @__sk_common: shared layout with inet_timewait_sock 147 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 148 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 149 * @sk_lock: synchronizer 150 * @sk_rcvbuf: size of receive buffer in bytes 151 * @sk_sleep: sock wait queue 152 * @sk_dst_cache: destination cache 153 * @sk_dst_lock: destination cache lock 154 * @sk_policy: flow policy 155 * @sk_rmem_alloc: receive queue bytes committed 156 * @sk_receive_queue: incoming packets 157 * @sk_wmem_alloc: transmit queue bytes committed 158 * @sk_write_queue: Packet sending queue 159 * @sk_async_wait_queue: DMA copied packets 160 * @sk_omem_alloc: "o" is "option" or "other" 161 * @sk_wmem_queued: persistent queue size 162 * @sk_forward_alloc: space allocated forward 163 * @sk_allocation: allocation mode 164 * @sk_sndbuf: size of send buffer in bytes 165 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 166 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 167 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets 168 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 169 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 170 * @sk_gso_max_size: Maximum GSO segment size to build 171 * @sk_lingertime: %SO_LINGER l_linger setting 172 * @sk_backlog: always used with the per-socket spinlock held 173 * @sk_callback_lock: used with the callbacks in the end of this struct 174 * @sk_error_queue: rarely used 175 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 176 * IPV6_ADDRFORM for instance) 177 * @sk_err: last error 178 * @sk_err_soft: errors that don't cause failure but are the cause of a 179 * persistent failure not just 'timed out' 180 * @sk_drops: raw/udp drops counter 181 * @sk_ack_backlog: current listen backlog 182 * @sk_max_ack_backlog: listen backlog set in listen() 183 * @sk_priority: %SO_PRIORITY setting 184 * @sk_type: socket type (%SOCK_STREAM, etc) 185 * @sk_protocol: which protocol this socket belongs in this network family 186 * @sk_peercred: %SO_PEERCRED setting 187 * @sk_rcvlowat: %SO_RCVLOWAT setting 188 * @sk_rcvtimeo: %SO_RCVTIMEO setting 189 * @sk_sndtimeo: %SO_SNDTIMEO setting 190 * @sk_filter: socket filtering instructions 191 * @sk_protinfo: private area, net family specific, when not using slab 192 * @sk_timer: sock cleanup timer 193 * @sk_stamp: time stamp of last packet received 194 * @sk_socket: Identd and reporting IO signals 195 * @sk_user_data: RPC layer private data 196 * @sk_sndmsg_page: cached page for sendmsg 197 * @sk_sndmsg_off: cached offset for sendmsg 198 * @sk_send_head: front of stuff to transmit 199 * @sk_security: used by security modules 200 * @sk_mark: generic packet mark 201 * @sk_write_pending: a write to stream socket waits to start 202 * @sk_state_change: callback to indicate change in the state of the sock 203 * @sk_data_ready: callback to indicate there is data to be processed 204 * @sk_write_space: callback to indicate there is bf sending space available 205 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 206 * @sk_backlog_rcv: callback to process the backlog 207 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 208 */ 209 struct sock { 210 /* 211 * Now struct inet_timewait_sock also uses sock_common, so please just 212 * don't add nothing before this first member (__sk_common) --acme 213 */ 214 struct sock_common __sk_common; 215 #define sk_node __sk_common.skc_node 216 #define sk_nulls_node __sk_common.skc_nulls_node 217 #define sk_refcnt __sk_common.skc_refcnt 218 219 #define sk_copy_start __sk_common.skc_hash 220 #define sk_hash __sk_common.skc_hash 221 #define sk_family __sk_common.skc_family 222 #define sk_state __sk_common.skc_state 223 #define sk_reuse __sk_common.skc_reuse 224 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 225 #define sk_bind_node __sk_common.skc_bind_node 226 #define sk_prot __sk_common.skc_prot 227 #define sk_net __sk_common.skc_net 228 kmemcheck_bitfield_begin(flags); 229 unsigned int sk_shutdown : 2, 230 sk_no_check : 2, 231 sk_userlocks : 4, 232 sk_protocol : 8, 233 sk_type : 16; 234 #define SK_PROTOCOL_MAX ((u8)~0U) 235 kmemcheck_bitfield_end(flags); 236 int sk_rcvbuf; 237 socket_lock_t sk_lock; 238 /* 239 * The backlog queue is special, it is always used with 240 * the per-socket spinlock held and requires low latency 241 * access. Therefore we special case it's implementation. 242 */ 243 struct { 244 struct sk_buff *head; 245 struct sk_buff *tail; 246 } sk_backlog; 247 wait_queue_head_t *sk_sleep; 248 struct dst_entry *sk_dst_cache; 249 #ifdef CONFIG_XFRM 250 struct xfrm_policy *sk_policy[2]; 251 #endif 252 rwlock_t sk_dst_lock; 253 atomic_t sk_rmem_alloc; 254 atomic_t sk_wmem_alloc; 255 atomic_t sk_omem_alloc; 256 int sk_sndbuf; 257 struct sk_buff_head sk_receive_queue; 258 struct sk_buff_head sk_write_queue; 259 #ifdef CONFIG_NET_DMA 260 struct sk_buff_head sk_async_wait_queue; 261 #endif 262 int sk_wmem_queued; 263 int sk_forward_alloc; 264 gfp_t sk_allocation; 265 int sk_route_caps; 266 int sk_gso_type; 267 unsigned int sk_gso_max_size; 268 int sk_rcvlowat; 269 unsigned long sk_flags; 270 unsigned long sk_lingertime; 271 struct sk_buff_head sk_error_queue; 272 struct proto *sk_prot_creator; 273 rwlock_t sk_callback_lock; 274 int sk_err, 275 sk_err_soft; 276 atomic_t sk_drops; 277 unsigned short sk_ack_backlog; 278 unsigned short sk_max_ack_backlog; 279 __u32 sk_priority; 280 struct ucred sk_peercred; 281 long sk_rcvtimeo; 282 long sk_sndtimeo; 283 struct sk_filter *sk_filter; 284 void *sk_protinfo; 285 struct timer_list sk_timer; 286 ktime_t sk_stamp; 287 struct socket *sk_socket; 288 void *sk_user_data; 289 struct page *sk_sndmsg_page; 290 struct sk_buff *sk_send_head; 291 __u32 sk_sndmsg_off; 292 int sk_write_pending; 293 #ifdef CONFIG_SECURITY 294 void *sk_security; 295 #endif 296 __u32 sk_mark; 297 /* XXX 4 bytes hole on 64 bit */ 298 void (*sk_state_change)(struct sock *sk); 299 void (*sk_data_ready)(struct sock *sk, int bytes); 300 void (*sk_write_space)(struct sock *sk); 301 void (*sk_error_report)(struct sock *sk); 302 int (*sk_backlog_rcv)(struct sock *sk, 303 struct sk_buff *skb); 304 void (*sk_destruct)(struct sock *sk); 305 }; 306 307 /* 308 * Hashed lists helper routines 309 */ 310 static inline struct sock *__sk_head(const struct hlist_head *head) 311 { 312 return hlist_entry(head->first, struct sock, sk_node); 313 } 314 315 static inline struct sock *sk_head(const struct hlist_head *head) 316 { 317 return hlist_empty(head) ? NULL : __sk_head(head); 318 } 319 320 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 321 { 322 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 323 } 324 325 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 326 { 327 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 328 } 329 330 static inline struct sock *sk_next(const struct sock *sk) 331 { 332 return sk->sk_node.next ? 333 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 334 } 335 336 static inline struct sock *sk_nulls_next(const struct sock *sk) 337 { 338 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 339 hlist_nulls_entry(sk->sk_nulls_node.next, 340 struct sock, sk_nulls_node) : 341 NULL; 342 } 343 344 static inline int sk_unhashed(const struct sock *sk) 345 { 346 return hlist_unhashed(&sk->sk_node); 347 } 348 349 static inline int sk_hashed(const struct sock *sk) 350 { 351 return !sk_unhashed(sk); 352 } 353 354 static __inline__ void sk_node_init(struct hlist_node *node) 355 { 356 node->pprev = NULL; 357 } 358 359 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node) 360 { 361 node->pprev = NULL; 362 } 363 364 static __inline__ void __sk_del_node(struct sock *sk) 365 { 366 __hlist_del(&sk->sk_node); 367 } 368 369 static __inline__ int __sk_del_node_init(struct sock *sk) 370 { 371 if (sk_hashed(sk)) { 372 __sk_del_node(sk); 373 sk_node_init(&sk->sk_node); 374 return 1; 375 } 376 return 0; 377 } 378 379 /* Grab socket reference count. This operation is valid only 380 when sk is ALREADY grabbed f.e. it is found in hash table 381 or a list and the lookup is made under lock preventing hash table 382 modifications. 383 */ 384 385 static inline void sock_hold(struct sock *sk) 386 { 387 atomic_inc(&sk->sk_refcnt); 388 } 389 390 /* Ungrab socket in the context, which assumes that socket refcnt 391 cannot hit zero, f.e. it is true in context of any socketcall. 392 */ 393 static inline void __sock_put(struct sock *sk) 394 { 395 atomic_dec(&sk->sk_refcnt); 396 } 397 398 static __inline__ int sk_del_node_init(struct sock *sk) 399 { 400 int rc = __sk_del_node_init(sk); 401 402 if (rc) { 403 /* paranoid for a while -acme */ 404 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 405 __sock_put(sk); 406 } 407 return rc; 408 } 409 410 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk) 411 { 412 if (sk_hashed(sk)) { 413 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 414 return 1; 415 } 416 return 0; 417 } 418 419 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk) 420 { 421 int rc = __sk_nulls_del_node_init_rcu(sk); 422 423 if (rc) { 424 /* paranoid for a while -acme */ 425 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 426 __sock_put(sk); 427 } 428 return rc; 429 } 430 431 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list) 432 { 433 hlist_add_head(&sk->sk_node, list); 434 } 435 436 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list) 437 { 438 sock_hold(sk); 439 __sk_add_node(sk, list); 440 } 441 442 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 443 { 444 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 445 } 446 447 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 448 { 449 sock_hold(sk); 450 __sk_nulls_add_node_rcu(sk, list); 451 } 452 453 static __inline__ void __sk_del_bind_node(struct sock *sk) 454 { 455 __hlist_del(&sk->sk_bind_node); 456 } 457 458 static __inline__ void sk_add_bind_node(struct sock *sk, 459 struct hlist_head *list) 460 { 461 hlist_add_head(&sk->sk_bind_node, list); 462 } 463 464 #define sk_for_each(__sk, node, list) \ 465 hlist_for_each_entry(__sk, node, list, sk_node) 466 #define sk_nulls_for_each(__sk, node, list) \ 467 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 468 #define sk_nulls_for_each_rcu(__sk, node, list) \ 469 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 470 #define sk_for_each_from(__sk, node) \ 471 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 472 hlist_for_each_entry_from(__sk, node, sk_node) 473 #define sk_nulls_for_each_from(__sk, node) \ 474 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 475 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 476 #define sk_for_each_continue(__sk, node) \ 477 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \ 478 hlist_for_each_entry_continue(__sk, node, sk_node) 479 #define sk_for_each_safe(__sk, node, tmp, list) \ 480 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node) 481 #define sk_for_each_bound(__sk, node, list) \ 482 hlist_for_each_entry(__sk, node, list, sk_bind_node) 483 484 /* Sock flags */ 485 enum sock_flags { 486 SOCK_DEAD, 487 SOCK_DONE, 488 SOCK_URGINLINE, 489 SOCK_KEEPOPEN, 490 SOCK_LINGER, 491 SOCK_DESTROY, 492 SOCK_BROADCAST, 493 SOCK_TIMESTAMP, 494 SOCK_ZAPPED, 495 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 496 SOCK_DBG, /* %SO_DEBUG setting */ 497 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 498 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 499 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 500 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 501 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */ 502 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */ 503 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */ 504 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 505 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */ 506 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */ 507 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */ 508 }; 509 510 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 511 512 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 513 { 514 nsk->sk_flags = osk->sk_flags; 515 } 516 517 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 518 { 519 __set_bit(flag, &sk->sk_flags); 520 } 521 522 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 523 { 524 __clear_bit(flag, &sk->sk_flags); 525 } 526 527 static inline int sock_flag(struct sock *sk, enum sock_flags flag) 528 { 529 return test_bit(flag, &sk->sk_flags); 530 } 531 532 static inline void sk_acceptq_removed(struct sock *sk) 533 { 534 sk->sk_ack_backlog--; 535 } 536 537 static inline void sk_acceptq_added(struct sock *sk) 538 { 539 sk->sk_ack_backlog++; 540 } 541 542 static inline int sk_acceptq_is_full(struct sock *sk) 543 { 544 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 545 } 546 547 /* 548 * Compute minimal free write space needed to queue new packets. 549 */ 550 static inline int sk_stream_min_wspace(struct sock *sk) 551 { 552 return sk->sk_wmem_queued >> 1; 553 } 554 555 static inline int sk_stream_wspace(struct sock *sk) 556 { 557 return sk->sk_sndbuf - sk->sk_wmem_queued; 558 } 559 560 extern void sk_stream_write_space(struct sock *sk); 561 562 static inline int sk_stream_memory_free(struct sock *sk) 563 { 564 return sk->sk_wmem_queued < sk->sk_sndbuf; 565 } 566 567 /* The per-socket spinlock must be held here. */ 568 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb) 569 { 570 if (!sk->sk_backlog.tail) { 571 sk->sk_backlog.head = sk->sk_backlog.tail = skb; 572 } else { 573 sk->sk_backlog.tail->next = skb; 574 sk->sk_backlog.tail = skb; 575 } 576 skb->next = NULL; 577 } 578 579 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 580 { 581 return sk->sk_backlog_rcv(sk, skb); 582 } 583 584 #define sk_wait_event(__sk, __timeo, __condition) \ 585 ({ int __rc; \ 586 release_sock(__sk); \ 587 __rc = __condition; \ 588 if (!__rc) { \ 589 *(__timeo) = schedule_timeout(*(__timeo)); \ 590 } \ 591 lock_sock(__sk); \ 592 __rc = __condition; \ 593 __rc; \ 594 }) 595 596 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 597 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 598 extern void sk_stream_wait_close(struct sock *sk, long timeo_p); 599 extern int sk_stream_error(struct sock *sk, int flags, int err); 600 extern void sk_stream_kill_queues(struct sock *sk); 601 602 extern int sk_wait_data(struct sock *sk, long *timeo); 603 604 struct request_sock_ops; 605 struct timewait_sock_ops; 606 struct inet_hashinfo; 607 struct raw_hashinfo; 608 609 /* Networking protocol blocks we attach to sockets. 610 * socket layer -> transport layer interface 611 * transport -> network interface is defined by struct inet_proto 612 */ 613 struct proto { 614 void (*close)(struct sock *sk, 615 long timeout); 616 int (*connect)(struct sock *sk, 617 struct sockaddr *uaddr, 618 int addr_len); 619 int (*disconnect)(struct sock *sk, int flags); 620 621 struct sock * (*accept) (struct sock *sk, int flags, int *err); 622 623 int (*ioctl)(struct sock *sk, int cmd, 624 unsigned long arg); 625 int (*init)(struct sock *sk); 626 void (*destroy)(struct sock *sk); 627 void (*shutdown)(struct sock *sk, int how); 628 int (*setsockopt)(struct sock *sk, int level, 629 int optname, char __user *optval, 630 unsigned int optlen); 631 int (*getsockopt)(struct sock *sk, int level, 632 int optname, char __user *optval, 633 int __user *option); 634 #ifdef CONFIG_COMPAT 635 int (*compat_setsockopt)(struct sock *sk, 636 int level, 637 int optname, char __user *optval, 638 unsigned int optlen); 639 int (*compat_getsockopt)(struct sock *sk, 640 int level, 641 int optname, char __user *optval, 642 int __user *option); 643 #endif 644 int (*sendmsg)(struct kiocb *iocb, struct sock *sk, 645 struct msghdr *msg, size_t len); 646 int (*recvmsg)(struct kiocb *iocb, struct sock *sk, 647 struct msghdr *msg, 648 size_t len, int noblock, int flags, 649 int *addr_len); 650 int (*sendpage)(struct sock *sk, struct page *page, 651 int offset, size_t size, int flags); 652 int (*bind)(struct sock *sk, 653 struct sockaddr *uaddr, int addr_len); 654 655 int (*backlog_rcv) (struct sock *sk, 656 struct sk_buff *skb); 657 658 /* Keeping track of sk's, looking them up, and port selection methods. */ 659 void (*hash)(struct sock *sk); 660 void (*unhash)(struct sock *sk); 661 int (*get_port)(struct sock *sk, unsigned short snum); 662 663 /* Keeping track of sockets in use */ 664 #ifdef CONFIG_PROC_FS 665 unsigned int inuse_idx; 666 #endif 667 668 /* Memory pressure */ 669 void (*enter_memory_pressure)(struct sock *sk); 670 atomic_t *memory_allocated; /* Current allocated memory. */ 671 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 672 /* 673 * Pressure flag: try to collapse. 674 * Technical note: it is used by multiple contexts non atomically. 675 * All the __sk_mem_schedule() is of this nature: accounting 676 * is strict, actions are advisory and have some latency. 677 */ 678 int *memory_pressure; 679 int *sysctl_mem; 680 int *sysctl_wmem; 681 int *sysctl_rmem; 682 int max_header; 683 684 struct kmem_cache *slab; 685 unsigned int obj_size; 686 int slab_flags; 687 688 struct percpu_counter *orphan_count; 689 690 struct request_sock_ops *rsk_prot; 691 struct timewait_sock_ops *twsk_prot; 692 693 union { 694 struct inet_hashinfo *hashinfo; 695 struct udp_table *udp_table; 696 struct raw_hashinfo *raw_hash; 697 } h; 698 699 struct module *owner; 700 701 char name[32]; 702 703 struct list_head node; 704 #ifdef SOCK_REFCNT_DEBUG 705 atomic_t socks; 706 #endif 707 }; 708 709 extern int proto_register(struct proto *prot, int alloc_slab); 710 extern void proto_unregister(struct proto *prot); 711 712 #ifdef SOCK_REFCNT_DEBUG 713 static inline void sk_refcnt_debug_inc(struct sock *sk) 714 { 715 atomic_inc(&sk->sk_prot->socks); 716 } 717 718 static inline void sk_refcnt_debug_dec(struct sock *sk) 719 { 720 atomic_dec(&sk->sk_prot->socks); 721 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 722 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 723 } 724 725 static inline void sk_refcnt_debug_release(const struct sock *sk) 726 { 727 if (atomic_read(&sk->sk_refcnt) != 1) 728 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 729 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 730 } 731 #else /* SOCK_REFCNT_DEBUG */ 732 #define sk_refcnt_debug_inc(sk) do { } while (0) 733 #define sk_refcnt_debug_dec(sk) do { } while (0) 734 #define sk_refcnt_debug_release(sk) do { } while (0) 735 #endif /* SOCK_REFCNT_DEBUG */ 736 737 738 #ifdef CONFIG_PROC_FS 739 /* Called with local bh disabled */ 740 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 741 extern int sock_prot_inuse_get(struct net *net, struct proto *proto); 742 #else 743 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot, 744 int inc) 745 { 746 } 747 #endif 748 749 750 /* With per-bucket locks this operation is not-atomic, so that 751 * this version is not worse. 752 */ 753 static inline void __sk_prot_rehash(struct sock *sk) 754 { 755 sk->sk_prot->unhash(sk); 756 sk->sk_prot->hash(sk); 757 } 758 759 /* About 10 seconds */ 760 #define SOCK_DESTROY_TIME (10*HZ) 761 762 /* Sockets 0-1023 can't be bound to unless you are superuser */ 763 #define PROT_SOCK 1024 764 765 #define SHUTDOWN_MASK 3 766 #define RCV_SHUTDOWN 1 767 #define SEND_SHUTDOWN 2 768 769 #define SOCK_SNDBUF_LOCK 1 770 #define SOCK_RCVBUF_LOCK 2 771 #define SOCK_BINDADDR_LOCK 4 772 #define SOCK_BINDPORT_LOCK 8 773 774 /* sock_iocb: used to kick off async processing of socket ios */ 775 struct sock_iocb { 776 struct list_head list; 777 778 int flags; 779 int size; 780 struct socket *sock; 781 struct sock *sk; 782 struct scm_cookie *scm; 783 struct msghdr *msg, async_msg; 784 struct kiocb *kiocb; 785 }; 786 787 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) 788 { 789 return (struct sock_iocb *)iocb->private; 790 } 791 792 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) 793 { 794 return si->kiocb; 795 } 796 797 struct socket_alloc { 798 struct socket socket; 799 struct inode vfs_inode; 800 }; 801 802 static inline struct socket *SOCKET_I(struct inode *inode) 803 { 804 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 805 } 806 807 static inline struct inode *SOCK_INODE(struct socket *socket) 808 { 809 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 810 } 811 812 /* 813 * Functions for memory accounting 814 */ 815 extern int __sk_mem_schedule(struct sock *sk, int size, int kind); 816 extern void __sk_mem_reclaim(struct sock *sk); 817 818 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 819 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 820 #define SK_MEM_SEND 0 821 #define SK_MEM_RECV 1 822 823 static inline int sk_mem_pages(int amt) 824 { 825 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 826 } 827 828 static inline int sk_has_account(struct sock *sk) 829 { 830 /* return true if protocol supports memory accounting */ 831 return !!sk->sk_prot->memory_allocated; 832 } 833 834 static inline int sk_wmem_schedule(struct sock *sk, int size) 835 { 836 if (!sk_has_account(sk)) 837 return 1; 838 return size <= sk->sk_forward_alloc || 839 __sk_mem_schedule(sk, size, SK_MEM_SEND); 840 } 841 842 static inline int sk_rmem_schedule(struct sock *sk, int size) 843 { 844 if (!sk_has_account(sk)) 845 return 1; 846 return size <= sk->sk_forward_alloc || 847 __sk_mem_schedule(sk, size, SK_MEM_RECV); 848 } 849 850 static inline void sk_mem_reclaim(struct sock *sk) 851 { 852 if (!sk_has_account(sk)) 853 return; 854 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 855 __sk_mem_reclaim(sk); 856 } 857 858 static inline void sk_mem_reclaim_partial(struct sock *sk) 859 { 860 if (!sk_has_account(sk)) 861 return; 862 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 863 __sk_mem_reclaim(sk); 864 } 865 866 static inline void sk_mem_charge(struct sock *sk, int size) 867 { 868 if (!sk_has_account(sk)) 869 return; 870 sk->sk_forward_alloc -= size; 871 } 872 873 static inline void sk_mem_uncharge(struct sock *sk, int size) 874 { 875 if (!sk_has_account(sk)) 876 return; 877 sk->sk_forward_alloc += size; 878 } 879 880 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 881 { 882 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 883 sk->sk_wmem_queued -= skb->truesize; 884 sk_mem_uncharge(sk, skb->truesize); 885 __kfree_skb(skb); 886 } 887 888 /* Used by processes to "lock" a socket state, so that 889 * interrupts and bottom half handlers won't change it 890 * from under us. It essentially blocks any incoming 891 * packets, so that we won't get any new data or any 892 * packets that change the state of the socket. 893 * 894 * While locked, BH processing will add new packets to 895 * the backlog queue. This queue is processed by the 896 * owner of the socket lock right before it is released. 897 * 898 * Since ~2.3.5 it is also exclusive sleep lock serializing 899 * accesses from user process context. 900 */ 901 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 902 903 /* 904 * Macro so as to not evaluate some arguments when 905 * lockdep is not enabled. 906 * 907 * Mark both the sk_lock and the sk_lock.slock as a 908 * per-address-family lock class. 909 */ 910 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 911 do { \ 912 sk->sk_lock.owned = 0; \ 913 init_waitqueue_head(&sk->sk_lock.wq); \ 914 spin_lock_init(&(sk)->sk_lock.slock); \ 915 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 916 sizeof((sk)->sk_lock)); \ 917 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 918 (skey), (sname)); \ 919 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 920 } while (0) 921 922 extern void lock_sock_nested(struct sock *sk, int subclass); 923 924 static inline void lock_sock(struct sock *sk) 925 { 926 lock_sock_nested(sk, 0); 927 } 928 929 extern void release_sock(struct sock *sk); 930 931 /* BH context may only use the following locking interface. */ 932 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 933 #define bh_lock_sock_nested(__sk) \ 934 spin_lock_nested(&((__sk)->sk_lock.slock), \ 935 SINGLE_DEPTH_NESTING) 936 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 937 938 extern struct sock *sk_alloc(struct net *net, int family, 939 gfp_t priority, 940 struct proto *prot); 941 extern void sk_free(struct sock *sk); 942 extern void sk_release_kernel(struct sock *sk); 943 extern struct sock *sk_clone(const struct sock *sk, 944 const gfp_t priority); 945 946 extern struct sk_buff *sock_wmalloc(struct sock *sk, 947 unsigned long size, int force, 948 gfp_t priority); 949 extern struct sk_buff *sock_rmalloc(struct sock *sk, 950 unsigned long size, int force, 951 gfp_t priority); 952 extern void sock_wfree(struct sk_buff *skb); 953 extern void sock_rfree(struct sk_buff *skb); 954 955 extern int sock_setsockopt(struct socket *sock, int level, 956 int op, char __user *optval, 957 unsigned int optlen); 958 959 extern int sock_getsockopt(struct socket *sock, int level, 960 int op, char __user *optval, 961 int __user *optlen); 962 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk, 963 unsigned long size, 964 int noblock, 965 int *errcode); 966 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk, 967 unsigned long header_len, 968 unsigned long data_len, 969 int noblock, 970 int *errcode); 971 extern void *sock_kmalloc(struct sock *sk, int size, 972 gfp_t priority); 973 extern void sock_kfree_s(struct sock *sk, void *mem, int size); 974 extern void sk_send_sigurg(struct sock *sk); 975 976 /* 977 * Functions to fill in entries in struct proto_ops when a protocol 978 * does not implement a particular function. 979 */ 980 extern int sock_no_bind(struct socket *, 981 struct sockaddr *, int); 982 extern int sock_no_connect(struct socket *, 983 struct sockaddr *, int, int); 984 extern int sock_no_socketpair(struct socket *, 985 struct socket *); 986 extern int sock_no_accept(struct socket *, 987 struct socket *, int); 988 extern int sock_no_getname(struct socket *, 989 struct sockaddr *, int *, int); 990 extern unsigned int sock_no_poll(struct file *, struct socket *, 991 struct poll_table_struct *); 992 extern int sock_no_ioctl(struct socket *, unsigned int, 993 unsigned long); 994 extern int sock_no_listen(struct socket *, int); 995 extern int sock_no_shutdown(struct socket *, int); 996 extern int sock_no_getsockopt(struct socket *, int , int, 997 char __user *, int __user *); 998 extern int sock_no_setsockopt(struct socket *, int, int, 999 char __user *, unsigned int); 1000 extern int sock_no_sendmsg(struct kiocb *, struct socket *, 1001 struct msghdr *, size_t); 1002 extern int sock_no_recvmsg(struct kiocb *, struct socket *, 1003 struct msghdr *, size_t, int); 1004 extern int sock_no_mmap(struct file *file, 1005 struct socket *sock, 1006 struct vm_area_struct *vma); 1007 extern ssize_t sock_no_sendpage(struct socket *sock, 1008 struct page *page, 1009 int offset, size_t size, 1010 int flags); 1011 1012 /* 1013 * Functions to fill in entries in struct proto_ops when a protocol 1014 * uses the inet style. 1015 */ 1016 extern int sock_common_getsockopt(struct socket *sock, int level, int optname, 1017 char __user *optval, int __user *optlen); 1018 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, 1019 struct msghdr *msg, size_t size, int flags); 1020 extern int sock_common_setsockopt(struct socket *sock, int level, int optname, 1021 char __user *optval, unsigned int optlen); 1022 extern int compat_sock_common_getsockopt(struct socket *sock, int level, 1023 int optname, char __user *optval, int __user *optlen); 1024 extern int compat_sock_common_setsockopt(struct socket *sock, int level, 1025 int optname, char __user *optval, unsigned int optlen); 1026 1027 extern void sk_common_release(struct sock *sk); 1028 1029 /* 1030 * Default socket callbacks and setup code 1031 */ 1032 1033 /* Initialise core socket variables */ 1034 extern void sock_init_data(struct socket *sock, struct sock *sk); 1035 1036 /** 1037 * sk_filter_release: Release a socket filter 1038 * @fp: filter to remove 1039 * 1040 * Remove a filter from a socket and release its resources. 1041 */ 1042 1043 static inline void sk_filter_release(struct sk_filter *fp) 1044 { 1045 if (atomic_dec_and_test(&fp->refcnt)) 1046 kfree(fp); 1047 } 1048 1049 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) 1050 { 1051 unsigned int size = sk_filter_len(fp); 1052 1053 atomic_sub(size, &sk->sk_omem_alloc); 1054 sk_filter_release(fp); 1055 } 1056 1057 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp) 1058 { 1059 atomic_inc(&fp->refcnt); 1060 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc); 1061 } 1062 1063 /* 1064 * Socket reference counting postulates. 1065 * 1066 * * Each user of socket SHOULD hold a reference count. 1067 * * Each access point to socket (an hash table bucket, reference from a list, 1068 * running timer, skb in flight MUST hold a reference count. 1069 * * When reference count hits 0, it means it will never increase back. 1070 * * When reference count hits 0, it means that no references from 1071 * outside exist to this socket and current process on current CPU 1072 * is last user and may/should destroy this socket. 1073 * * sk_free is called from any context: process, BH, IRQ. When 1074 * it is called, socket has no references from outside -> sk_free 1075 * may release descendant resources allocated by the socket, but 1076 * to the time when it is called, socket is NOT referenced by any 1077 * hash tables, lists etc. 1078 * * Packets, delivered from outside (from network or from another process) 1079 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1080 * when they sit in queue. Otherwise, packets will leak to hole, when 1081 * socket is looked up by one cpu and unhasing is made by another CPU. 1082 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1083 * (leak to backlog). Packet socket does all the processing inside 1084 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1085 * use separate SMP lock, so that they are prone too. 1086 */ 1087 1088 /* Ungrab socket and destroy it, if it was the last reference. */ 1089 static inline void sock_put(struct sock *sk) 1090 { 1091 if (atomic_dec_and_test(&sk->sk_refcnt)) 1092 sk_free(sk); 1093 } 1094 1095 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb, 1096 const int nested); 1097 1098 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1099 { 1100 sk->sk_socket = sock; 1101 } 1102 1103 /* Detach socket from process context. 1104 * Announce socket dead, detach it from wait queue and inode. 1105 * Note that parent inode held reference count on this struct sock, 1106 * we do not release it in this function, because protocol 1107 * probably wants some additional cleanups or even continuing 1108 * to work with this socket (TCP). 1109 */ 1110 static inline void sock_orphan(struct sock *sk) 1111 { 1112 write_lock_bh(&sk->sk_callback_lock); 1113 sock_set_flag(sk, SOCK_DEAD); 1114 sk_set_socket(sk, NULL); 1115 sk->sk_sleep = NULL; 1116 write_unlock_bh(&sk->sk_callback_lock); 1117 } 1118 1119 static inline void sock_graft(struct sock *sk, struct socket *parent) 1120 { 1121 write_lock_bh(&sk->sk_callback_lock); 1122 sk->sk_sleep = &parent->wait; 1123 parent->sk = sk; 1124 sk_set_socket(sk, parent); 1125 security_sock_graft(sk, parent); 1126 write_unlock_bh(&sk->sk_callback_lock); 1127 } 1128 1129 extern int sock_i_uid(struct sock *sk); 1130 extern unsigned long sock_i_ino(struct sock *sk); 1131 1132 static inline struct dst_entry * 1133 __sk_dst_get(struct sock *sk) 1134 { 1135 return sk->sk_dst_cache; 1136 } 1137 1138 static inline struct dst_entry * 1139 sk_dst_get(struct sock *sk) 1140 { 1141 struct dst_entry *dst; 1142 1143 read_lock(&sk->sk_dst_lock); 1144 dst = sk->sk_dst_cache; 1145 if (dst) 1146 dst_hold(dst); 1147 read_unlock(&sk->sk_dst_lock); 1148 return dst; 1149 } 1150 1151 static inline void 1152 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1153 { 1154 struct dst_entry *old_dst; 1155 1156 old_dst = sk->sk_dst_cache; 1157 sk->sk_dst_cache = dst; 1158 dst_release(old_dst); 1159 } 1160 1161 static inline void 1162 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1163 { 1164 write_lock(&sk->sk_dst_lock); 1165 __sk_dst_set(sk, dst); 1166 write_unlock(&sk->sk_dst_lock); 1167 } 1168 1169 static inline void 1170 __sk_dst_reset(struct sock *sk) 1171 { 1172 struct dst_entry *old_dst; 1173 1174 old_dst = sk->sk_dst_cache; 1175 sk->sk_dst_cache = NULL; 1176 dst_release(old_dst); 1177 } 1178 1179 static inline void 1180 sk_dst_reset(struct sock *sk) 1181 { 1182 write_lock(&sk->sk_dst_lock); 1183 __sk_dst_reset(sk); 1184 write_unlock(&sk->sk_dst_lock); 1185 } 1186 1187 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1188 1189 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1190 1191 static inline int sk_can_gso(const struct sock *sk) 1192 { 1193 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1194 } 1195 1196 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1197 1198 static inline int skb_copy_to_page(struct sock *sk, char __user *from, 1199 struct sk_buff *skb, struct page *page, 1200 int off, int copy) 1201 { 1202 if (skb->ip_summed == CHECKSUM_NONE) { 1203 int err = 0; 1204 __wsum csum = csum_and_copy_from_user(from, 1205 page_address(page) + off, 1206 copy, 0, &err); 1207 if (err) 1208 return err; 1209 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1210 } else if (copy_from_user(page_address(page) + off, from, copy)) 1211 return -EFAULT; 1212 1213 skb->len += copy; 1214 skb->data_len += copy; 1215 skb->truesize += copy; 1216 sk->sk_wmem_queued += copy; 1217 sk_mem_charge(sk, copy); 1218 return 0; 1219 } 1220 1221 /** 1222 * sk_wmem_alloc_get - returns write allocations 1223 * @sk: socket 1224 * 1225 * Returns sk_wmem_alloc minus initial offset of one 1226 */ 1227 static inline int sk_wmem_alloc_get(const struct sock *sk) 1228 { 1229 return atomic_read(&sk->sk_wmem_alloc) - 1; 1230 } 1231 1232 /** 1233 * sk_rmem_alloc_get - returns read allocations 1234 * @sk: socket 1235 * 1236 * Returns sk_rmem_alloc 1237 */ 1238 static inline int sk_rmem_alloc_get(const struct sock *sk) 1239 { 1240 return atomic_read(&sk->sk_rmem_alloc); 1241 } 1242 1243 /** 1244 * sk_has_allocations - check if allocations are outstanding 1245 * @sk: socket 1246 * 1247 * Returns true if socket has write or read allocations 1248 */ 1249 static inline int sk_has_allocations(const struct sock *sk) 1250 { 1251 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1252 } 1253 1254 /** 1255 * sk_has_sleeper - check if there are any waiting processes 1256 * @sk: socket 1257 * 1258 * Returns true if socket has waiting processes 1259 * 1260 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory 1261 * barrier call. They were added due to the race found within the tcp code. 1262 * 1263 * Consider following tcp code paths: 1264 * 1265 * CPU1 CPU2 1266 * 1267 * sys_select receive packet 1268 * ... ... 1269 * __add_wait_queue update tp->rcv_nxt 1270 * ... ... 1271 * tp->rcv_nxt check sock_def_readable 1272 * ... { 1273 * schedule ... 1274 * if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 1275 * wake_up_interruptible(sk->sk_sleep) 1276 * ... 1277 * } 1278 * 1279 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1280 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1281 * could then endup calling schedule and sleep forever if there are no more 1282 * data on the socket. 1283 * 1284 * The sk_has_sleeper is always called right after a call to read_lock, so we 1285 * can use smp_mb__after_lock barrier. 1286 */ 1287 static inline int sk_has_sleeper(struct sock *sk) 1288 { 1289 /* 1290 * We need to be sure we are in sync with the 1291 * add_wait_queue modifications to the wait queue. 1292 * 1293 * This memory barrier is paired in the sock_poll_wait. 1294 */ 1295 smp_mb__after_lock(); 1296 return sk->sk_sleep && waitqueue_active(sk->sk_sleep); 1297 } 1298 1299 /** 1300 * sock_poll_wait - place memory barrier behind the poll_wait call. 1301 * @filp: file 1302 * @wait_address: socket wait queue 1303 * @p: poll_table 1304 * 1305 * See the comments in the sk_has_sleeper function. 1306 */ 1307 static inline void sock_poll_wait(struct file *filp, 1308 wait_queue_head_t *wait_address, poll_table *p) 1309 { 1310 if (p && wait_address) { 1311 poll_wait(filp, wait_address, p); 1312 /* 1313 * We need to be sure we are in sync with the 1314 * socket flags modification. 1315 * 1316 * This memory barrier is paired in the sk_has_sleeper. 1317 */ 1318 smp_mb(); 1319 } 1320 } 1321 1322 /* 1323 * Queue a received datagram if it will fit. Stream and sequenced 1324 * protocols can't normally use this as they need to fit buffers in 1325 * and play with them. 1326 * 1327 * Inlined as it's very short and called for pretty much every 1328 * packet ever received. 1329 */ 1330 1331 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1332 { 1333 skb_orphan(skb); 1334 skb->sk = sk; 1335 skb->destructor = sock_wfree; 1336 /* 1337 * We used to take a refcount on sk, but following operation 1338 * is enough to guarantee sk_free() wont free this sock until 1339 * all in-flight packets are completed 1340 */ 1341 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1342 } 1343 1344 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1345 { 1346 skb_orphan(skb); 1347 skb->sk = sk; 1348 skb->destructor = sock_rfree; 1349 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1350 sk_mem_charge(sk, skb->truesize); 1351 } 1352 1353 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer, 1354 unsigned long expires); 1355 1356 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer); 1357 1358 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1359 1360 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1361 1362 /* 1363 * Recover an error report and clear atomically 1364 */ 1365 1366 static inline int sock_error(struct sock *sk) 1367 { 1368 int err; 1369 if (likely(!sk->sk_err)) 1370 return 0; 1371 err = xchg(&sk->sk_err, 0); 1372 return -err; 1373 } 1374 1375 static inline unsigned long sock_wspace(struct sock *sk) 1376 { 1377 int amt = 0; 1378 1379 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1380 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1381 if (amt < 0) 1382 amt = 0; 1383 } 1384 return amt; 1385 } 1386 1387 static inline void sk_wake_async(struct sock *sk, int how, int band) 1388 { 1389 if (sk->sk_socket && sk->sk_socket->fasync_list) 1390 sock_wake_async(sk->sk_socket, how, band); 1391 } 1392 1393 #define SOCK_MIN_SNDBUF 2048 1394 #define SOCK_MIN_RCVBUF 256 1395 1396 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 1397 { 1398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 1399 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 1400 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF); 1401 } 1402 } 1403 1404 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); 1405 1406 static inline struct page *sk_stream_alloc_page(struct sock *sk) 1407 { 1408 struct page *page = NULL; 1409 1410 page = alloc_pages(sk->sk_allocation, 0); 1411 if (!page) { 1412 sk->sk_prot->enter_memory_pressure(sk); 1413 sk_stream_moderate_sndbuf(sk); 1414 } 1415 return page; 1416 } 1417 1418 /* 1419 * Default write policy as shown to user space via poll/select/SIGIO 1420 */ 1421 static inline int sock_writeable(const struct sock *sk) 1422 { 1423 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 1424 } 1425 1426 static inline gfp_t gfp_any(void) 1427 { 1428 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 1429 } 1430 1431 static inline long sock_rcvtimeo(const struct sock *sk, int noblock) 1432 { 1433 return noblock ? 0 : sk->sk_rcvtimeo; 1434 } 1435 1436 static inline long sock_sndtimeo(const struct sock *sk, int noblock) 1437 { 1438 return noblock ? 0 : sk->sk_sndtimeo; 1439 } 1440 1441 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 1442 { 1443 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 1444 } 1445 1446 /* Alas, with timeout socket operations are not restartable. 1447 * Compare this to poll(). 1448 */ 1449 static inline int sock_intr_errno(long timeo) 1450 { 1451 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 1452 } 1453 1454 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 1455 struct sk_buff *skb); 1456 1457 static __inline__ void 1458 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 1459 { 1460 ktime_t kt = skb->tstamp; 1461 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 1462 1463 /* 1464 * generate control messages if 1465 * - receive time stamping in software requested (SOCK_RCVTSTAMP 1466 * or SOCK_TIMESTAMPING_RX_SOFTWARE) 1467 * - software time stamp available and wanted 1468 * (SOCK_TIMESTAMPING_SOFTWARE) 1469 * - hardware time stamps available and wanted 1470 * (SOCK_TIMESTAMPING_SYS_HARDWARE or 1471 * SOCK_TIMESTAMPING_RAW_HARDWARE) 1472 */ 1473 if (sock_flag(sk, SOCK_RCVTSTAMP) || 1474 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) || 1475 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) || 1476 (hwtstamps->hwtstamp.tv64 && 1477 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) || 1478 (hwtstamps->syststamp.tv64 && 1479 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))) 1480 __sock_recv_timestamp(msg, sk, skb); 1481 else 1482 sk->sk_stamp = kt; 1483 } 1484 1485 /** 1486 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 1487 * @msg: outgoing packet 1488 * @sk: socket sending this packet 1489 * @shtx: filled with instructions for time stamping 1490 * 1491 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if 1492 * parameters are invalid. 1493 */ 1494 extern int sock_tx_timestamp(struct msghdr *msg, 1495 struct sock *sk, 1496 union skb_shared_tx *shtx); 1497 1498 1499 /** 1500 * sk_eat_skb - Release a skb if it is no longer needed 1501 * @sk: socket to eat this skb from 1502 * @skb: socket buffer to eat 1503 * @copied_early: flag indicating whether DMA operations copied this data early 1504 * 1505 * This routine must be called with interrupts disabled or with the socket 1506 * locked so that the sk_buff queue operation is ok. 1507 */ 1508 #ifdef CONFIG_NET_DMA 1509 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1510 { 1511 __skb_unlink(skb, &sk->sk_receive_queue); 1512 if (!copied_early) 1513 __kfree_skb(skb); 1514 else 1515 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 1516 } 1517 #else 1518 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early) 1519 { 1520 __skb_unlink(skb, &sk->sk_receive_queue); 1521 __kfree_skb(skb); 1522 } 1523 #endif 1524 1525 static inline 1526 struct net *sock_net(const struct sock *sk) 1527 { 1528 #ifdef CONFIG_NET_NS 1529 return sk->sk_net; 1530 #else 1531 return &init_net; 1532 #endif 1533 } 1534 1535 static inline 1536 void sock_net_set(struct sock *sk, struct net *net) 1537 { 1538 #ifdef CONFIG_NET_NS 1539 sk->sk_net = net; 1540 #endif 1541 } 1542 1543 /* 1544 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. 1545 * They should not hold a referrence to a namespace in order to allow 1546 * to stop it. 1547 * Sockets after sk_change_net should be released using sk_release_kernel 1548 */ 1549 static inline void sk_change_net(struct sock *sk, struct net *net) 1550 { 1551 put_net(sock_net(sk)); 1552 sock_net_set(sk, hold_net(net)); 1553 } 1554 1555 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 1556 { 1557 if (unlikely(skb->sk)) { 1558 struct sock *sk = skb->sk; 1559 1560 skb->destructor = NULL; 1561 skb->sk = NULL; 1562 return sk; 1563 } 1564 return NULL; 1565 } 1566 1567 extern void sock_enable_timestamp(struct sock *sk, int flag); 1568 extern int sock_get_timestamp(struct sock *, struct timeval __user *); 1569 extern int sock_get_timestampns(struct sock *, struct timespec __user *); 1570 1571 /* 1572 * Enable debug/info messages 1573 */ 1574 extern int net_msg_warn; 1575 #define NETDEBUG(fmt, args...) \ 1576 do { if (net_msg_warn) printk(fmt,##args); } while (0) 1577 1578 #define LIMIT_NETDEBUG(fmt, args...) \ 1579 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) 1580 1581 extern __u32 sysctl_wmem_max; 1582 extern __u32 sysctl_rmem_max; 1583 1584 extern void sk_init(void); 1585 1586 extern int sysctl_optmem_max; 1587 1588 extern __u32 sysctl_wmem_default; 1589 extern __u32 sysctl_rmem_default; 1590 1591 #endif /* _SOCK_H */ 1592
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.