~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/rdma/ib_verbs.h

Version: ~ [ linux-6.0-rc1 ] ~ [ linux-5.19.1 ] ~ [ linux-5.18.17 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.60 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.136 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.210 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.255 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.290 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.325 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
  2 /*
  3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
  4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
  5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
  6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
  7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
  8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
 10  */
 11 
 12 #ifndef IB_VERBS_H
 13 #define IB_VERBS_H
 14 
 15 #include <linux/ethtool.h>
 16 #include <linux/types.h>
 17 #include <linux/device.h>
 18 #include <linux/dma-mapping.h>
 19 #include <linux/kref.h>
 20 #include <linux/list.h>
 21 #include <linux/rwsem.h>
 22 #include <linux/workqueue.h>
 23 #include <linux/irq_poll.h>
 24 #include <uapi/linux/if_ether.h>
 25 #include <net/ipv6.h>
 26 #include <net/ip.h>
 27 #include <linux/string.h>
 28 #include <linux/slab.h>
 29 #include <linux/netdevice.h>
 30 #include <linux/refcount.h>
 31 #include <linux/if_link.h>
 32 #include <linux/atomic.h>
 33 #include <linux/mmu_notifier.h>
 34 #include <linux/uaccess.h>
 35 #include <linux/cgroup_rdma.h>
 36 #include <linux/irqflags.h>
 37 #include <linux/preempt.h>
 38 #include <linux/dim.h>
 39 #include <uapi/rdma/ib_user_verbs.h>
 40 #include <rdma/rdma_counter.h>
 41 #include <rdma/restrack.h>
 42 #include <rdma/signature.h>
 43 #include <uapi/rdma/rdma_user_ioctl.h>
 44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
 45 
 46 #define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
 47 
 48 struct ib_umem_odp;
 49 struct ib_uqp_object;
 50 struct ib_usrq_object;
 51 struct ib_uwq_object;
 52 struct rdma_cm_id;
 53 struct ib_port;
 54 struct hw_stats_device_data;
 55 
 56 extern struct workqueue_struct *ib_wq;
 57 extern struct workqueue_struct *ib_comp_wq;
 58 extern struct workqueue_struct *ib_comp_unbound_wq;
 59 
 60 struct ib_ucq_object;
 61 
 62 __printf(3, 4) __cold
 63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
 64                   const char *format, ...);
 65 __printf(2, 3) __cold
 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
 67 __printf(2, 3) __cold
 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
 69 __printf(2, 3) __cold
 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
 71 __printf(2, 3) __cold
 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
 73 __printf(2, 3) __cold
 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
 75 __printf(2, 3) __cold
 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
 77 __printf(2, 3) __cold
 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
 79 
 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
 81         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
 82 #define ibdev_dbg(__dev, format, args...)                       \
 83         dynamic_ibdev_dbg(__dev, format, ##args)
 84 #else
 85 __printf(2, 3) __cold
 86 static inline
 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
 88 #endif
 89 
 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
 91 do {                                                                    \
 92         static DEFINE_RATELIMIT_STATE(_rs,                              \
 93                                       DEFAULT_RATELIMIT_INTERVAL,       \
 94                                       DEFAULT_RATELIMIT_BURST);         \
 95         if (__ratelimit(&_rs))                                          \
 96                 ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
 97 } while (0)
 98 
 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100         ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102         ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104         ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106         ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108         ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110         ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112         ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113 
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118 do {                                                                    \
119         static DEFINE_RATELIMIT_STATE(_rs,                              \
120                                       DEFAULT_RATELIMIT_INTERVAL,       \
121                                       DEFAULT_RATELIMIT_BURST);         \
122         DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123         if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124                 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125                                     ##__VA_ARGS__);                     \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132 
133 union ib_gid {
134         u8      raw[16];
135         struct {
136                 __be64  subnet_prefix;
137                 __be64  interface_id;
138         } global;
139 };
140 
141 extern union ib_gid zgid;
142 
143 enum ib_gid_type {
144         IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145         IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146         IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147         IB_GID_TYPE_SIZE
148 };
149 
150 #define ROCE_V2_UDP_DPORT      4791
151 struct ib_gid_attr {
152         struct net_device __rcu *ndev;
153         struct ib_device        *device;
154         union ib_gid            gid;
155         enum ib_gid_type        gid_type;
156         u16                     index;
157         u32                     port_num;
158 };
159 
160 enum {
161         /* set the local administered indication */
162         IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
163 };
164 
165 enum rdma_transport_type {
166         RDMA_TRANSPORT_IB,
167         RDMA_TRANSPORT_IWARP,
168         RDMA_TRANSPORT_USNIC,
169         RDMA_TRANSPORT_USNIC_UDP,
170         RDMA_TRANSPORT_UNSPECIFIED,
171 };
172 
173 enum rdma_protocol_type {
174         RDMA_PROTOCOL_IB,
175         RDMA_PROTOCOL_IBOE,
176         RDMA_PROTOCOL_IWARP,
177         RDMA_PROTOCOL_USNIC_UDP
178 };
179 
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182 
183 enum rdma_network_type {
184         RDMA_NETWORK_IB,
185         RDMA_NETWORK_ROCE_V1,
186         RDMA_NETWORK_IPV4,
187         RDMA_NETWORK_IPV6
188 };
189 
190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192         if (network_type == RDMA_NETWORK_IPV4 ||
193             network_type == RDMA_NETWORK_IPV6)
194                 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195         else if (network_type == RDMA_NETWORK_ROCE_V1)
196                 return IB_GID_TYPE_ROCE;
197         else
198                 return IB_GID_TYPE_IB;
199 }
200 
201 static inline enum rdma_network_type
202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204         if (attr->gid_type == IB_GID_TYPE_IB)
205                 return RDMA_NETWORK_IB;
206 
207         if (attr->gid_type == IB_GID_TYPE_ROCE)
208                 return RDMA_NETWORK_ROCE_V1;
209 
210         if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211                 return RDMA_NETWORK_IPV4;
212         else
213                 return RDMA_NETWORK_IPV6;
214 }
215 
216 enum rdma_link_layer {
217         IB_LINK_LAYER_UNSPECIFIED,
218         IB_LINK_LAYER_INFINIBAND,
219         IB_LINK_LAYER_ETHERNET,
220 };
221 
222 enum ib_device_cap_flags {
223         IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
224         IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
225         IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
226         IB_DEVICE_RAW_MULTI                     = (1 << 3),
227         IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
228         IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
229         IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
230         IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
231         IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
232         /* Not in use, former INIT_TYPE         = (1 << 9),*/
233         IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
234         IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
235         IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
236         IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
237         IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
238 
239         /*
240          * This device supports a per-device lkey or stag that can be
241          * used without performing a memory registration for the local
242          * memory.  Note that ULPs should never check this flag, but
243          * instead of use the local_dma_lkey flag in the ib_pd structure,
244          * which will always contain a usable lkey.
245          */
246         IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
247         /* Reserved, old SEND_W_INV             = (1 << 16),*/
248         IB_DEVICE_MEM_WINDOW                    = (1 << 17),
249         /*
250          * Devices should set IB_DEVICE_UD_IP_SUM if they support
251          * insertion of UDP and TCP checksum on outgoing UD IPoIB
252          * messages and can verify the validity of checksum for
253          * incoming messages.  Setting this flag implies that the
254          * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
255          */
256         IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
257         IB_DEVICE_UD_TSO                        = (1 << 19),
258         IB_DEVICE_XRC                           = (1 << 20),
259 
260         /*
261          * This device supports the IB "base memory management extension",
262          * which includes support for fast registrations (IB_WR_REG_MR,
263          * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
264          * also be set by any iWarp device which must support FRs to comply
265          * to the iWarp verbs spec.  iWarp devices also support the
266          * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
267          * stag.
268          */
269         IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
270         IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
271         IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
272         IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
273         IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
274         /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
275         IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
276         /*
277          * Devices should set IB_DEVICE_CROSS_CHANNEL if they
278          * support execution of WQEs that involve synchronization
279          * of I/O operations with single completion queue managed
280          * by hardware.
281          */
282         IB_DEVICE_CROSS_CHANNEL                 = (1 << 27),
283         IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
284         IB_DEVICE_INTEGRITY_HANDOVER            = (1 << 30),
285         IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
286         IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
287         IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
288         /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
289         IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
290         IB_DEVICE_RDMA_NETDEV_OPA               = (1ULL << 35),
291         /* The device supports padding incoming writes to cacheline. */
292         IB_DEVICE_PCI_WRITE_END_PADDING         = (1ULL << 36),
293         IB_DEVICE_ALLOW_USER_UNREG              = (1ULL << 37),
294 };
295 
296 enum ib_atomic_cap {
297         IB_ATOMIC_NONE,
298         IB_ATOMIC_HCA,
299         IB_ATOMIC_GLOB
300 };
301 
302 enum ib_odp_general_cap_bits {
303         IB_ODP_SUPPORT          = 1 << 0,
304         IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
305 };
306 
307 enum ib_odp_transport_cap_bits {
308         IB_ODP_SUPPORT_SEND     = 1 << 0,
309         IB_ODP_SUPPORT_RECV     = 1 << 1,
310         IB_ODP_SUPPORT_WRITE    = 1 << 2,
311         IB_ODP_SUPPORT_READ     = 1 << 3,
312         IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
313         IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
314 };
315 
316 struct ib_odp_caps {
317         uint64_t general_caps;
318         struct {
319                 uint32_t  rc_odp_caps;
320                 uint32_t  uc_odp_caps;
321                 uint32_t  ud_odp_caps;
322                 uint32_t  xrc_odp_caps;
323         } per_transport_caps;
324 };
325 
326 struct ib_rss_caps {
327         /* Corresponding bit will be set if qp type from
328          * 'enum ib_qp_type' is supported, e.g.
329          * supported_qpts |= 1 << IB_QPT_UD
330          */
331         u32 supported_qpts;
332         u32 max_rwq_indirection_tables;
333         u32 max_rwq_indirection_table_size;
334 };
335 
336 enum ib_tm_cap_flags {
337         /*  Support tag matching with rendezvous offload for RC transport */
338         IB_TM_CAP_RNDV_RC = 1 << 0,
339 };
340 
341 struct ib_tm_caps {
342         /* Max size of RNDV header */
343         u32 max_rndv_hdr_size;
344         /* Max number of entries in tag matching list */
345         u32 max_num_tags;
346         /* From enum ib_tm_cap_flags */
347         u32 flags;
348         /* Max number of outstanding list operations */
349         u32 max_ops;
350         /* Max number of SGE in tag matching entry */
351         u32 max_sge;
352 };
353 
354 struct ib_cq_init_attr {
355         unsigned int    cqe;
356         u32             comp_vector;
357         u32             flags;
358 };
359 
360 enum ib_cq_attr_mask {
361         IB_CQ_MODERATE = 1 << 0,
362 };
363 
364 struct ib_cq_caps {
365         u16     max_cq_moderation_count;
366         u16     max_cq_moderation_period;
367 };
368 
369 struct ib_dm_mr_attr {
370         u64             length;
371         u64             offset;
372         u32             access_flags;
373 };
374 
375 struct ib_dm_alloc_attr {
376         u64     length;
377         u32     alignment;
378         u32     flags;
379 };
380 
381 struct ib_device_attr {
382         u64                     fw_ver;
383         __be64                  sys_image_guid;
384         u64                     max_mr_size;
385         u64                     page_size_cap;
386         u32                     vendor_id;
387         u32                     vendor_part_id;
388         u32                     hw_ver;
389         int                     max_qp;
390         int                     max_qp_wr;
391         u64                     device_cap_flags;
392         int                     max_send_sge;
393         int                     max_recv_sge;
394         int                     max_sge_rd;
395         int                     max_cq;
396         int                     max_cqe;
397         int                     max_mr;
398         int                     max_pd;
399         int                     max_qp_rd_atom;
400         int                     max_ee_rd_atom;
401         int                     max_res_rd_atom;
402         int                     max_qp_init_rd_atom;
403         int                     max_ee_init_rd_atom;
404         enum ib_atomic_cap      atomic_cap;
405         enum ib_atomic_cap      masked_atomic_cap;
406         int                     max_ee;
407         int                     max_rdd;
408         int                     max_mw;
409         int                     max_raw_ipv6_qp;
410         int                     max_raw_ethy_qp;
411         int                     max_mcast_grp;
412         int                     max_mcast_qp_attach;
413         int                     max_total_mcast_qp_attach;
414         int                     max_ah;
415         int                     max_srq;
416         int                     max_srq_wr;
417         int                     max_srq_sge;
418         unsigned int            max_fast_reg_page_list_len;
419         unsigned int            max_pi_fast_reg_page_list_len;
420         u16                     max_pkeys;
421         u8                      local_ca_ack_delay;
422         int                     sig_prot_cap;
423         int                     sig_guard_cap;
424         struct ib_odp_caps      odp_caps;
425         uint64_t                timestamp_mask;
426         uint64_t                hca_core_clock; /* in KHZ */
427         struct ib_rss_caps      rss_caps;
428         u32                     max_wq_type_rq;
429         u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
430         struct ib_tm_caps       tm_caps;
431         struct ib_cq_caps       cq_caps;
432         u64                     max_dm_size;
433         /* Max entries for sgl for optimized performance per READ */
434         u32                     max_sgl_rd;
435 };
436 
437 enum ib_mtu {
438         IB_MTU_256  = 1,
439         IB_MTU_512  = 2,
440         IB_MTU_1024 = 3,
441         IB_MTU_2048 = 4,
442         IB_MTU_4096 = 5
443 };
444 
445 enum opa_mtu {
446         OPA_MTU_8192 = 6,
447         OPA_MTU_10240 = 7
448 };
449 
450 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
451 {
452         switch (mtu) {
453         case IB_MTU_256:  return  256;
454         case IB_MTU_512:  return  512;
455         case IB_MTU_1024: return 1024;
456         case IB_MTU_2048: return 2048;
457         case IB_MTU_4096: return 4096;
458         default:          return -1;
459         }
460 }
461 
462 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
463 {
464         if (mtu >= 4096)
465                 return IB_MTU_4096;
466         else if (mtu >= 2048)
467                 return IB_MTU_2048;
468         else if (mtu >= 1024)
469                 return IB_MTU_1024;
470         else if (mtu >= 512)
471                 return IB_MTU_512;
472         else
473                 return IB_MTU_256;
474 }
475 
476 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
477 {
478         switch (mtu) {
479         case OPA_MTU_8192:
480                 return 8192;
481         case OPA_MTU_10240:
482                 return 10240;
483         default:
484                 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
485         }
486 }
487 
488 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
489 {
490         if (mtu >= 10240)
491                 return OPA_MTU_10240;
492         else if (mtu >= 8192)
493                 return OPA_MTU_8192;
494         else
495                 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
496 }
497 
498 enum ib_port_state {
499         IB_PORT_NOP             = 0,
500         IB_PORT_DOWN            = 1,
501         IB_PORT_INIT            = 2,
502         IB_PORT_ARMED           = 3,
503         IB_PORT_ACTIVE          = 4,
504         IB_PORT_ACTIVE_DEFER    = 5
505 };
506 
507 enum ib_port_phys_state {
508         IB_PORT_PHYS_STATE_SLEEP = 1,
509         IB_PORT_PHYS_STATE_POLLING = 2,
510         IB_PORT_PHYS_STATE_DISABLED = 3,
511         IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
512         IB_PORT_PHYS_STATE_LINK_UP = 5,
513         IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
514         IB_PORT_PHYS_STATE_PHY_TEST = 7,
515 };
516 
517 enum ib_port_width {
518         IB_WIDTH_1X     = 1,
519         IB_WIDTH_2X     = 16,
520         IB_WIDTH_4X     = 2,
521         IB_WIDTH_8X     = 4,
522         IB_WIDTH_12X    = 8
523 };
524 
525 static inline int ib_width_enum_to_int(enum ib_port_width width)
526 {
527         switch (width) {
528         case IB_WIDTH_1X:  return  1;
529         case IB_WIDTH_2X:  return  2;
530         case IB_WIDTH_4X:  return  4;
531         case IB_WIDTH_8X:  return  8;
532         case IB_WIDTH_12X: return 12;
533         default:          return -1;
534         }
535 }
536 
537 enum ib_port_speed {
538         IB_SPEED_SDR    = 1,
539         IB_SPEED_DDR    = 2,
540         IB_SPEED_QDR    = 4,
541         IB_SPEED_FDR10  = 8,
542         IB_SPEED_FDR    = 16,
543         IB_SPEED_EDR    = 32,
544         IB_SPEED_HDR    = 64,
545         IB_SPEED_NDR    = 128,
546 };
547 
548 /**
549  * struct rdma_hw_stats
550  * @lock - Mutex to protect parallel write access to lifespan and values
551  *    of counters, which are 64bits and not guaranteeed to be written
552  *    atomicaly on 32bits systems.
553  * @timestamp - Used by the core code to track when the last update was
554  * @lifespan - Used by the core code to determine how old the counters
555  *   should be before being updated again.  Stored in jiffies, defaults
556  *   to 10 milliseconds, drivers can override the default be specifying
557  *   their own value during their allocation routine.
558  * @name - Array of pointers to static names used for the counters in
559  *   directory.
560  * @num_counters - How many hardware counters there are.  If name is
561  *   shorter than this number, a kernel oops will result.  Driver authors
562  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
563  *   in their code to prevent this.
564  * @value - Array of u64 counters that are accessed by the sysfs code and
565  *   filled in by the drivers get_stats routine
566  */
567 struct rdma_hw_stats {
568         struct mutex    lock; /* Protect lifespan and values[] */
569         unsigned long   timestamp;
570         unsigned long   lifespan;
571         const char * const *names;
572         int             num_counters;
573         u64             value[];
574 };
575 
576 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
577 /**
578  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
579  *   for drivers.
580  * @names - Array of static const char *
581  * @num_counters - How many elements in array
582  * @lifespan - How many milliseconds between updates
583  */
584 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
585                 const char * const *names, int num_counters,
586                 unsigned long lifespan)
587 {
588         struct rdma_hw_stats *stats;
589 
590         stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
591                         GFP_KERNEL);
592         if (!stats)
593                 return NULL;
594         stats->names = names;
595         stats->num_counters = num_counters;
596         stats->lifespan = msecs_to_jiffies(lifespan);
597 
598         return stats;
599 }
600 
601 
602 /* Define bits for the various functionality this port needs to be supported by
603  * the core.
604  */
605 /* Management                           0x00000FFF */
606 #define RDMA_CORE_CAP_IB_MAD            0x00000001
607 #define RDMA_CORE_CAP_IB_SMI            0x00000002
608 #define RDMA_CORE_CAP_IB_CM             0x00000004
609 #define RDMA_CORE_CAP_IW_CM             0x00000008
610 #define RDMA_CORE_CAP_IB_SA             0x00000010
611 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
612 
613 /* Address format                       0x000FF000 */
614 #define RDMA_CORE_CAP_AF_IB             0x00001000
615 #define RDMA_CORE_CAP_ETH_AH            0x00002000
616 #define RDMA_CORE_CAP_OPA_AH            0x00004000
617 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
618 
619 /* Protocol                             0xFFF00000 */
620 #define RDMA_CORE_CAP_PROT_IB           0x00100000
621 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
622 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
623 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
624 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
625 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
626 
627 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
628                                         | RDMA_CORE_CAP_PROT_ROCE     \
629                                         | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
630 
631 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
632                                         | RDMA_CORE_CAP_IB_MAD \
633                                         | RDMA_CORE_CAP_IB_SMI \
634                                         | RDMA_CORE_CAP_IB_CM  \
635                                         | RDMA_CORE_CAP_IB_SA  \
636                                         | RDMA_CORE_CAP_AF_IB)
637 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
638                                         | RDMA_CORE_CAP_IB_MAD  \
639                                         | RDMA_CORE_CAP_IB_CM   \
640                                         | RDMA_CORE_CAP_AF_IB   \
641                                         | RDMA_CORE_CAP_ETH_AH)
642 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
643                                         (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
644                                         | RDMA_CORE_CAP_IB_MAD  \
645                                         | RDMA_CORE_CAP_IB_CM   \
646                                         | RDMA_CORE_CAP_AF_IB   \
647                                         | RDMA_CORE_CAP_ETH_AH)
648 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
649                                         | RDMA_CORE_CAP_IW_CM)
650 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
651                                         | RDMA_CORE_CAP_OPA_MAD)
652 
653 #define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
654 
655 #define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
656 
657 struct ib_port_attr {
658         u64                     subnet_prefix;
659         enum ib_port_state      state;
660         enum ib_mtu             max_mtu;
661         enum ib_mtu             active_mtu;
662         u32                     phys_mtu;
663         int                     gid_tbl_len;
664         unsigned int            ip_gids:1;
665         /* This is the value from PortInfo CapabilityMask, defined by IBA */
666         u32                     port_cap_flags;
667         u32                     max_msg_sz;
668         u32                     bad_pkey_cntr;
669         u32                     qkey_viol_cntr;
670         u16                     pkey_tbl_len;
671         u32                     sm_lid;
672         u32                     lid;
673         u8                      lmc;
674         u8                      max_vl_num;
675         u8                      sm_sl;
676         u8                      subnet_timeout;
677         u8                      init_type_reply;
678         u8                      active_width;
679         u16                     active_speed;
680         u8                      phys_state;
681         u16                     port_cap_flags2;
682 };
683 
684 enum ib_device_modify_flags {
685         IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
686         IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
687 };
688 
689 #define IB_DEVICE_NODE_DESC_MAX 64
690 
691 struct ib_device_modify {
692         u64     sys_image_guid;
693         char    node_desc[IB_DEVICE_NODE_DESC_MAX];
694 };
695 
696 enum ib_port_modify_flags {
697         IB_PORT_SHUTDOWN                = 1,
698         IB_PORT_INIT_TYPE               = (1<<2),
699         IB_PORT_RESET_QKEY_CNTR         = (1<<3),
700         IB_PORT_OPA_MASK_CHG            = (1<<4)
701 };
702 
703 struct ib_port_modify {
704         u32     set_port_cap_mask;
705         u32     clr_port_cap_mask;
706         u8      init_type;
707 };
708 
709 enum ib_event_type {
710         IB_EVENT_CQ_ERR,
711         IB_EVENT_QP_FATAL,
712         IB_EVENT_QP_REQ_ERR,
713         IB_EVENT_QP_ACCESS_ERR,
714         IB_EVENT_COMM_EST,
715         IB_EVENT_SQ_DRAINED,
716         IB_EVENT_PATH_MIG,
717         IB_EVENT_PATH_MIG_ERR,
718         IB_EVENT_DEVICE_FATAL,
719         IB_EVENT_PORT_ACTIVE,
720         IB_EVENT_PORT_ERR,
721         IB_EVENT_LID_CHANGE,
722         IB_EVENT_PKEY_CHANGE,
723         IB_EVENT_SM_CHANGE,
724         IB_EVENT_SRQ_ERR,
725         IB_EVENT_SRQ_LIMIT_REACHED,
726         IB_EVENT_QP_LAST_WQE_REACHED,
727         IB_EVENT_CLIENT_REREGISTER,
728         IB_EVENT_GID_CHANGE,
729         IB_EVENT_WQ_FATAL,
730 };
731 
732 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
733 
734 struct ib_event {
735         struct ib_device        *device;
736         union {
737                 struct ib_cq    *cq;
738                 struct ib_qp    *qp;
739                 struct ib_srq   *srq;
740                 struct ib_wq    *wq;
741                 u32             port_num;
742         } element;
743         enum ib_event_type      event;
744 };
745 
746 struct ib_event_handler {
747         struct ib_device *device;
748         void            (*handler)(struct ib_event_handler *, struct ib_event *);
749         struct list_head  list;
750 };
751 
752 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
753         do {                                                    \
754                 (_ptr)->device  = _device;                      \
755                 (_ptr)->handler = _handler;                     \
756                 INIT_LIST_HEAD(&(_ptr)->list);                  \
757         } while (0)
758 
759 struct ib_global_route {
760         const struct ib_gid_attr *sgid_attr;
761         union ib_gid    dgid;
762         u32             flow_label;
763         u8              sgid_index;
764         u8              hop_limit;
765         u8              traffic_class;
766 };
767 
768 struct ib_grh {
769         __be32          version_tclass_flow;
770         __be16          paylen;
771         u8              next_hdr;
772         u8              hop_limit;
773         union ib_gid    sgid;
774         union ib_gid    dgid;
775 };
776 
777 union rdma_network_hdr {
778         struct ib_grh ibgrh;
779         struct {
780                 /* The IB spec states that if it's IPv4, the header
781                  * is located in the last 20 bytes of the header.
782                  */
783                 u8              reserved[20];
784                 struct iphdr    roce4grh;
785         };
786 };
787 
788 #define IB_QPN_MASK             0xFFFFFF
789 
790 enum {
791         IB_MULTICAST_QPN = 0xffffff
792 };
793 
794 #define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
795 #define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
796 
797 enum ib_ah_flags {
798         IB_AH_GRH       = 1
799 };
800 
801 enum ib_rate {
802         IB_RATE_PORT_CURRENT = 0,
803         IB_RATE_2_5_GBPS = 2,
804         IB_RATE_5_GBPS   = 5,
805         IB_RATE_10_GBPS  = 3,
806         IB_RATE_20_GBPS  = 6,
807         IB_RATE_30_GBPS  = 4,
808         IB_RATE_40_GBPS  = 7,
809         IB_RATE_60_GBPS  = 8,
810         IB_RATE_80_GBPS  = 9,
811         IB_RATE_120_GBPS = 10,
812         IB_RATE_14_GBPS  = 11,
813         IB_RATE_56_GBPS  = 12,
814         IB_RATE_112_GBPS = 13,
815         IB_RATE_168_GBPS = 14,
816         IB_RATE_25_GBPS  = 15,
817         IB_RATE_100_GBPS = 16,
818         IB_RATE_200_GBPS = 17,
819         IB_RATE_300_GBPS = 18,
820         IB_RATE_28_GBPS  = 19,
821         IB_RATE_50_GBPS  = 20,
822         IB_RATE_400_GBPS = 21,
823         IB_RATE_600_GBPS = 22,
824 };
825 
826 /**
827  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
828  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
829  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
830  * @rate: rate to convert.
831  */
832 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
833 
834 /**
835  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
836  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
837  * @rate: rate to convert.
838  */
839 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
840 
841 
842 /**
843  * enum ib_mr_type - memory region type
844  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
845  *                            normal registration
846  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
847  *                            register any arbitrary sg lists (without
848  *                            the normal mr constraints - see
849  *                            ib_map_mr_sg)
850  * @IB_MR_TYPE_DM:            memory region that is used for device
851  *                            memory registration
852  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
853  *                            application
854  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
855  *                            without address translations (VA=PA)
856  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
857  *                            data integrity operations
858  */
859 enum ib_mr_type {
860         IB_MR_TYPE_MEM_REG,
861         IB_MR_TYPE_SG_GAPS,
862         IB_MR_TYPE_DM,
863         IB_MR_TYPE_USER,
864         IB_MR_TYPE_DMA,
865         IB_MR_TYPE_INTEGRITY,
866 };
867 
868 enum ib_mr_status_check {
869         IB_MR_CHECK_SIG_STATUS = 1,
870 };
871 
872 /**
873  * struct ib_mr_status - Memory region status container
874  *
875  * @fail_status: Bitmask of MR checks status. For each
876  *     failed check a corresponding status bit is set.
877  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
878  *     failure.
879  */
880 struct ib_mr_status {
881         u32                 fail_status;
882         struct ib_sig_err   sig_err;
883 };
884 
885 /**
886  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
887  * enum.
888  * @mult: multiple to convert.
889  */
890 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
891 
892 struct rdma_ah_init_attr {
893         struct rdma_ah_attr *ah_attr;
894         u32 flags;
895         struct net_device *xmit_slave;
896 };
897 
898 enum rdma_ah_attr_type {
899         RDMA_AH_ATTR_TYPE_UNDEFINED,
900         RDMA_AH_ATTR_TYPE_IB,
901         RDMA_AH_ATTR_TYPE_ROCE,
902         RDMA_AH_ATTR_TYPE_OPA,
903 };
904 
905 struct ib_ah_attr {
906         u16                     dlid;
907         u8                      src_path_bits;
908 };
909 
910 struct roce_ah_attr {
911         u8                      dmac[ETH_ALEN];
912 };
913 
914 struct opa_ah_attr {
915         u32                     dlid;
916         u8                      src_path_bits;
917         bool                    make_grd;
918 };
919 
920 struct rdma_ah_attr {
921         struct ib_global_route  grh;
922         u8                      sl;
923         u8                      static_rate;
924         u32                     port_num;
925         u8                      ah_flags;
926         enum rdma_ah_attr_type type;
927         union {
928                 struct ib_ah_attr ib;
929                 struct roce_ah_attr roce;
930                 struct opa_ah_attr opa;
931         };
932 };
933 
934 enum ib_wc_status {
935         IB_WC_SUCCESS,
936         IB_WC_LOC_LEN_ERR,
937         IB_WC_LOC_QP_OP_ERR,
938         IB_WC_LOC_EEC_OP_ERR,
939         IB_WC_LOC_PROT_ERR,
940         IB_WC_WR_FLUSH_ERR,
941         IB_WC_MW_BIND_ERR,
942         IB_WC_BAD_RESP_ERR,
943         IB_WC_LOC_ACCESS_ERR,
944         IB_WC_REM_INV_REQ_ERR,
945         IB_WC_REM_ACCESS_ERR,
946         IB_WC_REM_OP_ERR,
947         IB_WC_RETRY_EXC_ERR,
948         IB_WC_RNR_RETRY_EXC_ERR,
949         IB_WC_LOC_RDD_VIOL_ERR,
950         IB_WC_REM_INV_RD_REQ_ERR,
951         IB_WC_REM_ABORT_ERR,
952         IB_WC_INV_EECN_ERR,
953         IB_WC_INV_EEC_STATE_ERR,
954         IB_WC_FATAL_ERR,
955         IB_WC_RESP_TIMEOUT_ERR,
956         IB_WC_GENERAL_ERR
957 };
958 
959 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
960 
961 enum ib_wc_opcode {
962         IB_WC_SEND = IB_UVERBS_WC_SEND,
963         IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
964         IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
965         IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
966         IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
967         IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
968         IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
969         IB_WC_LSO = IB_UVERBS_WC_TSO,
970         IB_WC_REG_MR,
971         IB_WC_MASKED_COMP_SWAP,
972         IB_WC_MASKED_FETCH_ADD,
973 /*
974  * Set value of IB_WC_RECV so consumers can test if a completion is a
975  * receive by testing (opcode & IB_WC_RECV).
976  */
977         IB_WC_RECV                      = 1 << 7,
978         IB_WC_RECV_RDMA_WITH_IMM
979 };
980 
981 enum ib_wc_flags {
982         IB_WC_GRH               = 1,
983         IB_WC_WITH_IMM          = (1<<1),
984         IB_WC_WITH_INVALIDATE   = (1<<2),
985         IB_WC_IP_CSUM_OK        = (1<<3),
986         IB_WC_WITH_SMAC         = (1<<4),
987         IB_WC_WITH_VLAN         = (1<<5),
988         IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
989 };
990 
991 struct ib_wc {
992         union {
993                 u64             wr_id;
994                 struct ib_cqe   *wr_cqe;
995         };
996         enum ib_wc_status       status;
997         enum ib_wc_opcode       opcode;
998         u32                     vendor_err;
999         u32                     byte_len;
1000         struct ib_qp           *qp;
1001         union {
1002                 __be32          imm_data;
1003                 u32             invalidate_rkey;
1004         } ex;
1005         u32                     src_qp;
1006         u32                     slid;
1007         int                     wc_flags;
1008         u16                     pkey_index;
1009         u8                      sl;
1010         u8                      dlid_path_bits;
1011         u32 port_num; /* valid only for DR SMPs on switches */
1012         u8                      smac[ETH_ALEN];
1013         u16                     vlan_id;
1014         u8                      network_hdr_type;
1015 };
1016 
1017 enum ib_cq_notify_flags {
1018         IB_CQ_SOLICITED                 = 1 << 0,
1019         IB_CQ_NEXT_COMP                 = 1 << 1,
1020         IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1021         IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
1022 };
1023 
1024 enum ib_srq_type {
1025         IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1026         IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1027         IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1028 };
1029 
1030 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1031 {
1032         return srq_type == IB_SRQT_XRC ||
1033                srq_type == IB_SRQT_TM;
1034 }
1035 
1036 enum ib_srq_attr_mask {
1037         IB_SRQ_MAX_WR   = 1 << 0,
1038         IB_SRQ_LIMIT    = 1 << 1,
1039 };
1040 
1041 struct ib_srq_attr {
1042         u32     max_wr;
1043         u32     max_sge;
1044         u32     srq_limit;
1045 };
1046 
1047 struct ib_srq_init_attr {
1048         void                  (*event_handler)(struct ib_event *, void *);
1049         void                   *srq_context;
1050         struct ib_srq_attr      attr;
1051         enum ib_srq_type        srq_type;
1052 
1053         struct {
1054                 struct ib_cq   *cq;
1055                 union {
1056                         struct {
1057                                 struct ib_xrcd *xrcd;
1058                         } xrc;
1059 
1060                         struct {
1061                                 u32             max_num_tags;
1062                         } tag_matching;
1063                 };
1064         } ext;
1065 };
1066 
1067 struct ib_qp_cap {
1068         u32     max_send_wr;
1069         u32     max_recv_wr;
1070         u32     max_send_sge;
1071         u32     max_recv_sge;
1072         u32     max_inline_data;
1073 
1074         /*
1075          * Maximum number of rdma_rw_ctx structures in flight at a time.
1076          * ib_create_qp() will calculate the right amount of neededed WRs
1077          * and MRs based on this.
1078          */
1079         u32     max_rdma_ctxs;
1080 };
1081 
1082 enum ib_sig_type {
1083         IB_SIGNAL_ALL_WR,
1084         IB_SIGNAL_REQ_WR
1085 };
1086 
1087 enum ib_qp_type {
1088         /*
1089          * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1090          * here (and in that order) since the MAD layer uses them as
1091          * indices into a 2-entry table.
1092          */
1093         IB_QPT_SMI,
1094         IB_QPT_GSI,
1095 
1096         IB_QPT_RC = IB_UVERBS_QPT_RC,
1097         IB_QPT_UC = IB_UVERBS_QPT_UC,
1098         IB_QPT_UD = IB_UVERBS_QPT_UD,
1099         IB_QPT_RAW_IPV6,
1100         IB_QPT_RAW_ETHERTYPE,
1101         IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1102         IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1103         IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1104         IB_QPT_MAX,
1105         IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1106         /* Reserve a range for qp types internal to the low level driver.
1107          * These qp types will not be visible at the IB core layer, so the
1108          * IB_QPT_MAX usages should not be affected in the core layer
1109          */
1110         IB_QPT_RESERVED1 = 0x1000,
1111         IB_QPT_RESERVED2,
1112         IB_QPT_RESERVED3,
1113         IB_QPT_RESERVED4,
1114         IB_QPT_RESERVED5,
1115         IB_QPT_RESERVED6,
1116         IB_QPT_RESERVED7,
1117         IB_QPT_RESERVED8,
1118         IB_QPT_RESERVED9,
1119         IB_QPT_RESERVED10,
1120 };
1121 
1122 enum ib_qp_create_flags {
1123         IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1124         IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   =
1125                 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1126         IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1127         IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1128         IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1129         IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1130         IB_QP_CREATE_INTEGRITY_EN               = 1 << 6,
1131         IB_QP_CREATE_NETDEV_USE                 = 1 << 7,
1132         IB_QP_CREATE_SCATTER_FCS                =
1133                 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1134         IB_QP_CREATE_CVLAN_STRIPPING            =
1135                 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1136         IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1137         IB_QP_CREATE_PCI_WRITE_END_PADDING      =
1138                 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1139         /* reserve bits 26-31 for low level drivers' internal use */
1140         IB_QP_CREATE_RESERVED_START             = 1 << 26,
1141         IB_QP_CREATE_RESERVED_END               = 1 << 31,
1142 };
1143 
1144 /*
1145  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146  * callback to destroy the passed in QP.
1147  */
1148 
1149 struct ib_qp_init_attr {
1150         /* Consumer's event_handler callback must not block */
1151         void                  (*event_handler)(struct ib_event *, void *);
1152 
1153         void                   *qp_context;
1154         struct ib_cq           *send_cq;
1155         struct ib_cq           *recv_cq;
1156         struct ib_srq          *srq;
1157         struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1158         struct ib_qp_cap        cap;
1159         enum ib_sig_type        sq_sig_type;
1160         enum ib_qp_type         qp_type;
1161         u32                     create_flags;
1162 
1163         /*
1164          * Only needed for special QP types, or when using the RW API.
1165          */
1166         u32                     port_num;
1167         struct ib_rwq_ind_table *rwq_ind_tbl;
1168         u32                     source_qpn;
1169 };
1170 
1171 struct ib_qp_open_attr {
1172         void                  (*event_handler)(struct ib_event *, void *);
1173         void                   *qp_context;
1174         u32                     qp_num;
1175         enum ib_qp_type         qp_type;
1176 };
1177 
1178 enum ib_rnr_timeout {
1179         IB_RNR_TIMER_655_36 =  0,
1180         IB_RNR_TIMER_000_01 =  1,
1181         IB_RNR_TIMER_000_02 =  2,
1182         IB_RNR_TIMER_000_03 =  3,
1183         IB_RNR_TIMER_000_04 =  4,
1184         IB_RNR_TIMER_000_06 =  5,
1185         IB_RNR_TIMER_000_08 =  6,
1186         IB_RNR_TIMER_000_12 =  7,
1187         IB_RNR_TIMER_000_16 =  8,
1188         IB_RNR_TIMER_000_24 =  9,
1189         IB_RNR_TIMER_000_32 = 10,
1190         IB_RNR_TIMER_000_48 = 11,
1191         IB_RNR_TIMER_000_64 = 12,
1192         IB_RNR_TIMER_000_96 = 13,
1193         IB_RNR_TIMER_001_28 = 14,
1194         IB_RNR_TIMER_001_92 = 15,
1195         IB_RNR_TIMER_002_56 = 16,
1196         IB_RNR_TIMER_003_84 = 17,
1197         IB_RNR_TIMER_005_12 = 18,
1198         IB_RNR_TIMER_007_68 = 19,
1199         IB_RNR_TIMER_010_24 = 20,
1200         IB_RNR_TIMER_015_36 = 21,
1201         IB_RNR_TIMER_020_48 = 22,
1202         IB_RNR_TIMER_030_72 = 23,
1203         IB_RNR_TIMER_040_96 = 24,
1204         IB_RNR_TIMER_061_44 = 25,
1205         IB_RNR_TIMER_081_92 = 26,
1206         IB_RNR_TIMER_122_88 = 27,
1207         IB_RNR_TIMER_163_84 = 28,
1208         IB_RNR_TIMER_245_76 = 29,
1209         IB_RNR_TIMER_327_68 = 30,
1210         IB_RNR_TIMER_491_52 = 31
1211 };
1212 
1213 enum ib_qp_attr_mask {
1214         IB_QP_STATE                     = 1,
1215         IB_QP_CUR_STATE                 = (1<<1),
1216         IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1217         IB_QP_ACCESS_FLAGS              = (1<<3),
1218         IB_QP_PKEY_INDEX                = (1<<4),
1219         IB_QP_PORT                      = (1<<5),
1220         IB_QP_QKEY                      = (1<<6),
1221         IB_QP_AV                        = (1<<7),
1222         IB_QP_PATH_MTU                  = (1<<8),
1223         IB_QP_TIMEOUT                   = (1<<9),
1224         IB_QP_RETRY_CNT                 = (1<<10),
1225         IB_QP_RNR_RETRY                 = (1<<11),
1226         IB_QP_RQ_PSN                    = (1<<12),
1227         IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1228         IB_QP_ALT_PATH                  = (1<<14),
1229         IB_QP_MIN_RNR_TIMER             = (1<<15),
1230         IB_QP_SQ_PSN                    = (1<<16),
1231         IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1232         IB_QP_PATH_MIG_STATE            = (1<<18),
1233         IB_QP_CAP                       = (1<<19),
1234         IB_QP_DEST_QPN                  = (1<<20),
1235         IB_QP_RESERVED1                 = (1<<21),
1236         IB_QP_RESERVED2                 = (1<<22),
1237         IB_QP_RESERVED3                 = (1<<23),
1238         IB_QP_RESERVED4                 = (1<<24),
1239         IB_QP_RATE_LIMIT                = (1<<25),
1240 
1241         IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1242 };
1243 
1244 enum ib_qp_state {
1245         IB_QPS_RESET,
1246         IB_QPS_INIT,
1247         IB_QPS_RTR,
1248         IB_QPS_RTS,
1249         IB_QPS_SQD,
1250         IB_QPS_SQE,
1251         IB_QPS_ERR
1252 };
1253 
1254 enum ib_mig_state {
1255         IB_MIG_MIGRATED,
1256         IB_MIG_REARM,
1257         IB_MIG_ARMED
1258 };
1259 
1260 enum ib_mw_type {
1261         IB_MW_TYPE_1 = 1,
1262         IB_MW_TYPE_2 = 2
1263 };
1264 
1265 struct ib_qp_attr {
1266         enum ib_qp_state        qp_state;
1267         enum ib_qp_state        cur_qp_state;
1268         enum ib_mtu             path_mtu;
1269         enum ib_mig_state       path_mig_state;
1270         u32                     qkey;
1271         u32                     rq_psn;
1272         u32                     sq_psn;
1273         u32                     dest_qp_num;
1274         int                     qp_access_flags;
1275         struct ib_qp_cap        cap;
1276         struct rdma_ah_attr     ah_attr;
1277         struct rdma_ah_attr     alt_ah_attr;
1278         u16                     pkey_index;
1279         u16                     alt_pkey_index;
1280         u8                      en_sqd_async_notify;
1281         u8                      sq_draining;
1282         u8                      max_rd_atomic;
1283         u8                      max_dest_rd_atomic;
1284         u8                      min_rnr_timer;
1285         u32                     port_num;
1286         u8                      timeout;
1287         u8                      retry_cnt;
1288         u8                      rnr_retry;
1289         u32                     alt_port_num;
1290         u8                      alt_timeout;
1291         u32                     rate_limit;
1292         struct net_device       *xmit_slave;
1293 };
1294 
1295 enum ib_wr_opcode {
1296         /* These are shared with userspace */
1297         IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1298         IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1299         IB_WR_SEND = IB_UVERBS_WR_SEND,
1300         IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1301         IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1302         IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1303         IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1304         IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1305         IB_WR_LSO = IB_UVERBS_WR_TSO,
1306         IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1307         IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1308         IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1309         IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1310                 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1311         IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1312                 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313 
1314         /* These are kernel only and can not be issued by userspace */
1315         IB_WR_REG_MR = 0x20,
1316         IB_WR_REG_MR_INTEGRITY,
1317 
1318         /* reserve values for low level drivers' internal use.
1319          * These values will not be used at all in the ib core layer.
1320          */
1321         IB_WR_RESERVED1 = 0xf0,
1322         IB_WR_RESERVED2,
1323         IB_WR_RESERVED3,
1324         IB_WR_RESERVED4,
1325         IB_WR_RESERVED5,
1326         IB_WR_RESERVED6,
1327         IB_WR_RESERVED7,
1328         IB_WR_RESERVED8,
1329         IB_WR_RESERVED9,
1330         IB_WR_RESERVED10,
1331 };
1332 
1333 enum ib_send_flags {
1334         IB_SEND_FENCE           = 1,
1335         IB_SEND_SIGNALED        = (1<<1),
1336         IB_SEND_SOLICITED       = (1<<2),
1337         IB_SEND_INLINE          = (1<<3),
1338         IB_SEND_IP_CSUM         = (1<<4),
1339 
1340         /* reserve bits 26-31 for low level drivers' internal use */
1341         IB_SEND_RESERVED_START  = (1 << 26),
1342         IB_SEND_RESERVED_END    = (1 << 31),
1343 };
1344 
1345 struct ib_sge {
1346         u64     addr;
1347         u32     length;
1348         u32     lkey;
1349 };
1350 
1351 struct ib_cqe {
1352         void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1353 };
1354 
1355 struct ib_send_wr {
1356         struct ib_send_wr      *next;
1357         union {
1358                 u64             wr_id;
1359                 struct ib_cqe   *wr_cqe;
1360         };
1361         struct ib_sge          *sg_list;
1362         int                     num_sge;
1363         enum ib_wr_opcode       opcode;
1364         int                     send_flags;
1365         union {
1366                 __be32          imm_data;
1367                 u32             invalidate_rkey;
1368         } ex;
1369 };
1370 
1371 struct ib_rdma_wr {
1372         struct ib_send_wr       wr;
1373         u64                     remote_addr;
1374         u32                     rkey;
1375 };
1376 
1377 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1378 {
1379         return container_of(wr, struct ib_rdma_wr, wr);
1380 }
1381 
1382 struct ib_atomic_wr {
1383         struct ib_send_wr       wr;
1384         u64                     remote_addr;
1385         u64                     compare_add;
1386         u64                     swap;
1387         u64                     compare_add_mask;
1388         u64                     swap_mask;
1389         u32                     rkey;
1390 };
1391 
1392 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1393 {
1394         return container_of(wr, struct ib_atomic_wr, wr);
1395 }
1396 
1397 struct ib_ud_wr {
1398         struct ib_send_wr       wr;
1399         struct ib_ah            *ah;
1400         void                    *header;
1401         int                     hlen;
1402         int                     mss;
1403         u32                     remote_qpn;
1404         u32                     remote_qkey;
1405         u16                     pkey_index; /* valid for GSI only */
1406         u32                     port_num; /* valid for DR SMPs on switch only */
1407 };
1408 
1409 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1410 {
1411         return container_of(wr, struct ib_ud_wr, wr);
1412 }
1413 
1414 struct ib_reg_wr {
1415         struct ib_send_wr       wr;
1416         struct ib_mr            *mr;
1417         u32                     key;
1418         int                     access;
1419 };
1420 
1421 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1422 {
1423         return container_of(wr, struct ib_reg_wr, wr);
1424 }
1425 
1426 struct ib_recv_wr {
1427         struct ib_recv_wr      *next;
1428         union {
1429                 u64             wr_id;
1430                 struct ib_cqe   *wr_cqe;
1431         };
1432         struct ib_sge          *sg_list;
1433         int                     num_sge;
1434 };
1435 
1436 enum ib_access_flags {
1437         IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1438         IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1439         IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1440         IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1441         IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1442         IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1443         IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1444         IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1445         IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1446 
1447         IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1448         IB_ACCESS_SUPPORTED =
1449                 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1450 };
1451 
1452 /*
1453  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454  * are hidden here instead of a uapi header!
1455  */
1456 enum ib_mr_rereg_flags {
1457         IB_MR_REREG_TRANS       = 1,
1458         IB_MR_REREG_PD          = (1<<1),
1459         IB_MR_REREG_ACCESS      = (1<<2),
1460         IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1461 };
1462 
1463 struct ib_umem;
1464 
1465 enum rdma_remove_reason {
1466         /*
1467          * Userspace requested uobject deletion or initial try
1468          * to remove uobject via cleanup. Call could fail
1469          */
1470         RDMA_REMOVE_DESTROY,
1471         /* Context deletion. This call should delete the actual object itself */
1472         RDMA_REMOVE_CLOSE,
1473         /* Driver is being hot-unplugged. This call should delete the actual object itself */
1474         RDMA_REMOVE_DRIVER_REMOVE,
1475         /* uobj is being cleaned-up before being committed */
1476         RDMA_REMOVE_ABORT,
1477         /* The driver failed to destroy the uobject and is being disconnected */
1478         RDMA_REMOVE_DRIVER_FAILURE,
1479 };
1480 
1481 struct ib_rdmacg_object {
1482 #ifdef CONFIG_CGROUP_RDMA
1483         struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1484 #endif
1485 };
1486 
1487 struct ib_ucontext {
1488         struct ib_device       *device;
1489         struct ib_uverbs_file  *ufile;
1490 
1491         struct ib_rdmacg_object cg_obj;
1492         /*
1493          * Implementation details of the RDMA core, don't use in drivers:
1494          */
1495         struct rdma_restrack_entry res;
1496         struct xarray mmap_xa;
1497 };
1498 
1499 struct ib_uobject {
1500         u64                     user_handle;    /* handle given to us by userspace */
1501         /* ufile & ucontext owning this object */
1502         struct ib_uverbs_file  *ufile;
1503         /* FIXME, save memory: ufile->context == context */
1504         struct ib_ucontext     *context;        /* associated user context */
1505         void                   *object;         /* containing object */
1506         struct list_head        list;           /* link to context's list */
1507         struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1508         int                     id;             /* index into kernel idr */
1509         struct kref             ref;
1510         atomic_t                usecnt;         /* protects exclusive access */
1511         struct rcu_head         rcu;            /* kfree_rcu() overhead */
1512 
1513         const struct uverbs_api_object *uapi_object;
1514 };
1515 
1516 struct ib_udata {
1517         const void __user *inbuf;
1518         void __user *outbuf;
1519         size_t       inlen;
1520         size_t       outlen;
1521 };
1522 
1523 struct ib_pd {
1524         u32                     local_dma_lkey;
1525         u32                     flags;
1526         struct ib_device       *device;
1527         struct ib_uobject      *uobject;
1528         atomic_t                usecnt; /* count all resources */
1529 
1530         u32                     unsafe_global_rkey;
1531 
1532         /*
1533          * Implementation details of the RDMA core, don't use in drivers:
1534          */
1535         struct ib_mr           *__internal_mr;
1536         struct rdma_restrack_entry res;
1537 };
1538 
1539 struct ib_xrcd {
1540         struct ib_device       *device;
1541         atomic_t                usecnt; /* count all exposed resources */
1542         struct inode           *inode;
1543         struct rw_semaphore     tgt_qps_rwsem;
1544         struct xarray           tgt_qps;
1545 };
1546 
1547 struct ib_ah {
1548         struct ib_device        *device;
1549         struct ib_pd            *pd;
1550         struct ib_uobject       *uobject;
1551         const struct ib_gid_attr *sgid_attr;
1552         enum rdma_ah_attr_type  type;
1553 };
1554 
1555 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1556 
1557 enum ib_poll_context {
1558         IB_POLL_SOFTIRQ,           /* poll from softirq context */
1559         IB_POLL_WORKQUEUE,         /* poll from workqueue */
1560         IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1561         IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1562 
1563         IB_POLL_DIRECT,            /* caller context, no hw completions */
1564 };
1565 
1566 struct ib_cq {
1567         struct ib_device       *device;
1568         struct ib_ucq_object   *uobject;
1569         ib_comp_handler         comp_handler;
1570         void                  (*event_handler)(struct ib_event *, void *);
1571         void                   *cq_context;
1572         int                     cqe;
1573         unsigned int            cqe_used;
1574         atomic_t                usecnt; /* count number of work queues */
1575         enum ib_poll_context    poll_ctx;
1576         struct ib_wc            *wc;
1577         struct list_head        pool_entry;
1578         union {
1579                 struct irq_poll         iop;
1580                 struct work_struct      work;
1581         };
1582         struct workqueue_struct *comp_wq;
1583         struct dim *dim;
1584 
1585         /* updated only by trace points */
1586         ktime_t timestamp;
1587         u8 interrupt:1;
1588         u8 shared:1;
1589         unsigned int comp_vector;
1590 
1591         /*
1592          * Implementation details of the RDMA core, don't use in drivers:
1593          */
1594         struct rdma_restrack_entry res;
1595 };
1596 
1597 struct ib_srq {
1598         struct ib_device       *device;
1599         struct ib_pd           *pd;
1600         struct ib_usrq_object  *uobject;
1601         void                  (*event_handler)(struct ib_event *, void *);
1602         void                   *srq_context;
1603         enum ib_srq_type        srq_type;
1604         atomic_t                usecnt;
1605 
1606         struct {
1607                 struct ib_cq   *cq;
1608                 union {
1609                         struct {
1610                                 struct ib_xrcd *xrcd;
1611                                 u32             srq_num;
1612                         } xrc;
1613                 };
1614         } ext;
1615 
1616         /*
1617          * Implementation details of the RDMA core, don't use in drivers:
1618          */
1619         struct rdma_restrack_entry res;
1620 };
1621 
1622 enum ib_raw_packet_caps {
1623         /* Strip cvlan from incoming packet and report it in the matching work
1624          * completion is supported.
1625          */
1626         IB_RAW_PACKET_CAP_CVLAN_STRIPPING       = (1 << 0),
1627         /* Scatter FCS field of an incoming packet to host memory is supported.
1628          */
1629         IB_RAW_PACKET_CAP_SCATTER_FCS           = (1 << 1),
1630         /* Checksum offloads are supported (for both send and receive). */
1631         IB_RAW_PACKET_CAP_IP_CSUM               = (1 << 2),
1632         /* When a packet is received for an RQ with no receive WQEs, the
1633          * packet processing is delayed.
1634          */
1635         IB_RAW_PACKET_CAP_DELAY_DROP            = (1 << 3),
1636 };
1637 
1638 enum ib_wq_type {
1639         IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1640 };
1641 
1642 enum ib_wq_state {
1643         IB_WQS_RESET,
1644         IB_WQS_RDY,
1645         IB_WQS_ERR
1646 };
1647 
1648 struct ib_wq {
1649         struct ib_device       *device;
1650         struct ib_uwq_object   *uobject;
1651         void                *wq_context;
1652         void                (*event_handler)(struct ib_event *, void *);
1653         struct ib_pd           *pd;
1654         struct ib_cq           *cq;
1655         u32             wq_num;
1656         enum ib_wq_state       state;
1657         enum ib_wq_type wq_type;
1658         atomic_t                usecnt;
1659 };
1660 
1661 enum ib_wq_flags {
1662         IB_WQ_FLAGS_CVLAN_STRIPPING     = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1663         IB_WQ_FLAGS_SCATTER_FCS         = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1664         IB_WQ_FLAGS_DELAY_DROP          = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1665         IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1666                                 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1667 };
1668 
1669 struct ib_wq_init_attr {
1670         void                   *wq_context;
1671         enum ib_wq_type wq_type;
1672         u32             max_wr;
1673         u32             max_sge;
1674         struct  ib_cq          *cq;
1675         void                (*event_handler)(struct ib_event *, void *);
1676         u32             create_flags; /* Use enum ib_wq_flags */
1677 };
1678 
1679 enum ib_wq_attr_mask {
1680         IB_WQ_STATE             = 1 << 0,
1681         IB_WQ_CUR_STATE         = 1 << 1,
1682         IB_WQ_FLAGS             = 1 << 2,
1683 };
1684 
1685 struct ib_wq_attr {
1686         enum    ib_wq_state     wq_state;
1687         enum    ib_wq_state     curr_wq_state;
1688         u32                     flags; /* Use enum ib_wq_flags */
1689         u32                     flags_mask; /* Use enum ib_wq_flags */
1690 };
1691 
1692 struct ib_rwq_ind_table {
1693         struct ib_device        *device;
1694         struct ib_uobject      *uobject;
1695         atomic_t                usecnt;
1696         u32             ind_tbl_num;
1697         u32             log_ind_tbl_size;
1698         struct ib_wq    **ind_tbl;
1699 };
1700 
1701 struct ib_rwq_ind_table_init_attr {
1702         u32             log_ind_tbl_size;
1703         /* Each entry is a pointer to Receive Work Queue */
1704         struct ib_wq    **ind_tbl;
1705 };
1706 
1707 enum port_pkey_state {
1708         IB_PORT_PKEY_NOT_VALID = 0,
1709         IB_PORT_PKEY_VALID = 1,
1710         IB_PORT_PKEY_LISTED = 2,
1711 };
1712 
1713 struct ib_qp_security;
1714 
1715 struct ib_port_pkey {
1716         enum port_pkey_state    state;
1717         u16                     pkey_index;
1718         u32                     port_num;
1719         struct list_head        qp_list;
1720         struct list_head        to_error_list;
1721         struct ib_qp_security  *sec;
1722 };
1723 
1724 struct ib_ports_pkeys {
1725         struct ib_port_pkey     main;
1726         struct ib_port_pkey     alt;
1727 };
1728 
1729 struct ib_qp_security {
1730         struct ib_qp           *qp;
1731         struct ib_device       *dev;
1732         /* Hold this mutex when changing port and pkey settings. */
1733         struct mutex            mutex;
1734         struct ib_ports_pkeys  *ports_pkeys;
1735         /* A list of all open shared QP handles.  Required to enforce security
1736          * properly for all users of a shared QP.
1737          */
1738         struct list_head        shared_qp_list;
1739         void                   *security;
1740         bool                    destroying;
1741         atomic_t                error_list_count;
1742         struct completion       error_complete;
1743         int                     error_comps_pending;
1744 };
1745 
1746 /*
1747  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1748  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1749  */
1750 struct ib_qp {
1751         struct ib_device       *device;
1752         struct ib_pd           *pd;
1753         struct ib_cq           *send_cq;
1754         struct ib_cq           *recv_cq;
1755         spinlock_t              mr_lock;
1756         int                     mrs_used;
1757         struct list_head        rdma_mrs;
1758         struct list_head        sig_mrs;
1759         struct ib_srq          *srq;
1760         struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1761         struct list_head        xrcd_list;
1762 
1763         /* count times opened, mcast attaches, flow attaches */
1764         atomic_t                usecnt;
1765         struct list_head        open_list;
1766         struct ib_qp           *real_qp;
1767         struct ib_uqp_object   *uobject;
1768         void                  (*event_handler)(struct ib_event *, void *);
1769         void                   *qp_context;
1770         /* sgid_attrs associated with the AV's */
1771         const struct ib_gid_attr *av_sgid_attr;
1772         const struct ib_gid_attr *alt_path_sgid_attr;
1773         u32                     qp_num;
1774         u32                     max_write_sge;
1775         u32                     max_read_sge;
1776         enum ib_qp_type         qp_type;
1777         struct ib_rwq_ind_table *rwq_ind_tbl;
1778         struct ib_qp_security  *qp_sec;
1779         u32                     port;
1780 
1781         bool                    integrity_en;
1782         /*
1783          * Implementation details of the RDMA core, don't use in drivers:
1784          */
1785         struct rdma_restrack_entry     res;
1786 
1787         /* The counter the qp is bind to */
1788         struct rdma_counter    *counter;
1789 };
1790 
1791 struct ib_dm {
1792         struct ib_device  *device;
1793         u32                length;
1794         u32                flags;
1795         struct ib_uobject *uobject;
1796         atomic_t           usecnt;
1797 };
1798 
1799 struct ib_mr {
1800         struct ib_device  *device;
1801         struct ib_pd      *pd;
1802         u32                lkey;
1803         u32                rkey;
1804         u64                iova;
1805         u64                length;
1806         unsigned int       page_size;
1807         enum ib_mr_type    type;
1808         bool               need_inval;
1809         union {
1810                 struct ib_uobject       *uobject;       /* user */
1811                 struct list_head        qp_entry;       /* FR */
1812         };
1813 
1814         struct ib_dm      *dm;
1815         struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1816         /*
1817          * Implementation details of the RDMA core, don't use in drivers:
1818          */
1819         struct rdma_restrack_entry res;
1820 };
1821 
1822 struct ib_mw {
1823         struct ib_device        *device;
1824         struct ib_pd            *pd;
1825         struct ib_uobject       *uobject;
1826         u32                     rkey;
1827         enum ib_mw_type         type;
1828 };
1829 
1830 /* Supported steering options */
1831 enum ib_flow_attr_type {
1832         /* steering according to rule specifications */
1833         IB_FLOW_ATTR_NORMAL             = 0x0,
1834         /* default unicast and multicast rule -
1835          * receive all Eth traffic which isn't steered to any QP
1836          */
1837         IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1838         /* default multicast rule -
1839          * receive all Eth multicast traffic which isn't steered to any QP
1840          */
1841         IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1842         /* sniffer rule - receive all port traffic */
1843         IB_FLOW_ATTR_SNIFFER            = 0x3
1844 };
1845 
1846 /* Supported steering header types */
1847 enum ib_flow_spec_type {
1848         /* L2 headers*/
1849         IB_FLOW_SPEC_ETH                = 0x20,
1850         IB_FLOW_SPEC_IB                 = 0x22,
1851         /* L3 header*/
1852         IB_FLOW_SPEC_IPV4               = 0x30,
1853         IB_FLOW_SPEC_IPV6               = 0x31,
1854         IB_FLOW_SPEC_ESP                = 0x34,
1855         /* L4 headers*/
1856         IB_FLOW_SPEC_TCP                = 0x40,
1857         IB_FLOW_SPEC_UDP                = 0x41,
1858         IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1859         IB_FLOW_SPEC_GRE                = 0x51,
1860         IB_FLOW_SPEC_MPLS               = 0x60,
1861         IB_FLOW_SPEC_INNER              = 0x100,
1862         /* Actions */
1863         IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1864         IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1865         IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1866         IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1867 };
1868 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1869 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870 
1871 enum ib_flow_flags {
1872         IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1873         IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1874         IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1875 };
1876 
1877 struct ib_flow_eth_filter {
1878         u8      dst_mac[6];
1879         u8      src_mac[6];
1880         __be16  ether_type;
1881         __be16  vlan_tag;
1882         /* Must be last */
1883         u8      real_sz[];
1884 };
1885 
1886 struct ib_flow_spec_eth {
1887         u32                       type;
1888         u16                       size;
1889         struct ib_flow_eth_filter val;
1890         struct ib_flow_eth_filter mask;
1891 };
1892 
1893 struct ib_flow_ib_filter {
1894         __be16 dlid;
1895         __u8   sl;
1896         /* Must be last */
1897         u8      real_sz[];
1898 };
1899 
1900 struct ib_flow_spec_ib {
1901         u32                      type;
1902         u16                      size;
1903         struct ib_flow_ib_filter val;
1904         struct ib_flow_ib_filter mask;
1905 };
1906 
1907 /* IPv4 header flags */
1908 enum ib_ipv4_flags {
1909         IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1910         IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1911                                     last have this flag set */
1912 };
1913 
1914 struct ib_flow_ipv4_filter {
1915         __be32  src_ip;
1916         __be32  dst_ip;
1917         u8      proto;
1918         u8      tos;
1919         u8      ttl;
1920         u8      flags;
1921         /* Must be last */
1922         u8      real_sz[];
1923 };
1924 
1925 struct ib_flow_spec_ipv4 {
1926         u32                        type;
1927         u16                        size;
1928         struct ib_flow_ipv4_filter val;
1929         struct ib_flow_ipv4_filter mask;
1930 };
1931 
1932 struct ib_flow_ipv6_filter {
1933         u8      src_ip[16];
1934         u8      dst_ip[16];
1935         __be32  flow_label;
1936         u8      next_hdr;
1937         u8      traffic_class;
1938         u8      hop_limit;
1939         /* Must be last */
1940         u8      real_sz[];
1941 };
1942 
1943 struct ib_flow_spec_ipv6 {
1944         u32                        type;
1945         u16                        size;
1946         struct ib_flow_ipv6_filter val;
1947         struct ib_flow_ipv6_filter mask;
1948 };
1949 
1950 struct ib_flow_tcp_udp_filter {
1951         __be16  dst_port;
1952         __be16  src_port;
1953         /* Must be last */
1954         u8      real_sz[];
1955 };
1956 
1957 struct ib_flow_spec_tcp_udp {
1958         u32                           type;
1959         u16                           size;
1960         struct ib_flow_tcp_udp_filter val;
1961         struct ib_flow_tcp_udp_filter mask;
1962 };
1963 
1964 struct ib_flow_tunnel_filter {
1965         __be32  tunnel_id;
1966         u8      real_sz[];
1967 };
1968 
1969 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1970  * the tunnel_id from val has the vni value
1971  */
1972 struct ib_flow_spec_tunnel {
1973         u32                           type;
1974         u16                           size;
1975         struct ib_flow_tunnel_filter  val;
1976         struct ib_flow_tunnel_filter  mask;
1977 };
1978 
1979 struct ib_flow_esp_filter {
1980         __be32  spi;
1981         __be32  seq;
1982         /* Must be last */
1983         u8      real_sz[];
1984 };
1985 
1986 struct ib_flow_spec_esp {
1987         u32                           type;
1988         u16                           size;
1989         struct ib_flow_esp_filter     val;
1990         struct ib_flow_esp_filter     mask;
1991 };
1992 
1993 struct ib_flow_gre_filter {
1994         __be16 c_ks_res0_ver;
1995         __be16 protocol;
1996         __be32 key;
1997         /* Must be last */
1998         u8      real_sz[];
1999 };
2000 
2001 struct ib_flow_spec_gre {
2002         u32                           type;
2003         u16                           size;
2004         struct ib_flow_gre_filter     val;
2005         struct ib_flow_gre_filter     mask;
2006 };
2007 
2008 struct ib_flow_mpls_filter {
2009         __be32 tag;
2010         /* Must be last */
2011         u8      real_sz[];
2012 };
2013 
2014 struct ib_flow_spec_mpls {
2015         u32                           type;
2016         u16                           size;
2017         struct ib_flow_mpls_filter     val;
2018         struct ib_flow_mpls_filter     mask;
2019 };
2020 
2021 struct ib_flow_spec_action_tag {
2022         enum ib_flow_spec_type        type;
2023         u16                           size;
2024         u32                           tag_id;
2025 };
2026 
2027 struct ib_flow_spec_action_drop {
2028         enum ib_flow_spec_type        type;
2029         u16                           size;
2030 };
2031 
2032 struct ib_flow_spec_action_handle {
2033         enum ib_flow_spec_type        type;
2034         u16                           size;
2035         struct ib_flow_action        *act;
2036 };
2037 
2038 enum ib_counters_description {
2039         IB_COUNTER_PACKETS,
2040         IB_COUNTER_BYTES,
2041 };
2042 
2043 struct ib_flow_spec_action_count {
2044         enum ib_flow_spec_type type;
2045         u16 size;
2046         struct ib_counters *counters;
2047 };
2048 
2049 union ib_flow_spec {
2050         struct {
2051                 u32                     type;
2052                 u16                     size;
2053         };
2054         struct ib_flow_spec_eth         eth;
2055         struct ib_flow_spec_ib          ib;
2056         struct ib_flow_spec_ipv4        ipv4;
2057         struct ib_flow_spec_tcp_udp     tcp_udp;
2058         struct ib_flow_spec_ipv6        ipv6;
2059         struct ib_flow_spec_tunnel      tunnel;
2060         struct ib_flow_spec_esp         esp;
2061         struct ib_flow_spec_gre         gre;
2062         struct ib_flow_spec_mpls        mpls;
2063         struct ib_flow_spec_action_tag  flow_tag;
2064         struct ib_flow_spec_action_drop drop;
2065         struct ib_flow_spec_action_handle action;
2066         struct ib_flow_spec_action_count flow_count;
2067 };
2068 
2069 struct ib_flow_attr {
2070         enum ib_flow_attr_type type;
2071         u16          size;
2072         u16          priority;
2073         u32          flags;
2074         u8           num_of_specs;
2075         u32          port;
2076         union ib_flow_spec flows[];
2077 };
2078 
2079 struct ib_flow {
2080         struct ib_qp            *qp;
2081         struct ib_device        *device;
2082         struct ib_uobject       *uobject;
2083 };
2084 
2085 enum ib_flow_action_type {
2086         IB_FLOW_ACTION_UNSPECIFIED,
2087         IB_FLOW_ACTION_ESP = 1,
2088 };
2089 
2090 struct ib_flow_action_attrs_esp_keymats {
2091         enum ib_uverbs_flow_action_esp_keymat                   protocol;
2092         union {
2093                 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2094         } keymat;
2095 };
2096 
2097 struct ib_flow_action_attrs_esp_replays {
2098         enum ib_uverbs_flow_action_esp_replay                   protocol;
2099         union {
2100                 struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2101         } replay;
2102 };
2103 
2104 enum ib_flow_action_attrs_esp_flags {
2105         /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2106          * This is done in order to share the same flags between user-space and
2107          * kernel and spare an unnecessary translation.
2108          */
2109 
2110         /* Kernel flags */
2111         IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2112         IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2113 };
2114 
2115 struct ib_flow_spec_list {
2116         struct ib_flow_spec_list        *next;
2117         union ib_flow_spec              spec;
2118 };
2119 
2120 struct ib_flow_action_attrs_esp {
2121         struct ib_flow_action_attrs_esp_keymats         *keymat;
2122         struct ib_flow_action_attrs_esp_replays         *replay;
2123         struct ib_flow_spec_list                        *encap;
2124         /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2125          * Value of 0 is a valid value.
2126          */
2127         u32                                             esn;
2128         u32                                             spi;
2129         u32                                             seq;
2130         u32                                             tfc_pad;
2131         /* Use enum ib_flow_action_attrs_esp_flags */
2132         u64                                             flags;
2133         u64                                             hard_limit_pkts;
2134 };
2135 
2136 struct ib_flow_action {
2137         struct ib_device                *device;
2138         struct ib_uobject               *uobject;
2139         enum ib_flow_action_type        type;
2140         atomic_t                        usecnt;
2141 };
2142 
2143 struct ib_mad;
2144 
2145 enum ib_process_mad_flags {
2146         IB_MAD_IGNORE_MKEY      = 1,
2147         IB_MAD_IGNORE_BKEY      = 2,
2148         IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2149 };
2150 
2151 enum ib_mad_result {
2152         IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2153         IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2154         IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2155         IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2156 };
2157 
2158 struct ib_port_cache {
2159         u64                   subnet_prefix;
2160         struct ib_pkey_cache  *pkey;
2161         struct ib_gid_table   *gid;
2162         u8                     lmc;
2163         enum ib_port_state     port_state;
2164 };
2165 
2166 struct ib_port_immutable {
2167         int                           pkey_tbl_len;
2168         int                           gid_tbl_len;
2169         u32                           core_cap_flags;
2170         u32                           max_mad_size;
2171 };
2172 
2173 struct ib_port_data {
2174         struct ib_device *ib_dev;
2175 
2176         struct ib_port_immutable immutable;
2177 
2178         spinlock_t pkey_list_lock;
2179 
2180         spinlock_t netdev_lock;
2181 
2182         struct list_head pkey_list;
2183 
2184         struct ib_port_cache cache;
2185 
2186         struct net_device __rcu *netdev;
2187         struct hlist_node ndev_hash_link;
2188         struct rdma_port_counter port_counter;
2189         struct ib_port *sysfs;
2190 };
2191 
2192 /* rdma netdev type - specifies protocol type */
2193 enum rdma_netdev_t {
2194         RDMA_NETDEV_OPA_VNIC,
2195         RDMA_NETDEV_IPOIB,
2196 };
2197 
2198 /**
2199  * struct rdma_netdev - rdma netdev
2200  * For cases where netstack interfacing is required.
2201  */
2202 struct rdma_netdev {
2203         void              *clnt_priv;
2204         struct ib_device  *hca;
2205         u32                port_num;
2206         int                mtu;
2207 
2208         /*
2209          * cleanup function must be specified.
2210          * FIXME: This is only used for OPA_VNIC and that usage should be
2211          * removed too.
2212          */
2213         void (*free_rdma_netdev)(struct net_device *netdev);
2214 
2215         /* control functions */
2216         void (*set_id)(struct net_device *netdev, int id);
2217         /* send packet */
2218         int (*send)(struct net_device *dev, struct sk_buff *skb,
2219                     struct ib_ah *address, u32 dqpn);
2220         /* multicast */
2221         int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222                             union ib_gid *gid, u16 mlid,
2223                             int set_qkey, u32 qkey);
2224         int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225                             union ib_gid *gid, u16 mlid);
2226         /* timeout */
2227         void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2228 };
2229 
2230 struct rdma_netdev_alloc_params {
2231         size_t sizeof_priv;
2232         unsigned int txqs;
2233         unsigned int rxqs;
2234         void *param;
2235 
2236         int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2237                                       struct net_device *netdev, void *param);
2238 };
2239 
2240 struct ib_odp_counters {
2241         atomic64_t faults;
2242         atomic64_t invalidations;
2243         atomic64_t prefetch;
2244 };
2245 
2246 struct ib_counters {
2247         struct ib_device        *device;
2248         struct ib_uobject       *uobject;
2249         /* num of objects attached */
2250         atomic_t        usecnt;
2251 };
2252 
2253 struct ib_counters_read_attr {
2254         u64     *counters_buff;
2255         u32     ncounters;
2256         u32     flags; /* use enum ib_read_counters_flags */
2257 };
2258 
2259 struct uverbs_attr_bundle;
2260 struct iw_cm_id;
2261 struct iw_cm_conn_param;
2262 
2263 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2264         .size_##ib_struct =                                                    \
2265                 (sizeof(struct drv_struct) +                                   \
2266                  BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2267                  BUILD_BUG_ON_ZERO(                                            \
2268                          !__same_type(((struct drv_struct *)NULL)->member,     \
2269                                       struct ib_struct)))
2270 
2271 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2272         ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2273 
2274 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2275         rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2276 
2277 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2278 
2279 struct rdma_user_mmap_entry {
2280         struct kref ref;
2281         struct ib_ucontext *ucontext;
2282         unsigned long start_pgoff;
2283         size_t npages;
2284         bool driver_removed;
2285 };
2286 
2287 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2288 static inline u64
2289 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2290 {
2291         return (u64)entry->start_pgoff << PAGE_SHIFT;
2292 }
2293 
2294 /**
2295  * struct ib_device_ops - InfiniBand device operations
2296  * This structure defines all the InfiniBand device operations, providers will
2297  * need to define the supported operations, otherwise they will be set to null.
2298  */
2299 struct ib_device_ops {
2300         struct module *owner;
2301         enum rdma_driver_id driver_id;
2302         u32 uverbs_abi_ver;
2303         unsigned int uverbs_no_driver_id_binding:1;
2304 
2305         /*
2306          * NOTE: New drivers should not make use of device_group; instead new
2307          * device parameter should be exposed via netlink command. This
2308          * mechanism exists only for existing drivers.
2309          */
2310         const struct attribute_group *device_group;
2311         const struct attribute_group **port_groups;
2312 
2313         int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2314                          const struct ib_send_wr **bad_send_wr);
2315         int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2316                          const struct ib_recv_wr **bad_recv_wr);
2317         void (*drain_rq)(struct ib_qp *qp);
2318         void (*drain_sq)(struct ib_qp *qp);
2319         int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2320         int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2321         int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2322         int (*post_srq_recv)(struct ib_srq *srq,
2323                              const struct ib_recv_wr *recv_wr,
2324                              const struct ib_recv_wr **bad_recv_wr);
2325         int (*process_mad)(struct ib_device *device, int process_mad_flags,
2326                            u32 port_num, const struct ib_wc *in_wc,
2327                            const struct ib_grh *in_grh,
2328                            const struct ib_mad *in_mad, struct ib_mad *out_mad,
2329                            size_t *out_mad_size, u16 *out_mad_pkey_index);
2330         int (*query_device)(struct ib_device *device,
2331                             struct ib_device_attr *device_attr,
2332                             struct ib_udata *udata);
2333         int (*modify_device)(struct ib_device *device, int device_modify_mask,
2334                              struct ib_device_modify *device_modify);
2335         void (*get_dev_fw_str)(struct ib_device *device, char *str);
2336         const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2337                                                      int comp_vector);
2338         int (*query_port)(struct ib_device *device, u32 port_num,
2339                           struct ib_port_attr *port_attr);
2340         int (*modify_port)(struct ib_device *device, u32 port_num,
2341                            int port_modify_mask,
2342                            struct ib_port_modify *port_modify);
2343         /**
2344          * The following mandatory functions are used only at device
2345          * registration.  Keep functions such as these at the end of this
2346          * structure to avoid cache line misses when accessing struct ib_device
2347          * in fast paths.
2348          */
2349         int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2350                                   struct ib_port_immutable *immutable);
2351         enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2352                                                u32 port_num);
2353         /**
2354          * When calling get_netdev, the HW vendor's driver should return the
2355          * net device of device @device at port @port_num or NULL if such
2356          * a net device doesn't exist. The vendor driver should call dev_hold
2357          * on this net device. The HW vendor's device driver must guarantee
2358          * that this function returns NULL before the net device has finished
2359          * NETDEV_UNREGISTER state.
2360          */
2361         struct net_device *(*get_netdev)(struct ib_device *device,
2362                                          u32 port_num);
2363         /**
2364          * rdma netdev operation
2365          *
2366          * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2367          * must return -EOPNOTSUPP if it doesn't support the specified type.
2368          */
2369         struct net_device *(*alloc_rdma_netdev)(
2370                 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2371                 const char *name, unsigned char name_assign_type,
2372                 void (*setup)(struct net_device *));
2373 
2374         int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2375                                       enum rdma_netdev_t type,
2376                                       struct rdma_netdev_alloc_params *params);
2377         /**
2378          * query_gid should be return GID value for @device, when @port_num
2379          * link layer is either IB or iWarp. It is no-op if @port_num port
2380          * is RoCE link layer.
2381          */
2382         int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2383                          union ib_gid *gid);
2384         /**
2385          * When calling add_gid, the HW vendor's driver should add the gid
2386          * of device of port at gid index available at @attr. Meta-info of
2387          * that gid (for example, the network device related to this gid) is
2388          * available at @attr. @context allows the HW vendor driver to store
2389          * extra information together with a GID entry. The HW vendor driver may
2390          * allocate memory to contain this information and store it in @context
2391          * when a new GID entry is written to. Params are consistent until the
2392          * next call of add_gid or delete_gid. The function should return 0 on
2393          * success or error otherwise. The function could be called
2394          * concurrently for different ports. This function is only called when
2395          * roce_gid_table is used.
2396          */
2397         int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2398         /**
2399          * When calling del_gid, the HW vendor's driver should delete the
2400          * gid of device @device at gid index gid_index of port port_num
2401          * available in @attr.
2402          * Upon the deletion of a GID entry, the HW vendor must free any
2403          * allocated memory. The caller will clear @context afterwards.
2404          * This function is only called when roce_gid_table is used.
2405          */
2406         int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2407         int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2408                           u16 *pkey);
2409         int (*alloc_ucontext)(struct ib_ucontext *context,
2410                               struct ib_udata *udata);
2411         void (*dealloc_ucontext)(struct ib_ucontext *context);
2412         int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2413         /**
2414          * This will be called once refcount of an entry in mmap_xa reaches
2415          * zero. The type of the memory that was mapped may differ between
2416          * entries and is opaque to the rdma_user_mmap interface.
2417          * Therefore needs to be implemented by the driver in mmap_free.
2418          */
2419         void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2420         void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2421         int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2422         int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2423         int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2424                          struct ib_udata *udata);
2425         int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2426                               struct ib_udata *udata);
2427         int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2428         int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2429         int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2430         int (*create_srq)(struct ib_srq *srq,
2431                           struct ib_srq_init_attr *srq_init_attr,
2432                           struct ib_udata *udata);
2433         int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2434                           enum ib_srq_attr_mask srq_attr_mask,
2435                           struct ib_udata *udata);
2436         int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2437         int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2438         struct ib_qp *(*create_qp)(struct ib_pd *pd,
2439                                    struct ib_qp_init_attr *qp_init_attr,
2440                                    struct ib_udata *udata);
2441         int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2442                          int qp_attr_mask, struct ib_udata *udata);
2443         int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2444                         int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2445         int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2446         int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2447                          struct ib_udata *udata);
2448         int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2449         int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2450         int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2451         struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2452         struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2453                                      u64 virt_addr, int mr_access_flags,
2454                                      struct ib_udata *udata);
2455         struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2456                                             u64 length, u64 virt_addr, int fd,
2457                                             int mr_access_flags,
2458                                             struct ib_udata *udata);
2459         struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2460                                        u64 length, u64 virt_addr,
2461                                        int mr_access_flags, struct ib_pd *pd,
2462                                        struct ib_udata *udata);
2463         int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2464         struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2465                                   u32 max_num_sg);
2466         struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2467                                             u32 max_num_data_sg,
2468                                             u32 max_num_meta_sg);
2469         int (*advise_mr)(struct ib_pd *pd,
2470                          enum ib_uverbs_advise_mr_advice advice, u32 flags,
2471                          struct ib_sge *sg_list, u32 num_sge,
2472                          struct uverbs_attr_bundle *attrs);
2473 
2474         /*
2475          * Kernel users should universally support relaxed ordering (RO), as
2476          * they are designed to read data only after observing the CQE and use
2477          * the DMA API correctly.
2478          *
2479          * Some drivers implicitly enable RO if platform supports it.
2480          */
2481         int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2482                          unsigned int *sg_offset);
2483         int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2484                                struct ib_mr_status *mr_status);
2485         int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2486         int (*dealloc_mw)(struct ib_mw *mw);
2487         int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2488         int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2489         int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2490         int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2491         struct ib_flow *(*create_flow)(struct ib_qp *qp,
2492                                        struct ib_flow_attr *flow_attr,
2493                                        struct ib_udata *udata);
2494         int (*destroy_flow)(struct ib_flow *flow_id);
2495         struct ib_flow_action *(*create_flow_action_esp)(
2496                 struct ib_device *device,
2497                 const struct ib_flow_action_attrs_esp *attr,
2498                 struct uverbs_attr_bundle *attrs);
2499         int (*destroy_flow_action)(struct ib_flow_action *action);
2500         int (*modify_flow_action_esp)(
2501                 struct ib_flow_action *action,
2502                 const struct ib_flow_action_attrs_esp *attr,
2503                 struct uverbs_attr_bundle *attrs);
2504         int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2505                                  int state);
2506         int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2507                              struct ifla_vf_info *ivf);
2508         int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2509                             struct ifla_vf_stats *stats);
2510         int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2511                             struct ifla_vf_guid *node_guid,
2512                             struct ifla_vf_guid *port_guid);
2513         int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2514                            int type);
2515         struct ib_wq *(*create_wq)(struct ib_pd *pd,
2516                                    struct ib_wq_init_attr *init_attr,
2517                                    struct ib_udata *udata);
2518         int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2519         int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2520                          u32 wq_attr_mask, struct ib_udata *udata);
2521         int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2522                                     struct ib_rwq_ind_table_init_attr *init_attr,
2523                                     struct ib_udata *udata);
2524         int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2525         struct ib_dm *(*alloc_dm)(struct ib_device *device,
2526                                   struct ib_ucontext *context,
2527                                   struct ib_dm_alloc_attr *attr,
2528                                   struct uverbs_attr_bundle *attrs);
2529         int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2530         struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2531                                    struct ib_dm_mr_attr *attr,
2532                                    struct uverbs_attr_bundle *attrs);
2533         int (*create_counters)(struct ib_counters *counters,
2534                                struct uverbs_attr_bundle *attrs);
2535         int (*destroy_counters)(struct ib_counters *counters);
2536         int (*read_counters)(struct ib_counters *counters,
2537                              struct ib_counters_read_attr *counters_read_attr,
2538                              struct uverbs_attr_bundle *attrs);
2539         int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2540                             int data_sg_nents, unsigned int *data_sg_offset,
2541                             struct scatterlist *meta_sg, int meta_sg_nents,
2542                             unsigned int *meta_sg_offset);
2543 
2544         /**
2545          * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2546          *   fill in the driver initialized data.  The struct is kfree()'ed by
2547          *   the sysfs core when the device is removed.  A lifespan of -1 in the
2548          *   return struct tells the core to set a default lifespan.
2549          */
2550         struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2551         struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2552                                                      u32 port_num);
2553         /**
2554          * get_hw_stats - Fill in the counter value(s) in the stats struct.
2555          * @index - The index in the value array we wish to have updated, or
2556          *   num_counters if we want all stats updated
2557          * Return codes -
2558          *   < 0 - Error, no counters updated
2559          *   index - Updated the single counter pointed to by index
2560          *   num_counters - Updated all counters (will reset the timestamp
2561          *     and prevent further calls for lifespan milliseconds)
2562          * Drivers are allowed to update all counters in leiu of just the
2563          *   one given in index at their option
2564          */
2565         int (*get_hw_stats)(struct ib_device *device,
2566                             struct rdma_hw_stats *stats, u32 port, int index);
2567 
2568         /**
2569          * Allows rdma drivers to add their own restrack attributes.
2570          */
2571         int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2572         int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2573         int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2574         int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2575         int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2576         int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2577         int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2578 
2579         /* Device lifecycle callbacks */
2580         /*
2581          * Called after the device becomes registered, before clients are
2582          * attached
2583          */
2584         int (*enable_driver)(struct ib_device *dev);
2585         /*
2586          * This is called as part of ib_dealloc_device().
2587          */
2588         void (*dealloc_driver)(struct ib_device *dev);
2589 
2590         /* iWarp CM callbacks */
2591         void (*iw_add_ref)(struct ib_qp *qp);
2592         void (*iw_rem_ref)(struct ib_qp *qp);
2593         struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2594         int (*iw_connect)(struct iw_cm_id *cm_id,
2595                           struct iw_cm_conn_param *conn_param);
2596         int (*iw_accept)(struct iw_cm_id *cm_id,
2597                          struct iw_cm_conn_param *conn_param);
2598         int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2599                          u8 pdata_len);
2600         int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2601         int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2602         /**
2603          * counter_bind_qp - Bind a QP to a counter.
2604          * @counter - The counter to be bound. If counter->id is zero then
2605          *   the driver needs to allocate a new counter and set counter->id
2606          */
2607         int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2608         /**
2609          * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2610          *   counter and bind it onto the default one
2611          */
2612         int (*counter_unbind_qp)(struct ib_qp *qp);
2613         /**
2614          * counter_dealloc -De-allocate the hw counter
2615          */
2616         int (*counter_dealloc)(struct rdma_counter *counter);
2617         /**
2618          * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2619          * the driver initialized data.
2620          */
2621         struct rdma_hw_stats *(*counter_alloc_stats)(
2622                 struct rdma_counter *counter);
2623         /**
2624          * counter_update_stats - Query the stats value of this counter
2625          */
2626         int (*counter_update_stats)(struct rdma_counter *counter);
2627 
2628         /**
2629          * Allows rdma drivers to add their own restrack attributes
2630          * dumped via 'rdma stat' iproute2 command.
2631          */
2632         int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2633 
2634         /* query driver for its ucontext properties */
2635         int (*query_ucontext)(struct ib_ucontext *context,
2636                               struct uverbs_attr_bundle *attrs);
2637 
2638         DECLARE_RDMA_OBJ_SIZE(ib_ah);
2639         DECLARE_RDMA_OBJ_SIZE(ib_counters);
2640         DECLARE_RDMA_OBJ_SIZE(ib_cq);
2641         DECLARE_RDMA_OBJ_SIZE(ib_mw);
2642         DECLARE_RDMA_OBJ_SIZE(ib_pd);
2643         DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2644         DECLARE_RDMA_OBJ_SIZE(ib_srq);
2645         DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2646         DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2647 };
2648 
2649 struct ib_core_device {
2650         /* device must be the first element in structure until,
2651          * union of ib_core_device and device exists in ib_device.
2652          */
2653         struct device dev;
2654         possible_net_t rdma_net;
2655         struct kobject *ports_kobj;
2656         struct list_head port_list;
2657         struct ib_device *owner; /* reach back to owner ib_device */
2658 };
2659 
2660 struct rdma_restrack_root;
2661 struct ib_device {
2662         /* Do not access @dma_device directly from ULP nor from HW drivers. */
2663         struct device                *dma_device;
2664         struct ib_device_ops         ops;
2665         char                          name[IB_DEVICE_NAME_MAX];
2666         struct rcu_head rcu_head;
2667 
2668         struct list_head              event_handler_list;
2669         /* Protects event_handler_list */
2670         struct rw_semaphore event_handler_rwsem;
2671 
2672         /* Protects QP's event_handler calls and open_qp list */
2673         spinlock_t qp_open_list_lock;
2674 
2675         struct rw_semaphore           client_data_rwsem;
2676         struct xarray                 client_data;
2677         struct mutex                  unregistration_lock;
2678 
2679         /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2680         rwlock_t cache_lock;
2681         /**
2682          * port_data is indexed by port number
2683          */
2684         struct ib_port_data *port_data;
2685 
2686         int                           num_comp_vectors;
2687 
2688         union {
2689                 struct device           dev;
2690                 struct ib_core_device   coredev;
2691         };
2692 
2693         /* First group is for device attributes,
2694          * Second group is for driver provided attributes (optional).
2695          * Third group is for the hw_stats
2696          * It is a NULL terminated array.
2697          */
2698         const struct attribute_group    *groups[4];
2699 
2700         u64                          uverbs_cmd_mask;
2701 
2702         char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2703         __be64                       node_guid;
2704         u32                          local_dma_lkey;
2705         u16                          is_switch:1;
2706         /* Indicates kernel verbs support, should not be used in drivers */
2707         u16                          kverbs_provider:1;
2708         /* CQ adaptive moderation (RDMA DIM) */
2709         u16                          use_cq_dim:1;
2710         u8                           node_type;
2711         u32                          phys_port_cnt;
2712         struct ib_device_attr        attrs;
2713         struct hw_stats_device_data *hw_stats_data;
2714 
2715 #ifdef CONFIG_CGROUP_RDMA
2716         struct rdmacg_device         cg_device;
2717 #endif
2718 
2719         u32                          index;
2720 
2721         spinlock_t                   cq_pools_lock;
2722         struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2723 
2724         struct rdma_restrack_root *res;
2725 
2726         const struct uapi_definition   *driver_def;
2727 
2728         /*
2729          * Positive refcount indicates that the device is currently
2730          * registered and cannot be unregistered.
2731          */
2732         refcount_t refcount;
2733         struct completion unreg_completion;
2734         struct work_struct unregistration_work;
2735 
2736         const struct rdma_link_ops *link_ops;
2737 
2738         /* Protects compat_devs xarray modifications */
2739         struct mutex compat_devs_mutex;
2740         /* Maintains compat devices for each net namespace */
2741         struct xarray compat_devs;
2742 
2743         /* Used by iWarp CM */
2744         char iw_ifname[IFNAMSIZ];
2745         u32 iw_driver_flags;
2746         u32 lag_flags;
2747 };
2748 
2749 struct ib_client_nl_info;
2750 struct ib_client {
2751         const char *name;
2752         int (*add)(struct ib_device *ibdev);
2753         void (*remove)(struct ib_device *, void *client_data);
2754         void (*rename)(struct ib_device *dev, void *client_data);
2755         int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2756                            struct ib_client_nl_info *res);
2757         int (*get_global_nl_info)(struct ib_client_nl_info *res);
2758 
2759         /* Returns the net_dev belonging to this ib_client and matching the
2760          * given parameters.
2761          * @dev:         An RDMA device that the net_dev use for communication.
2762          * @port:        A physical port number on the RDMA device.
2763          * @pkey:        P_Key that the net_dev uses if applicable.
2764          * @gid:         A GID that the net_dev uses to communicate.
2765          * @addr:        An IP address the net_dev is configured with.
2766          * @client_data: The device's client data set by ib_set_client_data().
2767          *
2768          * An ib_client that implements a net_dev on top of RDMA devices
2769          * (such as IP over IB) should implement this callback, allowing the
2770          * rdma_cm module to find the right net_dev for a given request.
2771          *
2772          * The caller is responsible for calling dev_put on the returned
2773          * netdev. */
2774         struct net_device *(*get_net_dev_by_params)(
2775                         struct ib_device *dev,
2776                         u32 port,
2777                         u16 pkey,
2778                         const union ib_gid *gid,
2779                         const struct sockaddr *addr,
2780                         void *client_data);
2781 
2782         refcount_t uses;
2783         struct completion uses_zero;
2784         u32 client_id;
2785 
2786         /* kverbs are not required by the client */
2787         u8 no_kverbs_req:1;
2788 };
2789 
2790 /*
2791  * IB block DMA iterator
2792  *
2793  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2794  * to a HW supported page size.
2795  */
2796 struct ib_block_iter {
2797         /* internal states */
2798         struct scatterlist *__sg;       /* sg holding the current aligned block */
2799         dma_addr_t __dma_addr;          /* unaligned DMA address of this block */
2800         unsigned int __sg_nents;        /* number of SG entries */
2801         unsigned int __sg_advance;      /* number of bytes to advance in sg in next step */
2802         unsigned int __pg_bit;          /* alignment of current block */
2803 };
2804 
2805 struct ib_device *_ib_alloc_device(size_t size);
2806 #define ib_alloc_device(drv_struct, member)                                    \
2807         container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2808                                       BUILD_BUG_ON_ZERO(offsetof(              \
2809                                               struct drv_struct, member))),    \
2810                      struct drv_struct, member)
2811 
2812 void ib_dealloc_device(struct ib_device *device);
2813 
2814 void ib_get_device_fw_str(struct ib_device *device, char *str);
2815 
2816 int ib_register_device(struct ib_device *device, const char *name,
2817                        struct device *dma_device);
2818 void ib_unregister_device(struct ib_device *device);
2819 void ib_unregister_driver(enum rdma_driver_id driver_id);
2820 void ib_unregister_device_and_put(struct ib_device *device);
2821 void ib_unregister_device_queued(struct ib_device *ib_dev);
2822 
2823 int ib_register_client   (struct ib_client *client);
2824 void ib_unregister_client(struct ib_client *client);
2825 
2826 void __rdma_block_iter_start(struct ib_block_iter *biter,
2827                              struct scatterlist *sglist,
2828                              unsigned int nents,
2829                              unsigned long pgsz);
2830 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2831 
2832 /**
2833  * rdma_block_iter_dma_address - get the aligned dma address of the current
2834  * block held by the block iterator.
2835  * @biter: block iterator holding the memory block
2836  */
2837 static inline dma_addr_t
2838 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2839 {
2840         return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2841 }
2842 
2843 /**
2844  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2845  * @sglist: sglist to iterate over
2846  * @biter: block iterator holding the memory block
2847  * @nents: maximum number of sg entries to iterate over
2848  * @pgsz: best HW supported page size to use
2849  *
2850  * Callers may use rdma_block_iter_dma_address() to get each
2851  * blocks aligned DMA address.
2852  */
2853 #define rdma_for_each_block(sglist, biter, nents, pgsz)         \
2854         for (__rdma_block_iter_start(biter, sglist, nents,      \
2855                                      pgsz);                     \
2856              __rdma_block_iter_next(biter);)
2857 
2858 /**
2859  * ib_get_client_data - Get IB client context
2860  * @device:Device to get context for
2861  * @client:Client to get context for
2862  *
2863  * ib_get_client_data() returns the client context data set with
2864  * ib_set_client_data(). This can only be called while the client is
2865  * registered to the device, once the ib_client remove() callback returns this
2866  * cannot be called.
2867  */
2868 static inline void *ib_get_client_data(struct ib_device *device,
2869                                        struct ib_client *client)
2870 {
2871         return xa_load(&device->client_data, client->client_id);
2872 }
2873 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2874                          void *data);
2875 void ib_set_device_ops(struct ib_device *device,
2876                        const struct ib_device_ops *ops);
2877 
2878 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2879                       unsigned long pfn, unsigned long size, pgprot_t prot,
2880                       struct rdma_user_mmap_entry *entry);
2881 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2882                                 struct rdma_user_mmap_entry *entry,
2883                                 size_t length);
2884 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2885                                       struct rdma_user_mmap_entry *entry,
2886                                       size_t length, u32 min_pgoff,
2887                                       u32 max_pgoff);
2888 
2889 struct rdma_user_mmap_entry *
2890 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2891                                unsigned long pgoff);
2892 struct rdma_user_mmap_entry *
2893 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2894                          struct vm_area_struct *vma);
2895 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2896 
2897 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2898 
2899 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2900 {
2901         return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2902 }
2903 
2904 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2905 {
2906         return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2907 }
2908 
2909 static inline bool ib_is_buffer_cleared(const void __user *p,
2910                                         size_t len)
2911 {
2912         bool ret;
2913         u8 *buf;
2914 
2915         if (len > USHRT_MAX)
2916                 return false;
2917 
2918         buf = memdup_user(p, len);
2919         if (IS_ERR(buf))
2920                 return false;
2921 
2922         ret = !memchr_inv(buf, 0, len);
2923         kfree(buf);
2924         return ret;
2925 }
2926 
2927 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2928                                        size_t offset,
2929                                        size_t len)
2930 {
2931         return ib_is_buffer_cleared(udata->inbuf + offset, len);
2932 }
2933 
2934 /**
2935  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2936  * contains all required attributes and no attributes not allowed for
2937  * the given QP state transition.
2938  * @cur_state: Current QP state
2939  * @next_state: Next QP state
2940  * @type: QP type
2941  * @mask: Mask of supplied QP attributes
2942  *
2943  * This function is a helper function that a low-level driver's
2944  * modify_qp method can use to validate the consumer's input.  It
2945  * checks that cur_state and next_state are valid QP states, that a
2946  * transition from cur_state to next_state is allowed by the IB spec,
2947  * and that the attribute mask supplied is allowed for the transition.
2948  */
2949 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2950                         enum ib_qp_type type, enum ib_qp_attr_mask mask);
2951 
2952 void ib_register_event_handler(struct ib_event_handler *event_handler);
2953 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2954 void ib_dispatch_event(const struct ib_event *event);
2955 
2956 int ib_query_port(struct ib_device *device,
2957                   u32 port_num, struct ib_port_attr *port_attr);
2958 
2959 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2960                                                u32 port_num);
2961 
2962 /**
2963  * rdma_cap_ib_switch - Check if the device is IB switch
2964  * @device: Device to check
2965  *
2966  * Device driver is responsible for setting is_switch bit on
2967  * in ib_device structure at init time.
2968  *
2969  * Return: true if the device is IB switch.
2970  */
2971 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2972 {
2973         return device->is_switch;
2974 }
2975 
2976 /**
2977  * rdma_start_port - Return the first valid port number for the device
2978  * specified
2979  *
2980  * @device: Device to be checked
2981  *
2982  * Return start port number
2983  */
2984 static inline u32 rdma_start_port(const struct ib_device *device)
2985 {
2986         return rdma_cap_ib_switch(device) ? 0 : 1;
2987 }
2988 
2989 /**
2990  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2991  * @device - The struct ib_device * to iterate over
2992  * @iter - The unsigned int to store the port number
2993  */
2994 #define rdma_for_each_port(device, iter)                                       \
2995         for (iter = rdma_start_port(device +                                   \
2996                                     BUILD_BUG_ON_ZERO(!__same_type(u32,        \
2997                                                                    iter)));    \
2998              iter <= rdma_end_port(device); iter++)
2999 
3000 /**
3001  * rdma_end_port - Return the last valid port number for the device
3002  * specified
3003  *
3004  * @device: Device to be checked
3005  *
3006  * Return last port number
3007  */
3008 static inline u32 rdma_end_port(const struct ib_device *device)
3009 {
3010         return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3011 }
3012 
3013 static inline int rdma_is_port_valid(const struct ib_device *device,
3014                                      unsigned int port)
3015 {
3016         return (port >= rdma_start_port(device) &&
3017                 port <= rdma_end_port(device));
3018 }
3019 
3020 static inline bool rdma_is_grh_required(const struct ib_device *device,
3021                                         u32 port_num)
3022 {
3023         return device->port_data[port_num].immutable.core_cap_flags &
3024                RDMA_CORE_PORT_IB_GRH_REQUIRED;
3025 }
3026 
3027 static inline bool rdma_protocol_ib(const struct ib_device *device,
3028                                     u32 port_num)
3029 {
3030         return device->port_data[port_num].immutable.core_cap_flags &
3031                RDMA_CORE_CAP_PROT_IB;
3032 }
3033 
3034 static inline bool rdma_protocol_roce(const struct ib_device *device,
3035                                       u32 port_num)
3036 {
3037         return device->port_data[port_num].immutable.core_cap_flags &
3038                (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3039 }
3040 
3041 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3042                                                 u32 port_num)
3043 {
3044         return device->port_data[port_num].immutable.core_cap_flags &
3045                RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3046 }
3047 
3048 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3049                                                 u32 port_num)
3050 {
3051         return device->port_data[port_num].immutable.core_cap_flags &
3052                RDMA_CORE_CAP_PROT_ROCE;
3053 }
3054 
3055 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3056                                        u32 port_num)
3057 {
3058         return device->port_data[port_num].immutable.core_cap_flags &
3059                RDMA_CORE_CAP_PROT_IWARP;
3060 }
3061 
3062 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3063                                    u32 port_num)
3064 {
3065         return rdma_protocol_ib(device, port_num) ||
3066                 rdma_protocol_roce(device, port_num);
3067 }
3068 
3069 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3070                                             u32 port_num)
3071 {
3072         return device->port_data[port_num].immutable.core_cap_flags &
3073                RDMA_CORE_CAP_PROT_RAW_PACKET;
3074 }
3075 
3076 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3077                                        u32 port_num)
3078 {
3079         return device->port_data[port_num].immutable.core_cap_flags &
3080                RDMA_CORE_CAP_PROT_USNIC;
3081 }
3082 
3083 /**
3084  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3085  * Management Datagrams.
3086  * @device: Device to check
3087  * @port_num: Port number to check
3088  *
3089  * Management Datagrams (MAD) are a required part of the InfiniBand
3090  * specification and are supported on all InfiniBand devices.  A slightly
3091  * extended version are also supported on OPA interfaces.
3092  *
3093  * Return: true if the port supports sending/receiving of MAD packets.
3094  */
3095 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3096 {
3097         return device->port_data[port_num].immutable.core_cap_flags &
3098                RDMA_CORE_CAP_IB_MAD;
3099 }
3100 
3101 /**
3102  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3103  * Management Datagrams.
3104  * @device: Device to check
3105  * @port_num: Port number to check
3106  *
3107  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3108  * datagrams with their own versions.  These OPA MADs share many but not all of
3109  * the characteristics of InfiniBand MADs.
3110  *
3111  * OPA MADs differ in the following ways:
3112  *
3113  *    1) MADs are variable size up to 2K
3114  *       IBTA defined MADs remain fixed at 256 bytes
3115  *    2) OPA SMPs must carry valid PKeys
3116  *    3) OPA SMP packets are a different format
3117  *
3118  * Return: true if the port supports OPA MAD packet formats.
3119  */
3120 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3121 {
3122         return device->port_data[port_num].immutable.core_cap_flags &
3123                 RDMA_CORE_CAP_OPA_MAD;
3124 }
3125 
3126 /**
3127  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3128  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3129  * @device: Device to check
3130  * @port_num: Port number to check
3131  *
3132  * Each InfiniBand node is required to provide a Subnet Management Agent
3133  * that the subnet manager can access.  Prior to the fabric being fully
3134  * configured by the subnet manager, the SMA is accessed via a well known
3135  * interface called the Subnet Management Interface (SMI).  This interface
3136  * uses directed route packets to communicate with the SM to get around the
3137  * chicken and egg problem of the SM needing to know what's on the fabric
3138  * in order to configure the fabric, and needing to configure the fabric in
3139  * order to send packets to the devices on the fabric.  These directed
3140  * route packets do not need the fabric fully configured in order to reach
3141  * their destination.  The SMI is the only method allowed to send
3142  * directed route packets on an InfiniBand fabric.
3143  *
3144  * Return: true if the port provides an SMI.
3145  */
3146 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3147 {
3148         return device->port_data[port_num].immutable.core_cap_flags &
3149                RDMA_CORE_CAP_IB_SMI;
3150 }
3151 
3152 /**
3153  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3154  * Communication Manager.
3155  * @device: Device to check
3156  * @port_num: Port number to check
3157  *
3158  * The InfiniBand Communication Manager is one of many pre-defined General
3159  * Service Agents (GSA) that are accessed via the General Service
3160  * Interface (GSI).  It's role is to facilitate establishment of connections
3161  * between nodes as well as other management related tasks for established
3162  * connections.
3163  *
3164  * Return: true if the port supports an IB CM (this does not guarantee that
3165  * a CM is actually running however).
3166  */
3167 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3168 {
3169         return device->port_data[port_num].immutable.core_cap_flags &
3170                RDMA_CORE_CAP_IB_CM;
3171 }
3172 
3173 /**
3174  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3175  * Communication Manager.
3176  * @device: Device to check
3177  * @port_num: Port number to check
3178  *
3179  * Similar to above, but specific to iWARP connections which have a different
3180  * managment protocol than InfiniBand.
3181  *
3182  * Return: true if the port supports an iWARP CM (this does not guarantee that
3183  * a CM is actually running however).
3184  */
3185 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3186 {
3187         return device->port_data[port_num].immutable.core_cap_flags &
3188                RDMA_CORE_CAP_IW_CM;
3189 }
3190 
3191 /**
3192  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3193  * Subnet Administration.
3194  * @device: Device to check
3195  * @port_num: Port number to check
3196  *
3197  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3198  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3199  * fabrics, devices should resolve routes to other hosts by contacting the
3200  * SA to query the proper route.
3201  *
3202  * Return: true if the port should act as a client to the fabric Subnet
3203  * Administration interface.  This does not imply that the SA service is
3204  * running locally.
3205  */
3206 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3207 {
3208         return device->port_data[port_num].immutable.core_cap_flags &
3209                RDMA_CORE_CAP_IB_SA;
3210 }
3211 
3212 /**
3213  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3214  * Multicast.
3215  * @device: Device to check
3216  * @port_num: Port number to check
3217  *
3218  * InfiniBand multicast registration is more complex than normal IPv4 or
3219  * IPv6 multicast registration.  Each Host Channel Adapter must register
3220  * with the Subnet Manager when it wishes to join a multicast group.  It
3221  * should do so only once regardless of how many queue pairs it subscribes
3222  * to this group.  And it should leave the group only after all queue pairs
3223  * attached to the group have been detached.
3224  *
3225  * Return: true if the port must undertake the additional adminstrative
3226  * overhead of registering/unregistering with the SM and tracking of the
3227  * total number of queue pairs attached to the multicast group.
3228  */
3229 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3230                                      u32 port_num)
3231 {
3232         return rdma_cap_ib_sa(device, port_num);
3233 }
3234 
3235 /**
3236  * rdma_cap_af_ib - Check if the port of device has the capability
3237  * Native Infiniband Address.
3238  * @device: Device to check
3239  * @port_num: Port number to check
3240  *
3241  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3242  * GID.  RoCE uses a different mechanism, but still generates a GID via
3243  * a prescribed mechanism and port specific data.
3244  *
3245  * Return: true if the port uses a GID address to identify devices on the
3246  * network.
3247  */
3248 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3249 {
3250         return device->port_data[port_num].immutable.core_cap_flags &
3251                RDMA_CORE_CAP_AF_IB;
3252 }
3253 
3254 /**
3255  * rdma_cap_eth_ah - Check if the port of device has the capability
3256  * Ethernet Address Handle.
3257  * @device: Device to check
3258  * @port_num: Port number to check
3259  *
3260  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3261  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3262  * port.  Normally, packet headers are generated by the sending host
3263  * adapter, but when sending connectionless datagrams, we must manually
3264  * inject the proper headers for the fabric we are communicating over.
3265  *
3266  * Return: true if we are running as a RoCE port and must force the
3267  * addition of a Global Route Header built from our Ethernet Address
3268  * Handle into our header list for connectionless packets.
3269  */
3270 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3271 {
3272         return device->port_data[port_num].immutable.core_cap_flags &
3273                RDMA_CORE_CAP_ETH_AH;
3274 }
3275 
3276 /**
3277  * rdma_cap_opa_ah - Check if the port of device supports
3278  * OPA Address handles
3279  * @device: Device to check
3280  * @port_num: Port number to check
3281  *
3282  * Return: true if we are running on an OPA device which supports
3283  * the extended OPA addressing.
3284  */
3285 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3286 {
3287         return (device->port_data[port_num].immutable.core_cap_flags &
3288                 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3289 }
3290 
3291 /**
3292  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3293  *
3294  * @device: Device
3295  * @port_num: Port number
3296  *
3297  * This MAD size includes the MAD headers and MAD payload.  No other headers
3298  * are included.
3299  *
3300  * Return the max MAD size required by the Port.  Will return 0 if the port
3301  * does not support MADs
3302  */
3303 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3304                                        u32 port_num)
3305 {
3306         return device->port_data[port_num].immutable.max_mad_size;
3307 }
3308 
3309 /**
3310  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3311  * @device: Device to check
3312  * @port_num: Port number to check
3313  *
3314  * RoCE GID table mechanism manages the various GIDs for a device.
3315  *
3316  * NOTE: if allocating the port's GID table has failed, this call will still
3317  * return true, but any RoCE GID table API will fail.
3318  *
3319  * Return: true if the port uses RoCE GID table mechanism in order to manage
3320  * its GIDs.
3321  */
3322 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3323                                            u32 port_num)
3324 {
3325         return rdma_protocol_roce(device, port_num) &&
3326                 device->ops.add_gid && device->ops.del_gid;
3327 }
3328 
3329 /*
3330  * Check if the device supports READ W/ INVALIDATE.
3331  */
3332 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3333 {
3334         /*
3335          * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3336          * has support for it yet.
3337          */
3338         return rdma_protocol_iwarp(dev, port_num);
3339 }
3340 
3341 /**
3342  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3343  * @device: Device
3344  * @port_num: 1 based Port number
3345  *
3346  * Return true if port is an Intel OPA port , false if not
3347  */
3348 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3349                                           u32 port_num)
3350 {
3351         return (device->port_data[port_num].immutable.core_cap_flags &
3352                 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3353 }
3354 
3355 /**
3356  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3357  * @device: Device
3358  * @port_num: Port number
3359  * @mtu: enum value of MTU
3360  *
3361  * Return the MTU size supported by the port as an integer value. Will return
3362  * -1 if enum value of mtu is not supported.
3363  */
3364 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3365                                        int mtu)
3366 {
3367         if (rdma_core_cap_opa_port(device, port))
3368                 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3369         else
3370                 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3371 }
3372 
3373 /**
3374  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3375  * @device: Device
3376  * @port_num: Port number
3377  * @attr: port attribute
3378  *
3379  * Return the MTU size supported by the port as an integer value.
3380  */
3381 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3382                                      struct ib_port_attr *attr)
3383 {
3384         if (rdma_core_cap_opa_port(device, port))
3385                 return attr->phys_mtu;
3386         else
3387                 return ib_mtu_enum_to_int(attr->max_mtu);
3388 }
3389 
3390 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3391                          int state);
3392 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3393                      struct ifla_vf_info *info);
3394 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3395                     struct ifla_vf_stats *stats);
3396 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3397                     struct ifla_vf_guid *node_guid,
3398                     struct ifla_vf_guid *port_guid);
3399 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3400                    int type);
3401 
3402 int ib_query_pkey(struct ib_device *device,
3403                   u32 port_num, u16 index, u16 *pkey);
3404 
3405 int ib_modify_device(struct ib_device *device,
3406                      int device_modify_mask,
3407                      struct ib_device_modify *device_modify);
3408 
3409 int ib_modify_port(struct ib_device *device,
3410                    u32 port_num, int port_modify_mask,
3411                    struct ib_port_modify *port_modify);
3412 
3413 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3414                 u32 *port_num, u16 *index);
3415 
3416 int ib_find_pkey(struct ib_device *device,
3417                  u32 port_num, u16 pkey, u16 *index);
3418 
3419 enum ib_pd_flags {
3420         /*
3421          * Create a memory registration for all memory in the system and place
3422          * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3423          * ULPs to avoid the overhead of dynamic MRs.
3424          *
3425          * This flag is generally considered unsafe and must only be used in
3426          * extremly trusted environments.  Every use of it will log a warning
3427          * in the kernel log.
3428          */
3429         IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3430 };
3431 
3432 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3433                 const char *caller);
3434 
3435 /**
3436  * ib_alloc_pd - Allocates an unused protection domain.
3437  * @device: The device on which to allocate the protection domain.
3438  * @flags: protection domain flags
3439  *
3440  * A protection domain object provides an association between QPs, shared
3441  * receive queues, address handles, memory regions, and memory windows.
3442  *
3443  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3444  * memory operations.
3445  */
3446 #define ib_alloc_pd(device, flags) \
3447         __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3448 
3449 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3450 
3451 /**
3452  * ib_dealloc_pd - Deallocate kernel PD
3453  * @pd: The protection domain
3454  *
3455  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3456  */
3457 static inline void ib_dealloc_pd(struct ib_pd *pd)
3458 {
3459         int ret = ib_dealloc_pd_user(pd, NULL);
3460 
3461         WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3462 }
3463 
3464 enum rdma_create_ah_flags {
3465         /* In a sleepable context */
3466         RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3467 };
3468 
3469 /**
3470  * rdma_create_ah - Creates an address handle for the given address vector.
3471  * @pd: The protection domain associated with the address handle.
3472  * @ah_attr: The attributes of the address vector.
3473  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3474  *
3475  * The address handle is used to reference a local or global destination
3476  * in all UD QP post sends.
3477  */
3478 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3479                              u32 flags);
3480 
3481 /**
3482  * rdma_create_user_ah - Creates an address handle for the given address vector.
3483  * It resolves destination mac address for ah attribute of RoCE type.
3484  * @pd: The protection domain associated with the address handle.
3485  * @ah_attr: The attributes of the address vector.
3486  * @udata: pointer to user's input output buffer information need by
3487  *         provider driver.
3488  *
3489  * It returns 0 on success and returns appropriate error code on error.
3490  * The address handle is used to reference a local or global destination
3491  * in all UD QP post sends.
3492  */
3493 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3494                                   struct rdma_ah_attr *ah_attr,
3495                                   struct ib_udata *udata);
3496 /**
3497  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3498  *   work completion.
3499  * @hdr: the L3 header to parse
3500  * @net_type: type of header to parse
3501  * @sgid: place to store source gid
3502  * @dgid: place to store destination gid
3503  */
3504 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3505                               enum rdma_network_type net_type,
3506                               union ib_gid *sgid, union ib_gid *dgid);
3507 
3508 /**
3509  * ib_get_rdma_header_version - Get the header version
3510  * @hdr: the L3 header to parse
3511  */
3512 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3513 
3514 /**
3515  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3516  *   work completion.
3517  * @device: Device on which the received message arrived.
3518  * @port_num: Port on which the received message arrived.
3519  * @wc: Work completion associated with the received message.
3520  * @grh: References the received global route header.  This parameter is
3521  *   ignored unless the work completion indicates that the GRH is valid.
3522  * @ah_attr: Returned attributes that can be used when creating an address
3523  *   handle for replying to the message.
3524  * When ib_init_ah_attr_from_wc() returns success,
3525  * (a) for IB link layer it optionally contains a reference to SGID attribute
3526  * when GRH is present for IB link layer.
3527  * (b) for RoCE link layer it contains a reference to SGID attribute.
3528  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3529  * attributes which are initialized using ib_init_ah_attr_from_wc().
3530  *
3531  */
3532 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3533                             const struct ib_wc *wc, const struct ib_grh *grh,
3534                             struct rdma_ah_attr *ah_attr);
3535 
3536 /**
3537  * ib_create_ah_from_wc - Creates an address handle associated with the
3538  *   sender of the specified work completion.
3539  * @pd: The protection domain associated with the address handle.
3540  * @wc: Work completion information associated with a received message.
3541  * @grh: References the received global route header.  This parameter is
3542  *   ignored unless the work completion indicates that the GRH is valid.
3543  * @port_num: The outbound port number to associate with the address.
3544  *
3545  * The address handle is used to reference a local or global destination
3546  * in all UD QP post sends.
3547  */
3548 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3549                                    const struct ib_grh *grh, u32 port_num);
3550 
3551 /**
3552  * rdma_modify_ah - Modifies the address vector associated with an address
3553  *   handle.
3554  * @ah: The address handle to modify.
3555  * @ah_attr: The new address vector attributes to associate with the
3556  *   address handle.
3557  */
3558 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3559 
3560 /**
3561  * rdma_query_ah - Queries the address vector associated with an address
3562  *   handle.
3563  * @ah: The address handle to query.
3564  * @ah_attr: The address vector attributes associated with the address
3565  *   handle.
3566  */
3567 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3568 
3569 enum rdma_destroy_ah_flags {
3570         /* In a sleepable context */
3571         RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3572 };
3573 
3574 /**
3575  * rdma_destroy_ah_user - Destroys an address handle.
3576  * @ah: The address handle to destroy.
3577  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3578  * @udata: Valid user data or NULL for kernel objects
3579  */
3580 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3581 
3582 /**
3583  * rdma_destroy_ah - Destroys an kernel address handle.
3584  * @ah: The address handle to destroy.
3585  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3586  *
3587  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3588  */
3589 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3590 {
3591         int ret = rdma_destroy_ah_user(ah, flags, NULL);
3592 
3593         WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3594 }
3595 
3596 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3597                                   struct ib_srq_init_attr *srq_init_attr,
3598                                   struct ib_usrq_object *uobject,
3599                                   struct ib_udata *udata);
3600 static inline struct ib_srq *
3601 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3602 {
3603         if (!pd->device->ops.create_srq)
3604                 return ERR_PTR(-EOPNOTSUPP);
3605 
3606         return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3607 }
3608 
3609 /**
3610  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3611  * @srq: The SRQ to modify.
3612  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3613  *   the current values of selected SRQ attributes are returned.
3614  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3615  *   are being modified.
3616  *
3617  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3618  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3619  * the number of receives queued drops below the limit.
3620  */
3621 int ib_modify_srq(struct ib_srq *srq,
3622                   struct ib_srq_attr *srq_attr,
3623                   enum ib_srq_attr_mask srq_attr_mask);
3624 
3625 /**
3626  * ib_query_srq - Returns the attribute list and current values for the
3627  *   specified SRQ.
3628  * @srq: The SRQ to query.
3629  * @srq_attr: The attributes of the specified SRQ.
3630  */
3631 int ib_query_srq(struct ib_srq *srq,
3632                  struct ib_srq_attr *srq_attr);
3633 
3634 /**
3635  * ib_destroy_srq_user - Destroys the specified SRQ.
3636  * @srq: The SRQ to destroy.
3637  * @udata: Valid user data or NULL for kernel objects
3638  */
3639 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3640 
3641 /**
3642  * ib_destroy_srq - Destroys the specified kernel SRQ.
3643  * @srq: The SRQ to destroy.
3644  *
3645  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3646  */
3647 static inline void ib_destroy_srq(struct ib_srq *srq)
3648 {
3649         int ret = ib_destroy_srq_user(srq, NULL);
3650 
3651         WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3652 }
3653 
3654 /**
3655  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3656  * @srq: The SRQ to post the work request on.
3657  * @recv_wr: A list of work requests to post on the receive queue.
3658  * @bad_recv_wr: On an immediate failure, this parameter will reference
3659  *   the work request that failed to be posted on the QP.
3660  */
3661 static inline int ib_post_srq_recv(struct ib_srq *srq,
3662                                    const struct ib_recv_wr *recv_wr,
3663                                    const struct ib_recv_wr **bad_recv_wr)
3664 {
3665         const struct ib_recv_wr *dummy;
3666 
3667         return srq->device->ops.post_srq_recv(srq, recv_wr,
3668                                               bad_recv_wr ? : &dummy);
3669 }
3670 
3671 struct ib_qp *ib_create_named_qp(struct ib_pd *pd,
3672                                  struct ib_qp_init_attr *qp_init_attr,
3673                                  const char *caller);
3674 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3675                                          struct ib_qp_init_attr *init_attr)
3676 {
3677         return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME);
3678 }
3679 
3680 /**
3681  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3682  * @qp: The QP to modify.
3683  * @attr: On input, specifies the QP attributes to modify.  On output,
3684  *   the current values of selected QP attributes are returned.
3685  * @attr_mask: A bit-mask used to specify which attributes of the QP
3686  *   are being modified.
3687  * @udata: pointer to user's input output buffer information
3688  *   are being modified.
3689  * It returns 0 on success and returns appropriate error code on error.
3690  */
3691 int ib_modify_qp_with_udata(struct ib_qp *qp,
3692                             struct ib_qp_attr *attr,
3693                             int attr_mask,
3694                             struct ib_udata *udata);
3695 
3696 /**
3697  * ib_modify_qp - Modifies the attributes for the specified QP and then
3698  *   transitions the QP to the given state.
3699  * @qp: The QP to modify.
3700  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3701  *   the current values of selected QP attributes are returned.
3702  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3703  *   are being modified.
3704  */
3705 int ib_modify_qp(struct ib_qp *qp,
3706                  struct ib_qp_attr *qp_attr,
3707                  int qp_attr_mask);
3708 
3709 /**
3710  * ib_query_qp - Returns the attribute list and current values for the
3711  *   specified QP.
3712  * @qp: The QP to query.
3713  * @qp_attr: The attributes of the specified QP.
3714  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3715  * @qp_init_attr: Additional attributes of the selected QP.
3716  *
3717  * The qp_attr_mask may be used to limit the query to gathering only the
3718  * selected attributes.
3719  */
3720 int ib_query_qp(struct ib_qp *qp,
3721                 struct ib_qp_attr *qp_attr,
3722                 int qp_attr_mask,
3723                 struct ib_qp_init_attr *qp_init_attr);
3724 
3725 /**
3726  * ib_destroy_qp - Destroys the specified QP.
3727  * @qp: The QP to destroy.
3728  * @udata: Valid udata or NULL for kernel objects
3729  */
3730 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3731 
3732 /**
3733  * ib_destroy_qp - Destroys the specified kernel QP.
3734  * @qp: The QP to destroy.
3735  *
3736  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3737  */
3738 static inline int ib_destroy_qp(struct ib_qp *qp)
3739 {
3740         return ib_destroy_qp_user(qp, NULL);
3741 }
3742 
3743 /**
3744  * ib_open_qp - Obtain a reference to an existing sharable QP.
3745  * @xrcd - XRC domain
3746  * @qp_open_attr: Attributes identifying the QP to open.
3747  *
3748  * Returns a reference to a sharable QP.
3749  */
3750 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3751                          struct ib_qp_open_attr *qp_open_attr);
3752 
3753 /**
3754  * ib_close_qp - Release an external reference to a QP.
3755  * @qp: The QP handle to release
3756  *
3757  * The opened QP handle is released by the caller.  The underlying
3758  * shared QP is not destroyed until all internal references are released.
3759  */
3760 int ib_close_qp(struct ib_qp *qp);
3761 
3762 /**
3763  * ib_post_send - Posts a list of work requests to the send queue of
3764  *   the specified QP.
3765  * @qp: The QP to post the work request on.
3766  * @send_wr: A list of work requests to post on the send queue.
3767  * @bad_send_wr: On an immediate failure, this parameter will reference
3768  *   the work request that failed to be posted on the QP.
3769  *
3770  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3771  * error is returned, the QP state shall not be affected,
3772  * ib_post_send() will return an immediate error after queueing any
3773  * earlier work requests in the list.
3774  */
3775 static inline int ib_post_send(struct ib_qp *qp,
3776                                const struct ib_send_wr *send_wr,
3777                                const struct ib_send_wr **bad_send_wr)
3778 {
3779         const struct ib_send_wr *dummy;
3780 
3781         return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3782 }
3783 
3784 /**
3785  * ib_post_recv - Posts a list of work requests to the receive queue of
3786  *   the specified QP.
3787  * @qp: The QP to post the work request on.
3788  * @recv_wr: A list of work requests to post on the receive queue.
3789  * @bad_recv_wr: On an immediate failure, this parameter will reference
3790  *   the work request that failed to be posted on the QP.
3791  */
3792 static inline int ib_post_recv(struct ib_qp *qp,
3793                                const struct ib_recv_wr *recv_wr,
3794                                const struct ib_recv_wr **bad_recv_wr)
3795 {
3796         const struct ib_recv_wr *dummy;
3797 
3798         return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3799 }
3800 
3801 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3802                             int comp_vector, enum ib_poll_context poll_ctx,
3803                             const char *caller);
3804 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3805                                         int nr_cqe, int comp_vector,
3806                                         enum ib_poll_context poll_ctx)
3807 {
3808         return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3809                              KBUILD_MODNAME);
3810 }
3811 
3812 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3813                                 int nr_cqe, enum ib_poll_context poll_ctx,
3814                                 const char *caller);
3815 
3816 /**
3817  * ib_alloc_cq_any: Allocate kernel CQ
3818  * @dev: The IB device
3819  * @private: Private data attached to the CQE
3820  * @nr_cqe: Number of CQEs in the CQ
3821  * @poll_ctx: Context used for polling the CQ
3822  */
3823 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3824                                             void *private, int nr_cqe,
3825                                             enum ib_poll_context poll_ctx)
3826 {
3827         return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3828                                  KBUILD_MODNAME);
3829 }
3830 
3831 void ib_free_cq(struct ib_cq *cq);
3832 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3833 
3834 /**
3835  * ib_create_cq - Creates a CQ on the specified device.
3836  * @device: The device on which to create the CQ.
3837  * @comp_handler: A user-specified callback that is invoked when a
3838  *   completion event occurs on the CQ.
3839  * @event_handler: A user-specified callback that is invoked when an
3840  *   asynchronous event not associated with a completion occurs on the CQ.
3841  * @cq_context: Context associated with the CQ returned to the user via
3842  *   the associated completion and event handlers.
3843  * @cq_attr: The attributes the CQ should be created upon.
3844  *
3845  * Users can examine the cq structure to determine the actual CQ size.
3846  */
3847 struct ib_cq *__ib_create_cq(struct ib_device *device,
3848                              ib_comp_handler comp_handler,
3849                              void (*event_handler)(struct ib_event *, void *),
3850                              void *cq_context,
3851                              const struct ib_cq_init_attr *cq_attr,
3852                              const char *caller);
3853 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3854         __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3855 
3856 /**
3857  * ib_resize_cq - Modifies the capacity of the CQ.
3858  * @cq: The CQ to resize.
3859  * @cqe: The minimum size of the CQ.
3860  *
3861  * Users can examine the cq structure to determine the actual CQ size.
3862  */
3863 int ib_resize_cq(struct ib_cq *cq, int cqe);
3864 
3865 /**
3866  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3867  * @cq: The CQ to modify.
3868  * @cq_count: number of CQEs that will trigger an event
3869  * @cq_period: max period of time in usec before triggering an event
3870  *
3871  */
3872 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3873 
3874 /**
3875  * ib_destroy_cq_user - Destroys the specified CQ.
3876  * @cq: The CQ to destroy.
3877  * @udata: Valid user data or NULL for kernel objects
3878  */
3879 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3880 
3881 /**
3882  * ib_destroy_cq - Destroys the specified kernel CQ.
3883  * @cq: The CQ to destroy.
3884  *
3885  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3886  */
3887 static inline void ib_destroy_cq(struct ib_cq *cq)
3888 {
3889         int ret = ib_destroy_cq_user(cq, NULL);
3890 
3891         WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3892 }
3893 
3894 /**
3895  * ib_poll_cq - poll a CQ for completion(s)
3896  * @cq:the CQ being polled
3897  * @num_entries:maximum number of completions to return
3898  * @wc:array of at least @num_entries &struct ib_wc where completions
3899  *   will be returned
3900  *
3901  * Poll a CQ for (possibly multiple) completions.  If the return value
3902  * is < 0, an error occurred.  If the return value is >= 0, it is the
3903  * number of completions returned.  If the return value is
3904  * non-negative and < num_entries, then the CQ was emptied.
3905  */
3906 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3907                              struct ib_wc *wc)
3908 {
3909         return cq->device->ops.poll_cq(cq, num_entries, wc);
3910 }
3911 
3912 /**
3913  * ib_req_notify_cq - Request completion notification on a CQ.
3914  * @cq: The CQ to generate an event for.
3915  * @flags:
3916  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3917  *   to request an event on the next solicited event or next work
3918  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3919  *   may also be |ed in to request a hint about missed events, as
3920  *   described below.
3921  *
3922  * Return Value:
3923  *    < 0 means an error occurred while requesting notification
3924  *   == 0 means notification was requested successfully, and if
3925  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3926  *        were missed and it is safe to wait for another event.  In
3927  *        this case is it guaranteed that any work completions added
3928  *        to the CQ since the last CQ poll will trigger a completion
3929  *        notification event.
3930  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3931  *        in.  It means that the consumer must poll the CQ again to
3932  *        make sure it is empty to avoid missing an event because of a
3933  *        race between requesting notification and an entry being
3934  *        added to the CQ.  This return value means it is possible
3935  *        (but not guaranteed) that a work completion has been added
3936  *        to the CQ since the last poll without triggering a
3937  *        completion notification event.
3938  */
3939 static inline int ib_req_notify_cq(struct ib_cq *cq,
3940                                    enum ib_cq_notify_flags flags)
3941 {
3942         return cq->device->ops.req_notify_cq(cq, flags);
3943 }
3944 
3945 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3946                              int comp_vector_hint,
3947                              enum ib_poll_context poll_ctx);
3948 
3949 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3950 
3951 /*
3952  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
3953  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
3954  * address into the dma address.
3955  */
3956 static inline bool ib_uses_virt_dma(struct ib_device *dev)
3957 {
3958         return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
3959 }
3960 
3961 /**
3962  * ib_dma_mapping_error - check a DMA addr for error
3963  * @dev: The device for which the dma_addr was created
3964  * @dma_addr: The DMA address to check
3965  */
3966 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3967 {
3968         if (ib_uses_virt_dma(dev))
3969                 return 0;
3970         return dma_mapping_error(dev->dma_device, dma_addr);
3971 }
3972 
3973 /**
3974  * ib_dma_map_single - Map a kernel virtual address to DMA address
3975  * @dev: The device for which the dma_addr is to be created
3976  * @cpu_addr: The kernel virtual address
3977  * @size: The size of the region in bytes
3978  * @direction: The direction of the DMA
3979  */
3980 static inline u64 ib_dma_map_single(struct ib_device *dev,
3981                                     void *cpu_addr, size_t size,
3982                                     enum dma_data_direction direction)
3983 {
3984         if (ib_uses_virt_dma(dev))
3985                 return (uintptr_t)cpu_addr;
3986         return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3987 }
3988 
3989 /**
3990  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3991  * @dev: The device for which the DMA address was created
3992  * @addr: The DMA address
3993  * @size: The size of the region in bytes
3994  * @direction: The direction of the DMA
3995  */
3996 static inline void ib_dma_unmap_single(struct ib_device *dev,
3997                                        u64 addr, size_t size,
3998                                        enum dma_data_direction direction)
3999 {
4000         if (!ib_uses_virt_dma(dev))
4001                 dma_unmap_single(dev->dma_device, addr, size, direction);
4002 }
4003 
4004 /**
4005  * ib_dma_map_page - Map a physical page to DMA address
4006  * @dev: The device for which the dma_addr is to be created
4007  * @page: The page to be mapped
4008  * @offset: The offset within the page
4009  * @size: The size of the region in bytes
4010  * @direction: The direction of the DMA
4011  */
4012 static inline u64 ib_dma_map_page(struct ib_device *dev,
4013                                   struct page *page,
4014                                   unsigned long offset,
4015                                   size_t size,
4016                                          enum dma_data_direction direction)
4017 {
4018         if (ib_uses_virt_dma(dev))
4019                 return (uintptr_t)(page_address(page) + offset);
4020         return dma_map_page(dev->dma_device, page, offset, size, direction);
4021 }
4022 
4023 /**
4024  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4025  * @dev: The device for which the DMA address was created
4026  * @addr: The DMA address
4027  * @size: The size of the region in bytes
4028  * @direction: The direction of the DMA
4029  */
4030 static inline void ib_dma_unmap_page(struct ib_device *dev,
4031                                      u64 addr, size_t size,
4032                                      enum dma_data_direction direction)
4033 {
4034         if (!ib_uses_virt_dma(dev))
4035                 dma_unmap_page(dev->dma_device, addr, size, direction);
4036 }
4037 
4038 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4039 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4040                                       struct scatterlist *sg, int nents,
4041                                       enum dma_data_direction direction,
4042                                       unsigned long dma_attrs)
4043 {
4044         if (ib_uses_virt_dma(dev))
4045                 return ib_dma_virt_map_sg(dev, sg, nents);
4046         return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4047                                 dma_attrs);
4048 }
4049 
4050 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4051                                          struct scatterlist *sg, int nents,
4052                                          enum dma_data_direction direction,
4053                                          unsigned long dma_attrs)
4054 {
4055         if (!ib_uses_virt_dma(dev))
4056                 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4057                                    dma_attrs);
4058 }
4059 
4060 /**
4061  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4062  * @dev: The device for which the DMA addresses are to be created
4063  * @sg: The array of scatter/gather entries
4064  * @nents: The number of scatter/gather entries
4065  * @direction: The direction of the DMA
4066  */
4067 static inline int ib_dma_map_sg(struct ib_device *dev,
4068                                 struct scatterlist *sg, int nents,
4069                                 enum dma_data_direction direction)
4070 {
4071         return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4072 }
4073 
4074 /**
4075  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4076  * @dev: The device for which the DMA addresses were created
4077  * @sg: The array of scatter/gather entries
4078  * @nents: The number of scatter/gather entries
4079  * @direction: The direction of the DMA
4080  */
4081 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4082                                    struct scatterlist *sg, int nents,
4083                                    enum dma_data_direction direction)
4084 {
4085         ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4086 }
4087 
4088 /**
4089  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4090  * @dev: The device to query
4091  *
4092  * The returned value represents a size in bytes.
4093  */
4094 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4095 {
4096         if (ib_uses_virt_dma(dev))
4097                 return UINT_MAX;
4098         return dma_get_max_seg_size(dev->dma_device);
4099 }
4100 
4101 /**
4102  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4103  * @dev: The device for which the DMA address was created
4104  * @addr: The DMA address
4105  * @size: The size of the region in bytes
4106  * @dir: The direction of the DMA
4107  */
4108 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4109                                               u64 addr,
4110                                               size_t size,
4111                                               enum dma_data_direction dir)
4112 {
4113         if (!ib_uses_virt_dma(dev))
4114                 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4115 }
4116 
4117 /**
4118  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4119  * @dev: The device for which the DMA address was created
4120  * @addr: The DMA address
4121  * @size: The size of the region in bytes
4122  * @dir: The direction of the DMA
4123  */
4124 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4125                                                  u64 addr,
4126                                                  size_t size,
4127                                                  enum dma_data_direction dir)
4128 {
4129         if (!ib_uses_virt_dma(dev))
4130                 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4131 }
4132 
4133 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4134  * space. This function should be called when 'current' is the owning MM.
4135  */
4136 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4137                              u64 virt_addr, int mr_access_flags);
4138 
4139 /* ib_advise_mr -  give an advice about an address range in a memory region */
4140 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4141                  u32 flags, struct ib_sge *sg_list, u32 num_sge);
4142 /**
4143  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4144  *   HCA translation table.
4145  * @mr: The memory region to deregister.
4146  * @udata: Valid user data or NULL for kernel object
4147  *
4148  * This function can fail, if the memory region has memory windows bound to it.
4149  */
4150 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4151 
4152 /**
4153  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4154  *   HCA translation table.
4155  * @mr: The memory region to deregister.
4156  *
4157  * This function can fail, if the memory region has memory windows bound to it.
4158  *
4159  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4160  */
4161 static inline int ib_dereg_mr(struct ib_mr *mr)
4162 {
4163         return ib_dereg_mr_user(mr, NULL);
4164 }
4165 
4166 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4167                           u32 max_num_sg);
4168 
4169 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4170                                     u32 max_num_data_sg,
4171                                     u32 max_num_meta_sg);
4172 
4173 /**
4174  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4175  *   R_Key and L_Key.
4176  * @mr - struct ib_mr pointer to be updated.
4177  * @newkey - new key to be used.
4178  */
4179 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4180 {
4181         mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4182         mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4183 }
4184 
4185 /**
4186  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4187  * for calculating a new rkey for type 2 memory windows.
4188  * @rkey - the rkey to increment.
4189  */
4190 static inline u32 ib_inc_rkey(u32 rkey)
4191 {
4192         const u32 mask = 0x000000ff;
4193         return ((rkey + 1) & mask) | (rkey & ~mask);
4194 }
4195 
4196 /**
4197  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4198  * @qp: QP to attach to the multicast group.  The QP must be type
4199  *   IB_QPT_UD.
4200  * @gid: Multicast group GID.
4201  * @lid: Multicast group LID in host byte order.
4202  *
4203  * In order to send and receive multicast packets, subnet
4204  * administration must have created the multicast group and configured
4205  * the fabric appropriately.  The port associated with the specified
4206  * QP must also be a member of the multicast group.
4207  */
4208 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4209 
4210 /**
4211  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4212  * @qp: QP to detach from the multicast group.
4213  * @gid: Multicast group GID.
4214  * @lid: Multicast group LID in host byte order.
4215  */
4216 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4217 
4218 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4219                                    struct inode *inode, struct ib_udata *udata);
4220 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4221 
4222 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4223                                      unsigned int flags)
4224 {
4225         /*
4226          * Local write permission is required if remote write or
4227          * remote atomic permission is also requested.
4228          */
4229         if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4230             !(flags & IB_ACCESS_LOCAL_WRITE))
4231                 return -EINVAL;
4232 
4233         if (flags & ~IB_ACCESS_SUPPORTED)
4234                 return -EINVAL;
4235 
4236         if (flags & IB_ACCESS_ON_DEMAND &&
4237             !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING))
4238                 return -EINVAL;
4239         return 0;
4240 }
4241 
4242 static inline bool ib_access_writable(int access_flags)
4243 {
4244         /*
4245          * We have writable memory backing the MR if any of the following
4246          * access flags are set.  "Local write" and "remote write" obviously
4247          * require write access.  "Remote atomic" can do things like fetch and
4248          * add, which will modify memory, and "MW bind" can change permissions
4249          * by binding a window.
4250          */
4251         return access_flags &
4252                 (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4253                  IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4254 }
4255 
4256 /**
4257  * ib_check_mr_status: lightweight check of MR status.
4258  *     This routine may provide status checks on a selected
4259  *     ib_mr. first use is for signature status check.
4260  *
4261  * @mr: A memory region.
4262  * @check_mask: Bitmask of which checks to perform from
4263  *     ib_mr_status_check enumeration.
4264  * @mr_status: The container of relevant status checks.
4265  *     failed checks will be indicated in the status bitmask
4266  *     and the relevant info shall be in the error item.
4267  */
4268 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4269                        struct ib_mr_status *mr_status);
4270 
4271 /**
4272  * ib_device_try_get: Hold a registration lock
4273  * device: The device to lock
4274  *
4275  * A device under an active registration lock cannot become unregistered. It
4276  * is only possible to obtain a registration lock on a device that is fully
4277  * registered, otherwise this function returns false.
4278  *
4279  * The registration lock is only necessary for actions which require the
4280  * device to still be registered. Uses that only require the device pointer to
4281  * be valid should use get_device(&ibdev->dev) to hold the memory.
4282  *
4283  */
4284 static inline bool ib_device_try_get(struct ib_device *dev)
4285 {
4286         return refcount_inc_not_zero(&dev->refcount);
4287 }
4288 
4289 void ib_device_put(struct ib_device *device);
4290 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4291                                           enum rdma_driver_id driver_id);
4292 struct ib_device *ib_device_get_by_name(const char *name,
4293                                         enum rdma_driver_id driver_id);
4294 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4295                                             u16 pkey, const union ib_gid *gid,
4296                                             const struct sockaddr *addr);
4297 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4298                          unsigned int port);
4299 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4300 
4301 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4302                            struct ib_wq_init_attr *init_attr);
4303 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4304 
4305 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4306                  unsigned int *sg_offset, unsigned int page_size);
4307 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4308                     int data_sg_nents, unsigned int *data_sg_offset,
4309                     struct scatterlist *meta_sg, int meta_sg_nents,
4310                     unsigned int *meta_sg_offset, unsigned int page_size);
4311 
4312 static inline int
4313 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4314                   unsigned int *sg_offset, unsigned int page_size)
4315 {
4316         int n;
4317 
4318         n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4319         mr->iova = 0;
4320 
4321         return n;
4322 }
4323 
4324 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4325                 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4326 
4327 void ib_drain_rq(struct ib_qp *qp);
4328 void ib_drain_sq(struct ib_qp *qp);
4329 void ib_drain_qp(struct ib_qp *qp);
4330 
4331 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4332                      u8 *width);
4333 
4334 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4335 {
4336         if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4337                 return attr->roce.dmac;
4338         return NULL;
4339 }
4340 
4341 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4342 {
4343         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4344                 attr->ib.dlid = (u16)dlid;
4345         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4346                 attr->opa.dlid = dlid;
4347 }
4348 
4349 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4350 {
4351         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4352                 return attr->ib.dlid;
4353         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4354                 return attr->opa.dlid;
4355         return 0;
4356 }
4357 
4358 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4359 {
4360         attr->sl = sl;
4361 }
4362 
4363 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4364 {
4365         return attr->sl;
4366 }
4367 
4368 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4369                                          u8 src_path_bits)
4370 {
4371         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4372                 attr->ib.src_path_bits = src_path_bits;
4373         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4374                 attr->opa.src_path_bits = src_path_bits;
4375 }
4376 
4377 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4378 {
4379         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4380                 return attr->ib.src_path_bits;
4381         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4382                 return attr->opa.src_path_bits;
4383         return 0;
4384 }
4385 
4386 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4387                                         bool make_grd)
4388 {
4389         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4390                 attr->opa.make_grd = make_grd;
4391 }
4392 
4393 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4394 {
4395         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4396                 return attr->opa.make_grd;
4397         return false;
4398 }
4399 
4400 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4401 {
4402         attr->port_num = port_num;
4403 }
4404 
4405 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4406 {
4407         return attr->port_num;
4408 }
4409 
4410 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4411                                            u8 static_rate)
4412 {
4413         attr->static_rate = static_rate;
4414 }
4415 
4416 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4417 {
4418         return attr->static_rate;
4419 }
4420 
4421 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4422                                         enum ib_ah_flags flag)
4423 {
4424         attr->ah_flags = flag;
4425 }
4426 
4427 static inline enum ib_ah_flags
4428                 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4429 {
4430         return attr->ah_flags;
4431 }
4432 
4433 static inline const struct ib_global_route
4434                 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4435 {
4436         return &attr->grh;
4437 }
4438 
4439 /*To retrieve and modify the grh */
4440 static inline struct ib_global_route
4441                 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4442 {
4443         return &attr->grh;
4444 }
4445 
4446 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4447 {
4448         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4449 
4450         memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4451 }
4452 
4453 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4454                                              __be64 prefix)
4455 {
4456         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4457 
4458         grh->dgid.global.subnet_prefix = prefix;
4459 }
4460 
4461 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4462                                             __be64 if_id)
4463 {
4464         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4465 
4466         grh->dgid.global.interface_id = if_id;
4467 }
4468 
4469 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4470                                    union ib_gid *dgid, u32 flow_label,
4471                                    u8 sgid_index, u8 hop_limit,
4472                                    u8 traffic_class)
4473 {
4474         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4475 
4476         attr->ah_flags = IB_AH_GRH;
4477         if (dgid)
4478                 grh->dgid = *dgid;
4479         grh->flow_label = flow_label;
4480         grh->sgid_index = sgid_index;
4481         grh->hop_limit = hop_limit;
4482         grh->traffic_class = traffic_class;
4483         grh->sgid_attr = NULL;
4484 }
4485 
4486 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4487 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4488                              u32 flow_label, u8 hop_limit, u8 traffic_class,
4489                              const struct ib_gid_attr *sgid_attr);
4490 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4491                        const struct rdma_ah_attr *src);
4492 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4493                           const struct rdma_ah_attr *new);
4494 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4495 
4496 /**
4497  * rdma_ah_find_type - Return address handle type.
4498  *
4499  * @dev: Device to be checked
4500  * @port_num: Port number
4501  */
4502 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4503                                                        u32 port_num)
4504 {
4505         if (rdma_protocol_roce(dev, port_num))
4506                 return RDMA_AH_ATTR_TYPE_ROCE;
4507         if (rdma_protocol_ib(dev, port_num)) {
4508                 if (rdma_cap_opa_ah(dev, port_num))
4509                         return RDMA_AH_ATTR_TYPE_OPA;
4510                 return RDMA_AH_ATTR_TYPE_IB;
4511         }
4512 
4513         return RDMA_AH_ATTR_TYPE_UNDEFINED;
4514 }
4515 
4516 /**
4517  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4518  *     In the current implementation the only way to get
4519  *     get the 32bit lid is from other sources for OPA.
4520  *     For IB, lids will always be 16bits so cast the
4521  *     value accordingly.
4522  *
4523  * @lid: A 32bit LID
4524  */
4525 static inline u16 ib_lid_cpu16(u32 lid)
4526 {
4527         WARN_ON_ONCE(lid & 0xFFFF0000);
4528         return (u16)lid;
4529 }
4530 
4531 /**
4532  * ib_lid_be16 - Return lid in 16bit BE encoding.
4533  *
4534  * @lid: A 32bit LID
4535  */
4536 static inline __be16 ib_lid_be16(u32 lid)
4537 {
4538         WARN_ON_ONCE(lid & 0xFFFF0000);
4539         return cpu_to_be16((u16)lid);
4540 }
4541 
4542 /**
4543  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4544  *   vector
4545  * @device:         the rdma device
4546  * @comp_vector:    index of completion vector
4547  *
4548  * Returns NULL on failure, otherwise a corresponding cpu map of the
4549  * completion vector (returns all-cpus map if the device driver doesn't
4550  * implement get_vector_affinity).
4551  */
4552 static inline const struct cpumask *
4553 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4554 {
4555         if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4556             !device->ops.get_vector_affinity)
4557                 return NULL;
4558 
4559         return device->ops.get_vector_affinity(device, comp_vector);
4560 
4561 }
4562 
4563 /**
4564  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4565  * and add their gids, as needed, to the relevant RoCE devices.
4566  *
4567  * @device:         the rdma device
4568  */
4569 void rdma_roce_rescan_device(struct ib_device *ibdev);
4570 
4571 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4572 
4573 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4574 
4575 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4576                                      enum rdma_netdev_t type, const char *name,
4577                                      unsigned char name_assign_type,
4578                                      void (*setup)(struct net_device *));
4579 
4580 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4581                      enum rdma_netdev_t type, const char *name,
4582                      unsigned char name_assign_type,
4583                      void (*setup)(struct net_device *),
4584                      struct net_device *netdev);
4585 
4586 /**
4587  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4588  *
4589  * @device:     device pointer for which ib_device pointer to retrieve
4590  *
4591  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4592  *
4593  */
4594 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4595 {
4596         struct ib_core_device *coredev =
4597                 container_of(device, struct ib_core_device, dev);
4598 
4599         return coredev->owner;
4600 }
4601 
4602 /**
4603  * ibdev_to_node - return the NUMA node for a given ib_device
4604  * @dev:        device to get the NUMA node for.
4605  */
4606 static inline int ibdev_to_node(struct ib_device *ibdev)
4607 {
4608         struct device *parent = ibdev->dev.parent;
4609 
4610         if (!parent)
4611                 return NUMA_NO_NODE;
4612         return dev_to_node(parent);
4613 }
4614 
4615 /**
4616  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4617  *                             ib_device holder structure from device pointer.
4618  *
4619  * NOTE: New drivers should not make use of this API; This API is only for
4620  * existing drivers who have exposed sysfs entries using
4621  * ops->device_group.
4622  */
4623 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4624         container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4625 
4626 bool rdma_dev_access_netns(const struct ib_device *device,
4627                            const struct net *net);
4628 
4629 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4630 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4631 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4632 
4633 /**
4634  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4635  *                               on the flow_label
4636  *
4637  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4638  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4639  * convention.
4640  */
4641 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4642 {
4643         u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4644 
4645         fl_low ^= fl_high >> 14;
4646         return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4647 }
4648 
4649 /**
4650  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4651  *                        local and remote qpn values
4652  *
4653  * This function folded the multiplication results of two qpns, 24 bit each,
4654  * fields, and converts it to a 20 bit results.
4655  *
4656  * This function will create symmetric flow_label value based on the local
4657  * and remote qpn values. this will allow both the requester and responder
4658  * to calculate the same flow_label for a given connection.
4659  *
4660  * This helper function should be used by driver in case the upper layer
4661  * provide a zero flow_label value. This is to improve entropy of RDMA
4662  * traffic in the network.
4663  */
4664 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4665 {
4666         u64 v = (u64)lqpn * rqpn;
4667 
4668         v ^= v >> 20;
4669         v ^= v >> 40;
4670 
4671         return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4672 }
4673 
4674 const struct ib_port_immutable*
4675 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4676 #endif /* IB_VERBS_H */
4677 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp