~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/auditsc.c

Version: ~ [ linux-5.8 ] ~ [ linux-5.7.14 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.57 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.138 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.193 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.232 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.232 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* auditsc.c -- System-call auditing support
  2  * Handles all system-call specific auditing features.
  3  *
  4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
  6  * Copyright (C) 2005, 2006 IBM Corporation
  7  * All Rights Reserved.
  8  *
  9  * This program is free software; you can redistribute it and/or modify
 10  * it under the terms of the GNU General Public License as published by
 11  * the Free Software Foundation; either version 2 of the License, or
 12  * (at your option) any later version.
 13  *
 14  * This program is distributed in the hope that it will be useful,
 15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17  * GNU General Public License for more details.
 18  *
 19  * You should have received a copy of the GNU General Public License
 20  * along with this program; if not, write to the Free Software
 21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 22  *
 23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
 24  *
 25  * Many of the ideas implemented here are from Stephen C. Tweedie,
 26  * especially the idea of avoiding a copy by using getname.
 27  *
 28  * The method for actual interception of syscall entry and exit (not in
 29  * this file -- see entry.S) is based on a GPL'd patch written by
 30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
 31  *
 32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
 33  * 2006.
 34  *
 35  * The support of additional filter rules compares (>, <, >=, <=) was
 36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
 37  *
 38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
 39  * filesystem information.
 40  *
 41  * Subject and object context labeling support added by <danjones@us.ibm.com>
 42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
 43  */
 44 
 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 46 
 47 #include <linux/init.h>
 48 #include <asm/types.h>
 49 #include <linux/atomic.h>
 50 #include <linux/fs.h>
 51 #include <linux/namei.h>
 52 #include <linux/mm.h>
 53 #include <linux/export.h>
 54 #include <linux/slab.h>
 55 #include <linux/mount.h>
 56 #include <linux/socket.h>
 57 #include <linux/mqueue.h>
 58 #include <linux/audit.h>
 59 #include <linux/personality.h>
 60 #include <linux/time.h>
 61 #include <linux/netlink.h>
 62 #include <linux/compiler.h>
 63 #include <asm/unistd.h>
 64 #include <linux/security.h>
 65 #include <linux/list.h>
 66 #include <linux/binfmts.h>
 67 #include <linux/highmem.h>
 68 #include <linux/syscalls.h>
 69 #include <asm/syscall.h>
 70 #include <linux/capability.h>
 71 #include <linux/fs_struct.h>
 72 #include <linux/compat.h>
 73 #include <linux/ctype.h>
 74 #include <linux/string.h>
 75 #include <linux/uaccess.h>
 76 #include <linux/fsnotify_backend.h>
 77 #include <uapi/linux/limits.h>
 78 
 79 #include "audit.h"
 80 
 81 /* flags stating the success for a syscall */
 82 #define AUDITSC_INVALID 0
 83 #define AUDITSC_SUCCESS 1
 84 #define AUDITSC_FAILURE 2
 85 
 86 /* no execve audit message should be longer than this (userspace limits),
 87  * see the note near the top of audit_log_execve_info() about this value */
 88 #define MAX_EXECVE_AUDIT_LEN 7500
 89 
 90 /* max length to print of cmdline/proctitle value during audit */
 91 #define MAX_PROCTITLE_AUDIT_LEN 128
 92 
 93 /* number of audit rules */
 94 int audit_n_rules;
 95 
 96 /* determines whether we collect data for signals sent */
 97 int audit_signals;
 98 
 99 struct audit_aux_data {
100         struct audit_aux_data   *next;
101         int                     type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM       0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS  16
108 
109 struct audit_aux_data_pids {
110         struct audit_aux_data   d;
111         pid_t                   target_pid[AUDIT_AUX_PIDS];
112         kuid_t                  target_auid[AUDIT_AUX_PIDS];
113         kuid_t                  target_uid[AUDIT_AUX_PIDS];
114         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
115         u32                     target_sid[AUDIT_AUX_PIDS];
116         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117         int                     pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121         struct audit_aux_data   d;
122         struct audit_cap_data   fcap;
123         unsigned int            fcap_ver;
124         struct audit_cap_data   old_pcap;
125         struct audit_cap_data   new_pcap;
126 };
127 
128 struct audit_tree_refs {
129         struct audit_tree_refs *next;
130         struct audit_chunk *c[31];
131 };
132 
133 struct audit_nfcfgop_tab {
134         enum audit_nfcfgop      op;
135         const char              *s;
136 };
137 
138 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
139         { AUDIT_XT_OP_REGISTER,         "register"      },
140         { AUDIT_XT_OP_REPLACE,          "replace"       },
141         { AUDIT_XT_OP_UNREGISTER,       "unregister"    },
142 };
143 
144 static int audit_match_perm(struct audit_context *ctx, int mask)
145 {
146         unsigned n;
147         if (unlikely(!ctx))
148                 return 0;
149         n = ctx->major;
150 
151         switch (audit_classify_syscall(ctx->arch, n)) {
152         case 0: /* native */
153                 if ((mask & AUDIT_PERM_WRITE) &&
154                      audit_match_class(AUDIT_CLASS_WRITE, n))
155                         return 1;
156                 if ((mask & AUDIT_PERM_READ) &&
157                      audit_match_class(AUDIT_CLASS_READ, n))
158                         return 1;
159                 if ((mask & AUDIT_PERM_ATTR) &&
160                      audit_match_class(AUDIT_CLASS_CHATTR, n))
161                         return 1;
162                 return 0;
163         case 1: /* 32bit on biarch */
164                 if ((mask & AUDIT_PERM_WRITE) &&
165                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
166                         return 1;
167                 if ((mask & AUDIT_PERM_READ) &&
168                      audit_match_class(AUDIT_CLASS_READ_32, n))
169                         return 1;
170                 if ((mask & AUDIT_PERM_ATTR) &&
171                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
172                         return 1;
173                 return 0;
174         case 2: /* open */
175                 return mask & ACC_MODE(ctx->argv[1]);
176         case 3: /* openat */
177                 return mask & ACC_MODE(ctx->argv[2]);
178         case 4: /* socketcall */
179                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
180         case 5: /* execve */
181                 return mask & AUDIT_PERM_EXEC;
182         default:
183                 return 0;
184         }
185 }
186 
187 static int audit_match_filetype(struct audit_context *ctx, int val)
188 {
189         struct audit_names *n;
190         umode_t mode = (umode_t)val;
191 
192         if (unlikely(!ctx))
193                 return 0;
194 
195         list_for_each_entry(n, &ctx->names_list, list) {
196                 if ((n->ino != AUDIT_INO_UNSET) &&
197                     ((n->mode & S_IFMT) == mode))
198                         return 1;
199         }
200 
201         return 0;
202 }
203 
204 /*
205  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
206  * ->first_trees points to its beginning, ->trees - to the current end of data.
207  * ->tree_count is the number of free entries in array pointed to by ->trees.
208  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
209  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
210  * it's going to remain 1-element for almost any setup) until we free context itself.
211  * References in it _are_ dropped - at the same time we free/drop aux stuff.
212  */
213 
214 static void audit_set_auditable(struct audit_context *ctx)
215 {
216         if (!ctx->prio) {
217                 ctx->prio = 1;
218                 ctx->current_state = AUDIT_RECORD_CONTEXT;
219         }
220 }
221 
222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223 {
224         struct audit_tree_refs *p = ctx->trees;
225         int left = ctx->tree_count;
226         if (likely(left)) {
227                 p->c[--left] = chunk;
228                 ctx->tree_count = left;
229                 return 1;
230         }
231         if (!p)
232                 return 0;
233         p = p->next;
234         if (p) {
235                 p->c[30] = chunk;
236                 ctx->trees = p;
237                 ctx->tree_count = 30;
238                 return 1;
239         }
240         return 0;
241 }
242 
243 static int grow_tree_refs(struct audit_context *ctx)
244 {
245         struct audit_tree_refs *p = ctx->trees;
246         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247         if (!ctx->trees) {
248                 ctx->trees = p;
249                 return 0;
250         }
251         if (p)
252                 p->next = ctx->trees;
253         else
254                 ctx->first_trees = ctx->trees;
255         ctx->tree_count = 31;
256         return 1;
257 }
258 
259 static void unroll_tree_refs(struct audit_context *ctx,
260                       struct audit_tree_refs *p, int count)
261 {
262         struct audit_tree_refs *q;
263         int n;
264         if (!p) {
265                 /* we started with empty chain */
266                 p = ctx->first_trees;
267                 count = 31;
268                 /* if the very first allocation has failed, nothing to do */
269                 if (!p)
270                         return;
271         }
272         n = count;
273         for (q = p; q != ctx->trees; q = q->next, n = 31) {
274                 while (n--) {
275                         audit_put_chunk(q->c[n]);
276                         q->c[n] = NULL;
277                 }
278         }
279         while (n-- > ctx->tree_count) {
280                 audit_put_chunk(q->c[n]);
281                 q->c[n] = NULL;
282         }
283         ctx->trees = p;
284         ctx->tree_count = count;
285 }
286 
287 static void free_tree_refs(struct audit_context *ctx)
288 {
289         struct audit_tree_refs *p, *q;
290         for (p = ctx->first_trees; p; p = q) {
291                 q = p->next;
292                 kfree(p);
293         }
294 }
295 
296 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
297 {
298         struct audit_tree_refs *p;
299         int n;
300         if (!tree)
301                 return 0;
302         /* full ones */
303         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
304                 for (n = 0; n < 31; n++)
305                         if (audit_tree_match(p->c[n], tree))
306                                 return 1;
307         }
308         /* partial */
309         if (p) {
310                 for (n = ctx->tree_count; n < 31; n++)
311                         if (audit_tree_match(p->c[n], tree))
312                                 return 1;
313         }
314         return 0;
315 }
316 
317 static int audit_compare_uid(kuid_t uid,
318                              struct audit_names *name,
319                              struct audit_field *f,
320                              struct audit_context *ctx)
321 {
322         struct audit_names *n;
323         int rc;
324  
325         if (name) {
326                 rc = audit_uid_comparator(uid, f->op, name->uid);
327                 if (rc)
328                         return rc;
329         }
330  
331         if (ctx) {
332                 list_for_each_entry(n, &ctx->names_list, list) {
333                         rc = audit_uid_comparator(uid, f->op, n->uid);
334                         if (rc)
335                                 return rc;
336                 }
337         }
338         return 0;
339 }
340 
341 static int audit_compare_gid(kgid_t gid,
342                              struct audit_names *name,
343                              struct audit_field *f,
344                              struct audit_context *ctx)
345 {
346         struct audit_names *n;
347         int rc;
348  
349         if (name) {
350                 rc = audit_gid_comparator(gid, f->op, name->gid);
351                 if (rc)
352                         return rc;
353         }
354  
355         if (ctx) {
356                 list_for_each_entry(n, &ctx->names_list, list) {
357                         rc = audit_gid_comparator(gid, f->op, n->gid);
358                         if (rc)
359                                 return rc;
360                 }
361         }
362         return 0;
363 }
364 
365 static int audit_field_compare(struct task_struct *tsk,
366                                const struct cred *cred,
367                                struct audit_field *f,
368                                struct audit_context *ctx,
369                                struct audit_names *name)
370 {
371         switch (f->val) {
372         /* process to file object comparisons */
373         case AUDIT_COMPARE_UID_TO_OBJ_UID:
374                 return audit_compare_uid(cred->uid, name, f, ctx);
375         case AUDIT_COMPARE_GID_TO_OBJ_GID:
376                 return audit_compare_gid(cred->gid, name, f, ctx);
377         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
378                 return audit_compare_uid(cred->euid, name, f, ctx);
379         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
380                 return audit_compare_gid(cred->egid, name, f, ctx);
381         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
382                 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
383         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
384                 return audit_compare_uid(cred->suid, name, f, ctx);
385         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
386                 return audit_compare_gid(cred->sgid, name, f, ctx);
387         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
388                 return audit_compare_uid(cred->fsuid, name, f, ctx);
389         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
390                 return audit_compare_gid(cred->fsgid, name, f, ctx);
391         /* uid comparisons */
392         case AUDIT_COMPARE_UID_TO_AUID:
393                 return audit_uid_comparator(cred->uid, f->op,
394                                             audit_get_loginuid(tsk));
395         case AUDIT_COMPARE_UID_TO_EUID:
396                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
397         case AUDIT_COMPARE_UID_TO_SUID:
398                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
399         case AUDIT_COMPARE_UID_TO_FSUID:
400                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
401         /* auid comparisons */
402         case AUDIT_COMPARE_AUID_TO_EUID:
403                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
404                                             cred->euid);
405         case AUDIT_COMPARE_AUID_TO_SUID:
406                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
407                                             cred->suid);
408         case AUDIT_COMPARE_AUID_TO_FSUID:
409                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
410                                             cred->fsuid);
411         /* euid comparisons */
412         case AUDIT_COMPARE_EUID_TO_SUID:
413                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
414         case AUDIT_COMPARE_EUID_TO_FSUID:
415                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
416         /* suid comparisons */
417         case AUDIT_COMPARE_SUID_TO_FSUID:
418                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
419         /* gid comparisons */
420         case AUDIT_COMPARE_GID_TO_EGID:
421                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
422         case AUDIT_COMPARE_GID_TO_SGID:
423                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
424         case AUDIT_COMPARE_GID_TO_FSGID:
425                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
426         /* egid comparisons */
427         case AUDIT_COMPARE_EGID_TO_SGID:
428                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
429         case AUDIT_COMPARE_EGID_TO_FSGID:
430                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
431         /* sgid comparison */
432         case AUDIT_COMPARE_SGID_TO_FSGID:
433                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
434         default:
435                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
436                 return 0;
437         }
438         return 0;
439 }
440 
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
443  * otherwise.
444  *
445  * If task_creation is true, this is an explicit indication that we are
446  * filtering a task rule at task creation time.  This and tsk == current are
447  * the only situations where tsk->cred may be accessed without an rcu read lock.
448  */
449 static int audit_filter_rules(struct task_struct *tsk,
450                               struct audit_krule *rule,
451                               struct audit_context *ctx,
452                               struct audit_names *name,
453                               enum audit_state *state,
454                               bool task_creation)
455 {
456         const struct cred *cred;
457         int i, need_sid = 1;
458         u32 sid;
459         unsigned int sessionid;
460 
461         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462 
463         for (i = 0; i < rule->field_count; i++) {
464                 struct audit_field *f = &rule->fields[i];
465                 struct audit_names *n;
466                 int result = 0;
467                 pid_t pid;
468 
469                 switch (f->type) {
470                 case AUDIT_PID:
471                         pid = task_tgid_nr(tsk);
472                         result = audit_comparator(pid, f->op, f->val);
473                         break;
474                 case AUDIT_PPID:
475                         if (ctx) {
476                                 if (!ctx->ppid)
477                                         ctx->ppid = task_ppid_nr(tsk);
478                                 result = audit_comparator(ctx->ppid, f->op, f->val);
479                         }
480                         break;
481                 case AUDIT_EXE:
482                         result = audit_exe_compare(tsk, rule->exe);
483                         if (f->op == Audit_not_equal)
484                                 result = !result;
485                         break;
486                 case AUDIT_UID:
487                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
488                         break;
489                 case AUDIT_EUID:
490                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
491                         break;
492                 case AUDIT_SUID:
493                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
494                         break;
495                 case AUDIT_FSUID:
496                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
497                         break;
498                 case AUDIT_GID:
499                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
500                         if (f->op == Audit_equal) {
501                                 if (!result)
502                                         result = groups_search(cred->group_info, f->gid);
503                         } else if (f->op == Audit_not_equal) {
504                                 if (result)
505                                         result = !groups_search(cred->group_info, f->gid);
506                         }
507                         break;
508                 case AUDIT_EGID:
509                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
510                         if (f->op == Audit_equal) {
511                                 if (!result)
512                                         result = groups_search(cred->group_info, f->gid);
513                         } else if (f->op == Audit_not_equal) {
514                                 if (result)
515                                         result = !groups_search(cred->group_info, f->gid);
516                         }
517                         break;
518                 case AUDIT_SGID:
519                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
520                         break;
521                 case AUDIT_FSGID:
522                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
523                         break;
524                 case AUDIT_SESSIONID:
525                         sessionid = audit_get_sessionid(tsk);
526                         result = audit_comparator(sessionid, f->op, f->val);
527                         break;
528                 case AUDIT_PERS:
529                         result = audit_comparator(tsk->personality, f->op, f->val);
530                         break;
531                 case AUDIT_ARCH:
532                         if (ctx)
533                                 result = audit_comparator(ctx->arch, f->op, f->val);
534                         break;
535 
536                 case AUDIT_EXIT:
537                         if (ctx && ctx->return_valid)
538                                 result = audit_comparator(ctx->return_code, f->op, f->val);
539                         break;
540                 case AUDIT_SUCCESS:
541                         if (ctx && ctx->return_valid) {
542                                 if (f->val)
543                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
544                                 else
545                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
546                         }
547                         break;
548                 case AUDIT_DEVMAJOR:
549                         if (name) {
550                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
551                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
552                                         ++result;
553                         } else if (ctx) {
554                                 list_for_each_entry(n, &ctx->names_list, list) {
555                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
556                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
557                                                 ++result;
558                                                 break;
559                                         }
560                                 }
561                         }
562                         break;
563                 case AUDIT_DEVMINOR:
564                         if (name) {
565                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
566                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
567                                         ++result;
568                         } else if (ctx) {
569                                 list_for_each_entry(n, &ctx->names_list, list) {
570                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
571                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
572                                                 ++result;
573                                                 break;
574                                         }
575                                 }
576                         }
577                         break;
578                 case AUDIT_INODE:
579                         if (name)
580                                 result = audit_comparator(name->ino, f->op, f->val);
581                         else if (ctx) {
582                                 list_for_each_entry(n, &ctx->names_list, list) {
583                                         if (audit_comparator(n->ino, f->op, f->val)) {
584                                                 ++result;
585                                                 break;
586                                         }
587                                 }
588                         }
589                         break;
590                 case AUDIT_OBJ_UID:
591                         if (name) {
592                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
593                         } else if (ctx) {
594                                 list_for_each_entry(n, &ctx->names_list, list) {
595                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
596                                                 ++result;
597                                                 break;
598                                         }
599                                 }
600                         }
601                         break;
602                 case AUDIT_OBJ_GID:
603                         if (name) {
604                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
605                         } else if (ctx) {
606                                 list_for_each_entry(n, &ctx->names_list, list) {
607                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
608                                                 ++result;
609                                                 break;
610                                         }
611                                 }
612                         }
613                         break;
614                 case AUDIT_WATCH:
615                         if (name) {
616                                 result = audit_watch_compare(rule->watch,
617                                                              name->ino,
618                                                              name->dev);
619                                 if (f->op == Audit_not_equal)
620                                         result = !result;
621                         }
622                         break;
623                 case AUDIT_DIR:
624                         if (ctx) {
625                                 result = match_tree_refs(ctx, rule->tree);
626                                 if (f->op == Audit_not_equal)
627                                         result = !result;
628                         }
629                         break;
630                 case AUDIT_LOGINUID:
631                         result = audit_uid_comparator(audit_get_loginuid(tsk),
632                                                       f->op, f->uid);
633                         break;
634                 case AUDIT_LOGINUID_SET:
635                         result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
636                         break;
637                 case AUDIT_SADDR_FAM:
638                         if (ctx->sockaddr)
639                                 result = audit_comparator(ctx->sockaddr->ss_family,
640                                                           f->op, f->val);
641                         break;
642                 case AUDIT_SUBJ_USER:
643                 case AUDIT_SUBJ_ROLE:
644                 case AUDIT_SUBJ_TYPE:
645                 case AUDIT_SUBJ_SEN:
646                 case AUDIT_SUBJ_CLR:
647                         /* NOTE: this may return negative values indicating
648                            a temporary error.  We simply treat this as a
649                            match for now to avoid losing information that
650                            may be wanted.   An error message will also be
651                            logged upon error */
652                         if (f->lsm_rule) {
653                                 if (need_sid) {
654                                         security_task_getsecid(tsk, &sid);
655                                         need_sid = 0;
656                                 }
657                                 result = security_audit_rule_match(sid, f->type,
658                                                                    f->op,
659                                                                    f->lsm_rule);
660                         }
661                         break;
662                 case AUDIT_OBJ_USER:
663                 case AUDIT_OBJ_ROLE:
664                 case AUDIT_OBJ_TYPE:
665                 case AUDIT_OBJ_LEV_LOW:
666                 case AUDIT_OBJ_LEV_HIGH:
667                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
668                            also applies here */
669                         if (f->lsm_rule) {
670                                 /* Find files that match */
671                                 if (name) {
672                                         result = security_audit_rule_match(
673                                                                 name->osid,
674                                                                 f->type,
675                                                                 f->op,
676                                                                 f->lsm_rule);
677                                 } else if (ctx) {
678                                         list_for_each_entry(n, &ctx->names_list, list) {
679                                                 if (security_audit_rule_match(
680                                                                 n->osid,
681                                                                 f->type,
682                                                                 f->op,
683                                                                 f->lsm_rule)) {
684                                                         ++result;
685                                                         break;
686                                                 }
687                                         }
688                                 }
689                                 /* Find ipc objects that match */
690                                 if (!ctx || ctx->type != AUDIT_IPC)
691                                         break;
692                                 if (security_audit_rule_match(ctx->ipc.osid,
693                                                               f->type, f->op,
694                                                               f->lsm_rule))
695                                         ++result;
696                         }
697                         break;
698                 case AUDIT_ARG0:
699                 case AUDIT_ARG1:
700                 case AUDIT_ARG2:
701                 case AUDIT_ARG3:
702                         if (ctx)
703                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
704                         break;
705                 case AUDIT_FILTERKEY:
706                         /* ignore this field for filtering */
707                         result = 1;
708                         break;
709                 case AUDIT_PERM:
710                         result = audit_match_perm(ctx, f->val);
711                         if (f->op == Audit_not_equal)
712                                 result = !result;
713                         break;
714                 case AUDIT_FILETYPE:
715                         result = audit_match_filetype(ctx, f->val);
716                         if (f->op == Audit_not_equal)
717                                 result = !result;
718                         break;
719                 case AUDIT_FIELD_COMPARE:
720                         result = audit_field_compare(tsk, cred, f, ctx, name);
721                         break;
722                 }
723                 if (!result)
724                         return 0;
725         }
726 
727         if (ctx) {
728                 if (rule->prio <= ctx->prio)
729                         return 0;
730                 if (rule->filterkey) {
731                         kfree(ctx->filterkey);
732                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
733                 }
734                 ctx->prio = rule->prio;
735         }
736         switch (rule->action) {
737         case AUDIT_NEVER:
738                 *state = AUDIT_DISABLED;
739                 break;
740         case AUDIT_ALWAYS:
741                 *state = AUDIT_RECORD_CONTEXT;
742                 break;
743         }
744         return 1;
745 }
746 
747 /* At process creation time, we can determine if system-call auditing is
748  * completely disabled for this task.  Since we only have the task
749  * structure at this point, we can only check uid and gid.
750  */
751 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
752 {
753         struct audit_entry *e;
754         enum audit_state   state;
755 
756         rcu_read_lock();
757         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
758                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
759                                        &state, true)) {
760                         if (state == AUDIT_RECORD_CONTEXT)
761                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
762                         rcu_read_unlock();
763                         return state;
764                 }
765         }
766         rcu_read_unlock();
767         return AUDIT_BUILD_CONTEXT;
768 }
769 
770 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
771 {
772         int word, bit;
773 
774         if (val > 0xffffffff)
775                 return false;
776 
777         word = AUDIT_WORD(val);
778         if (word >= AUDIT_BITMASK_SIZE)
779                 return false;
780 
781         bit = AUDIT_BIT(val);
782 
783         return rule->mask[word] & bit;
784 }
785 
786 /* At syscall entry and exit time, this filter is called if the
787  * audit_state is not low enough that auditing cannot take place, but is
788  * also not high enough that we already know we have to write an audit
789  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
790  */
791 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
792                                              struct audit_context *ctx,
793                                              struct list_head *list)
794 {
795         struct audit_entry *e;
796         enum audit_state state;
797 
798         if (auditd_test_task(tsk))
799                 return AUDIT_DISABLED;
800 
801         rcu_read_lock();
802         list_for_each_entry_rcu(e, list, list) {
803                 if (audit_in_mask(&e->rule, ctx->major) &&
804                     audit_filter_rules(tsk, &e->rule, ctx, NULL,
805                                        &state, false)) {
806                         rcu_read_unlock();
807                         ctx->current_state = state;
808                         return state;
809                 }
810         }
811         rcu_read_unlock();
812         return AUDIT_BUILD_CONTEXT;
813 }
814 
815 /*
816  * Given an audit_name check the inode hash table to see if they match.
817  * Called holding the rcu read lock to protect the use of audit_inode_hash
818  */
819 static int audit_filter_inode_name(struct task_struct *tsk,
820                                    struct audit_names *n,
821                                    struct audit_context *ctx) {
822         int h = audit_hash_ino((u32)n->ino);
823         struct list_head *list = &audit_inode_hash[h];
824         struct audit_entry *e;
825         enum audit_state state;
826 
827         list_for_each_entry_rcu(e, list, list) {
828                 if (audit_in_mask(&e->rule, ctx->major) &&
829                     audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
830                         ctx->current_state = state;
831                         return 1;
832                 }
833         }
834         return 0;
835 }
836 
837 /* At syscall exit time, this filter is called if any audit_names have been
838  * collected during syscall processing.  We only check rules in sublists at hash
839  * buckets applicable to the inode numbers in audit_names.
840  * Regarding audit_state, same rules apply as for audit_filter_syscall().
841  */
842 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
843 {
844         struct audit_names *n;
845 
846         if (auditd_test_task(tsk))
847                 return;
848 
849         rcu_read_lock();
850 
851         list_for_each_entry(n, &ctx->names_list, list) {
852                 if (audit_filter_inode_name(tsk, n, ctx))
853                         break;
854         }
855         rcu_read_unlock();
856 }
857 
858 static inline void audit_proctitle_free(struct audit_context *context)
859 {
860         kfree(context->proctitle.value);
861         context->proctitle.value = NULL;
862         context->proctitle.len = 0;
863 }
864 
865 static inline void audit_free_module(struct audit_context *context)
866 {
867         if (context->type == AUDIT_KERN_MODULE) {
868                 kfree(context->module.name);
869                 context->module.name = NULL;
870         }
871 }
872 static inline void audit_free_names(struct audit_context *context)
873 {
874         struct audit_names *n, *next;
875 
876         list_for_each_entry_safe(n, next, &context->names_list, list) {
877                 list_del(&n->list);
878                 if (n->name)
879                         putname(n->name);
880                 if (n->should_free)
881                         kfree(n);
882         }
883         context->name_count = 0;
884         path_put(&context->pwd);
885         context->pwd.dentry = NULL;
886         context->pwd.mnt = NULL;
887 }
888 
889 static inline void audit_free_aux(struct audit_context *context)
890 {
891         struct audit_aux_data *aux;
892 
893         while ((aux = context->aux)) {
894                 context->aux = aux->next;
895                 kfree(aux);
896         }
897         while ((aux = context->aux_pids)) {
898                 context->aux_pids = aux->next;
899                 kfree(aux);
900         }
901 }
902 
903 static inline struct audit_context *audit_alloc_context(enum audit_state state)
904 {
905         struct audit_context *context;
906 
907         context = kzalloc(sizeof(*context), GFP_KERNEL);
908         if (!context)
909                 return NULL;
910         context->state = state;
911         context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
912         INIT_LIST_HEAD(&context->killed_trees);
913         INIT_LIST_HEAD(&context->names_list);
914         return context;
915 }
916 
917 /**
918  * audit_alloc - allocate an audit context block for a task
919  * @tsk: task
920  *
921  * Filter on the task information and allocate a per-task audit context
922  * if necessary.  Doing so turns on system call auditing for the
923  * specified task.  This is called from copy_process, so no lock is
924  * needed.
925  */
926 int audit_alloc(struct task_struct *tsk)
927 {
928         struct audit_context *context;
929         enum audit_state     state;
930         char *key = NULL;
931 
932         if (likely(!audit_ever_enabled))
933                 return 0; /* Return if not auditing. */
934 
935         state = audit_filter_task(tsk, &key);
936         if (state == AUDIT_DISABLED) {
937                 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
938                 return 0;
939         }
940 
941         if (!(context = audit_alloc_context(state))) {
942                 kfree(key);
943                 audit_log_lost("out of memory in audit_alloc");
944                 return -ENOMEM;
945         }
946         context->filterkey = key;
947 
948         audit_set_context(tsk, context);
949         set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950         return 0;
951 }
952 
953 static inline void audit_free_context(struct audit_context *context)
954 {
955         audit_free_module(context);
956         audit_free_names(context);
957         unroll_tree_refs(context, NULL, 0);
958         free_tree_refs(context);
959         audit_free_aux(context);
960         kfree(context->filterkey);
961         kfree(context->sockaddr);
962         audit_proctitle_free(context);
963         kfree(context);
964 }
965 
966 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
967                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
968                                  u32 sid, char *comm)
969 {
970         struct audit_buffer *ab;
971         char *ctx = NULL;
972         u32 len;
973         int rc = 0;
974 
975         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
976         if (!ab)
977                 return rc;
978 
979         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
980                          from_kuid(&init_user_ns, auid),
981                          from_kuid(&init_user_ns, uid), sessionid);
982         if (sid) {
983                 if (security_secid_to_secctx(sid, &ctx, &len)) {
984                         audit_log_format(ab, " obj=(none)");
985                         rc = 1;
986                 } else {
987                         audit_log_format(ab, " obj=%s", ctx);
988                         security_release_secctx(ctx, len);
989                 }
990         }
991         audit_log_format(ab, " ocomm=");
992         audit_log_untrustedstring(ab, comm);
993         audit_log_end(ab);
994 
995         return rc;
996 }
997 
998 static void audit_log_execve_info(struct audit_context *context,
999                                   struct audit_buffer **ab)
1000 {
1001         long len_max;
1002         long len_rem;
1003         long len_full;
1004         long len_buf;
1005         long len_abuf = 0;
1006         long len_tmp;
1007         bool require_data;
1008         bool encode;
1009         unsigned int iter;
1010         unsigned int arg;
1011         char *buf_head;
1012         char *buf;
1013         const char __user *p = (const char __user *)current->mm->arg_start;
1014 
1015         /* NOTE: this buffer needs to be large enough to hold all the non-arg
1016          *       data we put in the audit record for this argument (see the
1017          *       code below) ... at this point in time 96 is plenty */
1018         char abuf[96];
1019 
1020         /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1021          *       current value of 7500 is not as important as the fact that it
1022          *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1023          *       room if we go over a little bit in the logging below */
1024         WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1025         len_max = MAX_EXECVE_AUDIT_LEN;
1026 
1027         /* scratch buffer to hold the userspace args */
1028         buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1029         if (!buf_head) {
1030                 audit_panic("out of memory for argv string");
1031                 return;
1032         }
1033         buf = buf_head;
1034 
1035         audit_log_format(*ab, "argc=%d", context->execve.argc);
1036 
1037         len_rem = len_max;
1038         len_buf = 0;
1039         len_full = 0;
1040         require_data = true;
1041         encode = false;
1042         iter = 0;
1043         arg = 0;
1044         do {
1045                 /* NOTE: we don't ever want to trust this value for anything
1046                  *       serious, but the audit record format insists we
1047                  *       provide an argument length for really long arguments,
1048                  *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1049                  *       to use strncpy_from_user() to obtain this value for
1050                  *       recording in the log, although we don't use it
1051                  *       anywhere here to avoid a double-fetch problem */
1052                 if (len_full == 0)
1053                         len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1054 
1055                 /* read more data from userspace */
1056                 if (require_data) {
1057                         /* can we make more room in the buffer? */
1058                         if (buf != buf_head) {
1059                                 memmove(buf_head, buf, len_buf);
1060                                 buf = buf_head;
1061                         }
1062 
1063                         /* fetch as much as we can of the argument */
1064                         len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1065                                                     len_max - len_buf);
1066                         if (len_tmp == -EFAULT) {
1067                                 /* unable to copy from userspace */
1068                                 send_sig(SIGKILL, current, 0);
1069                                 goto out;
1070                         } else if (len_tmp == (len_max - len_buf)) {
1071                                 /* buffer is not large enough */
1072                                 require_data = true;
1073                                 /* NOTE: if we are going to span multiple
1074                                  *       buffers force the encoding so we stand
1075                                  *       a chance at a sane len_full value and
1076                                  *       consistent record encoding */
1077                                 encode = true;
1078                                 len_full = len_full * 2;
1079                                 p += len_tmp;
1080                         } else {
1081                                 require_data = false;
1082                                 if (!encode)
1083                                         encode = audit_string_contains_control(
1084                                                                 buf, len_tmp);
1085                                 /* try to use a trusted value for len_full */
1086                                 if (len_full < len_max)
1087                                         len_full = (encode ?
1088                                                     len_tmp * 2 : len_tmp);
1089                                 p += len_tmp + 1;
1090                         }
1091                         len_buf += len_tmp;
1092                         buf_head[len_buf] = '\0';
1093 
1094                         /* length of the buffer in the audit record? */
1095                         len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1096                 }
1097 
1098                 /* write as much as we can to the audit log */
1099                 if (len_buf >= 0) {
1100                         /* NOTE: some magic numbers here - basically if we
1101                          *       can't fit a reasonable amount of data into the
1102                          *       existing audit buffer, flush it and start with
1103                          *       a new buffer */
1104                         if ((sizeof(abuf) + 8) > len_rem) {
1105                                 len_rem = len_max;
1106                                 audit_log_end(*ab);
1107                                 *ab = audit_log_start(context,
1108                                                       GFP_KERNEL, AUDIT_EXECVE);
1109                                 if (!*ab)
1110                                         goto out;
1111                         }
1112 
1113                         /* create the non-arg portion of the arg record */
1114                         len_tmp = 0;
1115                         if (require_data || (iter > 0) ||
1116                             ((len_abuf + sizeof(abuf)) > len_rem)) {
1117                                 if (iter == 0) {
1118                                         len_tmp += snprintf(&abuf[len_tmp],
1119                                                         sizeof(abuf) - len_tmp,
1120                                                         " a%d_len=%lu",
1121                                                         arg, len_full);
1122                                 }
1123                                 len_tmp += snprintf(&abuf[len_tmp],
1124                                                     sizeof(abuf) - len_tmp,
1125                                                     " a%d[%d]=", arg, iter++);
1126                         } else
1127                                 len_tmp += snprintf(&abuf[len_tmp],
1128                                                     sizeof(abuf) - len_tmp,
1129                                                     " a%d=", arg);
1130                         WARN_ON(len_tmp >= sizeof(abuf));
1131                         abuf[sizeof(abuf) - 1] = '\0';
1132 
1133                         /* log the arg in the audit record */
1134                         audit_log_format(*ab, "%s", abuf);
1135                         len_rem -= len_tmp;
1136                         len_tmp = len_buf;
1137                         if (encode) {
1138                                 if (len_abuf > len_rem)
1139                                         len_tmp = len_rem / 2; /* encoding */
1140                                 audit_log_n_hex(*ab, buf, len_tmp);
1141                                 len_rem -= len_tmp * 2;
1142                                 len_abuf -= len_tmp * 2;
1143                         } else {
1144                                 if (len_abuf > len_rem)
1145                                         len_tmp = len_rem - 2; /* quotes */
1146                                 audit_log_n_string(*ab, buf, len_tmp);
1147                                 len_rem -= len_tmp + 2;
1148                                 /* don't subtract the "2" because we still need
1149                                  * to add quotes to the remaining string */
1150                                 len_abuf -= len_tmp;
1151                         }
1152                         len_buf -= len_tmp;
1153                         buf += len_tmp;
1154                 }
1155 
1156                 /* ready to move to the next argument? */
1157                 if ((len_buf == 0) && !require_data) {
1158                         arg++;
1159                         iter = 0;
1160                         len_full = 0;
1161                         require_data = true;
1162                         encode = false;
1163                 }
1164         } while (arg < context->execve.argc);
1165 
1166         /* NOTE: the caller handles the final audit_log_end() call */
1167 
1168 out:
1169         kfree(buf_head);
1170 }
1171 
1172 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1173                           kernel_cap_t *cap)
1174 {
1175         int i;
1176 
1177         if (cap_isclear(*cap)) {
1178                 audit_log_format(ab, " %s=0", prefix);
1179                 return;
1180         }
1181         audit_log_format(ab, " %s=", prefix);
1182         CAP_FOR_EACH_U32(i)
1183                 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1184 }
1185 
1186 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1187 {
1188         if (name->fcap_ver == -1) {
1189                 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1190                 return;
1191         }
1192         audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1193         audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1194         audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1195                          name->fcap.fE, name->fcap_ver,
1196                          from_kuid(&init_user_ns, name->fcap.rootid));
1197 }
1198 
1199 static void show_special(struct audit_context *context, int *call_panic)
1200 {
1201         struct audit_buffer *ab;
1202         int i;
1203 
1204         ab = audit_log_start(context, GFP_KERNEL, context->type);
1205         if (!ab)
1206                 return;
1207 
1208         switch (context->type) {
1209         case AUDIT_SOCKETCALL: {
1210                 int nargs = context->socketcall.nargs;
1211                 audit_log_format(ab, "nargs=%d", nargs);
1212                 for (i = 0; i < nargs; i++)
1213                         audit_log_format(ab, " a%d=%lx", i,
1214                                 context->socketcall.args[i]);
1215                 break; }
1216         case AUDIT_IPC: {
1217                 u32 osid = context->ipc.osid;
1218 
1219                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1220                                  from_kuid(&init_user_ns, context->ipc.uid),
1221                                  from_kgid(&init_user_ns, context->ipc.gid),
1222                                  context->ipc.mode);
1223                 if (osid) {
1224                         char *ctx = NULL;
1225                         u32 len;
1226                         if (security_secid_to_secctx(osid, &ctx, &len)) {
1227                                 audit_log_format(ab, " osid=%u", osid);
1228                                 *call_panic = 1;
1229                         } else {
1230                                 audit_log_format(ab, " obj=%s", ctx);
1231                                 security_release_secctx(ctx, len);
1232                         }
1233                 }
1234                 if (context->ipc.has_perm) {
1235                         audit_log_end(ab);
1236                         ab = audit_log_start(context, GFP_KERNEL,
1237                                              AUDIT_IPC_SET_PERM);
1238                         if (unlikely(!ab))
1239                                 return;
1240                         audit_log_format(ab,
1241                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242                                 context->ipc.qbytes,
1243                                 context->ipc.perm_uid,
1244                                 context->ipc.perm_gid,
1245                                 context->ipc.perm_mode);
1246                 }
1247                 break; }
1248         case AUDIT_MQ_OPEN:
1249                 audit_log_format(ab,
1250                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251                         "mq_msgsize=%ld mq_curmsgs=%ld",
1252                         context->mq_open.oflag, context->mq_open.mode,
1253                         context->mq_open.attr.mq_flags,
1254                         context->mq_open.attr.mq_maxmsg,
1255                         context->mq_open.attr.mq_msgsize,
1256                         context->mq_open.attr.mq_curmsgs);
1257                 break;
1258         case AUDIT_MQ_SENDRECV:
1259                 audit_log_format(ab,
1260                         "mqdes=%d msg_len=%zd msg_prio=%u "
1261                         "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1262                         context->mq_sendrecv.mqdes,
1263                         context->mq_sendrecv.msg_len,
1264                         context->mq_sendrecv.msg_prio,
1265                         (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1266                         context->mq_sendrecv.abs_timeout.tv_nsec);
1267                 break;
1268         case AUDIT_MQ_NOTIFY:
1269                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270                                 context->mq_notify.mqdes,
1271                                 context->mq_notify.sigev_signo);
1272                 break;
1273         case AUDIT_MQ_GETSETATTR: {
1274                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275                 audit_log_format(ab,
1276                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1277                         "mq_curmsgs=%ld ",
1278                         context->mq_getsetattr.mqdes,
1279                         attr->mq_flags, attr->mq_maxmsg,
1280                         attr->mq_msgsize, attr->mq_curmsgs);
1281                 break; }
1282         case AUDIT_CAPSET:
1283                 audit_log_format(ab, "pid=%d", context->capset.pid);
1284                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1285                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1286                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1287                 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1288                 break;
1289         case AUDIT_MMAP:
1290                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1291                                  context->mmap.flags);
1292                 break;
1293         case AUDIT_EXECVE:
1294                 audit_log_execve_info(context, &ab);
1295                 break;
1296         case AUDIT_KERN_MODULE:
1297                 audit_log_format(ab, "name=");
1298                 if (context->module.name) {
1299                         audit_log_untrustedstring(ab, context->module.name);
1300                 } else
1301                         audit_log_format(ab, "(null)");
1302 
1303                 break;
1304         }
1305         audit_log_end(ab);
1306 }
1307 
1308 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1309 {
1310         char *end = proctitle + len - 1;
1311         while (end > proctitle && !isprint(*end))
1312                 end--;
1313 
1314         /* catch the case where proctitle is only 1 non-print character */
1315         len = end - proctitle + 1;
1316         len -= isprint(proctitle[len-1]) == 0;
1317         return len;
1318 }
1319 
1320 /*
1321  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1322  * @context: audit_context for the task
1323  * @n: audit_names structure with reportable details
1324  * @path: optional path to report instead of audit_names->name
1325  * @record_num: record number to report when handling a list of names
1326  * @call_panic: optional pointer to int that will be updated if secid fails
1327  */
1328 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1329                     const struct path *path, int record_num, int *call_panic)
1330 {
1331         struct audit_buffer *ab;
1332 
1333         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1334         if (!ab)
1335                 return;
1336 
1337         audit_log_format(ab, "item=%d", record_num);
1338 
1339         if (path)
1340                 audit_log_d_path(ab, " name=", path);
1341         else if (n->name) {
1342                 switch (n->name_len) {
1343                 case AUDIT_NAME_FULL:
1344                         /* log the full path */
1345                         audit_log_format(ab, " name=");
1346                         audit_log_untrustedstring(ab, n->name->name);
1347                         break;
1348                 case 0:
1349                         /* name was specified as a relative path and the
1350                          * directory component is the cwd
1351                          */
1352                         audit_log_d_path(ab, " name=", &context->pwd);
1353                         break;
1354                 default:
1355                         /* log the name's directory component */
1356                         audit_log_format(ab, " name=");
1357                         audit_log_n_untrustedstring(ab, n->name->name,
1358                                                     n->name_len);
1359                 }
1360         } else
1361                 audit_log_format(ab, " name=(null)");
1362 
1363         if (n->ino != AUDIT_INO_UNSET)
1364                 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1365                                  n->ino,
1366                                  MAJOR(n->dev),
1367                                  MINOR(n->dev),
1368                                  n->mode,
1369                                  from_kuid(&init_user_ns, n->uid),
1370                                  from_kgid(&init_user_ns, n->gid),
1371                                  MAJOR(n->rdev),
1372                                  MINOR(n->rdev));
1373         if (n->osid != 0) {
1374                 char *ctx = NULL;
1375                 u32 len;
1376 
1377                 if (security_secid_to_secctx(
1378                         n->osid, &ctx, &len)) {
1379                         audit_log_format(ab, " osid=%u", n->osid);
1380                         if (call_panic)
1381                                 *call_panic = 2;
1382                 } else {
1383                         audit_log_format(ab, " obj=%s", ctx);
1384                         security_release_secctx(ctx, len);
1385                 }
1386         }
1387 
1388         /* log the audit_names record type */
1389         switch (n->type) {
1390         case AUDIT_TYPE_NORMAL:
1391                 audit_log_format(ab, " nametype=NORMAL");
1392                 break;
1393         case AUDIT_TYPE_PARENT:
1394                 audit_log_format(ab, " nametype=PARENT");
1395                 break;
1396         case AUDIT_TYPE_CHILD_DELETE:
1397                 audit_log_format(ab, " nametype=DELETE");
1398                 break;
1399         case AUDIT_TYPE_CHILD_CREATE:
1400                 audit_log_format(ab, " nametype=CREATE");
1401                 break;
1402         default:
1403                 audit_log_format(ab, " nametype=UNKNOWN");
1404                 break;
1405         }
1406 
1407         audit_log_fcaps(ab, n);
1408         audit_log_end(ab);
1409 }
1410 
1411 static void audit_log_proctitle(void)
1412 {
1413         int res;
1414         char *buf;
1415         char *msg = "(null)";
1416         int len = strlen(msg);
1417         struct audit_context *context = audit_context();
1418         struct audit_buffer *ab;
1419 
1420         if (!context || context->dummy)
1421                 return;
1422 
1423         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1424         if (!ab)
1425                 return; /* audit_panic or being filtered */
1426 
1427         audit_log_format(ab, "proctitle=");
1428 
1429         /* Not  cached */
1430         if (!context->proctitle.value) {
1431                 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1432                 if (!buf)
1433                         goto out;
1434                 /* Historically called this from procfs naming */
1435                 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1436                 if (res == 0) {
1437                         kfree(buf);
1438                         goto out;
1439                 }
1440                 res = audit_proctitle_rtrim(buf, res);
1441                 if (res == 0) {
1442                         kfree(buf);
1443                         goto out;
1444                 }
1445                 context->proctitle.value = buf;
1446                 context->proctitle.len = res;
1447         }
1448         msg = context->proctitle.value;
1449         len = context->proctitle.len;
1450 out:
1451         audit_log_n_untrustedstring(ab, msg, len);
1452         audit_log_end(ab);
1453 }
1454 
1455 static void audit_log_exit(void)
1456 {
1457         int i, call_panic = 0;
1458         struct audit_context *context = audit_context();
1459         struct audit_buffer *ab;
1460         struct audit_aux_data *aux;
1461         struct audit_names *n;
1462 
1463         context->personality = current->personality;
1464 
1465         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1466         if (!ab)
1467                 return;         /* audit_panic has been called */
1468         audit_log_format(ab, "arch=%x syscall=%d",
1469                          context->arch, context->major);
1470         if (context->personality != PER_LINUX)
1471                 audit_log_format(ab, " per=%lx", context->personality);
1472         if (context->return_valid)
1473                 audit_log_format(ab, " success=%s exit=%ld",
1474                                  (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1475                                  context->return_code);
1476 
1477         audit_log_format(ab,
1478                          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1479                          context->argv[0],
1480                          context->argv[1],
1481                          context->argv[2],
1482                          context->argv[3],
1483                          context->name_count);
1484 
1485         audit_log_task_info(ab);
1486         audit_log_key(ab, context->filterkey);
1487         audit_log_end(ab);
1488 
1489         for (aux = context->aux; aux; aux = aux->next) {
1490 
1491                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1492                 if (!ab)
1493                         continue; /* audit_panic has been called */
1494 
1495                 switch (aux->type) {
1496 
1497                 case AUDIT_BPRM_FCAPS: {
1498                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1499                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
1500                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
1501                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1502                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
1503                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1504                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1505                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1506                         audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1507                         audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1508                         audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1509                         audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1510                         audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1511                         audit_log_format(ab, " frootid=%d",
1512                                          from_kuid(&init_user_ns,
1513                                                    axs->fcap.rootid));
1514                         break; }
1515 
1516                 }
1517                 audit_log_end(ab);
1518         }
1519 
1520         if (context->type)
1521                 show_special(context, &call_panic);
1522 
1523         if (context->fds[0] >= 0) {
1524                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1525                 if (ab) {
1526                         audit_log_format(ab, "fd0=%d fd1=%d",
1527                                         context->fds[0], context->fds[1]);
1528                         audit_log_end(ab);
1529                 }
1530         }
1531 
1532         if (context->sockaddr_len) {
1533                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1534                 if (ab) {
1535                         audit_log_format(ab, "saddr=");
1536                         audit_log_n_hex(ab, (void *)context->sockaddr,
1537                                         context->sockaddr_len);
1538                         audit_log_end(ab);
1539                 }
1540         }
1541 
1542         for (aux = context->aux_pids; aux; aux = aux->next) {
1543                 struct audit_aux_data_pids *axs = (void *)aux;
1544 
1545                 for (i = 0; i < axs->pid_count; i++)
1546                         if (audit_log_pid_context(context, axs->target_pid[i],
1547                                                   axs->target_auid[i],
1548                                                   axs->target_uid[i],
1549                                                   axs->target_sessionid[i],
1550                                                   axs->target_sid[i],
1551                                                   axs->target_comm[i]))
1552                                 call_panic = 1;
1553         }
1554 
1555         if (context->target_pid &&
1556             audit_log_pid_context(context, context->target_pid,
1557                                   context->target_auid, context->target_uid,
1558                                   context->target_sessionid,
1559                                   context->target_sid, context->target_comm))
1560                         call_panic = 1;
1561 
1562         if (context->pwd.dentry && context->pwd.mnt) {
1563                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1564                 if (ab) {
1565                         audit_log_d_path(ab, "cwd=", &context->pwd);
1566                         audit_log_end(ab);
1567                 }
1568         }
1569 
1570         i = 0;
1571         list_for_each_entry(n, &context->names_list, list) {
1572                 if (n->hidden)
1573                         continue;
1574                 audit_log_name(context, n, NULL, i++, &call_panic);
1575         }
1576 
1577         audit_log_proctitle();
1578 
1579         /* Send end of event record to help user space know we are finished */
1580         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1581         if (ab)
1582                 audit_log_end(ab);
1583         if (call_panic)
1584                 audit_panic("error converting sid to string");
1585 }
1586 
1587 /**
1588  * __audit_free - free a per-task audit context
1589  * @tsk: task whose audit context block to free
1590  *
1591  * Called from copy_process and do_exit
1592  */
1593 void __audit_free(struct task_struct *tsk)
1594 {
1595         struct audit_context *context = tsk->audit_context;
1596 
1597         if (!context)
1598                 return;
1599 
1600         if (!list_empty(&context->killed_trees))
1601                 audit_kill_trees(context);
1602 
1603         /* We are called either by do_exit() or the fork() error handling code;
1604          * in the former case tsk == current and in the latter tsk is a
1605          * random task_struct that doesn't doesn't have any meaningful data we
1606          * need to log via audit_log_exit().
1607          */
1608         if (tsk == current && !context->dummy && context->in_syscall) {
1609                 context->return_valid = 0;
1610                 context->return_code = 0;
1611 
1612                 audit_filter_syscall(tsk, context,
1613                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1614                 audit_filter_inodes(tsk, context);
1615                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1616                         audit_log_exit();
1617         }
1618 
1619         audit_set_context(tsk, NULL);
1620         audit_free_context(context);
1621 }
1622 
1623 /**
1624  * __audit_syscall_entry - fill in an audit record at syscall entry
1625  * @major: major syscall type (function)
1626  * @a1: additional syscall register 1
1627  * @a2: additional syscall register 2
1628  * @a3: additional syscall register 3
1629  * @a4: additional syscall register 4
1630  *
1631  * Fill in audit context at syscall entry.  This only happens if the
1632  * audit context was created when the task was created and the state or
1633  * filters demand the audit context be built.  If the state from the
1634  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1635  * then the record will be written at syscall exit time (otherwise, it
1636  * will only be written if another part of the kernel requests that it
1637  * be written).
1638  */
1639 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1640                            unsigned long a3, unsigned long a4)
1641 {
1642         struct audit_context *context = audit_context();
1643         enum audit_state     state;
1644 
1645         if (!audit_enabled || !context)
1646                 return;
1647 
1648         BUG_ON(context->in_syscall || context->name_count);
1649 
1650         state = context->state;
1651         if (state == AUDIT_DISABLED)
1652                 return;
1653 
1654         context->dummy = !audit_n_rules;
1655         if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1656                 context->prio = 0;
1657                 if (auditd_test_task(current))
1658                         return;
1659         }
1660 
1661         context->arch       = syscall_get_arch(current);
1662         context->major      = major;
1663         context->argv[0]    = a1;
1664         context->argv[1]    = a2;
1665         context->argv[2]    = a3;
1666         context->argv[3]    = a4;
1667         context->serial     = 0;
1668         context->in_syscall = 1;
1669         context->current_state  = state;
1670         context->ppid       = 0;
1671         ktime_get_coarse_real_ts64(&context->ctime);
1672 }
1673 
1674 /**
1675  * __audit_syscall_exit - deallocate audit context after a system call
1676  * @success: success value of the syscall
1677  * @return_code: return value of the syscall
1678  *
1679  * Tear down after system call.  If the audit context has been marked as
1680  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1681  * filtering, or because some other part of the kernel wrote an audit
1682  * message), then write out the syscall information.  In call cases,
1683  * free the names stored from getname().
1684  */
1685 void __audit_syscall_exit(int success, long return_code)
1686 {
1687         struct audit_context *context;
1688 
1689         context = audit_context();
1690         if (!context)
1691                 return;
1692 
1693         if (!list_empty(&context->killed_trees))
1694                 audit_kill_trees(context);
1695 
1696         if (!context->dummy && context->in_syscall) {
1697                 if (success)
1698                         context->return_valid = AUDITSC_SUCCESS;
1699                 else
1700                         context->return_valid = AUDITSC_FAILURE;
1701 
1702                 /*
1703                  * we need to fix up the return code in the audit logs if the
1704                  * actual return codes are later going to be fixed up by the
1705                  * arch specific signal handlers
1706                  *
1707                  * This is actually a test for:
1708                  * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1709                  * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1710                  *
1711                  * but is faster than a bunch of ||
1712                  */
1713                 if (unlikely(return_code <= -ERESTARTSYS) &&
1714                     (return_code >= -ERESTART_RESTARTBLOCK) &&
1715                     (return_code != -ENOIOCTLCMD))
1716                         context->return_code = -EINTR;
1717                 else
1718                         context->return_code  = return_code;
1719 
1720                 audit_filter_syscall(current, context,
1721                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1722                 audit_filter_inodes(current, context);
1723                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1724                         audit_log_exit();
1725         }
1726 
1727         context->in_syscall = 0;
1728         context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1729 
1730         audit_free_module(context);
1731         audit_free_names(context);
1732         unroll_tree_refs(context, NULL, 0);
1733         audit_free_aux(context);
1734         context->aux = NULL;
1735         context->aux_pids = NULL;
1736         context->target_pid = 0;
1737         context->target_sid = 0;
1738         context->sockaddr_len = 0;
1739         context->type = 0;
1740         context->fds[0] = -1;
1741         if (context->state != AUDIT_RECORD_CONTEXT) {
1742                 kfree(context->filterkey);
1743                 context->filterkey = NULL;
1744         }
1745 }
1746 
1747 static inline void handle_one(const struct inode *inode)
1748 {
1749         struct audit_context *context;
1750         struct audit_tree_refs *p;
1751         struct audit_chunk *chunk;
1752         int count;
1753         if (likely(!inode->i_fsnotify_marks))
1754                 return;
1755         context = audit_context();
1756         p = context->trees;
1757         count = context->tree_count;
1758         rcu_read_lock();
1759         chunk = audit_tree_lookup(inode);
1760         rcu_read_unlock();
1761         if (!chunk)
1762                 return;
1763         if (likely(put_tree_ref(context, chunk)))
1764                 return;
1765         if (unlikely(!grow_tree_refs(context))) {
1766                 pr_warn("out of memory, audit has lost a tree reference\n");
1767                 audit_set_auditable(context);
1768                 audit_put_chunk(chunk);
1769                 unroll_tree_refs(context, p, count);
1770                 return;
1771         }
1772         put_tree_ref(context, chunk);
1773 }
1774 
1775 static void handle_path(const struct dentry *dentry)
1776 {
1777         struct audit_context *context;
1778         struct audit_tree_refs *p;
1779         const struct dentry *d, *parent;
1780         struct audit_chunk *drop;
1781         unsigned long seq;
1782         int count;
1783 
1784         context = audit_context();
1785         p = context->trees;
1786         count = context->tree_count;
1787 retry:
1788         drop = NULL;
1789         d = dentry;
1790         rcu_read_lock();
1791         seq = read_seqbegin(&rename_lock);
1792         for(;;) {
1793                 struct inode *inode = d_backing_inode(d);
1794                 if (inode && unlikely(inode->i_fsnotify_marks)) {
1795                         struct audit_chunk *chunk;
1796                         chunk = audit_tree_lookup(inode);
1797                         if (chunk) {
1798                                 if (unlikely(!put_tree_ref(context, chunk))) {
1799                                         drop = chunk;
1800                                         break;
1801                                 }
1802                         }
1803                 }
1804                 parent = d->d_parent;
1805                 if (parent == d)
1806                         break;
1807                 d = parent;
1808         }
1809         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1810                 rcu_read_unlock();
1811                 if (!drop) {
1812                         /* just a race with rename */
1813                         unroll_tree_refs(context, p, count);
1814                         goto retry;
1815                 }
1816                 audit_put_chunk(drop);
1817                 if (grow_tree_refs(context)) {
1818                         /* OK, got more space */
1819                         unroll_tree_refs(context, p, count);
1820                         goto retry;
1821                 }
1822                 /* too bad */
1823                 pr_warn("out of memory, audit has lost a tree reference\n");
1824                 unroll_tree_refs(context, p, count);
1825                 audit_set_auditable(context);
1826                 return;
1827         }
1828         rcu_read_unlock();
1829 }
1830 
1831 static struct audit_names *audit_alloc_name(struct audit_context *context,
1832                                                 unsigned char type)
1833 {
1834         struct audit_names *aname;
1835 
1836         if (context->name_count < AUDIT_NAMES) {
1837                 aname = &context->preallocated_names[context->name_count];
1838                 memset(aname, 0, sizeof(*aname));
1839         } else {
1840                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1841                 if (!aname)
1842                         return NULL;
1843                 aname->should_free = true;
1844         }
1845 
1846         aname->ino = AUDIT_INO_UNSET;
1847         aname->type = type;
1848         list_add_tail(&aname->list, &context->names_list);
1849 
1850         context->name_count++;
1851         return aname;
1852 }
1853 
1854 /**
1855  * __audit_reusename - fill out filename with info from existing entry
1856  * @uptr: userland ptr to pathname
1857  *
1858  * Search the audit_names list for the current audit context. If there is an
1859  * existing entry with a matching "uptr" then return the filename
1860  * associated with that audit_name. If not, return NULL.
1861  */
1862 struct filename *
1863 __audit_reusename(const __user char *uptr)
1864 {
1865         struct audit_context *context = audit_context();
1866         struct audit_names *n;
1867 
1868         list_for_each_entry(n, &context->names_list, list) {
1869                 if (!n->name)
1870                         continue;
1871                 if (n->name->uptr == uptr) {
1872                         n->name->refcnt++;
1873                         return n->name;
1874                 }
1875         }
1876         return NULL;
1877 }
1878 
1879 /**
1880  * __audit_getname - add a name to the list
1881  * @name: name to add
1882  *
1883  * Add a name to the list of audit names for this context.
1884  * Called from fs/namei.c:getname().
1885  */
1886 void __audit_getname(struct filename *name)
1887 {
1888         struct audit_context *context = audit_context();
1889         struct audit_names *n;
1890 
1891         if (!context->in_syscall)
1892                 return;
1893 
1894         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1895         if (!n)
1896                 return;
1897 
1898         n->name = name;
1899         n->name_len = AUDIT_NAME_FULL;
1900         name->aname = n;
1901         name->refcnt++;
1902 
1903         if (!context->pwd.dentry)
1904                 get_fs_pwd(current->fs, &context->pwd);
1905 }
1906 
1907 static inline int audit_copy_fcaps(struct audit_names *name,
1908                                    const struct dentry *dentry)
1909 {
1910         struct cpu_vfs_cap_data caps;
1911         int rc;
1912 
1913         if (!dentry)
1914                 return 0;
1915 
1916         rc = get_vfs_caps_from_disk(dentry, &caps);
1917         if (rc)
1918                 return rc;
1919 
1920         name->fcap.permitted = caps.permitted;
1921         name->fcap.inheritable = caps.inheritable;
1922         name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1923         name->fcap.rootid = caps.rootid;
1924         name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1925                                 VFS_CAP_REVISION_SHIFT;
1926 
1927         return 0;
1928 }
1929 
1930 /* Copy inode data into an audit_names. */
1931 static void audit_copy_inode(struct audit_names *name,
1932                              const struct dentry *dentry,
1933                              struct inode *inode, unsigned int flags)
1934 {
1935         name->ino   = inode->i_ino;
1936         name->dev   = inode->i_sb->s_dev;
1937         name->mode  = inode->i_mode;
1938         name->uid   = inode->i_uid;
1939         name->gid   = inode->i_gid;
1940         name->rdev  = inode->i_rdev;
1941         security_inode_getsecid(inode, &name->osid);
1942         if (flags & AUDIT_INODE_NOEVAL) {
1943                 name->fcap_ver = -1;
1944                 return;
1945         }
1946         audit_copy_fcaps(name, dentry);
1947 }
1948 
1949 /**
1950  * __audit_inode - store the inode and device from a lookup
1951  * @name: name being audited
1952  * @dentry: dentry being audited
1953  * @flags: attributes for this particular entry
1954  */
1955 void __audit_inode(struct filename *name, const struct dentry *dentry,
1956                    unsigned int flags)
1957 {
1958         struct audit_context *context = audit_context();
1959         struct inode *inode = d_backing_inode(dentry);
1960         struct audit_names *n;
1961         bool parent = flags & AUDIT_INODE_PARENT;
1962         struct audit_entry *e;
1963         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1964         int i;
1965 
1966         if (!context->in_syscall)
1967                 return;
1968 
1969         rcu_read_lock();
1970         list_for_each_entry_rcu(e, list, list) {
1971                 for (i = 0; i < e->rule.field_count; i++) {
1972                         struct audit_field *f = &e->rule.fields[i];
1973 
1974                         if (f->type == AUDIT_FSTYPE
1975                             && audit_comparator(inode->i_sb->s_magic,
1976                                                 f->op, f->val)
1977                             && e->rule.action == AUDIT_NEVER) {
1978                                 rcu_read_unlock();
1979                                 return;
1980                         }
1981                 }
1982         }
1983         rcu_read_unlock();
1984 
1985         if (!name)
1986                 goto out_alloc;
1987 
1988         /*
1989          * If we have a pointer to an audit_names entry already, then we can
1990          * just use it directly if the type is correct.
1991          */
1992         n = name->aname;
1993         if (n) {
1994                 if (parent) {
1995                         if (n->type == AUDIT_TYPE_PARENT ||
1996                             n->type == AUDIT_TYPE_UNKNOWN)
1997                                 goto out;
1998                 } else {
1999                         if (n->type != AUDIT_TYPE_PARENT)
2000                                 goto out;
2001                 }
2002         }
2003 
2004         list_for_each_entry_reverse(n, &context->names_list, list) {
2005                 if (n->ino) {
2006                         /* valid inode number, use that for the comparison */
2007                         if (n->ino != inode->i_ino ||
2008                             n->dev != inode->i_sb->s_dev)
2009                                 continue;
2010                 } else if (n->name) {
2011                         /* inode number has not been set, check the name */
2012                         if (strcmp(n->name->name, name->name))
2013                                 continue;
2014                 } else
2015                         /* no inode and no name (?!) ... this is odd ... */
2016                         continue;
2017 
2018                 /* match the correct record type */
2019                 if (parent) {
2020                         if (n->type == AUDIT_TYPE_PARENT ||
2021                             n->type == AUDIT_TYPE_UNKNOWN)
2022                                 goto out;
2023                 } else {
2024                         if (n->type != AUDIT_TYPE_PARENT)
2025                                 goto out;
2026                 }
2027         }
2028 
2029 out_alloc:
2030         /* unable to find an entry with both a matching name and type */
2031         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2032         if (!n)
2033                 return;
2034         if (name) {
2035                 n->name = name;
2036                 name->refcnt++;
2037         }
2038 
2039 out:
2040         if (parent) {
2041                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2042                 n->type = AUDIT_TYPE_PARENT;
2043                 if (flags & AUDIT_INODE_HIDDEN)
2044                         n->hidden = true;
2045         } else {
2046                 n->name_len = AUDIT_NAME_FULL;
2047                 n->type = AUDIT_TYPE_NORMAL;
2048         }
2049         handle_path(dentry);
2050         audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2051 }
2052 
2053 void __audit_file(const struct file *file)
2054 {
2055         __audit_inode(NULL, file->f_path.dentry, 0);
2056 }
2057 
2058 /**
2059  * __audit_inode_child - collect inode info for created/removed objects
2060  * @parent: inode of dentry parent
2061  * @dentry: dentry being audited
2062  * @type:   AUDIT_TYPE_* value that we're looking for
2063  *
2064  * For syscalls that create or remove filesystem objects, audit_inode
2065  * can only collect information for the filesystem object's parent.
2066  * This call updates the audit context with the child's information.
2067  * Syscalls that create a new filesystem object must be hooked after
2068  * the object is created.  Syscalls that remove a filesystem object
2069  * must be hooked prior, in order to capture the target inode during
2070  * unsuccessful attempts.
2071  */
2072 void __audit_inode_child(struct inode *parent,
2073                          const struct dentry *dentry,
2074                          const unsigned char type)
2075 {
2076         struct audit_context *context = audit_context();
2077         struct inode *inode = d_backing_inode(dentry);
2078         const struct qstr *dname = &dentry->d_name;
2079         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2080         struct audit_entry *e;
2081         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2082         int i;
2083 
2084         if (!context->in_syscall)
2085                 return;
2086 
2087         rcu_read_lock();
2088         list_for_each_entry_rcu(e, list, list) {
2089                 for (i = 0; i < e->rule.field_count; i++) {
2090                         struct audit_field *f = &e->rule.fields[i];
2091 
2092                         if (f->type == AUDIT_FSTYPE
2093                             && audit_comparator(parent->i_sb->s_magic,
2094                                                 f->op, f->val)
2095                             && e->rule.action == AUDIT_NEVER) {
2096                                 rcu_read_unlock();
2097                                 return;
2098                         }
2099                 }
2100         }
2101         rcu_read_unlock();
2102 
2103         if (inode)
2104                 handle_one(inode);
2105 
2106         /* look for a parent entry first */
2107         list_for_each_entry(n, &context->names_list, list) {
2108                 if (!n->name ||
2109                     (n->type != AUDIT_TYPE_PARENT &&
2110                      n->type != AUDIT_TYPE_UNKNOWN))
2111                         continue;
2112 
2113                 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2114                     !audit_compare_dname_path(dname,
2115                                               n->name->name, n->name_len)) {
2116                         if (n->type == AUDIT_TYPE_UNKNOWN)
2117                                 n->type = AUDIT_TYPE_PARENT;
2118                         found_parent = n;
2119                         break;
2120                 }
2121         }
2122 
2123         /* is there a matching child entry? */
2124         list_for_each_entry(n, &context->names_list, list) {
2125                 /* can only match entries that have a name */
2126                 if (!n->name ||
2127                     (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2128                         continue;
2129 
2130                 if (!strcmp(dname->name, n->name->name) ||
2131                     !audit_compare_dname_path(dname, n->name->name,
2132                                                 found_parent ?
2133                                                 found_parent->name_len :
2134                                                 AUDIT_NAME_FULL)) {
2135                         if (n->type == AUDIT_TYPE_UNKNOWN)
2136                                 n->type = type;
2137                         found_child = n;
2138                         break;
2139                 }
2140         }
2141 
2142         if (!found_parent) {
2143                 /* create a new, "anonymous" parent record */
2144                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2145                 if (!n)
2146                         return;
2147                 audit_copy_inode(n, NULL, parent, 0);
2148         }
2149 
2150         if (!found_child) {
2151                 found_child = audit_alloc_name(context, type);
2152                 if (!found_child)
2153                         return;
2154 
2155                 /* Re-use the name belonging to the slot for a matching parent
2156                  * directory. All names for this context are relinquished in
2157                  * audit_free_names() */
2158                 if (found_parent) {
2159                         found_child->name = found_parent->name;
2160                         found_child->name_len = AUDIT_NAME_FULL;
2161                         found_child->name->refcnt++;
2162                 }
2163         }
2164 
2165         if (inode)
2166                 audit_copy_inode(found_child, dentry, inode, 0);
2167         else
2168                 found_child->ino = AUDIT_INO_UNSET;
2169 }
2170 EXPORT_SYMBOL_GPL(__audit_inode_child);
2171 
2172 /**
2173  * auditsc_get_stamp - get local copies of audit_context values
2174  * @ctx: audit_context for the task
2175  * @t: timespec64 to store time recorded in the audit_context
2176  * @serial: serial value that is recorded in the audit_context
2177  *
2178  * Also sets the context as auditable.
2179  */
2180 int auditsc_get_stamp(struct audit_context *ctx,
2181                        struct timespec64 *t, unsigned int *serial)
2182 {
2183         if (!ctx->in_syscall)
2184                 return 0;
2185         if (!ctx->serial)
2186                 ctx->serial = audit_serial();
2187         t->tv_sec  = ctx->ctime.tv_sec;
2188         t->tv_nsec = ctx->ctime.tv_nsec;
2189         *serial    = ctx->serial;
2190         if (!ctx->prio) {
2191                 ctx->prio = 1;
2192                 ctx->current_state = AUDIT_RECORD_CONTEXT;
2193         }
2194         return 1;
2195 }
2196 
2197 /**
2198  * __audit_mq_open - record audit data for a POSIX MQ open
2199  * @oflag: open flag
2200  * @mode: mode bits
2201  * @attr: queue attributes
2202  *
2203  */
2204 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2205 {
2206         struct audit_context *context = audit_context();
2207 
2208         if (attr)
2209                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2210         else
2211                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2212 
2213         context->mq_open.oflag = oflag;
2214         context->mq_open.mode = mode;
2215 
2216         context->type = AUDIT_MQ_OPEN;
2217 }
2218 
2219 /**
2220  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2221  * @mqdes: MQ descriptor
2222  * @msg_len: Message length
2223  * @msg_prio: Message priority
2224  * @abs_timeout: Message timeout in absolute time
2225  *
2226  */
2227 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2228                         const struct timespec64 *abs_timeout)
2229 {
2230         struct audit_context *context = audit_context();
2231         struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2232 
2233         if (abs_timeout)
2234                 memcpy(p, abs_timeout, sizeof(*p));
2235         else
2236                 memset(p, 0, sizeof(*p));
2237 
2238         context->mq_sendrecv.mqdes = mqdes;
2239         context->mq_sendrecv.msg_len = msg_len;
2240         context->mq_sendrecv.msg_prio = msg_prio;
2241 
2242         context->type = AUDIT_MQ_SENDRECV;
2243 }
2244 
2245 /**
2246  * __audit_mq_notify - record audit data for a POSIX MQ notify
2247  * @mqdes: MQ descriptor
2248  * @notification: Notification event
2249  *
2250  */
2251 
2252 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2253 {
2254         struct audit_context *context = audit_context();
2255 
2256         if (notification)
2257                 context->mq_notify.sigev_signo = notification->sigev_signo;
2258         else
2259                 context->mq_notify.sigev_signo = 0;
2260 
2261         context->mq_notify.mqdes = mqdes;
2262         context->type = AUDIT_MQ_NOTIFY;
2263 }
2264 
2265 /**
2266  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2267  * @mqdes: MQ descriptor
2268  * @mqstat: MQ flags
2269  *
2270  */
2271 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2272 {
2273         struct audit_context *context = audit_context();
2274         context->mq_getsetattr.mqdes = mqdes;
2275         context->mq_getsetattr.mqstat = *mqstat;
2276         context->type = AUDIT_MQ_GETSETATTR;
2277 }
2278 
2279 /**
2280  * __audit_ipc_obj - record audit data for ipc object
2281  * @ipcp: ipc permissions
2282  *
2283  */
2284 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2285 {
2286         struct audit_context *context = audit_context();
2287         context->ipc.uid = ipcp->uid;
2288         context->ipc.gid = ipcp->gid;
2289         context->ipc.mode = ipcp->mode;
2290         context->ipc.has_perm = 0;
2291         security_ipc_getsecid(ipcp, &context->ipc.osid);
2292         context->type = AUDIT_IPC;
2293 }
2294 
2295 /**
2296  * __audit_ipc_set_perm - record audit data for new ipc permissions
2297  * @qbytes: msgq bytes
2298  * @uid: msgq user id
2299  * @gid: msgq group id
2300  * @mode: msgq mode (permissions)
2301  *
2302  * Called only after audit_ipc_obj().
2303  */
2304 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2305 {
2306         struct audit_context *context = audit_context();
2307 
2308         context->ipc.qbytes = qbytes;
2309         context->ipc.perm_uid = uid;
2310         context->ipc.perm_gid = gid;
2311         context->ipc.perm_mode = mode;
2312         context->ipc.has_perm = 1;
2313 }
2314 
2315 void __audit_bprm(struct linux_binprm *bprm)
2316 {
2317         struct audit_context *context = audit_context();
2318 
2319         context->type = AUDIT_EXECVE;
2320         context->execve.argc = bprm->argc;
2321 }
2322 
2323 
2324 /**
2325  * __audit_socketcall - record audit data for sys_socketcall
2326  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2327  * @args: args array
2328  *
2329  */
2330 int __audit_socketcall(int nargs, unsigned long *args)
2331 {
2332         struct audit_context *context = audit_context();
2333 
2334         if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2335                 return -EINVAL;
2336         context->type = AUDIT_SOCKETCALL;
2337         context->socketcall.nargs = nargs;
2338         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2339         return 0;
2340 }
2341 
2342 /**
2343  * __audit_fd_pair - record audit data for pipe and socketpair
2344  * @fd1: the first file descriptor
2345  * @fd2: the second file descriptor
2346  *
2347  */
2348 void __audit_fd_pair(int fd1, int fd2)
2349 {
2350         struct audit_context *context = audit_context();
2351         context->fds[0] = fd1;
2352         context->fds[1] = fd2;
2353 }
2354 
2355 /**
2356  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2357  * @len: data length in user space
2358  * @a: data address in kernel space
2359  *
2360  * Returns 0 for success or NULL context or < 0 on error.
2361  */
2362 int __audit_sockaddr(int len, void *a)
2363 {
2364         struct audit_context *context = audit_context();
2365 
2366         if (!context->sockaddr) {
2367                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2368                 if (!p)
2369                         return -ENOMEM;
2370                 context->sockaddr = p;
2371         }
2372 
2373         context->sockaddr_len = len;
2374         memcpy(context->sockaddr, a, len);
2375         return 0;
2376 }
2377 
2378 void __audit_ptrace(struct task_struct *t)
2379 {
2380         struct audit_context *context = audit_context();
2381 
2382         context->target_pid = task_tgid_nr(t);
2383         context->target_auid = audit_get_loginuid(t);
2384         context->target_uid = task_uid(t);
2385         context->target_sessionid = audit_get_sessionid(t);
2386         security_task_getsecid(t, &context->target_sid);
2387         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2388 }
2389 
2390 /**
2391  * audit_signal_info_syscall - record signal info for syscalls
2392  * @t: task being signaled
2393  *
2394  * If the audit subsystem is being terminated, record the task (pid)
2395  * and uid that is doing that.
2396  */
2397 int audit_signal_info_syscall(struct task_struct *t)
2398 {
2399         struct audit_aux_data_pids *axp;
2400         struct audit_context *ctx = audit_context();
2401         kuid_t t_uid = task_uid(t);
2402 
2403         if (!audit_signals || audit_dummy_context())
2404                 return 0;
2405 
2406         /* optimize the common case by putting first signal recipient directly
2407          * in audit_context */
2408         if (!ctx->target_pid) {
2409                 ctx->target_pid = task_tgid_nr(t);
2410                 ctx->target_auid = audit_get_loginuid(t);
2411                 ctx->target_uid = t_uid;
2412                 ctx->target_sessionid = audit_get_sessionid(t);
2413                 security_task_getsecid(t, &ctx->target_sid);
2414                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2415                 return 0;
2416         }
2417 
2418         axp = (void *)ctx->aux_pids;
2419         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2420                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2421                 if (!axp)
2422                         return -ENOMEM;
2423 
2424                 axp->d.type = AUDIT_OBJ_PID;
2425                 axp->d.next = ctx->aux_pids;
2426                 ctx->aux_pids = (void *)axp;
2427         }
2428         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2429 
2430         axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2431         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2432         axp->target_uid[axp->pid_count] = t_uid;
2433         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2434         security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2435         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2436         axp->pid_count++;
2437 
2438         return 0;
2439 }
2440 
2441 /**
2442  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2443  * @bprm: pointer to the bprm being processed
2444  * @new: the proposed new credentials
2445  * @old: the old credentials
2446  *
2447  * Simply check if the proc already has the caps given by the file and if not
2448  * store the priv escalation info for later auditing at the end of the syscall
2449  *
2450  * -Eric
2451  */
2452 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2453                            const struct cred *new, const struct cred *old)
2454 {
2455         struct audit_aux_data_bprm_fcaps *ax;
2456         struct audit_context *context = audit_context();
2457         struct cpu_vfs_cap_data vcaps;
2458 
2459         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460         if (!ax)
2461                 return -ENOMEM;
2462 
2463         ax->d.type = AUDIT_BPRM_FCAPS;
2464         ax->d.next = context->aux;
2465         context->aux = (void *)ax;
2466 
2467         get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2468 
2469         ax->fcap.permitted = vcaps.permitted;
2470         ax->fcap.inheritable = vcaps.inheritable;
2471         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2472         ax->fcap.rootid = vcaps.rootid;
2473         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2474 
2475         ax->old_pcap.permitted   = old->cap_permitted;
2476         ax->old_pcap.inheritable = old->cap_inheritable;
2477         ax->old_pcap.effective   = old->cap_effective;
2478         ax->old_pcap.ambient     = old->cap_ambient;
2479 
2480         ax->new_pcap.permitted   = new->cap_permitted;
2481         ax->new_pcap.inheritable = new->cap_inheritable;
2482         ax->new_pcap.effective   = new->cap_effective;
2483         ax->new_pcap.ambient     = new->cap_ambient;
2484         return 0;
2485 }
2486 
2487 /**
2488  * __audit_log_capset - store information about the arguments to the capset syscall
2489  * @new: the new credentials
2490  * @old: the old (current) credentials
2491  *
2492  * Record the arguments userspace sent to sys_capset for later printing by the
2493  * audit system if applicable
2494  */
2495 void __audit_log_capset(const struct cred *new, const struct cred *old)
2496 {
2497         struct audit_context *context = audit_context();
2498         context->capset.pid = task_tgid_nr(current);
2499         context->capset.cap.effective   = new->cap_effective;
2500         context->capset.cap.inheritable = new->cap_effective;
2501         context->capset.cap.permitted   = new->cap_permitted;
2502         context->capset.cap.ambient     = new->cap_ambient;
2503         context->type = AUDIT_CAPSET;
2504 }
2505 
2506 void __audit_mmap_fd(int fd, int flags)
2507 {
2508         struct audit_context *context = audit_context();
2509         context->mmap.fd = fd;
2510         context->mmap.flags = flags;
2511         context->type = AUDIT_MMAP;
2512 }
2513 
2514 void __audit_log_kern_module(char *name)
2515 {
2516         struct audit_context *context = audit_context();
2517 
2518         context->module.name = kstrdup(name, GFP_KERNEL);
2519         if (!context->module.name)
2520                 audit_log_lost("out of memory in __audit_log_kern_module");
2521         context->type = AUDIT_KERN_MODULE;
2522 }
2523 
2524 void __audit_fanotify(unsigned int response)
2525 {
2526         audit_log(audit_context(), GFP_KERNEL,
2527                 AUDIT_FANOTIFY, "resp=%u", response);
2528 }
2529 
2530 void __audit_tk_injoffset(struct timespec64 offset)
2531 {
2532         audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2533                   "sec=%lli nsec=%li",
2534                   (long long)offset.tv_sec, offset.tv_nsec);
2535 }
2536 
2537 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2538                               const char *op, enum audit_ntp_type type)
2539 {
2540         const struct audit_ntp_val *val = &ad->vals[type];
2541 
2542         if (val->newval == val->oldval)
2543                 return;
2544 
2545         audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2546                   "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2547 }
2548 
2549 void __audit_ntp_log(const struct audit_ntp_data *ad)
2550 {
2551         audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2552         audit_log_ntp_val(ad, "freq",   AUDIT_NTP_FREQ);
2553         audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2554         audit_log_ntp_val(ad, "tai",    AUDIT_NTP_TAI);
2555         audit_log_ntp_val(ad, "tick",   AUDIT_NTP_TICK);
2556         audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2557 }
2558 
2559 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2560                        enum audit_nfcfgop op)
2561 {
2562         struct audit_buffer *ab;
2563         char comm[sizeof(current->comm)];
2564 
2565         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_NETFILTER_CFG);
2566         if (!ab)
2567                 return;
2568         audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2569                          name, af, nentries, audit_nfcfgs[op].s);
2570 
2571         audit_log_format(ab, " pid=%u", task_pid_nr(current));
2572         audit_log_task_context(ab); /* subj= */
2573         audit_log_format(ab, " comm=");
2574         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2575         audit_log_end(ab);
2576 }
2577 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2578 
2579 static void audit_log_task(struct audit_buffer *ab)
2580 {
2581         kuid_t auid, uid;
2582         kgid_t gid;
2583         unsigned int sessionid;
2584         char comm[sizeof(current->comm)];
2585 
2586         auid = audit_get_loginuid(current);
2587         sessionid = audit_get_sessionid(current);
2588         current_uid_gid(&uid, &gid);
2589 
2590         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2591                          from_kuid(&init_user_ns, auid),
2592                          from_kuid(&init_user_ns, uid),
2593                          from_kgid(&init_user_ns, gid),
2594                          sessionid);
2595         audit_log_task_context(ab);
2596         audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2597         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2598         audit_log_d_path_exe(ab, current->mm);
2599 }
2600 
2601 /**
2602  * audit_core_dumps - record information about processes that end abnormally
2603  * @signr: signal value
2604  *
2605  * If a process ends with a core dump, something fishy is going on and we
2606  * should record the event for investigation.
2607  */
2608 void audit_core_dumps(long signr)
2609 {
2610         struct audit_buffer *ab;
2611 
2612         if (!audit_enabled)
2613                 return;
2614 
2615         if (signr == SIGQUIT)   /* don't care for those */
2616                 return;
2617 
2618         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2619         if (unlikely(!ab))
2620                 return;
2621         audit_log_task(ab);
2622         audit_log_format(ab, " sig=%ld res=1", signr);
2623         audit_log_end(ab);
2624 }
2625 
2626 /**
2627  * audit_seccomp - record information about a seccomp action
2628  * @syscall: syscall number
2629  * @signr: signal value
2630  * @code: the seccomp action
2631  *
2632  * Record the information associated with a seccomp action. Event filtering for
2633  * seccomp actions that are not to be logged is done in seccomp_log().
2634  * Therefore, this function forces auditing independent of the audit_enabled
2635  * and dummy context state because seccomp actions should be logged even when
2636  * audit is not in use.
2637  */
2638 void audit_seccomp(unsigned long syscall, long signr, int code)
2639 {
2640         struct audit_buffer *ab;
2641 
2642         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2643         if (unlikely(!ab))
2644                 return;
2645         audit_log_task(ab);
2646         audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2647                          signr, syscall_get_arch(current), syscall,
2648                          in_compat_syscall(), KSTK_EIP(current), code);
2649         audit_log_end(ab);
2650 }
2651 
2652 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2653                                   int res)
2654 {
2655         struct audit_buffer *ab;
2656 
2657         if (!audit_enabled)
2658                 return;
2659 
2660         ab = audit_log_start(audit_context(), GFP_KERNEL,
2661                              AUDIT_CONFIG_CHANGE);
2662         if (unlikely(!ab))
2663                 return;
2664 
2665         audit_log_format(ab,
2666                          "op=seccomp-logging actions=%s old-actions=%s res=%d",
2667                          names, old_names, res);
2668         audit_log_end(ab);
2669 }
2670 
2671 struct list_head *audit_killed_trees(void)
2672 {
2673         struct audit_context *ctx = audit_context();
2674         if (likely(!ctx || !ctx->in_syscall))
2675                 return NULL;
2676         return &ctx->killed_trees;
2677 }
2678 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp