1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the AF_INET socket handler. 7 * 8 * Version: @(#)sock.h 1.0.4 05/13/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche <flla@stud.uni-sb.de> 14 * 15 * Fixes: 16 * Alan Cox : Volatiles in skbuff pointers. See 17 * skbuff comments. May be overdone, 18 * better to prove they can be removed 19 * than the reverse. 20 * Alan Cox : Added a zapped field for tcp to note 21 * a socket is reset and must stay shut up 22 * Alan Cox : New fields for options 23 * Pauline Middelink : identd support 24 * Alan Cox : Eliminate low level recv/recvfrom 25 * David S. Miller : New socket lookup architecture. 26 * Steve Whitehouse: Default routines for sock_ops 27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made 28 * protinfo be just a void pointer, as the 29 * protocol specific parts were moved to 30 * respective headers and ipv4/v6, etc now 31 * use private slabcaches for its socks 32 * Pedro Hortas : New flags field for socket options 33 * 34 * 35 * This program is free software; you can redistribute it and/or 36 * modify it under the terms of the GNU General Public License 37 * as published by the Free Software Foundation; either version 38 * 2 of the License, or (at your option) any later version. 39 */ 40 #ifndef _SOCK_H 41 #define _SOCK_H 42 43 #include <linux/hardirq.h> 44 #include <linux/kernel.h> 45 #include <linux/list.h> 46 #include <linux/list_nulls.h> 47 #include <linux/timer.h> 48 #include <linux/cache.h> 49 #include <linux/bitops.h> 50 #include <linux/lockdep.h> 51 #include <linux/netdevice.h> 52 #include <linux/skbuff.h> /* struct sk_buff */ 53 #include <linux/mm.h> 54 #include <linux/security.h> 55 #include <linux/slab.h> 56 #include <linux/uaccess.h> 57 #include <linux/page_counter.h> 58 #include <linux/memcontrol.h> 59 #include <linux/static_key.h> 60 #include <linux/sched.h> 61 62 #include <linux/filter.h> 63 #include <linux/rculist_nulls.h> 64 #include <linux/poll.h> 65 66 #include <linux/atomic.h> 67 #include <net/dst.h> 68 #include <net/checksum.h> 69 #include <net/tcp_states.h> 70 #include <linux/net_tstamp.h> 71 72 struct cgroup; 73 struct cgroup_subsys; 74 #ifdef CONFIG_NET 75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); 76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); 77 #else 78 static inline 79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 80 { 81 return 0; 82 } 83 static inline 84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) 85 { 86 } 87 #endif 88 /* 89 * This structure really needs to be cleaned up. 90 * Most of it is for TCP, and not used by any of 91 * the other protocols. 92 */ 93 94 /* Define this to get the SOCK_DBG debugging facility. */ 95 #define SOCK_DEBUGGING 96 #ifdef SOCK_DEBUGGING 97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ 98 printk(KERN_DEBUG msg); } while (0) 99 #else 100 /* Validate arguments and do nothing */ 101 static inline __printf(2, 3) 102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) 103 { 104 } 105 #endif 106 107 /* This is the per-socket lock. The spinlock provides a synchronization 108 * between user contexts and software interrupt processing, whereas the 109 * mini-semaphore synchronizes multiple users amongst themselves. 110 */ 111 typedef struct { 112 spinlock_t slock; 113 int owned; 114 wait_queue_head_t wq; 115 /* 116 * We express the mutex-alike socket_lock semantics 117 * to the lock validator by explicitly managing 118 * the slock as a lock variant (in addition to 119 * the slock itself): 120 */ 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 struct lockdep_map dep_map; 123 #endif 124 } socket_lock_t; 125 126 struct sock; 127 struct proto; 128 struct net; 129 130 typedef __u32 __bitwise __portpair; 131 typedef __u64 __bitwise __addrpair; 132 133 /** 134 * struct sock_common - minimal network layer representation of sockets 135 * @skc_daddr: Foreign IPv4 addr 136 * @skc_rcv_saddr: Bound local IPv4 addr 137 * @skc_hash: hash value used with various protocol lookup tables 138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables 139 * @skc_dport: placeholder for inet_dport/tw_dport 140 * @skc_num: placeholder for inet_num/tw_num 141 * @skc_family: network address family 142 * @skc_state: Connection state 143 * @skc_reuse: %SO_REUSEADDR setting 144 * @skc_reuseport: %SO_REUSEPORT setting 145 * @skc_bound_dev_if: bound device index if != 0 146 * @skc_bind_node: bind hash linkage for various protocol lookup tables 147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol 148 * @skc_prot: protocol handlers inside a network family 149 * @skc_net: reference to the network namespace of this socket 150 * @skc_node: main hash linkage for various protocol lookup tables 151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol 152 * @skc_tx_queue_mapping: tx queue number for this connection 153 * @skc_refcnt: reference count 154 * 155 * This is the minimal network layer representation of sockets, the header 156 * for struct sock and struct inet_timewait_sock. 157 */ 158 struct sock_common { 159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned 160 * address on 64bit arches : cf INET_MATCH() 161 */ 162 union { 163 __addrpair skc_addrpair; 164 struct { 165 __be32 skc_daddr; 166 __be32 skc_rcv_saddr; 167 }; 168 }; 169 union { 170 unsigned int skc_hash; 171 __u16 skc_u16hashes[2]; 172 }; 173 /* skc_dport && skc_num must be grouped as well */ 174 union { 175 __portpair skc_portpair; 176 struct { 177 __be16 skc_dport; 178 __u16 skc_num; 179 }; 180 }; 181 182 unsigned short skc_family; 183 volatile unsigned char skc_state; 184 unsigned char skc_reuse:4; 185 unsigned char skc_reuseport:1; 186 unsigned char skc_ipv6only:1; 187 unsigned char skc_net_refcnt:1; 188 int skc_bound_dev_if; 189 union { 190 struct hlist_node skc_bind_node; 191 struct hlist_nulls_node skc_portaddr_node; 192 }; 193 struct proto *skc_prot; 194 possible_net_t skc_net; 195 196 #if IS_ENABLED(CONFIG_IPV6) 197 struct in6_addr skc_v6_daddr; 198 struct in6_addr skc_v6_rcv_saddr; 199 #endif 200 201 atomic64_t skc_cookie; 202 203 /* 204 * fields between dontcopy_begin/dontcopy_end 205 * are not copied in sock_copy() 206 */ 207 /* private: */ 208 int skc_dontcopy_begin[0]; 209 /* public: */ 210 union { 211 struct hlist_node skc_node; 212 struct hlist_nulls_node skc_nulls_node; 213 }; 214 int skc_tx_queue_mapping; 215 atomic_t skc_refcnt; 216 /* private: */ 217 int skc_dontcopy_end[0]; 218 /* public: */ 219 }; 220 221 struct cg_proto; 222 /** 223 * struct sock - network layer representation of sockets 224 * @__sk_common: shared layout with inet_timewait_sock 225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN 226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings 227 * @sk_lock: synchronizer 228 * @sk_rcvbuf: size of receive buffer in bytes 229 * @sk_wq: sock wait queue and async head 230 * @sk_rx_dst: receive input route used by early demux 231 * @sk_dst_cache: destination cache 232 * @sk_dst_lock: destination cache lock 233 * @sk_policy: flow policy 234 * @sk_receive_queue: incoming packets 235 * @sk_wmem_alloc: transmit queue bytes committed 236 * @sk_write_queue: Packet sending queue 237 * @sk_omem_alloc: "o" is "option" or "other" 238 * @sk_wmem_queued: persistent queue size 239 * @sk_forward_alloc: space allocated forward 240 * @sk_napi_id: id of the last napi context to receive data for sk 241 * @sk_ll_usec: usecs to busypoll when there is no data 242 * @sk_allocation: allocation mode 243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) 244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) 245 * @sk_sndbuf: size of send buffer in bytes 246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, 247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings 248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets 249 * @sk_no_check_rx: allow zero checksum in RX packets 250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) 251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) 252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) 253 * @sk_gso_max_size: Maximum GSO segment size to build 254 * @sk_gso_max_segs: Maximum number of GSO segments 255 * @sk_lingertime: %SO_LINGER l_linger setting 256 * @sk_backlog: always used with the per-socket spinlock held 257 * @sk_callback_lock: used with the callbacks in the end of this struct 258 * @sk_error_queue: rarely used 259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, 260 * IPV6_ADDRFORM for instance) 261 * @sk_err: last error 262 * @sk_err_soft: errors that don't cause failure but are the cause of a 263 * persistent failure not just 'timed out' 264 * @sk_drops: raw/udp drops counter 265 * @sk_ack_backlog: current listen backlog 266 * @sk_max_ack_backlog: listen backlog set in listen() 267 * @sk_priority: %SO_PRIORITY setting 268 * @sk_cgrp_prioidx: socket group's priority map index 269 * @sk_type: socket type (%SOCK_STREAM, etc) 270 * @sk_protocol: which protocol this socket belongs in this network family 271 * @sk_peer_pid: &struct pid for this socket's peer 272 * @sk_peer_cred: %SO_PEERCRED setting 273 * @sk_rcvlowat: %SO_RCVLOWAT setting 274 * @sk_rcvtimeo: %SO_RCVTIMEO setting 275 * @sk_sndtimeo: %SO_SNDTIMEO setting 276 * @sk_rxhash: flow hash received from netif layer 277 * @sk_incoming_cpu: record cpu processing incoming packets 278 * @sk_txhash: computed flow hash for use on transmit 279 * @sk_filter: socket filtering instructions 280 * @sk_timer: sock cleanup timer 281 * @sk_stamp: time stamp of last packet received 282 * @sk_tsflags: SO_TIMESTAMPING socket options 283 * @sk_tskey: counter to disambiguate concurrent tstamp requests 284 * @sk_socket: Identd and reporting IO signals 285 * @sk_user_data: RPC layer private data 286 * @sk_frag: cached page frag 287 * @sk_peek_off: current peek_offset value 288 * @sk_send_head: front of stuff to transmit 289 * @sk_security: used by security modules 290 * @sk_mark: generic packet mark 291 * @sk_classid: this socket's cgroup classid 292 * @sk_cgrp: this socket's cgroup-specific proto data 293 * @sk_write_pending: a write to stream socket waits to start 294 * @sk_state_change: callback to indicate change in the state of the sock 295 * @sk_data_ready: callback to indicate there is data to be processed 296 * @sk_write_space: callback to indicate there is bf sending space available 297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) 298 * @sk_backlog_rcv: callback to process the backlog 299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 300 */ 301 struct sock { 302 /* 303 * Now struct inet_timewait_sock also uses sock_common, so please just 304 * don't add nothing before this first member (__sk_common) --acme 305 */ 306 struct sock_common __sk_common; 307 #define sk_node __sk_common.skc_node 308 #define sk_nulls_node __sk_common.skc_nulls_node 309 #define sk_refcnt __sk_common.skc_refcnt 310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping 311 312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin 313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end 314 #define sk_hash __sk_common.skc_hash 315 #define sk_portpair __sk_common.skc_portpair 316 #define sk_num __sk_common.skc_num 317 #define sk_dport __sk_common.skc_dport 318 #define sk_addrpair __sk_common.skc_addrpair 319 #define sk_daddr __sk_common.skc_daddr 320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr 321 #define sk_family __sk_common.skc_family 322 #define sk_state __sk_common.skc_state 323 #define sk_reuse __sk_common.skc_reuse 324 #define sk_reuseport __sk_common.skc_reuseport 325 #define sk_ipv6only __sk_common.skc_ipv6only 326 #define sk_net_refcnt __sk_common.skc_net_refcnt 327 #define sk_bound_dev_if __sk_common.skc_bound_dev_if 328 #define sk_bind_node __sk_common.skc_bind_node 329 #define sk_prot __sk_common.skc_prot 330 #define sk_net __sk_common.skc_net 331 #define sk_v6_daddr __sk_common.skc_v6_daddr 332 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr 333 #define sk_cookie __sk_common.skc_cookie 334 335 socket_lock_t sk_lock; 336 struct sk_buff_head sk_receive_queue; 337 /* 338 * The backlog queue is special, it is always used with 339 * the per-socket spinlock held and requires low latency 340 * access. Therefore we special case it's implementation. 341 * Note : rmem_alloc is in this structure to fill a hole 342 * on 64bit arches, not because its logically part of 343 * backlog. 344 */ 345 struct { 346 atomic_t rmem_alloc; 347 int len; 348 struct sk_buff *head; 349 struct sk_buff *tail; 350 } sk_backlog; 351 #define sk_rmem_alloc sk_backlog.rmem_alloc 352 int sk_forward_alloc; 353 #ifdef CONFIG_RPS 354 __u32 sk_rxhash; 355 #endif 356 u16 sk_incoming_cpu; 357 /* 16bit hole 358 * Warned : sk_incoming_cpu can be set from softirq, 359 * Do not use this hole without fully understanding possible issues. 360 */ 361 362 __u32 sk_txhash; 363 #ifdef CONFIG_NET_RX_BUSY_POLL 364 unsigned int sk_napi_id; 365 unsigned int sk_ll_usec; 366 #endif 367 atomic_t sk_drops; 368 int sk_rcvbuf; 369 370 struct sk_filter __rcu *sk_filter; 371 struct socket_wq __rcu *sk_wq; 372 373 #ifdef CONFIG_XFRM 374 struct xfrm_policy *sk_policy[2]; 375 #endif 376 unsigned long sk_flags; 377 struct dst_entry *sk_rx_dst; 378 struct dst_entry __rcu *sk_dst_cache; 379 spinlock_t sk_dst_lock; 380 atomic_t sk_wmem_alloc; 381 atomic_t sk_omem_alloc; 382 int sk_sndbuf; 383 struct sk_buff_head sk_write_queue; 384 kmemcheck_bitfield_begin(flags); 385 unsigned int sk_shutdown : 2, 386 sk_no_check_tx : 1, 387 sk_no_check_rx : 1, 388 sk_userlocks : 4, 389 sk_protocol : 8, 390 #define SK_PROTOCOL_MAX U8_MAX 391 sk_type : 16; 392 kmemcheck_bitfield_end(flags); 393 int sk_wmem_queued; 394 gfp_t sk_allocation; 395 u32 sk_pacing_rate; /* bytes per second */ 396 u32 sk_max_pacing_rate; 397 netdev_features_t sk_route_caps; 398 netdev_features_t sk_route_nocaps; 399 int sk_gso_type; 400 unsigned int sk_gso_max_size; 401 u16 sk_gso_max_segs; 402 int sk_rcvlowat; 403 unsigned long sk_lingertime; 404 struct sk_buff_head sk_error_queue; 405 struct proto *sk_prot_creator; 406 rwlock_t sk_callback_lock; 407 int sk_err, 408 sk_err_soft; 409 u32 sk_ack_backlog; 410 u32 sk_max_ack_backlog; 411 __u32 sk_priority; 412 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 413 __u32 sk_cgrp_prioidx; 414 #endif 415 struct pid *sk_peer_pid; 416 const struct cred *sk_peer_cred; 417 long sk_rcvtimeo; 418 long sk_sndtimeo; 419 struct timer_list sk_timer; 420 ktime_t sk_stamp; 421 u16 sk_tsflags; 422 u32 sk_tskey; 423 struct socket *sk_socket; 424 void *sk_user_data; 425 struct page_frag sk_frag; 426 struct sk_buff *sk_send_head; 427 __s32 sk_peek_off; 428 int sk_write_pending; 429 #ifdef CONFIG_SECURITY 430 void *sk_security; 431 #endif 432 __u32 sk_mark; 433 #ifdef CONFIG_CGROUP_NET_CLASSID 434 u32 sk_classid; 435 #endif 436 struct cg_proto *sk_cgrp; 437 void (*sk_state_change)(struct sock *sk); 438 void (*sk_data_ready)(struct sock *sk); 439 void (*sk_write_space)(struct sock *sk); 440 void (*sk_error_report)(struct sock *sk); 441 int (*sk_backlog_rcv)(struct sock *sk, 442 struct sk_buff *skb); 443 void (*sk_destruct)(struct sock *sk); 444 }; 445 446 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) 447 448 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) 449 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) 450 451 /* 452 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK 453 * or not whether his port will be reused by someone else. SK_FORCE_REUSE 454 * on a socket means that the socket will reuse everybody else's port 455 * without looking at the other's sk_reuse value. 456 */ 457 458 #define SK_NO_REUSE 0 459 #define SK_CAN_REUSE 1 460 #define SK_FORCE_REUSE 2 461 462 static inline int sk_peek_offset(struct sock *sk, int flags) 463 { 464 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) 465 return sk->sk_peek_off; 466 else 467 return 0; 468 } 469 470 static inline void sk_peek_offset_bwd(struct sock *sk, int val) 471 { 472 if (sk->sk_peek_off >= 0) { 473 if (sk->sk_peek_off >= val) 474 sk->sk_peek_off -= val; 475 else 476 sk->sk_peek_off = 0; 477 } 478 } 479 480 static inline void sk_peek_offset_fwd(struct sock *sk, int val) 481 { 482 if (sk->sk_peek_off >= 0) 483 sk->sk_peek_off += val; 484 } 485 486 /* 487 * Hashed lists helper routines 488 */ 489 static inline struct sock *sk_entry(const struct hlist_node *node) 490 { 491 return hlist_entry(node, struct sock, sk_node); 492 } 493 494 static inline struct sock *__sk_head(const struct hlist_head *head) 495 { 496 return hlist_entry(head->first, struct sock, sk_node); 497 } 498 499 static inline struct sock *sk_head(const struct hlist_head *head) 500 { 501 return hlist_empty(head) ? NULL : __sk_head(head); 502 } 503 504 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) 505 { 506 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); 507 } 508 509 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) 510 { 511 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); 512 } 513 514 static inline struct sock *sk_next(const struct sock *sk) 515 { 516 return sk->sk_node.next ? 517 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; 518 } 519 520 static inline struct sock *sk_nulls_next(const struct sock *sk) 521 { 522 return (!is_a_nulls(sk->sk_nulls_node.next)) ? 523 hlist_nulls_entry(sk->sk_nulls_node.next, 524 struct sock, sk_nulls_node) : 525 NULL; 526 } 527 528 static inline bool sk_unhashed(const struct sock *sk) 529 { 530 return hlist_unhashed(&sk->sk_node); 531 } 532 533 static inline bool sk_hashed(const struct sock *sk) 534 { 535 return !sk_unhashed(sk); 536 } 537 538 static inline void sk_node_init(struct hlist_node *node) 539 { 540 node->pprev = NULL; 541 } 542 543 static inline void sk_nulls_node_init(struct hlist_nulls_node *node) 544 { 545 node->pprev = NULL; 546 } 547 548 static inline void __sk_del_node(struct sock *sk) 549 { 550 __hlist_del(&sk->sk_node); 551 } 552 553 /* NB: equivalent to hlist_del_init_rcu */ 554 static inline bool __sk_del_node_init(struct sock *sk) 555 { 556 if (sk_hashed(sk)) { 557 __sk_del_node(sk); 558 sk_node_init(&sk->sk_node); 559 return true; 560 } 561 return false; 562 } 563 564 /* Grab socket reference count. This operation is valid only 565 when sk is ALREADY grabbed f.e. it is found in hash table 566 or a list and the lookup is made under lock preventing hash table 567 modifications. 568 */ 569 570 static inline void sock_hold(struct sock *sk) 571 { 572 atomic_inc(&sk->sk_refcnt); 573 } 574 575 /* Ungrab socket in the context, which assumes that socket refcnt 576 cannot hit zero, f.e. it is true in context of any socketcall. 577 */ 578 static inline void __sock_put(struct sock *sk) 579 { 580 atomic_dec(&sk->sk_refcnt); 581 } 582 583 static inline bool sk_del_node_init(struct sock *sk) 584 { 585 bool rc = __sk_del_node_init(sk); 586 587 if (rc) { 588 /* paranoid for a while -acme */ 589 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 590 __sock_put(sk); 591 } 592 return rc; 593 } 594 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) 595 596 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) 597 { 598 if (sk_hashed(sk)) { 599 hlist_nulls_del_init_rcu(&sk->sk_nulls_node); 600 return true; 601 } 602 return false; 603 } 604 605 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) 606 { 607 bool rc = __sk_nulls_del_node_init_rcu(sk); 608 609 if (rc) { 610 /* paranoid for a while -acme */ 611 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 612 __sock_put(sk); 613 } 614 return rc; 615 } 616 617 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) 618 { 619 hlist_add_head(&sk->sk_node, list); 620 } 621 622 static inline void sk_add_node(struct sock *sk, struct hlist_head *list) 623 { 624 sock_hold(sk); 625 __sk_add_node(sk, list); 626 } 627 628 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) 629 { 630 sock_hold(sk); 631 hlist_add_head_rcu(&sk->sk_node, list); 632 } 633 634 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 635 { 636 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); 637 } 638 639 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) 640 { 641 sock_hold(sk); 642 __sk_nulls_add_node_rcu(sk, list); 643 } 644 645 static inline void __sk_del_bind_node(struct sock *sk) 646 { 647 __hlist_del(&sk->sk_bind_node); 648 } 649 650 static inline void sk_add_bind_node(struct sock *sk, 651 struct hlist_head *list) 652 { 653 hlist_add_head(&sk->sk_bind_node, list); 654 } 655 656 #define sk_for_each(__sk, list) \ 657 hlist_for_each_entry(__sk, list, sk_node) 658 #define sk_for_each_rcu(__sk, list) \ 659 hlist_for_each_entry_rcu(__sk, list, sk_node) 660 #define sk_nulls_for_each(__sk, node, list) \ 661 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) 662 #define sk_nulls_for_each_rcu(__sk, node, list) \ 663 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) 664 #define sk_for_each_from(__sk) \ 665 hlist_for_each_entry_from(__sk, sk_node) 666 #define sk_nulls_for_each_from(__sk, node) \ 667 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ 668 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) 669 #define sk_for_each_safe(__sk, tmp, list) \ 670 hlist_for_each_entry_safe(__sk, tmp, list, sk_node) 671 #define sk_for_each_bound(__sk, list) \ 672 hlist_for_each_entry(__sk, list, sk_bind_node) 673 674 /** 675 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset 676 * @tpos: the type * to use as a loop cursor. 677 * @pos: the &struct hlist_node to use as a loop cursor. 678 * @head: the head for your list. 679 * @offset: offset of hlist_node within the struct. 680 * 681 */ 682 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ 683 for (pos = (head)->first; \ 684 (!is_a_nulls(pos)) && \ 685 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ 686 pos = pos->next) 687 688 static inline struct user_namespace *sk_user_ns(struct sock *sk) 689 { 690 /* Careful only use this in a context where these parameters 691 * can not change and must all be valid, such as recvmsg from 692 * userspace. 693 */ 694 return sk->sk_socket->file->f_cred->user_ns; 695 } 696 697 /* Sock flags */ 698 enum sock_flags { 699 SOCK_DEAD, 700 SOCK_DONE, 701 SOCK_URGINLINE, 702 SOCK_KEEPOPEN, 703 SOCK_LINGER, 704 SOCK_DESTROY, 705 SOCK_BROADCAST, 706 SOCK_TIMESTAMP, 707 SOCK_ZAPPED, 708 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ 709 SOCK_DBG, /* %SO_DEBUG setting */ 710 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ 711 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ 712 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ 713 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ 714 SOCK_MEMALLOC, /* VM depends on this socket for swapping */ 715 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ 716 SOCK_FASYNC, /* fasync() active */ 717 SOCK_RXQ_OVFL, 718 SOCK_ZEROCOPY, /* buffers from userspace */ 719 SOCK_WIFI_STATUS, /* push wifi status to userspace */ 720 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. 721 * Will use last 4 bytes of packet sent from 722 * user-space instead. 723 */ 724 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ 725 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ 726 }; 727 728 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) 729 730 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) 731 { 732 nsk->sk_flags = osk->sk_flags; 733 } 734 735 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) 736 { 737 __set_bit(flag, &sk->sk_flags); 738 } 739 740 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) 741 { 742 __clear_bit(flag, &sk->sk_flags); 743 } 744 745 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) 746 { 747 return test_bit(flag, &sk->sk_flags); 748 } 749 750 #ifdef CONFIG_NET 751 extern struct static_key memalloc_socks; 752 static inline int sk_memalloc_socks(void) 753 { 754 return static_key_false(&memalloc_socks); 755 } 756 #else 757 758 static inline int sk_memalloc_socks(void) 759 { 760 return 0; 761 } 762 763 #endif 764 765 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) 766 { 767 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); 768 } 769 770 static inline void sk_acceptq_removed(struct sock *sk) 771 { 772 sk->sk_ack_backlog--; 773 } 774 775 static inline void sk_acceptq_added(struct sock *sk) 776 { 777 sk->sk_ack_backlog++; 778 } 779 780 static inline bool sk_acceptq_is_full(const struct sock *sk) 781 { 782 return sk->sk_ack_backlog > sk->sk_max_ack_backlog; 783 } 784 785 /* 786 * Compute minimal free write space needed to queue new packets. 787 */ 788 static inline int sk_stream_min_wspace(const struct sock *sk) 789 { 790 return sk->sk_wmem_queued >> 1; 791 } 792 793 static inline int sk_stream_wspace(const struct sock *sk) 794 { 795 return sk->sk_sndbuf - sk->sk_wmem_queued; 796 } 797 798 void sk_stream_write_space(struct sock *sk); 799 800 /* OOB backlog add */ 801 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) 802 { 803 /* dont let skb dst not refcounted, we are going to leave rcu lock */ 804 skb_dst_force_safe(skb); 805 806 if (!sk->sk_backlog.tail) 807 sk->sk_backlog.head = skb; 808 else 809 sk->sk_backlog.tail->next = skb; 810 811 sk->sk_backlog.tail = skb; 812 skb->next = NULL; 813 } 814 815 /* 816 * Take into account size of receive queue and backlog queue 817 * Do not take into account this skb truesize, 818 * to allow even a single big packet to come. 819 */ 820 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) 821 { 822 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); 823 824 return qsize > limit; 825 } 826 827 /* The per-socket spinlock must be held here. */ 828 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, 829 unsigned int limit) 830 { 831 if (sk_rcvqueues_full(sk, limit)) 832 return -ENOBUFS; 833 834 /* 835 * If the skb was allocated from pfmemalloc reserves, only 836 * allow SOCK_MEMALLOC sockets to use it as this socket is 837 * helping free memory 838 */ 839 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) 840 return -ENOMEM; 841 842 __sk_add_backlog(sk, skb); 843 sk->sk_backlog.len += skb->truesize; 844 return 0; 845 } 846 847 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); 848 849 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) 850 { 851 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 852 return __sk_backlog_rcv(sk, skb); 853 854 return sk->sk_backlog_rcv(sk, skb); 855 } 856 857 static inline void sk_incoming_cpu_update(struct sock *sk) 858 { 859 sk->sk_incoming_cpu = raw_smp_processor_id(); 860 } 861 862 static inline void sock_rps_record_flow_hash(__u32 hash) 863 { 864 #ifdef CONFIG_RPS 865 struct rps_sock_flow_table *sock_flow_table; 866 867 rcu_read_lock(); 868 sock_flow_table = rcu_dereference(rps_sock_flow_table); 869 rps_record_sock_flow(sock_flow_table, hash); 870 rcu_read_unlock(); 871 #endif 872 } 873 874 static inline void sock_rps_record_flow(const struct sock *sk) 875 { 876 #ifdef CONFIG_RPS 877 sock_rps_record_flow_hash(sk->sk_rxhash); 878 #endif 879 } 880 881 static inline void sock_rps_save_rxhash(struct sock *sk, 882 const struct sk_buff *skb) 883 { 884 #ifdef CONFIG_RPS 885 if (unlikely(sk->sk_rxhash != skb->hash)) 886 sk->sk_rxhash = skb->hash; 887 #endif 888 } 889 890 static inline void sock_rps_reset_rxhash(struct sock *sk) 891 { 892 #ifdef CONFIG_RPS 893 sk->sk_rxhash = 0; 894 #endif 895 } 896 897 #define sk_wait_event(__sk, __timeo, __condition) \ 898 ({ int __rc; \ 899 release_sock(__sk); \ 900 __rc = __condition; \ 901 if (!__rc) { \ 902 *(__timeo) = schedule_timeout(*(__timeo)); \ 903 } \ 904 sched_annotate_sleep(); \ 905 lock_sock(__sk); \ 906 __rc = __condition; \ 907 __rc; \ 908 }) 909 910 int sk_stream_wait_connect(struct sock *sk, long *timeo_p); 911 int sk_stream_wait_memory(struct sock *sk, long *timeo_p); 912 void sk_stream_wait_close(struct sock *sk, long timeo_p); 913 int sk_stream_error(struct sock *sk, int flags, int err); 914 void sk_stream_kill_queues(struct sock *sk); 915 void sk_set_memalloc(struct sock *sk); 916 void sk_clear_memalloc(struct sock *sk); 917 918 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); 919 920 struct request_sock_ops; 921 struct timewait_sock_ops; 922 struct inet_hashinfo; 923 struct raw_hashinfo; 924 struct module; 925 926 /* 927 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes 928 * un-modified. Special care is taken when initializing object to zero. 929 */ 930 static inline void sk_prot_clear_nulls(struct sock *sk, int size) 931 { 932 if (offsetof(struct sock, sk_node.next) != 0) 933 memset(sk, 0, offsetof(struct sock, sk_node.next)); 934 memset(&sk->sk_node.pprev, 0, 935 size - offsetof(struct sock, sk_node.pprev)); 936 } 937 938 /* Networking protocol blocks we attach to sockets. 939 * socket layer -> transport layer interface 940 */ 941 struct proto { 942 void (*close)(struct sock *sk, 943 long timeout); 944 int (*connect)(struct sock *sk, 945 struct sockaddr *uaddr, 946 int addr_len); 947 int (*disconnect)(struct sock *sk, int flags); 948 949 struct sock * (*accept)(struct sock *sk, int flags, int *err); 950 951 int (*ioctl)(struct sock *sk, int cmd, 952 unsigned long arg); 953 int (*init)(struct sock *sk); 954 void (*destroy)(struct sock *sk); 955 void (*shutdown)(struct sock *sk, int how); 956 int (*setsockopt)(struct sock *sk, int level, 957 int optname, char __user *optval, 958 unsigned int optlen); 959 int (*getsockopt)(struct sock *sk, int level, 960 int optname, char __user *optval, 961 int __user *option); 962 #ifdef CONFIG_COMPAT 963 int (*compat_setsockopt)(struct sock *sk, 964 int level, 965 int optname, char __user *optval, 966 unsigned int optlen); 967 int (*compat_getsockopt)(struct sock *sk, 968 int level, 969 int optname, char __user *optval, 970 int __user *option); 971 int (*compat_ioctl)(struct sock *sk, 972 unsigned int cmd, unsigned long arg); 973 #endif 974 int (*sendmsg)(struct sock *sk, struct msghdr *msg, 975 size_t len); 976 int (*recvmsg)(struct sock *sk, struct msghdr *msg, 977 size_t len, int noblock, int flags, 978 int *addr_len); 979 int (*sendpage)(struct sock *sk, struct page *page, 980 int offset, size_t size, int flags); 981 int (*bind)(struct sock *sk, 982 struct sockaddr *uaddr, int addr_len); 983 984 int (*backlog_rcv) (struct sock *sk, 985 struct sk_buff *skb); 986 987 void (*release_cb)(struct sock *sk); 988 989 /* Keeping track of sk's, looking them up, and port selection methods. */ 990 void (*hash)(struct sock *sk); 991 void (*unhash)(struct sock *sk); 992 void (*rehash)(struct sock *sk); 993 int (*get_port)(struct sock *sk, unsigned short snum); 994 void (*clear_sk)(struct sock *sk, int size); 995 996 /* Keeping track of sockets in use */ 997 #ifdef CONFIG_PROC_FS 998 unsigned int inuse_idx; 999 #endif 1000 1001 bool (*stream_memory_free)(const struct sock *sk); 1002 /* Memory pressure */ 1003 void (*enter_memory_pressure)(struct sock *sk); 1004 atomic_long_t *memory_allocated; /* Current allocated memory. */ 1005 struct percpu_counter *sockets_allocated; /* Current number of sockets. */ 1006 /* 1007 * Pressure flag: try to collapse. 1008 * Technical note: it is used by multiple contexts non atomically. 1009 * All the __sk_mem_schedule() is of this nature: accounting 1010 * is strict, actions are advisory and have some latency. 1011 */ 1012 int *memory_pressure; 1013 long *sysctl_mem; 1014 int *sysctl_wmem; 1015 int *sysctl_rmem; 1016 int max_header; 1017 bool no_autobind; 1018 1019 struct kmem_cache *slab; 1020 unsigned int obj_size; 1021 int slab_flags; 1022 1023 struct percpu_counter *orphan_count; 1024 1025 struct request_sock_ops *rsk_prot; 1026 struct timewait_sock_ops *twsk_prot; 1027 1028 union { 1029 struct inet_hashinfo *hashinfo; 1030 struct udp_table *udp_table; 1031 struct raw_hashinfo *raw_hash; 1032 } h; 1033 1034 struct module *owner; 1035 1036 char name[32]; 1037 1038 struct list_head node; 1039 #ifdef SOCK_REFCNT_DEBUG 1040 atomic_t socks; 1041 #endif 1042 #ifdef CONFIG_MEMCG_KMEM 1043 /* 1044 * cgroup specific init/deinit functions. Called once for all 1045 * protocols that implement it, from cgroups populate function. 1046 * This function has to setup any files the protocol want to 1047 * appear in the kmem cgroup filesystem. 1048 */ 1049 int (*init_cgroup)(struct mem_cgroup *memcg, 1050 struct cgroup_subsys *ss); 1051 void (*destroy_cgroup)(struct mem_cgroup *memcg); 1052 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); 1053 #endif 1054 }; 1055 1056 int proto_register(struct proto *prot, int alloc_slab); 1057 void proto_unregister(struct proto *prot); 1058 1059 #ifdef SOCK_REFCNT_DEBUG 1060 static inline void sk_refcnt_debug_inc(struct sock *sk) 1061 { 1062 atomic_inc(&sk->sk_prot->socks); 1063 } 1064 1065 static inline void sk_refcnt_debug_dec(struct sock *sk) 1066 { 1067 atomic_dec(&sk->sk_prot->socks); 1068 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", 1069 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); 1070 } 1071 1072 static inline void sk_refcnt_debug_release(const struct sock *sk) 1073 { 1074 if (atomic_read(&sk->sk_refcnt) != 1) 1075 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", 1076 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); 1077 } 1078 #else /* SOCK_REFCNT_DEBUG */ 1079 #define sk_refcnt_debug_inc(sk) do { } while (0) 1080 #define sk_refcnt_debug_dec(sk) do { } while (0) 1081 #define sk_refcnt_debug_release(sk) do { } while (0) 1082 #endif /* SOCK_REFCNT_DEBUG */ 1083 1084 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) 1085 extern struct static_key memcg_socket_limit_enabled; 1086 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1087 struct cg_proto *cg_proto) 1088 { 1089 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); 1090 } 1091 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) 1092 #else 1093 #define mem_cgroup_sockets_enabled 0 1094 static inline struct cg_proto *parent_cg_proto(struct proto *proto, 1095 struct cg_proto *cg_proto) 1096 { 1097 return NULL; 1098 } 1099 #endif 1100 1101 static inline bool sk_stream_memory_free(const struct sock *sk) 1102 { 1103 if (sk->sk_wmem_queued >= sk->sk_sndbuf) 1104 return false; 1105 1106 return sk->sk_prot->stream_memory_free ? 1107 sk->sk_prot->stream_memory_free(sk) : true; 1108 } 1109 1110 static inline bool sk_stream_is_writeable(const struct sock *sk) 1111 { 1112 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && 1113 sk_stream_memory_free(sk); 1114 } 1115 1116 1117 static inline bool sk_has_memory_pressure(const struct sock *sk) 1118 { 1119 return sk->sk_prot->memory_pressure != NULL; 1120 } 1121 1122 static inline bool sk_under_memory_pressure(const struct sock *sk) 1123 { 1124 if (!sk->sk_prot->memory_pressure) 1125 return false; 1126 1127 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1128 return !!sk->sk_cgrp->memory_pressure; 1129 1130 return !!*sk->sk_prot->memory_pressure; 1131 } 1132 1133 static inline void sk_leave_memory_pressure(struct sock *sk) 1134 { 1135 int *memory_pressure = sk->sk_prot->memory_pressure; 1136 1137 if (!memory_pressure) 1138 return; 1139 1140 if (*memory_pressure) 1141 *memory_pressure = 0; 1142 1143 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1144 struct cg_proto *cg_proto = sk->sk_cgrp; 1145 struct proto *prot = sk->sk_prot; 1146 1147 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1148 cg_proto->memory_pressure = 0; 1149 } 1150 1151 } 1152 1153 static inline void sk_enter_memory_pressure(struct sock *sk) 1154 { 1155 if (!sk->sk_prot->enter_memory_pressure) 1156 return; 1157 1158 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1159 struct cg_proto *cg_proto = sk->sk_cgrp; 1160 struct proto *prot = sk->sk_prot; 1161 1162 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1163 cg_proto->memory_pressure = 1; 1164 } 1165 1166 sk->sk_prot->enter_memory_pressure(sk); 1167 } 1168 1169 static inline long sk_prot_mem_limits(const struct sock *sk, int index) 1170 { 1171 long *prot = sk->sk_prot->sysctl_mem; 1172 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1173 prot = sk->sk_cgrp->sysctl_mem; 1174 return prot[index]; 1175 } 1176 1177 static inline void memcg_memory_allocated_add(struct cg_proto *prot, 1178 unsigned long amt, 1179 int *parent_status) 1180 { 1181 page_counter_charge(&prot->memory_allocated, amt); 1182 1183 if (page_counter_read(&prot->memory_allocated) > 1184 prot->memory_allocated.limit) 1185 *parent_status = OVER_LIMIT; 1186 } 1187 1188 static inline void memcg_memory_allocated_sub(struct cg_proto *prot, 1189 unsigned long amt) 1190 { 1191 page_counter_uncharge(&prot->memory_allocated, amt); 1192 } 1193 1194 static inline long 1195 sk_memory_allocated(const struct sock *sk) 1196 { 1197 struct proto *prot = sk->sk_prot; 1198 1199 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1200 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1201 1202 return atomic_long_read(prot->memory_allocated); 1203 } 1204 1205 static inline long 1206 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) 1207 { 1208 struct proto *prot = sk->sk_prot; 1209 1210 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1211 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); 1212 /* update the root cgroup regardless */ 1213 atomic_long_add_return(amt, prot->memory_allocated); 1214 return page_counter_read(&sk->sk_cgrp->memory_allocated); 1215 } 1216 1217 return atomic_long_add_return(amt, prot->memory_allocated); 1218 } 1219 1220 static inline void 1221 sk_memory_allocated_sub(struct sock *sk, int amt) 1222 { 1223 struct proto *prot = sk->sk_prot; 1224 1225 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1226 memcg_memory_allocated_sub(sk->sk_cgrp, amt); 1227 1228 atomic_long_sub(amt, prot->memory_allocated); 1229 } 1230 1231 static inline void sk_sockets_allocated_dec(struct sock *sk) 1232 { 1233 struct proto *prot = sk->sk_prot; 1234 1235 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1236 struct cg_proto *cg_proto = sk->sk_cgrp; 1237 1238 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1239 percpu_counter_dec(&cg_proto->sockets_allocated); 1240 } 1241 1242 percpu_counter_dec(prot->sockets_allocated); 1243 } 1244 1245 static inline void sk_sockets_allocated_inc(struct sock *sk) 1246 { 1247 struct proto *prot = sk->sk_prot; 1248 1249 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 1250 struct cg_proto *cg_proto = sk->sk_cgrp; 1251 1252 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) 1253 percpu_counter_inc(&cg_proto->sockets_allocated); 1254 } 1255 1256 percpu_counter_inc(prot->sockets_allocated); 1257 } 1258 1259 static inline int 1260 sk_sockets_allocated_read_positive(struct sock *sk) 1261 { 1262 struct proto *prot = sk->sk_prot; 1263 1264 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) 1265 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); 1266 1267 return percpu_counter_read_positive(prot->sockets_allocated); 1268 } 1269 1270 static inline int 1271 proto_sockets_allocated_sum_positive(struct proto *prot) 1272 { 1273 return percpu_counter_sum_positive(prot->sockets_allocated); 1274 } 1275 1276 static inline long 1277 proto_memory_allocated(struct proto *prot) 1278 { 1279 return atomic_long_read(prot->memory_allocated); 1280 } 1281 1282 static inline bool 1283 proto_memory_pressure(struct proto *prot) 1284 { 1285 if (!prot->memory_pressure) 1286 return false; 1287 return !!*prot->memory_pressure; 1288 } 1289 1290 1291 #ifdef CONFIG_PROC_FS 1292 /* Called with local bh disabled */ 1293 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); 1294 int sock_prot_inuse_get(struct net *net, struct proto *proto); 1295 #else 1296 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, 1297 int inc) 1298 { 1299 } 1300 #endif 1301 1302 1303 /* With per-bucket locks this operation is not-atomic, so that 1304 * this version is not worse. 1305 */ 1306 static inline void __sk_prot_rehash(struct sock *sk) 1307 { 1308 sk->sk_prot->unhash(sk); 1309 sk->sk_prot->hash(sk); 1310 } 1311 1312 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); 1313 1314 /* About 10 seconds */ 1315 #define SOCK_DESTROY_TIME (10*HZ) 1316 1317 /* Sockets 0-1023 can't be bound to unless you are superuser */ 1318 #define PROT_SOCK 1024 1319 1320 #define SHUTDOWN_MASK 3 1321 #define RCV_SHUTDOWN 1 1322 #define SEND_SHUTDOWN 2 1323 1324 #define SOCK_SNDBUF_LOCK 1 1325 #define SOCK_RCVBUF_LOCK 2 1326 #define SOCK_BINDADDR_LOCK 4 1327 #define SOCK_BINDPORT_LOCK 8 1328 1329 struct socket_alloc { 1330 struct socket socket; 1331 struct inode vfs_inode; 1332 }; 1333 1334 static inline struct socket *SOCKET_I(struct inode *inode) 1335 { 1336 return &container_of(inode, struct socket_alloc, vfs_inode)->socket; 1337 } 1338 1339 static inline struct inode *SOCK_INODE(struct socket *socket) 1340 { 1341 return &container_of(socket, struct socket_alloc, socket)->vfs_inode; 1342 } 1343 1344 /* 1345 * Functions for memory accounting 1346 */ 1347 int __sk_mem_schedule(struct sock *sk, int size, int kind); 1348 void __sk_mem_reclaim(struct sock *sk, int amount); 1349 1350 #define SK_MEM_QUANTUM ((int)PAGE_SIZE) 1351 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) 1352 #define SK_MEM_SEND 0 1353 #define SK_MEM_RECV 1 1354 1355 static inline int sk_mem_pages(int amt) 1356 { 1357 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; 1358 } 1359 1360 static inline bool sk_has_account(struct sock *sk) 1361 { 1362 /* return true if protocol supports memory accounting */ 1363 return !!sk->sk_prot->memory_allocated; 1364 } 1365 1366 static inline bool sk_wmem_schedule(struct sock *sk, int size) 1367 { 1368 if (!sk_has_account(sk)) 1369 return true; 1370 return size <= sk->sk_forward_alloc || 1371 __sk_mem_schedule(sk, size, SK_MEM_SEND); 1372 } 1373 1374 static inline bool 1375 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) 1376 { 1377 if (!sk_has_account(sk)) 1378 return true; 1379 return size<= sk->sk_forward_alloc || 1380 __sk_mem_schedule(sk, size, SK_MEM_RECV) || 1381 skb_pfmemalloc(skb); 1382 } 1383 1384 static inline void sk_mem_reclaim(struct sock *sk) 1385 { 1386 if (!sk_has_account(sk)) 1387 return; 1388 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) 1389 __sk_mem_reclaim(sk, sk->sk_forward_alloc); 1390 } 1391 1392 static inline void sk_mem_reclaim_partial(struct sock *sk) 1393 { 1394 if (!sk_has_account(sk)) 1395 return; 1396 if (sk->sk_forward_alloc > SK_MEM_QUANTUM) 1397 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); 1398 } 1399 1400 static inline void sk_mem_charge(struct sock *sk, int size) 1401 { 1402 if (!sk_has_account(sk)) 1403 return; 1404 sk->sk_forward_alloc -= size; 1405 } 1406 1407 static inline void sk_mem_uncharge(struct sock *sk, int size) 1408 { 1409 if (!sk_has_account(sk)) 1410 return; 1411 sk->sk_forward_alloc += size; 1412 } 1413 1414 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 1415 { 1416 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1417 sk->sk_wmem_queued -= skb->truesize; 1418 sk_mem_uncharge(sk, skb->truesize); 1419 __kfree_skb(skb); 1420 } 1421 1422 /* Used by processes to "lock" a socket state, so that 1423 * interrupts and bottom half handlers won't change it 1424 * from under us. It essentially blocks any incoming 1425 * packets, so that we won't get any new data or any 1426 * packets that change the state of the socket. 1427 * 1428 * While locked, BH processing will add new packets to 1429 * the backlog queue. This queue is processed by the 1430 * owner of the socket lock right before it is released. 1431 * 1432 * Since ~2.3.5 it is also exclusive sleep lock serializing 1433 * accesses from user process context. 1434 */ 1435 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) 1436 1437 static inline void sock_release_ownership(struct sock *sk) 1438 { 1439 sk->sk_lock.owned = 0; 1440 } 1441 1442 /* 1443 * Macro so as to not evaluate some arguments when 1444 * lockdep is not enabled. 1445 * 1446 * Mark both the sk_lock and the sk_lock.slock as a 1447 * per-address-family lock class. 1448 */ 1449 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ 1450 do { \ 1451 sk->sk_lock.owned = 0; \ 1452 init_waitqueue_head(&sk->sk_lock.wq); \ 1453 spin_lock_init(&(sk)->sk_lock.slock); \ 1454 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ 1455 sizeof((sk)->sk_lock)); \ 1456 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ 1457 (skey), (sname)); \ 1458 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ 1459 } while (0) 1460 1461 void lock_sock_nested(struct sock *sk, int subclass); 1462 1463 static inline void lock_sock(struct sock *sk) 1464 { 1465 lock_sock_nested(sk, 0); 1466 } 1467 1468 void release_sock(struct sock *sk); 1469 1470 /* BH context may only use the following locking interface. */ 1471 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) 1472 #define bh_lock_sock_nested(__sk) \ 1473 spin_lock_nested(&((__sk)->sk_lock.slock), \ 1474 SINGLE_DEPTH_NESTING) 1475 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) 1476 1477 bool lock_sock_fast(struct sock *sk); 1478 /** 1479 * unlock_sock_fast - complement of lock_sock_fast 1480 * @sk: socket 1481 * @slow: slow mode 1482 * 1483 * fast unlock socket for user context. 1484 * If slow mode is on, we call regular release_sock() 1485 */ 1486 static inline void unlock_sock_fast(struct sock *sk, bool slow) 1487 { 1488 if (slow) 1489 release_sock(sk); 1490 else 1491 spin_unlock_bh(&sk->sk_lock.slock); 1492 } 1493 1494 1495 struct sock *sk_alloc(struct net *net, int family, gfp_t priority, 1496 struct proto *prot, int kern); 1497 void sk_free(struct sock *sk); 1498 void sk_destruct(struct sock *sk); 1499 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); 1500 1501 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, 1502 gfp_t priority); 1503 void sock_wfree(struct sk_buff *skb); 1504 void skb_orphan_partial(struct sk_buff *skb); 1505 void sock_rfree(struct sk_buff *skb); 1506 void sock_efree(struct sk_buff *skb); 1507 #ifdef CONFIG_INET 1508 void sock_edemux(struct sk_buff *skb); 1509 #else 1510 #define sock_edemux(skb) sock_efree(skb) 1511 #endif 1512 1513 int sock_setsockopt(struct socket *sock, int level, int op, 1514 char __user *optval, unsigned int optlen); 1515 1516 int sock_getsockopt(struct socket *sock, int level, int op, 1517 char __user *optval, int __user *optlen); 1518 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 1519 int noblock, int *errcode); 1520 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, 1521 unsigned long data_len, int noblock, 1522 int *errcode, int max_page_order); 1523 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); 1524 void sock_kfree_s(struct sock *sk, void *mem, int size); 1525 void sock_kzfree_s(struct sock *sk, void *mem, int size); 1526 void sk_send_sigurg(struct sock *sk); 1527 1528 /* 1529 * Functions to fill in entries in struct proto_ops when a protocol 1530 * does not implement a particular function. 1531 */ 1532 int sock_no_bind(struct socket *, struct sockaddr *, int); 1533 int sock_no_connect(struct socket *, struct sockaddr *, int, int); 1534 int sock_no_socketpair(struct socket *, struct socket *); 1535 int sock_no_accept(struct socket *, struct socket *, int); 1536 int sock_no_getname(struct socket *, struct sockaddr *, int *, int); 1537 unsigned int sock_no_poll(struct file *, struct socket *, 1538 struct poll_table_struct *); 1539 int sock_no_ioctl(struct socket *, unsigned int, unsigned long); 1540 int sock_no_listen(struct socket *, int); 1541 int sock_no_shutdown(struct socket *, int); 1542 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); 1543 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); 1544 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); 1545 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); 1546 int sock_no_mmap(struct file *file, struct socket *sock, 1547 struct vm_area_struct *vma); 1548 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, 1549 size_t size, int flags); 1550 1551 /* 1552 * Functions to fill in entries in struct proto_ops when a protocol 1553 * uses the inet style. 1554 */ 1555 int sock_common_getsockopt(struct socket *sock, int level, int optname, 1556 char __user *optval, int __user *optlen); 1557 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 1558 int flags); 1559 int sock_common_setsockopt(struct socket *sock, int level, int optname, 1560 char __user *optval, unsigned int optlen); 1561 int compat_sock_common_getsockopt(struct socket *sock, int level, 1562 int optname, char __user *optval, int __user *optlen); 1563 int compat_sock_common_setsockopt(struct socket *sock, int level, 1564 int optname, char __user *optval, unsigned int optlen); 1565 1566 void sk_common_release(struct sock *sk); 1567 1568 /* 1569 * Default socket callbacks and setup code 1570 */ 1571 1572 /* Initialise core socket variables */ 1573 void sock_init_data(struct socket *sock, struct sock *sk); 1574 1575 /* 1576 * Socket reference counting postulates. 1577 * 1578 * * Each user of socket SHOULD hold a reference count. 1579 * * Each access point to socket (an hash table bucket, reference from a list, 1580 * running timer, skb in flight MUST hold a reference count. 1581 * * When reference count hits 0, it means it will never increase back. 1582 * * When reference count hits 0, it means that no references from 1583 * outside exist to this socket and current process on current CPU 1584 * is last user and may/should destroy this socket. 1585 * * sk_free is called from any context: process, BH, IRQ. When 1586 * it is called, socket has no references from outside -> sk_free 1587 * may release descendant resources allocated by the socket, but 1588 * to the time when it is called, socket is NOT referenced by any 1589 * hash tables, lists etc. 1590 * * Packets, delivered from outside (from network or from another process) 1591 * and enqueued on receive/error queues SHOULD NOT grab reference count, 1592 * when they sit in queue. Otherwise, packets will leak to hole, when 1593 * socket is looked up by one cpu and unhasing is made by another CPU. 1594 * It is true for udp/raw, netlink (leak to receive and error queues), tcp 1595 * (leak to backlog). Packet socket does all the processing inside 1596 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets 1597 * use separate SMP lock, so that they are prone too. 1598 */ 1599 1600 /* Ungrab socket and destroy it, if it was the last reference. */ 1601 static inline void sock_put(struct sock *sk) 1602 { 1603 if (atomic_dec_and_test(&sk->sk_refcnt)) 1604 sk_free(sk); 1605 } 1606 /* Generic version of sock_put(), dealing with all sockets 1607 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) 1608 */ 1609 void sock_gen_put(struct sock *sk); 1610 1611 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); 1612 1613 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) 1614 { 1615 sk->sk_tx_queue_mapping = tx_queue; 1616 } 1617 1618 static inline void sk_tx_queue_clear(struct sock *sk) 1619 { 1620 sk->sk_tx_queue_mapping = -1; 1621 } 1622 1623 static inline int sk_tx_queue_get(const struct sock *sk) 1624 { 1625 return sk ? sk->sk_tx_queue_mapping : -1; 1626 } 1627 1628 static inline void sk_set_socket(struct sock *sk, struct socket *sock) 1629 { 1630 sk_tx_queue_clear(sk); 1631 sk->sk_socket = sock; 1632 } 1633 1634 static inline wait_queue_head_t *sk_sleep(struct sock *sk) 1635 { 1636 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); 1637 return &rcu_dereference_raw(sk->sk_wq)->wait; 1638 } 1639 /* Detach socket from process context. 1640 * Announce socket dead, detach it from wait queue and inode. 1641 * Note that parent inode held reference count on this struct sock, 1642 * we do not release it in this function, because protocol 1643 * probably wants some additional cleanups or even continuing 1644 * to work with this socket (TCP). 1645 */ 1646 static inline void sock_orphan(struct sock *sk) 1647 { 1648 write_lock_bh(&sk->sk_callback_lock); 1649 sock_set_flag(sk, SOCK_DEAD); 1650 sk_set_socket(sk, NULL); 1651 sk->sk_wq = NULL; 1652 write_unlock_bh(&sk->sk_callback_lock); 1653 } 1654 1655 static inline void sock_graft(struct sock *sk, struct socket *parent) 1656 { 1657 write_lock_bh(&sk->sk_callback_lock); 1658 sk->sk_wq = parent->wq; 1659 parent->sk = sk; 1660 sk_set_socket(sk, parent); 1661 security_sock_graft(sk, parent); 1662 write_unlock_bh(&sk->sk_callback_lock); 1663 } 1664 1665 kuid_t sock_i_uid(struct sock *sk); 1666 unsigned long sock_i_ino(struct sock *sk); 1667 1668 static inline void sk_set_txhash(struct sock *sk) 1669 { 1670 sk->sk_txhash = prandom_u32(); 1671 1672 if (unlikely(!sk->sk_txhash)) 1673 sk->sk_txhash = 1; 1674 } 1675 1676 static inline void sk_rethink_txhash(struct sock *sk) 1677 { 1678 if (sk->sk_txhash) 1679 sk_set_txhash(sk); 1680 } 1681 1682 static inline struct dst_entry * 1683 __sk_dst_get(struct sock *sk) 1684 { 1685 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || 1686 lockdep_is_held(&sk->sk_lock.slock)); 1687 } 1688 1689 static inline struct dst_entry * 1690 sk_dst_get(struct sock *sk) 1691 { 1692 struct dst_entry *dst; 1693 1694 rcu_read_lock(); 1695 dst = rcu_dereference(sk->sk_dst_cache); 1696 if (dst && !atomic_inc_not_zero(&dst->__refcnt)) 1697 dst = NULL; 1698 rcu_read_unlock(); 1699 return dst; 1700 } 1701 1702 static inline void dst_negative_advice(struct sock *sk) 1703 { 1704 struct dst_entry *ndst, *dst = __sk_dst_get(sk); 1705 1706 sk_rethink_txhash(sk); 1707 1708 if (dst && dst->ops->negative_advice) { 1709 ndst = dst->ops->negative_advice(dst); 1710 1711 if (ndst != dst) { 1712 rcu_assign_pointer(sk->sk_dst_cache, ndst); 1713 sk_tx_queue_clear(sk); 1714 } 1715 } 1716 } 1717 1718 static inline void 1719 __sk_dst_set(struct sock *sk, struct dst_entry *dst) 1720 { 1721 struct dst_entry *old_dst; 1722 1723 sk_tx_queue_clear(sk); 1724 /* 1725 * This can be called while sk is owned by the caller only, 1726 * with no state that can be checked in a rcu_dereference_check() cond 1727 */ 1728 old_dst = rcu_dereference_raw(sk->sk_dst_cache); 1729 rcu_assign_pointer(sk->sk_dst_cache, dst); 1730 dst_release(old_dst); 1731 } 1732 1733 static inline void 1734 sk_dst_set(struct sock *sk, struct dst_entry *dst) 1735 { 1736 struct dst_entry *old_dst; 1737 1738 sk_tx_queue_clear(sk); 1739 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); 1740 dst_release(old_dst); 1741 } 1742 1743 static inline void 1744 __sk_dst_reset(struct sock *sk) 1745 { 1746 __sk_dst_set(sk, NULL); 1747 } 1748 1749 static inline void 1750 sk_dst_reset(struct sock *sk) 1751 { 1752 sk_dst_set(sk, NULL); 1753 } 1754 1755 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); 1756 1757 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); 1758 1759 bool sk_mc_loop(struct sock *sk); 1760 1761 static inline bool sk_can_gso(const struct sock *sk) 1762 { 1763 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); 1764 } 1765 1766 void sk_setup_caps(struct sock *sk, struct dst_entry *dst); 1767 1768 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) 1769 { 1770 sk->sk_route_nocaps |= flags; 1771 sk->sk_route_caps &= ~flags; 1772 } 1773 1774 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, 1775 struct iov_iter *from, char *to, 1776 int copy, int offset) 1777 { 1778 if (skb->ip_summed == CHECKSUM_NONE) { 1779 __wsum csum = 0; 1780 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy) 1781 return -EFAULT; 1782 skb->csum = csum_block_add(skb->csum, csum, offset); 1783 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1784 if (copy_from_iter_nocache(to, copy, from) != copy) 1785 return -EFAULT; 1786 } else if (copy_from_iter(to, copy, from) != copy) 1787 return -EFAULT; 1788 1789 return 0; 1790 } 1791 1792 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, 1793 struct iov_iter *from, int copy) 1794 { 1795 int err, offset = skb->len; 1796 1797 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), 1798 copy, offset); 1799 if (err) 1800 __skb_trim(skb, offset); 1801 1802 return err; 1803 } 1804 1805 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, 1806 struct sk_buff *skb, 1807 struct page *page, 1808 int off, int copy) 1809 { 1810 int err; 1811 1812 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, 1813 copy, skb->len); 1814 if (err) 1815 return err; 1816 1817 skb->len += copy; 1818 skb->data_len += copy; 1819 skb->truesize += copy; 1820 sk->sk_wmem_queued += copy; 1821 sk_mem_charge(sk, copy); 1822 return 0; 1823 } 1824 1825 /** 1826 * sk_wmem_alloc_get - returns write allocations 1827 * @sk: socket 1828 * 1829 * Returns sk_wmem_alloc minus initial offset of one 1830 */ 1831 static inline int sk_wmem_alloc_get(const struct sock *sk) 1832 { 1833 return atomic_read(&sk->sk_wmem_alloc) - 1; 1834 } 1835 1836 /** 1837 * sk_rmem_alloc_get - returns read allocations 1838 * @sk: socket 1839 * 1840 * Returns sk_rmem_alloc 1841 */ 1842 static inline int sk_rmem_alloc_get(const struct sock *sk) 1843 { 1844 return atomic_read(&sk->sk_rmem_alloc); 1845 } 1846 1847 /** 1848 * sk_has_allocations - check if allocations are outstanding 1849 * @sk: socket 1850 * 1851 * Returns true if socket has write or read allocations 1852 */ 1853 static inline bool sk_has_allocations(const struct sock *sk) 1854 { 1855 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); 1856 } 1857 1858 /** 1859 * wq_has_sleeper - check if there are any waiting processes 1860 * @wq: struct socket_wq 1861 * 1862 * Returns true if socket_wq has waiting processes 1863 * 1864 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory 1865 * barrier call. They were added due to the race found within the tcp code. 1866 * 1867 * Consider following tcp code paths: 1868 * 1869 * CPU1 CPU2 1870 * 1871 * sys_select receive packet 1872 * ... ... 1873 * __add_wait_queue update tp->rcv_nxt 1874 * ... ... 1875 * tp->rcv_nxt check sock_def_readable 1876 * ... { 1877 * schedule rcu_read_lock(); 1878 * wq = rcu_dereference(sk->sk_wq); 1879 * if (wq && waitqueue_active(&wq->wait)) 1880 * wake_up_interruptible(&wq->wait) 1881 * ... 1882 * } 1883 * 1884 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay 1885 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 1886 * could then endup calling schedule and sleep forever if there are no more 1887 * data on the socket. 1888 * 1889 */ 1890 static inline bool wq_has_sleeper(struct socket_wq *wq) 1891 { 1892 /* We need to be sure we are in sync with the 1893 * add_wait_queue modifications to the wait queue. 1894 * 1895 * This memory barrier is paired in the sock_poll_wait. 1896 */ 1897 smp_mb(); 1898 return wq && waitqueue_active(&wq->wait); 1899 } 1900 1901 /** 1902 * sock_poll_wait - place memory barrier behind the poll_wait call. 1903 * @filp: file 1904 * @wait_address: socket wait queue 1905 * @p: poll_table 1906 * 1907 * See the comments in the wq_has_sleeper function. 1908 */ 1909 static inline void sock_poll_wait(struct file *filp, 1910 wait_queue_head_t *wait_address, poll_table *p) 1911 { 1912 if (!poll_does_not_wait(p) && wait_address) { 1913 poll_wait(filp, wait_address, p); 1914 /* We need to be sure we are in sync with the 1915 * socket flags modification. 1916 * 1917 * This memory barrier is paired in the wq_has_sleeper. 1918 */ 1919 smp_mb(); 1920 } 1921 } 1922 1923 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) 1924 { 1925 if (sk->sk_txhash) { 1926 skb->l4_hash = 1; 1927 skb->hash = sk->sk_txhash; 1928 } 1929 } 1930 1931 /* 1932 * Queue a received datagram if it will fit. Stream and sequenced 1933 * protocols can't normally use this as they need to fit buffers in 1934 * and play with them. 1935 * 1936 * Inlined as it's very short and called for pretty much every 1937 * packet ever received. 1938 */ 1939 1940 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) 1941 { 1942 skb_orphan(skb); 1943 skb->sk = sk; 1944 skb->destructor = sock_wfree; 1945 skb_set_hash_from_sk(skb, sk); 1946 /* 1947 * We used to take a refcount on sk, but following operation 1948 * is enough to guarantee sk_free() wont free this sock until 1949 * all in-flight packets are completed 1950 */ 1951 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1952 } 1953 1954 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 1955 { 1956 skb_orphan(skb); 1957 skb->sk = sk; 1958 skb->destructor = sock_rfree; 1959 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 1960 sk_mem_charge(sk, skb->truesize); 1961 } 1962 1963 void sk_reset_timer(struct sock *sk, struct timer_list *timer, 1964 unsigned long expires); 1965 1966 void sk_stop_timer(struct sock *sk, struct timer_list *timer); 1967 1968 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 1969 1970 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); 1971 struct sk_buff *sock_dequeue_err_skb(struct sock *sk); 1972 1973 /* 1974 * Recover an error report and clear atomically 1975 */ 1976 1977 static inline int sock_error(struct sock *sk) 1978 { 1979 int err; 1980 if (likely(!sk->sk_err)) 1981 return 0; 1982 err = xchg(&sk->sk_err, 0); 1983 return -err; 1984 } 1985 1986 static inline unsigned long sock_wspace(struct sock *sk) 1987 { 1988 int amt = 0; 1989 1990 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 1991 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1992 if (amt < 0) 1993 amt = 0; 1994 } 1995 return amt; 1996 } 1997 1998 static inline void sk_wake_async(struct sock *sk, int how, int band) 1999 { 2000 if (sock_flag(sk, SOCK_FASYNC)) 2001 sock_wake_async(sk->sk_socket, how, band); 2002 } 2003 2004 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might 2005 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. 2006 * Note: for send buffers, TCP works better if we can build two skbs at 2007 * minimum. 2008 */ 2009 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) 2010 2011 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) 2012 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE 2013 2014 static inline void sk_stream_moderate_sndbuf(struct sock *sk) 2015 { 2016 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { 2017 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); 2018 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); 2019 } 2020 } 2021 2022 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 2023 bool force_schedule); 2024 2025 /** 2026 * sk_page_frag - return an appropriate page_frag 2027 * @sk: socket 2028 * 2029 * If socket allocation mode allows current thread to sleep, it means its 2030 * safe to use the per task page_frag instead of the per socket one. 2031 */ 2032 static inline struct page_frag *sk_page_frag(struct sock *sk) 2033 { 2034 if (sk->sk_allocation & __GFP_WAIT) 2035 return ¤t->task_frag; 2036 2037 return &sk->sk_frag; 2038 } 2039 2040 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); 2041 2042 /* 2043 * Default write policy as shown to user space via poll/select/SIGIO 2044 */ 2045 static inline bool sock_writeable(const struct sock *sk) 2046 { 2047 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); 2048 } 2049 2050 static inline gfp_t gfp_any(void) 2051 { 2052 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; 2053 } 2054 2055 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) 2056 { 2057 return noblock ? 0 : sk->sk_rcvtimeo; 2058 } 2059 2060 static inline long sock_sndtimeo(const struct sock *sk, bool noblock) 2061 { 2062 return noblock ? 0 : sk->sk_sndtimeo; 2063 } 2064 2065 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) 2066 { 2067 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; 2068 } 2069 2070 /* Alas, with timeout socket operations are not restartable. 2071 * Compare this to poll(). 2072 */ 2073 static inline int sock_intr_errno(long timeo) 2074 { 2075 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; 2076 } 2077 2078 struct sock_skb_cb { 2079 u32 dropcount; 2080 }; 2081 2082 /* Store sock_skb_cb at the end of skb->cb[] so protocol families 2083 * using skb->cb[] would keep using it directly and utilize its 2084 * alignement guarantee. 2085 */ 2086 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \ 2087 sizeof(struct sock_skb_cb))) 2088 2089 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ 2090 SOCK_SKB_CB_OFFSET)) 2091 2092 #define sock_skb_cb_check_size(size) \ 2093 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) 2094 2095 static inline void 2096 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) 2097 { 2098 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops); 2099 } 2100 2101 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 2102 struct sk_buff *skb); 2103 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 2104 struct sk_buff *skb); 2105 2106 static inline void 2107 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 2108 { 2109 ktime_t kt = skb->tstamp; 2110 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); 2111 2112 /* 2113 * generate control messages if 2114 * - receive time stamping in software requested 2115 * - software time stamp available and wanted 2116 * - hardware time stamps available and wanted 2117 */ 2118 if (sock_flag(sk, SOCK_RCVTSTAMP) || 2119 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || 2120 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || 2121 (hwtstamps->hwtstamp.tv64 && 2122 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) 2123 __sock_recv_timestamp(msg, sk, skb); 2124 else 2125 sk->sk_stamp = kt; 2126 2127 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) 2128 __sock_recv_wifi_status(msg, sk, skb); 2129 } 2130 2131 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2132 struct sk_buff *skb); 2133 2134 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 2135 struct sk_buff *skb) 2136 { 2137 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ 2138 (1UL << SOCK_RCVTSTAMP)) 2139 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ 2140 SOF_TIMESTAMPING_RAW_HARDWARE) 2141 2142 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) 2143 __sock_recv_ts_and_drops(msg, sk, skb); 2144 else 2145 sk->sk_stamp = skb->tstamp; 2146 } 2147 2148 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); 2149 2150 /** 2151 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped 2152 * @sk: socket sending this packet 2153 * @tx_flags: completed with instructions for time stamping 2154 * 2155 * Note : callers should take care of initial *tx_flags value (usually 0) 2156 */ 2157 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 2158 { 2159 if (unlikely(sk->sk_tsflags)) 2160 __sock_tx_timestamp(sk, tx_flags); 2161 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) 2162 *tx_flags |= SKBTX_WIFI_STATUS; 2163 } 2164 2165 /** 2166 * sk_eat_skb - Release a skb if it is no longer needed 2167 * @sk: socket to eat this skb from 2168 * @skb: socket buffer to eat 2169 * 2170 * This routine must be called with interrupts disabled or with the socket 2171 * locked so that the sk_buff queue operation is ok. 2172 */ 2173 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) 2174 { 2175 __skb_unlink(skb, &sk->sk_receive_queue); 2176 __kfree_skb(skb); 2177 } 2178 2179 static inline 2180 struct net *sock_net(const struct sock *sk) 2181 { 2182 return read_pnet(&sk->sk_net); 2183 } 2184 2185 static inline 2186 void sock_net_set(struct sock *sk, struct net *net) 2187 { 2188 write_pnet(&sk->sk_net, net); 2189 } 2190 2191 static inline struct sock *skb_steal_sock(struct sk_buff *skb) 2192 { 2193 if (skb->sk) { 2194 struct sock *sk = skb->sk; 2195 2196 skb->destructor = NULL; 2197 skb->sk = NULL; 2198 return sk; 2199 } 2200 return NULL; 2201 } 2202 2203 /* This helper checks if a socket is a full socket, 2204 * ie _not_ a timewait or request socket. 2205 */ 2206 static inline bool sk_fullsock(const struct sock *sk) 2207 { 2208 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); 2209 } 2210 2211 void sock_enable_timestamp(struct sock *sk, int flag); 2212 int sock_get_timestamp(struct sock *, struct timeval __user *); 2213 int sock_get_timestampns(struct sock *, struct timespec __user *); 2214 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, 2215 int type); 2216 2217 bool sk_ns_capable(const struct sock *sk, 2218 struct user_namespace *user_ns, int cap); 2219 bool sk_capable(const struct sock *sk, int cap); 2220 bool sk_net_capable(const struct sock *sk, int cap); 2221 2222 extern __u32 sysctl_wmem_max; 2223 extern __u32 sysctl_rmem_max; 2224 2225 extern int sysctl_tstamp_allow_data; 2226 extern int sysctl_optmem_max; 2227 2228 extern __u32 sysctl_wmem_default; 2229 extern __u32 sysctl_rmem_default; 2230 2231 #endif /* _SOCK_H */ 2232
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.