~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/uapi/linux/btrfs_tree.h

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef _BTRFS_CTREE_H_
  2 #define _BTRFS_CTREE_H_
  3 
  4 /*
  5  * This header contains the structure definitions and constants used
  6  * by file system objects that can be retrieved using
  7  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  8  * is needed to describe a leaf node's key or item contents.
  9  */
 10 
 11 /* holds pointers to all of the tree roots */
 12 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
 13 
 14 /* stores information about which extents are in use, and reference counts */
 15 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
 16 
 17 /*
 18  * chunk tree stores translations from logical -> physical block numbering
 19  * the super block points to the chunk tree
 20  */
 21 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
 22 
 23 /*
 24  * stores information about which areas of a given device are in use.
 25  * one per device.  The tree of tree roots points to the device tree
 26  */
 27 #define BTRFS_DEV_TREE_OBJECTID 4ULL
 28 
 29 /* one per subvolume, storing files and directories */
 30 #define BTRFS_FS_TREE_OBJECTID 5ULL
 31 
 32 /* directory objectid inside the root tree */
 33 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
 34 
 35 /* holds checksums of all the data extents */
 36 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
 37 
 38 /* holds quota configuration and tracking */
 39 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
 40 
 41 /* for storing items that use the BTRFS_UUID_KEY* types */
 42 #define BTRFS_UUID_TREE_OBJECTID 9ULL
 43 
 44 /* tracks free space in block groups. */
 45 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
 46 
 47 /* device stats in the device tree */
 48 #define BTRFS_DEV_STATS_OBJECTID 0ULL
 49 
 50 /* for storing balance parameters in the root tree */
 51 #define BTRFS_BALANCE_OBJECTID -4ULL
 52 
 53 /* orhpan objectid for tracking unlinked/truncated files */
 54 #define BTRFS_ORPHAN_OBJECTID -5ULL
 55 
 56 /* does write ahead logging to speed up fsyncs */
 57 #define BTRFS_TREE_LOG_OBJECTID -6ULL
 58 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
 59 
 60 /* for space balancing */
 61 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
 62 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
 63 
 64 /*
 65  * extent checksums all have this objectid
 66  * this allows them to share the logging tree
 67  * for fsyncs
 68  */
 69 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
 70 
 71 /* For storing free space cache */
 72 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
 73 
 74 /*
 75  * The inode number assigned to the special inode for storing
 76  * free ino cache
 77  */
 78 #define BTRFS_FREE_INO_OBJECTID -12ULL
 79 
 80 /* dummy objectid represents multiple objectids */
 81 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
 82 
 83 /*
 84  * All files have objectids in this range.
 85  */
 86 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
 87 #define BTRFS_LAST_FREE_OBJECTID -256ULL
 88 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 89 
 90 
 91 /*
 92  * the device items go into the chunk tree.  The key is in the form
 93  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 94  */
 95 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 96 
 97 #define BTRFS_BTREE_INODE_OBJECTID 1
 98 
 99 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
100 
101 #define BTRFS_DEV_REPLACE_DEVID 0ULL
102 
103 /*
104  * inode items have the data typically returned from stat and store other
105  * info about object characteristics.  There is one for every file and dir in
106  * the FS
107  */
108 #define BTRFS_INODE_ITEM_KEY            1
109 #define BTRFS_INODE_REF_KEY             12
110 #define BTRFS_INODE_EXTREF_KEY          13
111 #define BTRFS_XATTR_ITEM_KEY            24
112 #define BTRFS_ORPHAN_ITEM_KEY           48
113 /* reserve 2-15 close to the inode for later flexibility */
114 
115 /*
116  * dir items are the name -> inode pointers in a directory.  There is one
117  * for every name in a directory.
118  */
119 #define BTRFS_DIR_LOG_ITEM_KEY  60
120 #define BTRFS_DIR_LOG_INDEX_KEY 72
121 #define BTRFS_DIR_ITEM_KEY      84
122 #define BTRFS_DIR_INDEX_KEY     96
123 /*
124  * extent data is for file data
125  */
126 #define BTRFS_EXTENT_DATA_KEY   108
127 
128 /*
129  * extent csums are stored in a separate tree and hold csums for
130  * an entire extent on disk.
131  */
132 #define BTRFS_EXTENT_CSUM_KEY   128
133 
134 /*
135  * root items point to tree roots.  They are typically in the root
136  * tree used by the super block to find all the other trees
137  */
138 #define BTRFS_ROOT_ITEM_KEY     132
139 
140 /*
141  * root backrefs tie subvols and snapshots to the directory entries that
142  * reference them
143  */
144 #define BTRFS_ROOT_BACKREF_KEY  144
145 
146 /*
147  * root refs make a fast index for listing all of the snapshots and
148  * subvolumes referenced by a given root.  They point directly to the
149  * directory item in the root that references the subvol
150  */
151 #define BTRFS_ROOT_REF_KEY      156
152 
153 /*
154  * extent items are in the extent map tree.  These record which blocks
155  * are used, and how many references there are to each block
156  */
157 #define BTRFS_EXTENT_ITEM_KEY   168
158 
159 /*
160  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
161  * the length, so we save the level in key->offset instead of the length.
162  */
163 #define BTRFS_METADATA_ITEM_KEY 169
164 
165 #define BTRFS_TREE_BLOCK_REF_KEY        176
166 
167 #define BTRFS_EXTENT_DATA_REF_KEY       178
168 
169 #define BTRFS_EXTENT_REF_V0_KEY         180
170 
171 #define BTRFS_SHARED_BLOCK_REF_KEY      182
172 
173 #define BTRFS_SHARED_DATA_REF_KEY       184
174 
175 /*
176  * block groups give us hints into the extent allocation trees.  Which
177  * blocks are free etc etc
178  */
179 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
180 
181 /*
182  * Every block group is represented in the free space tree by a free space info
183  * item, which stores some accounting information. It is keyed on
184  * (block_group_start, FREE_SPACE_INFO, block_group_length).
185  */
186 #define BTRFS_FREE_SPACE_INFO_KEY 198
187 
188 /*
189  * A free space extent tracks an extent of space that is free in a block group.
190  * It is keyed on (start, FREE_SPACE_EXTENT, length).
191  */
192 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
193 
194 /*
195  * When a block group becomes very fragmented, we convert it to use bitmaps
196  * instead of extents. A free space bitmap is keyed on
197  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
198  * (length / sectorsize) bits.
199  */
200 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
201 
202 #define BTRFS_DEV_EXTENT_KEY    204
203 #define BTRFS_DEV_ITEM_KEY      216
204 #define BTRFS_CHUNK_ITEM_KEY    228
205 
206 /*
207  * Records the overall state of the qgroups.
208  * There's only one instance of this key present,
209  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
210  */
211 #define BTRFS_QGROUP_STATUS_KEY         240
212 /*
213  * Records the currently used space of the qgroup.
214  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
215  */
216 #define BTRFS_QGROUP_INFO_KEY           242
217 /*
218  * Contains the user configured limits for the qgroup.
219  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
220  */
221 #define BTRFS_QGROUP_LIMIT_KEY          244
222 /*
223  * Records the child-parent relationship of qgroups. For
224  * each relation, 2 keys are present:
225  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
226  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
227  */
228 #define BTRFS_QGROUP_RELATION_KEY       246
229 
230 /*
231  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
232  */
233 #define BTRFS_BALANCE_ITEM_KEY  248
234 
235 /*
236  * The key type for tree items that are stored persistently, but do not need to
237  * exist for extended period of time. The items can exist in any tree.
238  *
239  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
240  *
241  * Existing items:
242  *
243  * - balance status item
244  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
245  */
246 #define BTRFS_TEMPORARY_ITEM_KEY        248
247 
248 /*
249  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
250  */
251 #define BTRFS_DEV_STATS_KEY             249
252 
253 /*
254  * The key type for tree items that are stored persistently and usually exist
255  * for a long period, eg. filesystem lifetime. The item kinds can be status
256  * information, stats or preference values. The item can exist in any tree.
257  *
258  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
259  *
260  * Existing items:
261  *
262  * - device statistics, store IO stats in the device tree, one key for all
263  *   stats
264  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
265  */
266 #define BTRFS_PERSISTENT_ITEM_KEY       249
267 
268 /*
269  * Persistantly stores the device replace state in the device tree.
270  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
271  */
272 #define BTRFS_DEV_REPLACE_KEY   250
273 
274 /*
275  * Stores items that allow to quickly map UUIDs to something else.
276  * These items are part of the filesystem UUID tree.
277  * The key is built like this:
278  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
279  */
280 #if BTRFS_UUID_SIZE != 16
281 #error "UUID items require BTRFS_UUID_SIZE == 16!"
282 #endif
283 #define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
284 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
285                                                  * received subvols */
286 
287 /*
288  * string items are for debugging.  They just store a short string of
289  * data in the FS
290  */
291 #define BTRFS_STRING_ITEM_KEY   253
292 
293 
294 
295 /* 32 bytes in various csum fields */
296 #define BTRFS_CSUM_SIZE 32
297 
298 /* csum types */
299 #define BTRFS_CSUM_TYPE_CRC32   0
300 
301 /*
302  * flags definitions for directory entry item type
303  *
304  * Used by:
305  * struct btrfs_dir_item.type
306  */
307 #define BTRFS_FT_UNKNOWN        0
308 #define BTRFS_FT_REG_FILE       1
309 #define BTRFS_FT_DIR            2
310 #define BTRFS_FT_CHRDEV         3
311 #define BTRFS_FT_BLKDEV         4
312 #define BTRFS_FT_FIFO           5
313 #define BTRFS_FT_SOCK           6
314 #define BTRFS_FT_SYMLINK        7
315 #define BTRFS_FT_XATTR          8
316 #define BTRFS_FT_MAX            9
317 
318 /*
319  * The key defines the order in the tree, and so it also defines (optimal)
320  * block layout.
321  *
322  * objectid corresponds to the inode number.
323  *
324  * type tells us things about the object, and is a kind of stream selector.
325  * so for a given inode, keys with type of 1 might refer to the inode data,
326  * type of 2 may point to file data in the btree and type == 3 may point to
327  * extents.
328  *
329  * offset is the starting byte offset for this key in the stream.
330  *
331  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
332  * in cpu native order.  Otherwise they are identical and their sizes
333  * should be the same (ie both packed)
334  */
335 struct btrfs_disk_key {
336         __le64 objectid;
337         __u8 type;
338         __le64 offset;
339 } __attribute__ ((__packed__));
340 
341 struct btrfs_key {
342         __u64 objectid;
343         __u8 type;
344         __u64 offset;
345 } __attribute__ ((__packed__));
346 
347 struct btrfs_dev_item {
348         /* the internal btrfs device id */
349         __le64 devid;
350 
351         /* size of the device */
352         __le64 total_bytes;
353 
354         /* bytes used */
355         __le64 bytes_used;
356 
357         /* optimal io alignment for this device */
358         __le32 io_align;
359 
360         /* optimal io width for this device */
361         __le32 io_width;
362 
363         /* minimal io size for this device */
364         __le32 sector_size;
365 
366         /* type and info about this device */
367         __le64 type;
368 
369         /* expected generation for this device */
370         __le64 generation;
371 
372         /*
373          * starting byte of this partition on the device,
374          * to allow for stripe alignment in the future
375          */
376         __le64 start_offset;
377 
378         /* grouping information for allocation decisions */
379         __le32 dev_group;
380 
381         /* seek speed 0-100 where 100 is fastest */
382         __u8 seek_speed;
383 
384         /* bandwidth 0-100 where 100 is fastest */
385         __u8 bandwidth;
386 
387         /* btrfs generated uuid for this device */
388         __u8 uuid[BTRFS_UUID_SIZE];
389 
390         /* uuid of FS who owns this device */
391         __u8 fsid[BTRFS_UUID_SIZE];
392 } __attribute__ ((__packed__));
393 
394 struct btrfs_stripe {
395         __le64 devid;
396         __le64 offset;
397         __u8 dev_uuid[BTRFS_UUID_SIZE];
398 } __attribute__ ((__packed__));
399 
400 struct btrfs_chunk {
401         /* size of this chunk in bytes */
402         __le64 length;
403 
404         /* objectid of the root referencing this chunk */
405         __le64 owner;
406 
407         __le64 stripe_len;
408         __le64 type;
409 
410         /* optimal io alignment for this chunk */
411         __le32 io_align;
412 
413         /* optimal io width for this chunk */
414         __le32 io_width;
415 
416         /* minimal io size for this chunk */
417         __le32 sector_size;
418 
419         /* 2^16 stripes is quite a lot, a second limit is the size of a single
420          * item in the btree
421          */
422         __le16 num_stripes;
423 
424         /* sub stripes only matter for raid10 */
425         __le16 sub_stripes;
426         struct btrfs_stripe stripe;
427         /* additional stripes go here */
428 } __attribute__ ((__packed__));
429 
430 #define BTRFS_FREE_SPACE_EXTENT 1
431 #define BTRFS_FREE_SPACE_BITMAP 2
432 
433 struct btrfs_free_space_entry {
434         __le64 offset;
435         __le64 bytes;
436         __u8 type;
437 } __attribute__ ((__packed__));
438 
439 struct btrfs_free_space_header {
440         struct btrfs_disk_key location;
441         __le64 generation;
442         __le64 num_entries;
443         __le64 num_bitmaps;
444 } __attribute__ ((__packed__));
445 
446 #define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
447 #define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
448 
449 /* Super block flags */
450 /* Errors detected */
451 #define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
452 
453 #define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
454 #define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
455 
456 
457 /*
458  * items in the extent btree are used to record the objectid of the
459  * owner of the block and the number of references
460  */
461 
462 struct btrfs_extent_item {
463         __le64 refs;
464         __le64 generation;
465         __le64 flags;
466 } __attribute__ ((__packed__));
467 
468 struct btrfs_extent_item_v0 {
469         __le32 refs;
470 } __attribute__ ((__packed__));
471 
472 
473 #define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
474 #define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
475 
476 /* following flags only apply to tree blocks */
477 
478 /* use full backrefs for extent pointers in the block */
479 #define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
480 
481 /*
482  * this flag is only used internally by scrub and may be changed at any time
483  * it is only declared here to avoid collisions
484  */
485 #define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
486 
487 struct btrfs_tree_block_info {
488         struct btrfs_disk_key key;
489         __u8 level;
490 } __attribute__ ((__packed__));
491 
492 struct btrfs_extent_data_ref {
493         __le64 root;
494         __le64 objectid;
495         __le64 offset;
496         __le32 count;
497 } __attribute__ ((__packed__));
498 
499 struct btrfs_shared_data_ref {
500         __le32 count;
501 } __attribute__ ((__packed__));
502 
503 struct btrfs_extent_inline_ref {
504         __u8 type;
505         __le64 offset;
506 } __attribute__ ((__packed__));
507 
508 /* old style backrefs item */
509 struct btrfs_extent_ref_v0 {
510         __le64 root;
511         __le64 generation;
512         __le64 objectid;
513         __le32 count;
514 } __attribute__ ((__packed__));
515 
516 
517 /* dev extents record free space on individual devices.  The owner
518  * field points back to the chunk allocation mapping tree that allocated
519  * the extent.  The chunk tree uuid field is a way to double check the owner
520  */
521 struct btrfs_dev_extent {
522         __le64 chunk_tree;
523         __le64 chunk_objectid;
524         __le64 chunk_offset;
525         __le64 length;
526         __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
527 } __attribute__ ((__packed__));
528 
529 struct btrfs_inode_ref {
530         __le64 index;
531         __le16 name_len;
532         /* name goes here */
533 } __attribute__ ((__packed__));
534 
535 struct btrfs_inode_extref {
536         __le64 parent_objectid;
537         __le64 index;
538         __le16 name_len;
539         __u8   name[0];
540         /* name goes here */
541 } __attribute__ ((__packed__));
542 
543 struct btrfs_timespec {
544         __le64 sec;
545         __le32 nsec;
546 } __attribute__ ((__packed__));
547 
548 struct btrfs_inode_item {
549         /* nfs style generation number */
550         __le64 generation;
551         /* transid that last touched this inode */
552         __le64 transid;
553         __le64 size;
554         __le64 nbytes;
555         __le64 block_group;
556         __le32 nlink;
557         __le32 uid;
558         __le32 gid;
559         __le32 mode;
560         __le64 rdev;
561         __le64 flags;
562 
563         /* modification sequence number for NFS */
564         __le64 sequence;
565 
566         /*
567          * a little future expansion, for more than this we can
568          * just grow the inode item and version it
569          */
570         __le64 reserved[4];
571         struct btrfs_timespec atime;
572         struct btrfs_timespec ctime;
573         struct btrfs_timespec mtime;
574         struct btrfs_timespec otime;
575 } __attribute__ ((__packed__));
576 
577 struct btrfs_dir_log_item {
578         __le64 end;
579 } __attribute__ ((__packed__));
580 
581 struct btrfs_dir_item {
582         struct btrfs_disk_key location;
583         __le64 transid;
584         __le16 data_len;
585         __le16 name_len;
586         __u8 type;
587 } __attribute__ ((__packed__));
588 
589 #define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
590 
591 /*
592  * Internal in-memory flag that a subvolume has been marked for deletion but
593  * still visible as a directory
594  */
595 #define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
596 
597 struct btrfs_root_item {
598         struct btrfs_inode_item inode;
599         __le64 generation;
600         __le64 root_dirid;
601         __le64 bytenr;
602         __le64 byte_limit;
603         __le64 bytes_used;
604         __le64 last_snapshot;
605         __le64 flags;
606         __le32 refs;
607         struct btrfs_disk_key drop_progress;
608         __u8 drop_level;
609         __u8 level;
610 
611         /*
612          * The following fields appear after subvol_uuids+subvol_times
613          * were introduced.
614          */
615 
616         /*
617          * This generation number is used to test if the new fields are valid
618          * and up to date while reading the root item. Every time the root item
619          * is written out, the "generation" field is copied into this field. If
620          * anyone ever mounted the fs with an older kernel, we will have
621          * mismatching generation values here and thus must invalidate the
622          * new fields. See btrfs_update_root and btrfs_find_last_root for
623          * details.
624          * the offset of generation_v2 is also used as the start for the memset
625          * when invalidating the fields.
626          */
627         __le64 generation_v2;
628         __u8 uuid[BTRFS_UUID_SIZE];
629         __u8 parent_uuid[BTRFS_UUID_SIZE];
630         __u8 received_uuid[BTRFS_UUID_SIZE];
631         __le64 ctransid; /* updated when an inode changes */
632         __le64 otransid; /* trans when created */
633         __le64 stransid; /* trans when sent. non-zero for received subvol */
634         __le64 rtransid; /* trans when received. non-zero for received subvol */
635         struct btrfs_timespec ctime;
636         struct btrfs_timespec otime;
637         struct btrfs_timespec stime;
638         struct btrfs_timespec rtime;
639         __le64 reserved[8]; /* for future */
640 } __attribute__ ((__packed__));
641 
642 /*
643  * this is used for both forward and backward root refs
644  */
645 struct btrfs_root_ref {
646         __le64 dirid;
647         __le64 sequence;
648         __le16 name_len;
649 } __attribute__ ((__packed__));
650 
651 struct btrfs_disk_balance_args {
652         /*
653          * profiles to operate on, single is denoted by
654          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
655          */
656         __le64 profiles;
657 
658         /*
659          * usage filter
660          * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
661          * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
662          */
663         union {
664                 __le64 usage;
665                 struct {
666                         __le32 usage_min;
667                         __le32 usage_max;
668                 };
669         };
670 
671         /* devid filter */
672         __le64 devid;
673 
674         /* devid subset filter [pstart..pend) */
675         __le64 pstart;
676         __le64 pend;
677 
678         /* btrfs virtual address space subset filter [vstart..vend) */
679         __le64 vstart;
680         __le64 vend;
681 
682         /*
683          * profile to convert to, single is denoted by
684          * BTRFS_AVAIL_ALLOC_BIT_SINGLE
685          */
686         __le64 target;
687 
688         /* BTRFS_BALANCE_ARGS_* */
689         __le64 flags;
690 
691         /*
692          * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
693          * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
694          * and maximum
695          */
696         union {
697                 __le64 limit;
698                 struct {
699                         __le32 limit_min;
700                         __le32 limit_max;
701                 };
702         };
703 
704         /*
705          * Process chunks that cross stripes_min..stripes_max devices,
706          * BTRFS_BALANCE_ARGS_STRIPES_RANGE
707          */
708         __le32 stripes_min;
709         __le32 stripes_max;
710 
711         __le64 unused[6];
712 } __attribute__ ((__packed__));
713 
714 /*
715  * store balance parameters to disk so that balance can be properly
716  * resumed after crash or unmount
717  */
718 struct btrfs_balance_item {
719         /* BTRFS_BALANCE_* */
720         __le64 flags;
721 
722         struct btrfs_disk_balance_args data;
723         struct btrfs_disk_balance_args meta;
724         struct btrfs_disk_balance_args sys;
725 
726         __le64 unused[4];
727 } __attribute__ ((__packed__));
728 
729 #define BTRFS_FILE_EXTENT_INLINE 0
730 #define BTRFS_FILE_EXTENT_REG 1
731 #define BTRFS_FILE_EXTENT_PREALLOC 2
732 
733 struct btrfs_file_extent_item {
734         /*
735          * transaction id that created this extent
736          */
737         __le64 generation;
738         /*
739          * max number of bytes to hold this extent in ram
740          * when we split a compressed extent we can't know how big
741          * each of the resulting pieces will be.  So, this is
742          * an upper limit on the size of the extent in ram instead of
743          * an exact limit.
744          */
745         __le64 ram_bytes;
746 
747         /*
748          * 32 bits for the various ways we might encode the data,
749          * including compression and encryption.  If any of these
750          * are set to something a given disk format doesn't understand
751          * it is treated like an incompat flag for reading and writing,
752          * but not for stat.
753          */
754         __u8 compression;
755         __u8 encryption;
756         __le16 other_encoding; /* spare for later use */
757 
758         /* are we inline data or a real extent? */
759         __u8 type;
760 
761         /*
762          * disk space consumed by the extent, checksum blocks are included
763          * in these numbers
764          *
765          * At this offset in the structure, the inline extent data start.
766          */
767         __le64 disk_bytenr;
768         __le64 disk_num_bytes;
769         /*
770          * the logical offset in file blocks (no csums)
771          * this extent record is for.  This allows a file extent to point
772          * into the middle of an existing extent on disk, sharing it
773          * between two snapshots (useful if some bytes in the middle of the
774          * extent have changed
775          */
776         __le64 offset;
777         /*
778          * the logical number of file blocks (no csums included).  This
779          * always reflects the size uncompressed and without encoding.
780          */
781         __le64 num_bytes;
782 
783 } __attribute__ ((__packed__));
784 
785 struct btrfs_csum_item {
786         __u8 csum;
787 } __attribute__ ((__packed__));
788 
789 struct btrfs_dev_stats_item {
790         /*
791          * grow this item struct at the end for future enhancements and keep
792          * the existing values unchanged
793          */
794         __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
795 } __attribute__ ((__packed__));
796 
797 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
798 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
799 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED      0
800 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED            1
801 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED          2
802 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED           3
803 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED           4
804 
805 struct btrfs_dev_replace_item {
806         /*
807          * grow this item struct at the end for future enhancements and keep
808          * the existing values unchanged
809          */
810         __le64 src_devid;
811         __le64 cursor_left;
812         __le64 cursor_right;
813         __le64 cont_reading_from_srcdev_mode;
814 
815         __le64 replace_state;
816         __le64 time_started;
817         __le64 time_stopped;
818         __le64 num_write_errors;
819         __le64 num_uncorrectable_read_errors;
820 } __attribute__ ((__packed__));
821 
822 /* different types of block groups (and chunks) */
823 #define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
824 #define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
825 #define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
826 #define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
827 #define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
828 #define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
829 #define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
830 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
831 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
832 #define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
833                                          BTRFS_SPACE_INFO_GLOBAL_RSV)
834 
835 enum btrfs_raid_types {
836         BTRFS_RAID_RAID10,
837         BTRFS_RAID_RAID1,
838         BTRFS_RAID_DUP,
839         BTRFS_RAID_RAID0,
840         BTRFS_RAID_SINGLE,
841         BTRFS_RAID_RAID5,
842         BTRFS_RAID_RAID6,
843         BTRFS_NR_RAID_TYPES
844 };
845 
846 #define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
847                                          BTRFS_BLOCK_GROUP_SYSTEM |  \
848                                          BTRFS_BLOCK_GROUP_METADATA)
849 
850 #define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
851                                          BTRFS_BLOCK_GROUP_RAID1 |   \
852                                          BTRFS_BLOCK_GROUP_RAID5 |   \
853                                          BTRFS_BLOCK_GROUP_RAID6 |   \
854                                          BTRFS_BLOCK_GROUP_DUP |     \
855                                          BTRFS_BLOCK_GROUP_RAID10)
856 #define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
857                                          BTRFS_BLOCK_GROUP_RAID6)
858 
859 /*
860  * We need a bit for restriper to be able to tell when chunks of type
861  * SINGLE are available.  This "extended" profile format is used in
862  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
863  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
864  * to avoid remappings between two formats in future.
865  */
866 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
867 
868 /*
869  * A fake block group type that is used to communicate global block reserve
870  * size to userspace via the SPACE_INFO ioctl.
871  */
872 #define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
873 
874 #define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
875                                          BTRFS_AVAIL_ALLOC_BIT_SINGLE)
876 
877 static inline __u64 chunk_to_extended(__u64 flags)
878 {
879         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
880                 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
881 
882         return flags;
883 }
884 static inline __u64 extended_to_chunk(__u64 flags)
885 {
886         return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
887 }
888 
889 struct btrfs_block_group_item {
890         __le64 used;
891         __le64 chunk_objectid;
892         __le64 flags;
893 } __attribute__ ((__packed__));
894 
895 struct btrfs_free_space_info {
896         __le32 extent_count;
897         __le32 flags;
898 } __attribute__ ((__packed__));
899 
900 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
901 
902 #define BTRFS_QGROUP_LEVEL_SHIFT                48
903 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
904 {
905         return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
906 }
907 
908 /*
909  * is subvolume quota turned on?
910  */
911 #define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
912 /*
913  * RESCAN is set during the initialization phase
914  */
915 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
916 /*
917  * Some qgroup entries are known to be out of date,
918  * either because the configuration has changed in a way that
919  * makes a rescan necessary, or because the fs has been mounted
920  * with a non-qgroup-aware version.
921  * Turning qouta off and on again makes it inconsistent, too.
922  */
923 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
924 
925 #define BTRFS_QGROUP_STATUS_VERSION        1
926 
927 struct btrfs_qgroup_status_item {
928         __le64 version;
929         /*
930          * the generation is updated during every commit. As older
931          * versions of btrfs are not aware of qgroups, it will be
932          * possible to detect inconsistencies by checking the
933          * generation on mount time
934          */
935         __le64 generation;
936 
937         /* flag definitions see above */
938         __le64 flags;
939 
940         /*
941          * only used during scanning to record the progress
942          * of the scan. It contains a logical address
943          */
944         __le64 rescan;
945 } __attribute__ ((__packed__));
946 
947 struct btrfs_qgroup_info_item {
948         __le64 generation;
949         __le64 rfer;
950         __le64 rfer_cmpr;
951         __le64 excl;
952         __le64 excl_cmpr;
953 } __attribute__ ((__packed__));
954 
955 struct btrfs_qgroup_limit_item {
956         /*
957          * only updated when any of the other values change
958          */
959         __le64 flags;
960         __le64 max_rfer;
961         __le64 max_excl;
962         __le64 rsv_rfer;
963         __le64 rsv_excl;
964 } __attribute__ ((__packed__));
965 
966 #endif /* _BTRFS_CTREE_H_ */
967 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp