~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/auditsc.c

Version: ~ [ linux-5.0-rc6 ] ~ [ linux-4.20.10 ] ~ [ linux-4.19.23 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.101 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.158 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.174 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.134 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.63 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* auditsc.c -- System-call auditing support
  2  * Handles all system-call specific auditing features.
  3  *
  4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
  6  * Copyright (C) 2005, 2006 IBM Corporation
  7  * All Rights Reserved.
  8  *
  9  * This program is free software; you can redistribute it and/or modify
 10  * it under the terms of the GNU General Public License as published by
 11  * the Free Software Foundation; either version 2 of the License, or
 12  * (at your option) any later version.
 13  *
 14  * This program is distributed in the hope that it will be useful,
 15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17  * GNU General Public License for more details.
 18  *
 19  * You should have received a copy of the GNU General Public License
 20  * along with this program; if not, write to the Free Software
 21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 22  *
 23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
 24  *
 25  * Many of the ideas implemented here are from Stephen C. Tweedie,
 26  * especially the idea of avoiding a copy by using getname.
 27  *
 28  * The method for actual interception of syscall entry and exit (not in
 29  * this file -- see entry.S) is based on a GPL'd patch written by
 30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
 31  *
 32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
 33  * 2006.
 34  *
 35  * The support of additional filter rules compares (>, <, >=, <=) was
 36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
 37  *
 38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
 39  * filesystem information.
 40  *
 41  * Subject and object context labeling support added by <danjones@us.ibm.com>
 42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
 43  */
 44 
 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 46 
 47 #include <linux/init.h>
 48 #include <asm/types.h>
 49 #include <linux/atomic.h>
 50 #include <linux/fs.h>
 51 #include <linux/namei.h>
 52 #include <linux/mm.h>
 53 #include <linux/export.h>
 54 #include <linux/slab.h>
 55 #include <linux/mount.h>
 56 #include <linux/socket.h>
 57 #include <linux/mqueue.h>
 58 #include <linux/audit.h>
 59 #include <linux/personality.h>
 60 #include <linux/time.h>
 61 #include <linux/netlink.h>
 62 #include <linux/compiler.h>
 63 #include <asm/unistd.h>
 64 #include <linux/security.h>
 65 #include <linux/list.h>
 66 #include <linux/binfmts.h>
 67 #include <linux/highmem.h>
 68 #include <linux/syscalls.h>
 69 #include <asm/syscall.h>
 70 #include <linux/capability.h>
 71 #include <linux/fs_struct.h>
 72 #include <linux/compat.h>
 73 #include <linux/ctype.h>
 74 #include <linux/string.h>
 75 #include <linux/uaccess.h>
 76 #include <linux/fsnotify_backend.h>
 77 #include <uapi/linux/limits.h>
 78 
 79 #include "audit.h"
 80 
 81 /* flags stating the success for a syscall */
 82 #define AUDITSC_INVALID 0
 83 #define AUDITSC_SUCCESS 1
 84 #define AUDITSC_FAILURE 2
 85 
 86 /* no execve audit message should be longer than this (userspace limits),
 87  * see the note near the top of audit_log_execve_info() about this value */
 88 #define MAX_EXECVE_AUDIT_LEN 7500
 89 
 90 /* max length to print of cmdline/proctitle value during audit */
 91 #define MAX_PROCTITLE_AUDIT_LEN 128
 92 
 93 /* number of audit rules */
 94 int audit_n_rules;
 95 
 96 /* determines whether we collect data for signals sent */
 97 int audit_signals;
 98 
 99 struct audit_aux_data {
100         struct audit_aux_data   *next;
101         int                     type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM       0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS  16
108 
109 struct audit_aux_data_pids {
110         struct audit_aux_data   d;
111         pid_t                   target_pid[AUDIT_AUX_PIDS];
112         kuid_t                  target_auid[AUDIT_AUX_PIDS];
113         kuid_t                  target_uid[AUDIT_AUX_PIDS];
114         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
115         u32                     target_sid[AUDIT_AUX_PIDS];
116         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117         int                     pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121         struct audit_aux_data   d;
122         struct audit_cap_data   fcap;
123         unsigned int            fcap_ver;
124         struct audit_cap_data   old_pcap;
125         struct audit_cap_data   new_pcap;
126 };
127 
128 struct audit_tree_refs {
129         struct audit_tree_refs *next;
130         struct audit_chunk *c[31];
131 };
132 
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135         unsigned n;
136         if (unlikely(!ctx))
137                 return 0;
138         n = ctx->major;
139 
140         switch (audit_classify_syscall(ctx->arch, n)) {
141         case 0: /* native */
142                 if ((mask & AUDIT_PERM_WRITE) &&
143                      audit_match_class(AUDIT_CLASS_WRITE, n))
144                         return 1;
145                 if ((mask & AUDIT_PERM_READ) &&
146                      audit_match_class(AUDIT_CLASS_READ, n))
147                         return 1;
148                 if ((mask & AUDIT_PERM_ATTR) &&
149                      audit_match_class(AUDIT_CLASS_CHATTR, n))
150                         return 1;
151                 return 0;
152         case 1: /* 32bit on biarch */
153                 if ((mask & AUDIT_PERM_WRITE) &&
154                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
155                         return 1;
156                 if ((mask & AUDIT_PERM_READ) &&
157                      audit_match_class(AUDIT_CLASS_READ_32, n))
158                         return 1;
159                 if ((mask & AUDIT_PERM_ATTR) &&
160                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161                         return 1;
162                 return 0;
163         case 2: /* open */
164                 return mask & ACC_MODE(ctx->argv[1]);
165         case 3: /* openat */
166                 return mask & ACC_MODE(ctx->argv[2]);
167         case 4: /* socketcall */
168                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169         case 5: /* execve */
170                 return mask & AUDIT_PERM_EXEC;
171         default:
172                 return 0;
173         }
174 }
175 
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178         struct audit_names *n;
179         umode_t mode = (umode_t)val;
180 
181         if (unlikely(!ctx))
182                 return 0;
183 
184         list_for_each_entry(n, &ctx->names_list, list) {
185                 if ((n->ino != AUDIT_INO_UNSET) &&
186                     ((n->mode & S_IFMT) == mode))
187                         return 1;
188         }
189 
190         return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205         if (!ctx->prio) {
206                 ctx->prio = 1;
207                 ctx->current_state = AUDIT_RECORD_CONTEXT;
208         }
209 }
210 
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213         struct audit_tree_refs *p = ctx->trees;
214         int left = ctx->tree_count;
215         if (likely(left)) {
216                 p->c[--left] = chunk;
217                 ctx->tree_count = left;
218                 return 1;
219         }
220         if (!p)
221                 return 0;
222         p = p->next;
223         if (p) {
224                 p->c[30] = chunk;
225                 ctx->trees = p;
226                 ctx->tree_count = 30;
227                 return 1;
228         }
229         return 0;
230 }
231 
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234         struct audit_tree_refs *p = ctx->trees;
235         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236         if (!ctx->trees) {
237                 ctx->trees = p;
238                 return 0;
239         }
240         if (p)
241                 p->next = ctx->trees;
242         else
243                 ctx->first_trees = ctx->trees;
244         ctx->tree_count = 31;
245         return 1;
246 }
247 
248 static void unroll_tree_refs(struct audit_context *ctx,
249                       struct audit_tree_refs *p, int count)
250 {
251         struct audit_tree_refs *q;
252         int n;
253         if (!p) {
254                 /* we started with empty chain */
255                 p = ctx->first_trees;
256                 count = 31;
257                 /* if the very first allocation has failed, nothing to do */
258                 if (!p)
259                         return;
260         }
261         n = count;
262         for (q = p; q != ctx->trees; q = q->next, n = 31) {
263                 while (n--) {
264                         audit_put_chunk(q->c[n]);
265                         q->c[n] = NULL;
266                 }
267         }
268         while (n-- > ctx->tree_count) {
269                 audit_put_chunk(q->c[n]);
270                 q->c[n] = NULL;
271         }
272         ctx->trees = p;
273         ctx->tree_count = count;
274 }
275 
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278         struct audit_tree_refs *p, *q;
279         for (p = ctx->first_trees; p; p = q) {
280                 q = p->next;
281                 kfree(p);
282         }
283 }
284 
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287         struct audit_tree_refs *p;
288         int n;
289         if (!tree)
290                 return 0;
291         /* full ones */
292         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293                 for (n = 0; n < 31; n++)
294                         if (audit_tree_match(p->c[n], tree))
295                                 return 1;
296         }
297         /* partial */
298         if (p) {
299                 for (n = ctx->tree_count; n < 31; n++)
300                         if (audit_tree_match(p->c[n], tree))
301                                 return 1;
302         }
303         return 0;
304 }
305 
306 static int audit_compare_uid(kuid_t uid,
307                              struct audit_names *name,
308                              struct audit_field *f,
309                              struct audit_context *ctx)
310 {
311         struct audit_names *n;
312         int rc;
313  
314         if (name) {
315                 rc = audit_uid_comparator(uid, f->op, name->uid);
316                 if (rc)
317                         return rc;
318         }
319  
320         if (ctx) {
321                 list_for_each_entry(n, &ctx->names_list, list) {
322                         rc = audit_uid_comparator(uid, f->op, n->uid);
323                         if (rc)
324                                 return rc;
325                 }
326         }
327         return 0;
328 }
329 
330 static int audit_compare_gid(kgid_t gid,
331                              struct audit_names *name,
332                              struct audit_field *f,
333                              struct audit_context *ctx)
334 {
335         struct audit_names *n;
336         int rc;
337  
338         if (name) {
339                 rc = audit_gid_comparator(gid, f->op, name->gid);
340                 if (rc)
341                         return rc;
342         }
343  
344         if (ctx) {
345                 list_for_each_entry(n, &ctx->names_list, list) {
346                         rc = audit_gid_comparator(gid, f->op, n->gid);
347                         if (rc)
348                                 return rc;
349                 }
350         }
351         return 0;
352 }
353 
354 static int audit_field_compare(struct task_struct *tsk,
355                                const struct cred *cred,
356                                struct audit_field *f,
357                                struct audit_context *ctx,
358                                struct audit_names *name)
359 {
360         switch (f->val) {
361         /* process to file object comparisons */
362         case AUDIT_COMPARE_UID_TO_OBJ_UID:
363                 return audit_compare_uid(cred->uid, name, f, ctx);
364         case AUDIT_COMPARE_GID_TO_OBJ_GID:
365                 return audit_compare_gid(cred->gid, name, f, ctx);
366         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367                 return audit_compare_uid(cred->euid, name, f, ctx);
368         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369                 return audit_compare_gid(cred->egid, name, f, ctx);
370         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371                 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373                 return audit_compare_uid(cred->suid, name, f, ctx);
374         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375                 return audit_compare_gid(cred->sgid, name, f, ctx);
376         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377                 return audit_compare_uid(cred->fsuid, name, f, ctx);
378         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379                 return audit_compare_gid(cred->fsgid, name, f, ctx);
380         /* uid comparisons */
381         case AUDIT_COMPARE_UID_TO_AUID:
382                 return audit_uid_comparator(cred->uid, f->op,
383                                             audit_get_loginuid(tsk));
384         case AUDIT_COMPARE_UID_TO_EUID:
385                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386         case AUDIT_COMPARE_UID_TO_SUID:
387                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388         case AUDIT_COMPARE_UID_TO_FSUID:
389                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390         /* auid comparisons */
391         case AUDIT_COMPARE_AUID_TO_EUID:
392                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393                                             cred->euid);
394         case AUDIT_COMPARE_AUID_TO_SUID:
395                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396                                             cred->suid);
397         case AUDIT_COMPARE_AUID_TO_FSUID:
398                 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399                                             cred->fsuid);
400         /* euid comparisons */
401         case AUDIT_COMPARE_EUID_TO_SUID:
402                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403         case AUDIT_COMPARE_EUID_TO_FSUID:
404                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405         /* suid comparisons */
406         case AUDIT_COMPARE_SUID_TO_FSUID:
407                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408         /* gid comparisons */
409         case AUDIT_COMPARE_GID_TO_EGID:
410                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411         case AUDIT_COMPARE_GID_TO_SGID:
412                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413         case AUDIT_COMPARE_GID_TO_FSGID:
414                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415         /* egid comparisons */
416         case AUDIT_COMPARE_EGID_TO_SGID:
417                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418         case AUDIT_COMPARE_EGID_TO_FSGID:
419                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420         /* sgid comparison */
421         case AUDIT_COMPARE_SGID_TO_FSGID:
422                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423         default:
424                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425                 return 0;
426         }
427         return 0;
428 }
429 
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
438 static int audit_filter_rules(struct task_struct *tsk,
439                               struct audit_krule *rule,
440                               struct audit_context *ctx,
441                               struct audit_names *name,
442                               enum audit_state *state,
443                               bool task_creation)
444 {
445         const struct cred *cred;
446         int i, need_sid = 1;
447         u32 sid;
448         unsigned int sessionid;
449 
450         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451 
452         for (i = 0; i < rule->field_count; i++) {
453                 struct audit_field *f = &rule->fields[i];
454                 struct audit_names *n;
455                 int result = 0;
456                 pid_t pid;
457 
458                 switch (f->type) {
459                 case AUDIT_PID:
460                         pid = task_tgid_nr(tsk);
461                         result = audit_comparator(pid, f->op, f->val);
462                         break;
463                 case AUDIT_PPID:
464                         if (ctx) {
465                                 if (!ctx->ppid)
466                                         ctx->ppid = task_ppid_nr(tsk);
467                                 result = audit_comparator(ctx->ppid, f->op, f->val);
468                         }
469                         break;
470                 case AUDIT_EXE:
471                         result = audit_exe_compare(tsk, rule->exe);
472                         if (f->op == Audit_not_equal)
473                                 result = !result;
474                         break;
475                 case AUDIT_UID:
476                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
477                         break;
478                 case AUDIT_EUID:
479                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
480                         break;
481                 case AUDIT_SUID:
482                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
483                         break;
484                 case AUDIT_FSUID:
485                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486                         break;
487                 case AUDIT_GID:
488                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
489                         if (f->op == Audit_equal) {
490                                 if (!result)
491                                         result = groups_search(cred->group_info, f->gid);
492                         } else if (f->op == Audit_not_equal) {
493                                 if (result)
494                                         result = !groups_search(cred->group_info, f->gid);
495                         }
496                         break;
497                 case AUDIT_EGID:
498                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
499                         if (f->op == Audit_equal) {
500                                 if (!result)
501                                         result = groups_search(cred->group_info, f->gid);
502                         } else if (f->op == Audit_not_equal) {
503                                 if (result)
504                                         result = !groups_search(cred->group_info, f->gid);
505                         }
506                         break;
507                 case AUDIT_SGID:
508                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509                         break;
510                 case AUDIT_FSGID:
511                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512                         break;
513                 case AUDIT_SESSIONID:
514                         sessionid = audit_get_sessionid(tsk);
515                         result = audit_comparator(sessionid, f->op, f->val);
516                         break;
517                 case AUDIT_PERS:
518                         result = audit_comparator(tsk->personality, f->op, f->val);
519                         break;
520                 case AUDIT_ARCH:
521                         if (ctx)
522                                 result = audit_comparator(ctx->arch, f->op, f->val);
523                         break;
524 
525                 case AUDIT_EXIT:
526                         if (ctx && ctx->return_valid)
527                                 result = audit_comparator(ctx->return_code, f->op, f->val);
528                         break;
529                 case AUDIT_SUCCESS:
530                         if (ctx && ctx->return_valid) {
531                                 if (f->val)
532                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533                                 else
534                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535                         }
536                         break;
537                 case AUDIT_DEVMAJOR:
538                         if (name) {
539                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
541                                         ++result;
542                         } else if (ctx) {
543                                 list_for_each_entry(n, &ctx->names_list, list) {
544                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546                                                 ++result;
547                                                 break;
548                                         }
549                                 }
550                         }
551                         break;
552                 case AUDIT_DEVMINOR:
553                         if (name) {
554                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
556                                         ++result;
557                         } else if (ctx) {
558                                 list_for_each_entry(n, &ctx->names_list, list) {
559                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561                                                 ++result;
562                                                 break;
563                                         }
564                                 }
565                         }
566                         break;
567                 case AUDIT_INODE:
568                         if (name)
569                                 result = audit_comparator(name->ino, f->op, f->val);
570                         else if (ctx) {
571                                 list_for_each_entry(n, &ctx->names_list, list) {
572                                         if (audit_comparator(n->ino, f->op, f->val)) {
573                                                 ++result;
574                                                 break;
575                                         }
576                                 }
577                         }
578                         break;
579                 case AUDIT_OBJ_UID:
580                         if (name) {
581                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
582                         } else if (ctx) {
583                                 list_for_each_entry(n, &ctx->names_list, list) {
584                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585                                                 ++result;
586                                                 break;
587                                         }
588                                 }
589                         }
590                         break;
591                 case AUDIT_OBJ_GID:
592                         if (name) {
593                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
594                         } else if (ctx) {
595                                 list_for_each_entry(n, &ctx->names_list, list) {
596                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597                                                 ++result;
598                                                 break;
599                                         }
600                                 }
601                         }
602                         break;
603                 case AUDIT_WATCH:
604                         if (name)
605                                 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606                         break;
607                 case AUDIT_DIR:
608                         if (ctx)
609                                 result = match_tree_refs(ctx, rule->tree);
610                         break;
611                 case AUDIT_LOGINUID:
612                         result = audit_uid_comparator(audit_get_loginuid(tsk),
613                                                       f->op, f->uid);
614                         break;
615                 case AUDIT_LOGINUID_SET:
616                         result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617                         break;
618                 case AUDIT_SUBJ_USER:
619                 case AUDIT_SUBJ_ROLE:
620                 case AUDIT_SUBJ_TYPE:
621                 case AUDIT_SUBJ_SEN:
622                 case AUDIT_SUBJ_CLR:
623                         /* NOTE: this may return negative values indicating
624                            a temporary error.  We simply treat this as a
625                            match for now to avoid losing information that
626                            may be wanted.   An error message will also be
627                            logged upon error */
628                         if (f->lsm_rule) {
629                                 if (need_sid) {
630                                         security_task_getsecid(tsk, &sid);
631                                         need_sid = 0;
632                                 }
633                                 result = security_audit_rule_match(sid, f->type,
634                                                                   f->op,
635                                                                   f->lsm_rule,
636                                                                   ctx);
637                         }
638                         break;
639                 case AUDIT_OBJ_USER:
640                 case AUDIT_OBJ_ROLE:
641                 case AUDIT_OBJ_TYPE:
642                 case AUDIT_OBJ_LEV_LOW:
643                 case AUDIT_OBJ_LEV_HIGH:
644                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
645                            also applies here */
646                         if (f->lsm_rule) {
647                                 /* Find files that match */
648                                 if (name) {
649                                         result = security_audit_rule_match(
650                                                    name->osid, f->type, f->op,
651                                                    f->lsm_rule, ctx);
652                                 } else if (ctx) {
653                                         list_for_each_entry(n, &ctx->names_list, list) {
654                                                 if (security_audit_rule_match(n->osid, f->type,
655                                                                               f->op, f->lsm_rule,
656                                                                               ctx)) {
657                                                         ++result;
658                                                         break;
659                                                 }
660                                         }
661                                 }
662                                 /* Find ipc objects that match */
663                                 if (!ctx || ctx->type != AUDIT_IPC)
664                                         break;
665                                 if (security_audit_rule_match(ctx->ipc.osid,
666                                                               f->type, f->op,
667                                                               f->lsm_rule, ctx))
668                                         ++result;
669                         }
670                         break;
671                 case AUDIT_ARG0:
672                 case AUDIT_ARG1:
673                 case AUDIT_ARG2:
674                 case AUDIT_ARG3:
675                         if (ctx)
676                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
677                         break;
678                 case AUDIT_FILTERKEY:
679                         /* ignore this field for filtering */
680                         result = 1;
681                         break;
682                 case AUDIT_PERM:
683                         result = audit_match_perm(ctx, f->val);
684                         break;
685                 case AUDIT_FILETYPE:
686                         result = audit_match_filetype(ctx, f->val);
687                         break;
688                 case AUDIT_FIELD_COMPARE:
689                         result = audit_field_compare(tsk, cred, f, ctx, name);
690                         break;
691                 }
692                 if (!result)
693                         return 0;
694         }
695 
696         if (ctx) {
697                 if (rule->prio <= ctx->prio)
698                         return 0;
699                 if (rule->filterkey) {
700                         kfree(ctx->filterkey);
701                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
702                 }
703                 ctx->prio = rule->prio;
704         }
705         switch (rule->action) {
706         case AUDIT_NEVER:
707                 *state = AUDIT_DISABLED;
708                 break;
709         case AUDIT_ALWAYS:
710                 *state = AUDIT_RECORD_CONTEXT;
711                 break;
712         }
713         return 1;
714 }
715 
716 /* At process creation time, we can determine if system-call auditing is
717  * completely disabled for this task.  Since we only have the task
718  * structure at this point, we can only check uid and gid.
719  */
720 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
721 {
722         struct audit_entry *e;
723         enum audit_state   state;
724 
725         rcu_read_lock();
726         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
727                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
728                                        &state, true)) {
729                         if (state == AUDIT_RECORD_CONTEXT)
730                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
731                         rcu_read_unlock();
732                         return state;
733                 }
734         }
735         rcu_read_unlock();
736         return AUDIT_BUILD_CONTEXT;
737 }
738 
739 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
740 {
741         int word, bit;
742 
743         if (val > 0xffffffff)
744                 return false;
745 
746         word = AUDIT_WORD(val);
747         if (word >= AUDIT_BITMASK_SIZE)
748                 return false;
749 
750         bit = AUDIT_BIT(val);
751 
752         return rule->mask[word] & bit;
753 }
754 
755 /* At syscall entry and exit time, this filter is called if the
756  * audit_state is not low enough that auditing cannot take place, but is
757  * also not high enough that we already know we have to write an audit
758  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
759  */
760 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
761                                              struct audit_context *ctx,
762                                              struct list_head *list)
763 {
764         struct audit_entry *e;
765         enum audit_state state;
766 
767         if (auditd_test_task(tsk))
768                 return AUDIT_DISABLED;
769 
770         rcu_read_lock();
771         if (!list_empty(list)) {
772                 list_for_each_entry_rcu(e, list, list) {
773                         if (audit_in_mask(&e->rule, ctx->major) &&
774                             audit_filter_rules(tsk, &e->rule, ctx, NULL,
775                                                &state, false)) {
776                                 rcu_read_unlock();
777                                 ctx->current_state = state;
778                                 return state;
779                         }
780                 }
781         }
782         rcu_read_unlock();
783         return AUDIT_BUILD_CONTEXT;
784 }
785 
786 /*
787  * Given an audit_name check the inode hash table to see if they match.
788  * Called holding the rcu read lock to protect the use of audit_inode_hash
789  */
790 static int audit_filter_inode_name(struct task_struct *tsk,
791                                    struct audit_names *n,
792                                    struct audit_context *ctx) {
793         int h = audit_hash_ino((u32)n->ino);
794         struct list_head *list = &audit_inode_hash[h];
795         struct audit_entry *e;
796         enum audit_state state;
797 
798         if (list_empty(list))
799                 return 0;
800 
801         list_for_each_entry_rcu(e, list, list) {
802                 if (audit_in_mask(&e->rule, ctx->major) &&
803                     audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
804                         ctx->current_state = state;
805                         return 1;
806                 }
807         }
808 
809         return 0;
810 }
811 
812 /* At syscall exit time, this filter is called if any audit_names have been
813  * collected during syscall processing.  We only check rules in sublists at hash
814  * buckets applicable to the inode numbers in audit_names.
815  * Regarding audit_state, same rules apply as for audit_filter_syscall().
816  */
817 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
818 {
819         struct audit_names *n;
820 
821         if (auditd_test_task(tsk))
822                 return;
823 
824         rcu_read_lock();
825 
826         list_for_each_entry(n, &ctx->names_list, list) {
827                 if (audit_filter_inode_name(tsk, n, ctx))
828                         break;
829         }
830         rcu_read_unlock();
831 }
832 
833 static inline void audit_proctitle_free(struct audit_context *context)
834 {
835         kfree(context->proctitle.value);
836         context->proctitle.value = NULL;
837         context->proctitle.len = 0;
838 }
839 
840 static inline void audit_free_names(struct audit_context *context)
841 {
842         struct audit_names *n, *next;
843 
844         list_for_each_entry_safe(n, next, &context->names_list, list) {
845                 list_del(&n->list);
846                 if (n->name)
847                         putname(n->name);
848                 if (n->should_free)
849                         kfree(n);
850         }
851         context->name_count = 0;
852         path_put(&context->pwd);
853         context->pwd.dentry = NULL;
854         context->pwd.mnt = NULL;
855 }
856 
857 static inline void audit_free_aux(struct audit_context *context)
858 {
859         struct audit_aux_data *aux;
860 
861         while ((aux = context->aux)) {
862                 context->aux = aux->next;
863                 kfree(aux);
864         }
865         while ((aux = context->aux_pids)) {
866                 context->aux_pids = aux->next;
867                 kfree(aux);
868         }
869 }
870 
871 static inline struct audit_context *audit_alloc_context(enum audit_state state)
872 {
873         struct audit_context *context;
874 
875         context = kzalloc(sizeof(*context), GFP_KERNEL);
876         if (!context)
877                 return NULL;
878         context->state = state;
879         context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
880         INIT_LIST_HEAD(&context->killed_trees);
881         INIT_LIST_HEAD(&context->names_list);
882         return context;
883 }
884 
885 /**
886  * audit_alloc - allocate an audit context block for a task
887  * @tsk: task
888  *
889  * Filter on the task information and allocate a per-task audit context
890  * if necessary.  Doing so turns on system call auditing for the
891  * specified task.  This is called from copy_process, so no lock is
892  * needed.
893  */
894 int audit_alloc(struct task_struct *tsk)
895 {
896         struct audit_context *context;
897         enum audit_state     state;
898         char *key = NULL;
899 
900         if (likely(!audit_ever_enabled))
901                 return 0; /* Return if not auditing. */
902 
903         state = audit_filter_task(tsk, &key);
904         if (state == AUDIT_DISABLED) {
905                 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
906                 return 0;
907         }
908 
909         if (!(context = audit_alloc_context(state))) {
910                 kfree(key);
911                 audit_log_lost("out of memory in audit_alloc");
912                 return -ENOMEM;
913         }
914         context->filterkey = key;
915 
916         audit_set_context(tsk, context);
917         set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
918         return 0;
919 }
920 
921 static inline void audit_free_context(struct audit_context *context)
922 {
923         audit_free_names(context);
924         unroll_tree_refs(context, NULL, 0);
925         free_tree_refs(context);
926         audit_free_aux(context);
927         kfree(context->filterkey);
928         kfree(context->sockaddr);
929         audit_proctitle_free(context);
930         kfree(context);
931 }
932 
933 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
934                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
935                                  u32 sid, char *comm)
936 {
937         struct audit_buffer *ab;
938         char *ctx = NULL;
939         u32 len;
940         int rc = 0;
941 
942         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
943         if (!ab)
944                 return rc;
945 
946         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
947                          from_kuid(&init_user_ns, auid),
948                          from_kuid(&init_user_ns, uid), sessionid);
949         if (sid) {
950                 if (security_secid_to_secctx(sid, &ctx, &len)) {
951                         audit_log_format(ab, " obj=(none)");
952                         rc = 1;
953                 } else {
954                         audit_log_format(ab, " obj=%s", ctx);
955                         security_release_secctx(ctx, len);
956                 }
957         }
958         audit_log_format(ab, " ocomm=");
959         audit_log_untrustedstring(ab, comm);
960         audit_log_end(ab);
961 
962         return rc;
963 }
964 
965 static void audit_log_execve_info(struct audit_context *context,
966                                   struct audit_buffer **ab)
967 {
968         long len_max;
969         long len_rem;
970         long len_full;
971         long len_buf;
972         long len_abuf = 0;
973         long len_tmp;
974         bool require_data;
975         bool encode;
976         unsigned int iter;
977         unsigned int arg;
978         char *buf_head;
979         char *buf;
980         const char __user *p = (const char __user *)current->mm->arg_start;
981 
982         /* NOTE: this buffer needs to be large enough to hold all the non-arg
983          *       data we put in the audit record for this argument (see the
984          *       code below) ... at this point in time 96 is plenty */
985         char abuf[96];
986 
987         /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
988          *       current value of 7500 is not as important as the fact that it
989          *       is less than 8k, a setting of 7500 gives us plenty of wiggle
990          *       room if we go over a little bit in the logging below */
991         WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
992         len_max = MAX_EXECVE_AUDIT_LEN;
993 
994         /* scratch buffer to hold the userspace args */
995         buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
996         if (!buf_head) {
997                 audit_panic("out of memory for argv string");
998                 return;
999         }
1000         buf = buf_head;
1001 
1002         audit_log_format(*ab, "argc=%d", context->execve.argc);
1003 
1004         len_rem = len_max;
1005         len_buf = 0;
1006         len_full = 0;
1007         require_data = true;
1008         encode = false;
1009         iter = 0;
1010         arg = 0;
1011         do {
1012                 /* NOTE: we don't ever want to trust this value for anything
1013                  *       serious, but the audit record format insists we
1014                  *       provide an argument length for really long arguments,
1015                  *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1016                  *       to use strncpy_from_user() to obtain this value for
1017                  *       recording in the log, although we don't use it
1018                  *       anywhere here to avoid a double-fetch problem */
1019                 if (len_full == 0)
1020                         len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1021 
1022                 /* read more data from userspace */
1023                 if (require_data) {
1024                         /* can we make more room in the buffer? */
1025                         if (buf != buf_head) {
1026                                 memmove(buf_head, buf, len_buf);
1027                                 buf = buf_head;
1028                         }
1029 
1030                         /* fetch as much as we can of the argument */
1031                         len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1032                                                     len_max - len_buf);
1033                         if (len_tmp == -EFAULT) {
1034                                 /* unable to copy from userspace */
1035                                 send_sig(SIGKILL, current, 0);
1036                                 goto out;
1037                         } else if (len_tmp == (len_max - len_buf)) {
1038                                 /* buffer is not large enough */
1039                                 require_data = true;
1040                                 /* NOTE: if we are going to span multiple
1041                                  *       buffers force the encoding so we stand
1042                                  *       a chance at a sane len_full value and
1043                                  *       consistent record encoding */
1044                                 encode = true;
1045                                 len_full = len_full * 2;
1046                                 p += len_tmp;
1047                         } else {
1048                                 require_data = false;
1049                                 if (!encode)
1050                                         encode = audit_string_contains_control(
1051                                                                 buf, len_tmp);
1052                                 /* try to use a trusted value for len_full */
1053                                 if (len_full < len_max)
1054                                         len_full = (encode ?
1055                                                     len_tmp * 2 : len_tmp);
1056                                 p += len_tmp + 1;
1057                         }
1058                         len_buf += len_tmp;
1059                         buf_head[len_buf] = '\0';
1060 
1061                         /* length of the buffer in the audit record? */
1062                         len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1063                 }
1064 
1065                 /* write as much as we can to the audit log */
1066                 if (len_buf >= 0) {
1067                         /* NOTE: some magic numbers here - basically if we
1068                          *       can't fit a reasonable amount of data into the
1069                          *       existing audit buffer, flush it and start with
1070                          *       a new buffer */
1071                         if ((sizeof(abuf) + 8) > len_rem) {
1072                                 len_rem = len_max;
1073                                 audit_log_end(*ab);
1074                                 *ab = audit_log_start(context,
1075                                                       GFP_KERNEL, AUDIT_EXECVE);
1076                                 if (!*ab)
1077                                         goto out;
1078                         }
1079 
1080                         /* create the non-arg portion of the arg record */
1081                         len_tmp = 0;
1082                         if (require_data || (iter > 0) ||
1083                             ((len_abuf + sizeof(abuf)) > len_rem)) {
1084                                 if (iter == 0) {
1085                                         len_tmp += snprintf(&abuf[len_tmp],
1086                                                         sizeof(abuf) - len_tmp,
1087                                                         " a%d_len=%lu",
1088                                                         arg, len_full);
1089                                 }
1090                                 len_tmp += snprintf(&abuf[len_tmp],
1091                                                     sizeof(abuf) - len_tmp,
1092                                                     " a%d[%d]=", arg, iter++);
1093                         } else
1094                                 len_tmp += snprintf(&abuf[len_tmp],
1095                                                     sizeof(abuf) - len_tmp,
1096                                                     " a%d=", arg);
1097                         WARN_ON(len_tmp >= sizeof(abuf));
1098                         abuf[sizeof(abuf) - 1] = '\0';
1099 
1100                         /* log the arg in the audit record */
1101                         audit_log_format(*ab, "%s", abuf);
1102                         len_rem -= len_tmp;
1103                         len_tmp = len_buf;
1104                         if (encode) {
1105                                 if (len_abuf > len_rem)
1106                                         len_tmp = len_rem / 2; /* encoding */
1107                                 audit_log_n_hex(*ab, buf, len_tmp);
1108                                 len_rem -= len_tmp * 2;
1109                                 len_abuf -= len_tmp * 2;
1110                         } else {
1111                                 if (len_abuf > len_rem)
1112                                         len_tmp = len_rem - 2; /* quotes */
1113                                 audit_log_n_string(*ab, buf, len_tmp);
1114                                 len_rem -= len_tmp + 2;
1115                                 /* don't subtract the "2" because we still need
1116                                  * to add quotes to the remaining string */
1117                                 len_abuf -= len_tmp;
1118                         }
1119                         len_buf -= len_tmp;
1120                         buf += len_tmp;
1121                 }
1122 
1123                 /* ready to move to the next argument? */
1124                 if ((len_buf == 0) && !require_data) {
1125                         arg++;
1126                         iter = 0;
1127                         len_full = 0;
1128                         require_data = true;
1129                         encode = false;
1130                 }
1131         } while (arg < context->execve.argc);
1132 
1133         /* NOTE: the caller handles the final audit_log_end() call */
1134 
1135 out:
1136         kfree(buf_head);
1137 }
1138 
1139 static void show_special(struct audit_context *context, int *call_panic)
1140 {
1141         struct audit_buffer *ab;
1142         int i;
1143 
1144         ab = audit_log_start(context, GFP_KERNEL, context->type);
1145         if (!ab)
1146                 return;
1147 
1148         switch (context->type) {
1149         case AUDIT_SOCKETCALL: {
1150                 int nargs = context->socketcall.nargs;
1151                 audit_log_format(ab, "nargs=%d", nargs);
1152                 for (i = 0; i < nargs; i++)
1153                         audit_log_format(ab, " a%d=%lx", i,
1154                                 context->socketcall.args[i]);
1155                 break; }
1156         case AUDIT_IPC: {
1157                 u32 osid = context->ipc.osid;
1158 
1159                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1160                                  from_kuid(&init_user_ns, context->ipc.uid),
1161                                  from_kgid(&init_user_ns, context->ipc.gid),
1162                                  context->ipc.mode);
1163                 if (osid) {
1164                         char *ctx = NULL;
1165                         u32 len;
1166                         if (security_secid_to_secctx(osid, &ctx, &len)) {
1167                                 audit_log_format(ab, " osid=%u", osid);
1168                                 *call_panic = 1;
1169                         } else {
1170                                 audit_log_format(ab, " obj=%s", ctx);
1171                                 security_release_secctx(ctx, len);
1172                         }
1173                 }
1174                 if (context->ipc.has_perm) {
1175                         audit_log_end(ab);
1176                         ab = audit_log_start(context, GFP_KERNEL,
1177                                              AUDIT_IPC_SET_PERM);
1178                         if (unlikely(!ab))
1179                                 return;
1180                         audit_log_format(ab,
1181                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1182                                 context->ipc.qbytes,
1183                                 context->ipc.perm_uid,
1184                                 context->ipc.perm_gid,
1185                                 context->ipc.perm_mode);
1186                 }
1187                 break; }
1188         case AUDIT_MQ_OPEN:
1189                 audit_log_format(ab,
1190                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1191                         "mq_msgsize=%ld mq_curmsgs=%ld",
1192                         context->mq_open.oflag, context->mq_open.mode,
1193                         context->mq_open.attr.mq_flags,
1194                         context->mq_open.attr.mq_maxmsg,
1195                         context->mq_open.attr.mq_msgsize,
1196                         context->mq_open.attr.mq_curmsgs);
1197                 break;
1198         case AUDIT_MQ_SENDRECV:
1199                 audit_log_format(ab,
1200                         "mqdes=%d msg_len=%zd msg_prio=%u "
1201                         "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1202                         context->mq_sendrecv.mqdes,
1203                         context->mq_sendrecv.msg_len,
1204                         context->mq_sendrecv.msg_prio,
1205                         (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1206                         context->mq_sendrecv.abs_timeout.tv_nsec);
1207                 break;
1208         case AUDIT_MQ_NOTIFY:
1209                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1210                                 context->mq_notify.mqdes,
1211                                 context->mq_notify.sigev_signo);
1212                 break;
1213         case AUDIT_MQ_GETSETATTR: {
1214                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1215                 audit_log_format(ab,
1216                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1217                         "mq_curmsgs=%ld ",
1218                         context->mq_getsetattr.mqdes,
1219                         attr->mq_flags, attr->mq_maxmsg,
1220                         attr->mq_msgsize, attr->mq_curmsgs);
1221                 break; }
1222         case AUDIT_CAPSET:
1223                 audit_log_format(ab, "pid=%d", context->capset.pid);
1224                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1225                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1226                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1227                 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1228                 break;
1229         case AUDIT_MMAP:
1230                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1231                                  context->mmap.flags);
1232                 break;
1233         case AUDIT_EXECVE:
1234                 audit_log_execve_info(context, &ab);
1235                 break;
1236         case AUDIT_KERN_MODULE:
1237                 audit_log_format(ab, "name=");
1238                 if (context->module.name) {
1239                         audit_log_untrustedstring(ab, context->module.name);
1240                         kfree(context->module.name);
1241                 } else
1242                         audit_log_format(ab, "(null)");
1243 
1244                 break;
1245         }
1246         audit_log_end(ab);
1247 }
1248 
1249 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1250 {
1251         char *end = proctitle + len - 1;
1252         while (end > proctitle && !isprint(*end))
1253                 end--;
1254 
1255         /* catch the case where proctitle is only 1 non-print character */
1256         len = end - proctitle + 1;
1257         len -= isprint(proctitle[len-1]) == 0;
1258         return len;
1259 }
1260 
1261 static void audit_log_proctitle(void)
1262 {
1263         int res;
1264         char *buf;
1265         char *msg = "(null)";
1266         int len = strlen(msg);
1267         struct audit_context *context = audit_context();
1268         struct audit_buffer *ab;
1269 
1270         if (!context || context->dummy)
1271                 return;
1272 
1273         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1274         if (!ab)
1275                 return; /* audit_panic or being filtered */
1276 
1277         audit_log_format(ab, "proctitle=");
1278 
1279         /* Not  cached */
1280         if (!context->proctitle.value) {
1281                 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1282                 if (!buf)
1283                         goto out;
1284                 /* Historically called this from procfs naming */
1285                 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1286                 if (res == 0) {
1287                         kfree(buf);
1288                         goto out;
1289                 }
1290                 res = audit_proctitle_rtrim(buf, res);
1291                 if (res == 0) {
1292                         kfree(buf);
1293                         goto out;
1294                 }
1295                 context->proctitle.value = buf;
1296                 context->proctitle.len = res;
1297         }
1298         msg = context->proctitle.value;
1299         len = context->proctitle.len;
1300 out:
1301         audit_log_n_untrustedstring(ab, msg, len);
1302         audit_log_end(ab);
1303 }
1304 
1305 static void audit_log_exit(void)
1306 {
1307         int i, call_panic = 0;
1308         struct audit_context *context = audit_context();
1309         struct audit_buffer *ab;
1310         struct audit_aux_data *aux;
1311         struct audit_names *n;
1312 
1313         context->personality = current->personality;
1314 
1315         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1316         if (!ab)
1317                 return;         /* audit_panic has been called */
1318         audit_log_format(ab, "arch=%x syscall=%d",
1319                          context->arch, context->major);
1320         if (context->personality != PER_LINUX)
1321                 audit_log_format(ab, " per=%lx", context->personality);
1322         if (context->return_valid)
1323                 audit_log_format(ab, " success=%s exit=%ld",
1324                                  (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1325                                  context->return_code);
1326 
1327         audit_log_format(ab,
1328                          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1329                          context->argv[0],
1330                          context->argv[1],
1331                          context->argv[2],
1332                          context->argv[3],
1333                          context->name_count);
1334 
1335         audit_log_task_info(ab);
1336         audit_log_key(ab, context->filterkey);
1337         audit_log_end(ab);
1338 
1339         for (aux = context->aux; aux; aux = aux->next) {
1340 
1341                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1342                 if (!ab)
1343                         continue; /* audit_panic has been called */
1344 
1345                 switch (aux->type) {
1346 
1347                 case AUDIT_BPRM_FCAPS: {
1348                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1349                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
1350                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
1351                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1352                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
1353                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1354                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1355                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1356                         audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1357                         audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1358                         audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1359                         audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1360                         audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1361                         break; }
1362 
1363                 }
1364                 audit_log_end(ab);
1365         }
1366 
1367         if (context->type)
1368                 show_special(context, &call_panic);
1369 
1370         if (context->fds[0] >= 0) {
1371                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1372                 if (ab) {
1373                         audit_log_format(ab, "fd0=%d fd1=%d",
1374                                         context->fds[0], context->fds[1]);
1375                         audit_log_end(ab);
1376                 }
1377         }
1378 
1379         if (context->sockaddr_len) {
1380                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1381                 if (ab) {
1382                         audit_log_format(ab, "saddr=");
1383                         audit_log_n_hex(ab, (void *)context->sockaddr,
1384                                         context->sockaddr_len);
1385                         audit_log_end(ab);
1386                 }
1387         }
1388 
1389         for (aux = context->aux_pids; aux; aux = aux->next) {
1390                 struct audit_aux_data_pids *axs = (void *)aux;
1391 
1392                 for (i = 0; i < axs->pid_count; i++)
1393                         if (audit_log_pid_context(context, axs->target_pid[i],
1394                                                   axs->target_auid[i],
1395                                                   axs->target_uid[i],
1396                                                   axs->target_sessionid[i],
1397                                                   axs->target_sid[i],
1398                                                   axs->target_comm[i]))
1399                                 call_panic = 1;
1400         }
1401 
1402         if (context->target_pid &&
1403             audit_log_pid_context(context, context->target_pid,
1404                                   context->target_auid, context->target_uid,
1405                                   context->target_sessionid,
1406                                   context->target_sid, context->target_comm))
1407                         call_panic = 1;
1408 
1409         if (context->pwd.dentry && context->pwd.mnt) {
1410                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1411                 if (ab) {
1412                         audit_log_d_path(ab, "cwd=", &context->pwd);
1413                         audit_log_end(ab);
1414                 }
1415         }
1416 
1417         i = 0;
1418         list_for_each_entry(n, &context->names_list, list) {
1419                 if (n->hidden)
1420                         continue;
1421                 audit_log_name(context, n, NULL, i++, &call_panic);
1422         }
1423 
1424         audit_log_proctitle();
1425 
1426         /* Send end of event record to help user space know we are finished */
1427         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1428         if (ab)
1429                 audit_log_end(ab);
1430         if (call_panic)
1431                 audit_panic("error converting sid to string");
1432 }
1433 
1434 /**
1435  * __audit_free - free a per-task audit context
1436  * @tsk: task whose audit context block to free
1437  *
1438  * Called from copy_process and do_exit
1439  */
1440 void __audit_free(struct task_struct *tsk)
1441 {
1442         struct audit_context *context = tsk->audit_context;
1443 
1444         if (!context)
1445                 return;
1446 
1447         /* We are called either by do_exit() or the fork() error handling code;
1448          * in the former case tsk == current and in the latter tsk is a
1449          * random task_struct that doesn't doesn't have any meaningful data we
1450          * need to log via audit_log_exit().
1451          */
1452         if (tsk == current && !context->dummy && context->in_syscall) {
1453                 context->return_valid = 0;
1454                 context->return_code = 0;
1455 
1456                 audit_filter_syscall(tsk, context,
1457                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1458                 audit_filter_inodes(tsk, context);
1459                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1460                         audit_log_exit();
1461         }
1462 
1463         if (!list_empty(&context->killed_trees))
1464                 audit_kill_trees(&context->killed_trees);
1465 
1466         audit_set_context(tsk, NULL);
1467         audit_free_context(context);
1468 }
1469 
1470 /**
1471  * __audit_syscall_entry - fill in an audit record at syscall entry
1472  * @major: major syscall type (function)
1473  * @a1: additional syscall register 1
1474  * @a2: additional syscall register 2
1475  * @a3: additional syscall register 3
1476  * @a4: additional syscall register 4
1477  *
1478  * Fill in audit context at syscall entry.  This only happens if the
1479  * audit context was created when the task was created and the state or
1480  * filters demand the audit context be built.  If the state from the
1481  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1482  * then the record will be written at syscall exit time (otherwise, it
1483  * will only be written if another part of the kernel requests that it
1484  * be written).
1485  */
1486 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1487                            unsigned long a3, unsigned long a4)
1488 {
1489         struct audit_context *context = audit_context();
1490         enum audit_state     state;
1491 
1492         if (!audit_enabled || !context)
1493                 return;
1494 
1495         BUG_ON(context->in_syscall || context->name_count);
1496 
1497         state = context->state;
1498         if (state == AUDIT_DISABLED)
1499                 return;
1500 
1501         context->dummy = !audit_n_rules;
1502         if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1503                 context->prio = 0;
1504                 if (auditd_test_task(current))
1505                         return;
1506         }
1507 
1508         context->arch       = syscall_get_arch();
1509         context->major      = major;
1510         context->argv[0]    = a1;
1511         context->argv[1]    = a2;
1512         context->argv[2]    = a3;
1513         context->argv[3]    = a4;
1514         context->serial     = 0;
1515         context->in_syscall = 1;
1516         context->current_state  = state;
1517         context->ppid       = 0;
1518         ktime_get_coarse_real_ts64(&context->ctime);
1519 }
1520 
1521 /**
1522  * __audit_syscall_exit - deallocate audit context after a system call
1523  * @success: success value of the syscall
1524  * @return_code: return value of the syscall
1525  *
1526  * Tear down after system call.  If the audit context has been marked as
1527  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1528  * filtering, or because some other part of the kernel wrote an audit
1529  * message), then write out the syscall information.  In call cases,
1530  * free the names stored from getname().
1531  */
1532 void __audit_syscall_exit(int success, long return_code)
1533 {
1534         struct audit_context *context;
1535 
1536         context = audit_context();
1537         if (!context)
1538                 return;
1539 
1540         if (!context->dummy && context->in_syscall) {
1541                 if (success)
1542                         context->return_valid = AUDITSC_SUCCESS;
1543                 else
1544                         context->return_valid = AUDITSC_FAILURE;
1545 
1546                 /*
1547                  * we need to fix up the return code in the audit logs if the
1548                  * actual return codes are later going to be fixed up by the
1549                  * arch specific signal handlers
1550                  *
1551                  * This is actually a test for:
1552                  * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1553                  * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1554                  *
1555                  * but is faster than a bunch of ||
1556                  */
1557                 if (unlikely(return_code <= -ERESTARTSYS) &&
1558                     (return_code >= -ERESTART_RESTARTBLOCK) &&
1559                     (return_code != -ENOIOCTLCMD))
1560                         context->return_code = -EINTR;
1561                 else
1562                         context->return_code  = return_code;
1563 
1564                 audit_filter_syscall(current, context,
1565                                      &audit_filter_list[AUDIT_FILTER_EXIT]);
1566                 audit_filter_inodes(current, context);
1567                 if (context->current_state == AUDIT_RECORD_CONTEXT)
1568                         audit_log_exit();
1569         }
1570 
1571         context->in_syscall = 0;
1572         context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573 
1574         if (!list_empty(&context->killed_trees))
1575                 audit_kill_trees(&context->killed_trees);
1576 
1577         audit_free_names(context);
1578         unroll_tree_refs(context, NULL, 0);
1579         audit_free_aux(context);
1580         context->aux = NULL;
1581         context->aux_pids = NULL;
1582         context->target_pid = 0;
1583         context->target_sid = 0;
1584         context->sockaddr_len = 0;
1585         context->type = 0;
1586         context->fds[0] = -1;
1587         if (context->state != AUDIT_RECORD_CONTEXT) {
1588                 kfree(context->filterkey);
1589                 context->filterkey = NULL;
1590         }
1591 }
1592 
1593 static inline void handle_one(const struct inode *inode)
1594 {
1595         struct audit_context *context;
1596         struct audit_tree_refs *p;
1597         struct audit_chunk *chunk;
1598         int count;
1599         if (likely(!inode->i_fsnotify_marks))
1600                 return;
1601         context = audit_context();
1602         p = context->trees;
1603         count = context->tree_count;
1604         rcu_read_lock();
1605         chunk = audit_tree_lookup(inode);
1606         rcu_read_unlock();
1607         if (!chunk)
1608                 return;
1609         if (likely(put_tree_ref(context, chunk)))
1610                 return;
1611         if (unlikely(!grow_tree_refs(context))) {
1612                 pr_warn("out of memory, audit has lost a tree reference\n");
1613                 audit_set_auditable(context);
1614                 audit_put_chunk(chunk);
1615                 unroll_tree_refs(context, p, count);
1616                 return;
1617         }
1618         put_tree_ref(context, chunk);
1619 }
1620 
1621 static void handle_path(const struct dentry *dentry)
1622 {
1623         struct audit_context *context;
1624         struct audit_tree_refs *p;
1625         const struct dentry *d, *parent;
1626         struct audit_chunk *drop;
1627         unsigned long seq;
1628         int count;
1629 
1630         context = audit_context();
1631         p = context->trees;
1632         count = context->tree_count;
1633 retry:
1634         drop = NULL;
1635         d = dentry;
1636         rcu_read_lock();
1637         seq = read_seqbegin(&rename_lock);
1638         for(;;) {
1639                 struct inode *inode = d_backing_inode(d);
1640                 if (inode && unlikely(inode->i_fsnotify_marks)) {
1641                         struct audit_chunk *chunk;
1642                         chunk = audit_tree_lookup(inode);
1643                         if (chunk) {
1644                                 if (unlikely(!put_tree_ref(context, chunk))) {
1645                                         drop = chunk;
1646                                         break;
1647                                 }
1648                         }
1649                 }
1650                 parent = d->d_parent;
1651                 if (parent == d)
1652                         break;
1653                 d = parent;
1654         }
1655         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1656                 rcu_read_unlock();
1657                 if (!drop) {
1658                         /* just a race with rename */
1659                         unroll_tree_refs(context, p, count);
1660                         goto retry;
1661                 }
1662                 audit_put_chunk(drop);
1663                 if (grow_tree_refs(context)) {
1664                         /* OK, got more space */
1665                         unroll_tree_refs(context, p, count);
1666                         goto retry;
1667                 }
1668                 /* too bad */
1669                 pr_warn("out of memory, audit has lost a tree reference\n");
1670                 unroll_tree_refs(context, p, count);
1671                 audit_set_auditable(context);
1672                 return;
1673         }
1674         rcu_read_unlock();
1675 }
1676 
1677 static struct audit_names *audit_alloc_name(struct audit_context *context,
1678                                                 unsigned char type)
1679 {
1680         struct audit_names *aname;
1681 
1682         if (context->name_count < AUDIT_NAMES) {
1683                 aname = &context->preallocated_names[context->name_count];
1684                 memset(aname, 0, sizeof(*aname));
1685         } else {
1686                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1687                 if (!aname)
1688                         return NULL;
1689                 aname->should_free = true;
1690         }
1691 
1692         aname->ino = AUDIT_INO_UNSET;
1693         aname->type = type;
1694         list_add_tail(&aname->list, &context->names_list);
1695 
1696         context->name_count++;
1697         return aname;
1698 }
1699 
1700 /**
1701  * __audit_reusename - fill out filename with info from existing entry
1702  * @uptr: userland ptr to pathname
1703  *
1704  * Search the audit_names list for the current audit context. If there is an
1705  * existing entry with a matching "uptr" then return the filename
1706  * associated with that audit_name. If not, return NULL.
1707  */
1708 struct filename *
1709 __audit_reusename(const __user char *uptr)
1710 {
1711         struct audit_context *context = audit_context();
1712         struct audit_names *n;
1713 
1714         list_for_each_entry(n, &context->names_list, list) {
1715                 if (!n->name)
1716                         continue;
1717                 if (n->name->uptr == uptr) {
1718                         n->name->refcnt++;
1719                         return n->name;
1720                 }
1721         }
1722         return NULL;
1723 }
1724 
1725 /**
1726  * __audit_getname - add a name to the list
1727  * @name: name to add
1728  *
1729  * Add a name to the list of audit names for this context.
1730  * Called from fs/namei.c:getname().
1731  */
1732 void __audit_getname(struct filename *name)
1733 {
1734         struct audit_context *context = audit_context();
1735         struct audit_names *n;
1736 
1737         if (!context->in_syscall)
1738                 return;
1739 
1740         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1741         if (!n)
1742                 return;
1743 
1744         n->name = name;
1745         n->name_len = AUDIT_NAME_FULL;
1746         name->aname = n;
1747         name->refcnt++;
1748 
1749         if (!context->pwd.dentry)
1750                 get_fs_pwd(current->fs, &context->pwd);
1751 }
1752 
1753 /**
1754  * __audit_inode - store the inode and device from a lookup
1755  * @name: name being audited
1756  * @dentry: dentry being audited
1757  * @flags: attributes for this particular entry
1758  */
1759 void __audit_inode(struct filename *name, const struct dentry *dentry,
1760                    unsigned int flags)
1761 {
1762         struct audit_context *context = audit_context();
1763         struct inode *inode = d_backing_inode(dentry);
1764         struct audit_names *n;
1765         bool parent = flags & AUDIT_INODE_PARENT;
1766 
1767         if (!context->in_syscall)
1768                 return;
1769 
1770         if (!name)
1771                 goto out_alloc;
1772 
1773         /*
1774          * If we have a pointer to an audit_names entry already, then we can
1775          * just use it directly if the type is correct.
1776          */
1777         n = name->aname;
1778         if (n) {
1779                 if (parent) {
1780                         if (n->type == AUDIT_TYPE_PARENT ||
1781                             n->type == AUDIT_TYPE_UNKNOWN)
1782                                 goto out;
1783                 } else {
1784                         if (n->type != AUDIT_TYPE_PARENT)
1785                                 goto out;
1786                 }
1787         }
1788 
1789         list_for_each_entry_reverse(n, &context->names_list, list) {
1790                 if (n->ino) {
1791                         /* valid inode number, use that for the comparison */
1792                         if (n->ino != inode->i_ino ||
1793                             n->dev != inode->i_sb->s_dev)
1794                                 continue;
1795                 } else if (n->name) {
1796                         /* inode number has not been set, check the name */
1797                         if (strcmp(n->name->name, name->name))
1798                                 continue;
1799                 } else
1800                         /* no inode and no name (?!) ... this is odd ... */
1801                         continue;
1802 
1803                 /* match the correct record type */
1804                 if (parent) {
1805                         if (n->type == AUDIT_TYPE_PARENT ||
1806                             n->type == AUDIT_TYPE_UNKNOWN)
1807                                 goto out;
1808                 } else {
1809                         if (n->type != AUDIT_TYPE_PARENT)
1810                                 goto out;
1811                 }
1812         }
1813 
1814 out_alloc:
1815         /* unable to find an entry with both a matching name and type */
1816         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1817         if (!n)
1818                 return;
1819         if (name) {
1820                 n->name = name;
1821                 name->refcnt++;
1822         }
1823 
1824 out:
1825         if (parent) {
1826                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1827                 n->type = AUDIT_TYPE_PARENT;
1828                 if (flags & AUDIT_INODE_HIDDEN)
1829                         n->hidden = true;
1830         } else {
1831                 n->name_len = AUDIT_NAME_FULL;
1832                 n->type = AUDIT_TYPE_NORMAL;
1833         }
1834         handle_path(dentry);
1835         audit_copy_inode(n, dentry, inode);
1836 }
1837 
1838 void __audit_file(const struct file *file)
1839 {
1840         __audit_inode(NULL, file->f_path.dentry, 0);
1841 }
1842 
1843 /**
1844  * __audit_inode_child - collect inode info for created/removed objects
1845  * @parent: inode of dentry parent
1846  * @dentry: dentry being audited
1847  * @type:   AUDIT_TYPE_* value that we're looking for
1848  *
1849  * For syscalls that create or remove filesystem objects, audit_inode
1850  * can only collect information for the filesystem object's parent.
1851  * This call updates the audit context with the child's information.
1852  * Syscalls that create a new filesystem object must be hooked after
1853  * the object is created.  Syscalls that remove a filesystem object
1854  * must be hooked prior, in order to capture the target inode during
1855  * unsuccessful attempts.
1856  */
1857 void __audit_inode_child(struct inode *parent,
1858                          const struct dentry *dentry,
1859                          const unsigned char type)
1860 {
1861         struct audit_context *context = audit_context();
1862         struct inode *inode = d_backing_inode(dentry);
1863         const char *dname = dentry->d_name.name;
1864         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1865         struct audit_entry *e;
1866         struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1867         int i;
1868 
1869         if (!context->in_syscall)
1870                 return;
1871 
1872         rcu_read_lock();
1873         if (!list_empty(list)) {
1874                 list_for_each_entry_rcu(e, list, list) {
1875                         for (i = 0; i < e->rule.field_count; i++) {
1876                                 struct audit_field *f = &e->rule.fields[i];
1877 
1878                                 if (f->type == AUDIT_FSTYPE) {
1879                                         if (audit_comparator(parent->i_sb->s_magic,
1880                                             f->op, f->val)) {
1881                                                 if (e->rule.action == AUDIT_NEVER) {
1882                                                         rcu_read_unlock();
1883                                                         return;
1884                                                 }
1885                                         }
1886                                 }
1887                         }
1888                 }
1889         }
1890         rcu_read_unlock();
1891 
1892         if (inode)
1893                 handle_one(inode);
1894 
1895         /* look for a parent entry first */
1896         list_for_each_entry(n, &context->names_list, list) {
1897                 if (!n->name ||
1898                     (n->type != AUDIT_TYPE_PARENT &&
1899                      n->type != AUDIT_TYPE_UNKNOWN))
1900                         continue;
1901 
1902                 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1903                     !audit_compare_dname_path(dname,
1904                                               n->name->name, n->name_len)) {
1905                         if (n->type == AUDIT_TYPE_UNKNOWN)
1906                                 n->type = AUDIT_TYPE_PARENT;
1907                         found_parent = n;
1908                         break;
1909                 }
1910         }
1911 
1912         /* is there a matching child entry? */
1913         list_for_each_entry(n, &context->names_list, list) {
1914                 /* can only match entries that have a name */
1915                 if (!n->name ||
1916                     (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1917                         continue;
1918 
1919                 if (!strcmp(dname, n->name->name) ||
1920                     !audit_compare_dname_path(dname, n->name->name,
1921                                                 found_parent ?
1922                                                 found_parent->name_len :
1923                                                 AUDIT_NAME_FULL)) {
1924                         if (n->type == AUDIT_TYPE_UNKNOWN)
1925                                 n->type = type;
1926                         found_child = n;
1927                         break;
1928                 }
1929         }
1930 
1931         if (!found_parent) {
1932                 /* create a new, "anonymous" parent record */
1933                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1934                 if (!n)
1935                         return;
1936                 audit_copy_inode(n, NULL, parent);
1937         }
1938 
1939         if (!found_child) {
1940                 found_child = audit_alloc_name(context, type);
1941                 if (!found_child)
1942                         return;
1943 
1944                 /* Re-use the name belonging to the slot for a matching parent
1945                  * directory. All names for this context are relinquished in
1946                  * audit_free_names() */
1947                 if (found_parent) {
1948                         found_child->name = found_parent->name;
1949                         found_child->name_len = AUDIT_NAME_FULL;
1950                         found_child->name->refcnt++;
1951                 }
1952         }
1953 
1954         if (inode)
1955                 audit_copy_inode(found_child, dentry, inode);
1956         else
1957                 found_child->ino = AUDIT_INO_UNSET;
1958 }
1959 EXPORT_SYMBOL_GPL(__audit_inode_child);
1960 
1961 /**
1962  * auditsc_get_stamp - get local copies of audit_context values
1963  * @ctx: audit_context for the task
1964  * @t: timespec64 to store time recorded in the audit_context
1965  * @serial: serial value that is recorded in the audit_context
1966  *
1967  * Also sets the context as auditable.
1968  */
1969 int auditsc_get_stamp(struct audit_context *ctx,
1970                        struct timespec64 *t, unsigned int *serial)
1971 {
1972         if (!ctx->in_syscall)
1973                 return 0;
1974         if (!ctx->serial)
1975                 ctx->serial = audit_serial();
1976         t->tv_sec  = ctx->ctime.tv_sec;
1977         t->tv_nsec = ctx->ctime.tv_nsec;
1978         *serial    = ctx->serial;
1979         if (!ctx->prio) {
1980                 ctx->prio = 1;
1981                 ctx->current_state = AUDIT_RECORD_CONTEXT;
1982         }
1983         return 1;
1984 }
1985 
1986 /* global counter which is incremented every time something logs in */
1987 static atomic_t session_id = ATOMIC_INIT(0);
1988 
1989 static int audit_set_loginuid_perm(kuid_t loginuid)
1990 {
1991         /* if we are unset, we don't need privs */
1992         if (!audit_loginuid_set(current))
1993                 return 0;
1994         /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1995         if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1996                 return -EPERM;
1997         /* it is set, you need permission */
1998         if (!capable(CAP_AUDIT_CONTROL))
1999                 return -EPERM;
2000         /* reject if this is not an unset and we don't allow that */
2001         if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2002                 return -EPERM;
2003         return 0;
2004 }
2005 
2006 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2007                                    unsigned int oldsessionid, unsigned int sessionid,
2008                                    int rc)
2009 {
2010         struct audit_buffer *ab;
2011         uid_t uid, oldloginuid, loginuid;
2012         struct tty_struct *tty;
2013 
2014         if (!audit_enabled)
2015                 return;
2016 
2017         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2018         if (!ab)
2019                 return;
2020 
2021         uid = from_kuid(&init_user_ns, task_uid(current));
2022         oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2023         loginuid = from_kuid(&init_user_ns, kloginuid),
2024         tty = audit_get_tty();
2025 
2026         audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2027         audit_log_task_context(ab);
2028         audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2029                          oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2030                          oldsessionid, sessionid, !rc);
2031         audit_put_tty(tty);
2032         audit_log_end(ab);
2033 }
2034 
2035 /**
2036  * audit_set_loginuid - set current task's audit_context loginuid
2037  * @loginuid: loginuid value
2038  *
2039  * Returns 0.
2040  *
2041  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2042  */
2043 int audit_set_loginuid(kuid_t loginuid)
2044 {
2045         unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2046         kuid_t oldloginuid;
2047         int rc;
2048 
2049         oldloginuid = audit_get_loginuid(current);
2050         oldsessionid = audit_get_sessionid(current);
2051 
2052         rc = audit_set_loginuid_perm(loginuid);
2053         if (rc)
2054                 goto out;
2055 
2056         /* are we setting or clearing? */
2057         if (uid_valid(loginuid)) {
2058                 sessionid = (unsigned int)atomic_inc_return(&session_id);
2059                 if (unlikely(sessionid == AUDIT_SID_UNSET))
2060                         sessionid = (unsigned int)atomic_inc_return(&session_id);
2061         }
2062 
2063         current->sessionid = sessionid;
2064         current->loginuid = loginuid;
2065 out:
2066         audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2067         return rc;
2068 }
2069 
2070 /**
2071  * __audit_mq_open - record audit data for a POSIX MQ open
2072  * @oflag: open flag
2073  * @mode: mode bits
2074  * @attr: queue attributes
2075  *
2076  */
2077 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2078 {
2079         struct audit_context *context = audit_context();
2080 
2081         if (attr)
2082                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2083         else
2084                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2085 
2086         context->mq_open.oflag = oflag;
2087         context->mq_open.mode = mode;
2088 
2089         context->type = AUDIT_MQ_OPEN;
2090 }
2091 
2092 /**
2093  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2094  * @mqdes: MQ descriptor
2095  * @msg_len: Message length
2096  * @msg_prio: Message priority
2097  * @abs_timeout: Message timeout in absolute time
2098  *
2099  */
2100 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2101                         const struct timespec64 *abs_timeout)
2102 {
2103         struct audit_context *context = audit_context();
2104         struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2105 
2106         if (abs_timeout)
2107                 memcpy(p, abs_timeout, sizeof(*p));
2108         else
2109                 memset(p, 0, sizeof(*p));
2110 
2111         context->mq_sendrecv.mqdes = mqdes;
2112         context->mq_sendrecv.msg_len = msg_len;
2113         context->mq_sendrecv.msg_prio = msg_prio;
2114 
2115         context->type = AUDIT_MQ_SENDRECV;
2116 }
2117 
2118 /**
2119  * __audit_mq_notify - record audit data for a POSIX MQ notify
2120  * @mqdes: MQ descriptor
2121  * @notification: Notification event
2122  *
2123  */
2124 
2125 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2126 {
2127         struct audit_context *context = audit_context();
2128 
2129         if (notification)
2130                 context->mq_notify.sigev_signo = notification->sigev_signo;
2131         else
2132                 context->mq_notify.sigev_signo = 0;
2133 
2134         context->mq_notify.mqdes = mqdes;
2135         context->type = AUDIT_MQ_NOTIFY;
2136 }
2137 
2138 /**
2139  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2140  * @mqdes: MQ descriptor
2141  * @mqstat: MQ flags
2142  *
2143  */
2144 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2145 {
2146         struct audit_context *context = audit_context();
2147         context->mq_getsetattr.mqdes = mqdes;
2148         context->mq_getsetattr.mqstat = *mqstat;
2149         context->type = AUDIT_MQ_GETSETATTR;
2150 }
2151 
2152 /**
2153  * __audit_ipc_obj - record audit data for ipc object
2154  * @ipcp: ipc permissions
2155  *
2156  */
2157 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2158 {
2159         struct audit_context *context = audit_context();
2160         context->ipc.uid = ipcp->uid;
2161         context->ipc.gid = ipcp->gid;
2162         context->ipc.mode = ipcp->mode;
2163         context->ipc.has_perm = 0;
2164         security_ipc_getsecid(ipcp, &context->ipc.osid);
2165         context->type = AUDIT_IPC;
2166 }
2167 
2168 /**
2169  * __audit_ipc_set_perm - record audit data for new ipc permissions
2170  * @qbytes: msgq bytes
2171  * @uid: msgq user id
2172  * @gid: msgq group id
2173  * @mode: msgq mode (permissions)
2174  *
2175  * Called only after audit_ipc_obj().
2176  */
2177 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2178 {
2179         struct audit_context *context = audit_context();
2180 
2181         context->ipc.qbytes = qbytes;
2182         context->ipc.perm_uid = uid;
2183         context->ipc.perm_gid = gid;
2184         context->ipc.perm_mode = mode;
2185         context->ipc.has_perm = 1;
2186 }
2187 
2188 void __audit_bprm(struct linux_binprm *bprm)
2189 {
2190         struct audit_context *context = audit_context();
2191 
2192         context->type = AUDIT_EXECVE;
2193         context->execve.argc = bprm->argc;
2194 }
2195 
2196 
2197 /**
2198  * __audit_socketcall - record audit data for sys_socketcall
2199  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2200  * @args: args array
2201  *
2202  */
2203 int __audit_socketcall(int nargs, unsigned long *args)
2204 {
2205         struct audit_context *context = audit_context();
2206 
2207         if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2208                 return -EINVAL;
2209         context->type = AUDIT_SOCKETCALL;
2210         context->socketcall.nargs = nargs;
2211         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2212         return 0;
2213 }
2214 
2215 /**
2216  * __audit_fd_pair - record audit data for pipe and socketpair
2217  * @fd1: the first file descriptor
2218  * @fd2: the second file descriptor
2219  *
2220  */
2221 void __audit_fd_pair(int fd1, int fd2)
2222 {
2223         struct audit_context *context = audit_context();
2224         context->fds[0] = fd1;
2225         context->fds[1] = fd2;
2226 }
2227 
2228 /**
2229  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2230  * @len: data length in user space
2231  * @a: data address in kernel space
2232  *
2233  * Returns 0 for success or NULL context or < 0 on error.
2234  */
2235 int __audit_sockaddr(int len, void *a)
2236 {
2237         struct audit_context *context = audit_context();
2238 
2239         if (!context->sockaddr) {
2240                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2241                 if (!p)
2242                         return -ENOMEM;
2243                 context->sockaddr = p;
2244         }
2245 
2246         context->sockaddr_len = len;
2247         memcpy(context->sockaddr, a, len);
2248         return 0;
2249 }
2250 
2251 void __audit_ptrace(struct task_struct *t)
2252 {
2253         struct audit_context *context = audit_context();
2254 
2255         context->target_pid = task_tgid_nr(t);
2256         context->target_auid = audit_get_loginuid(t);
2257         context->target_uid = task_uid(t);
2258         context->target_sessionid = audit_get_sessionid(t);
2259         security_task_getsecid(t, &context->target_sid);
2260         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2261 }
2262 
2263 /**
2264  * audit_signal_info - record signal info for shutting down audit subsystem
2265  * @sig: signal value
2266  * @t: task being signaled
2267  *
2268  * If the audit subsystem is being terminated, record the task (pid)
2269  * and uid that is doing that.
2270  */
2271 int audit_signal_info(int sig, struct task_struct *t)
2272 {
2273         struct audit_aux_data_pids *axp;
2274         struct audit_context *ctx = audit_context();
2275         kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2276 
2277         if (auditd_test_task(t) &&
2278             (sig == SIGTERM || sig == SIGHUP ||
2279              sig == SIGUSR1 || sig == SIGUSR2)) {
2280                 audit_sig_pid = task_tgid_nr(current);
2281                 auid = audit_get_loginuid(current);
2282                 if (uid_valid(auid))
2283                         audit_sig_uid = auid;
2284                 else
2285                         audit_sig_uid = uid;
2286                 security_task_getsecid(current, &audit_sig_sid);
2287         }
2288 
2289         if (!audit_signals || audit_dummy_context())
2290                 return 0;
2291 
2292         /* optimize the common case by putting first signal recipient directly
2293          * in audit_context */
2294         if (!ctx->target_pid) {
2295                 ctx->target_pid = task_tgid_nr(t);
2296                 ctx->target_auid = audit_get_loginuid(t);
2297                 ctx->target_uid = t_uid;
2298                 ctx->target_sessionid = audit_get_sessionid(t);
2299                 security_task_getsecid(t, &ctx->target_sid);
2300                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2301                 return 0;
2302         }
2303 
2304         axp = (void *)ctx->aux_pids;
2305         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2306                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2307                 if (!axp)
2308                         return -ENOMEM;
2309 
2310                 axp->d.type = AUDIT_OBJ_PID;
2311                 axp->d.next = ctx->aux_pids;
2312                 ctx->aux_pids = (void *)axp;
2313         }
2314         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2315 
2316         axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2317         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2318         axp->target_uid[axp->pid_count] = t_uid;
2319         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2320         security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2321         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2322         axp->pid_count++;
2323 
2324         return 0;
2325 }
2326 
2327 /**
2328  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2329  * @bprm: pointer to the bprm being processed
2330  * @new: the proposed new credentials
2331  * @old: the old credentials
2332  *
2333  * Simply check if the proc already has the caps given by the file and if not
2334  * store the priv escalation info for later auditing at the end of the syscall
2335  *
2336  * -Eric
2337  */
2338 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2339                            const struct cred *new, const struct cred *old)
2340 {
2341         struct audit_aux_data_bprm_fcaps *ax;
2342         struct audit_context *context = audit_context();
2343         struct cpu_vfs_cap_data vcaps;
2344 
2345         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2346         if (!ax)
2347                 return -ENOMEM;
2348 
2349         ax->d.type = AUDIT_BPRM_FCAPS;
2350         ax->d.next = context->aux;
2351         context->aux = (void *)ax;
2352 
2353         get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2354 
2355         ax->fcap.permitted = vcaps.permitted;
2356         ax->fcap.inheritable = vcaps.inheritable;
2357         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2358         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2359 
2360         ax->old_pcap.permitted   = old->cap_permitted;
2361         ax->old_pcap.inheritable = old->cap_inheritable;
2362         ax->old_pcap.effective   = old->cap_effective;
2363         ax->old_pcap.ambient     = old->cap_ambient;
2364 
2365         ax->new_pcap.permitted   = new->cap_permitted;
2366         ax->new_pcap.inheritable = new->cap_inheritable;
2367         ax->new_pcap.effective   = new->cap_effective;
2368         ax->new_pcap.ambient     = new->cap_ambient;
2369         return 0;
2370 }
2371 
2372 /**
2373  * __audit_log_capset - store information about the arguments to the capset syscall
2374  * @new: the new credentials
2375  * @old: the old (current) credentials
2376  *
2377  * Record the arguments userspace sent to sys_capset for later printing by the
2378  * audit system if applicable
2379  */
2380 void __audit_log_capset(const struct cred *new, const struct cred *old)
2381 {
2382         struct audit_context *context = audit_context();
2383         context->capset.pid = task_tgid_nr(current);
2384         context->capset.cap.effective   = new->cap_effective;
2385         context->capset.cap.inheritable = new->cap_effective;
2386         context->capset.cap.permitted   = new->cap_permitted;
2387         context->capset.cap.ambient     = new->cap_ambient;
2388         context->type = AUDIT_CAPSET;
2389 }
2390 
2391 void __audit_mmap_fd(int fd, int flags)
2392 {
2393         struct audit_context *context = audit_context();
2394         context->mmap.fd = fd;
2395         context->mmap.flags = flags;
2396         context->type = AUDIT_MMAP;
2397 }
2398 
2399 void __audit_log_kern_module(char *name)
2400 {
2401         struct audit_context *context = audit_context();
2402 
2403         context->module.name = kstrdup(name, GFP_KERNEL);
2404         if (!context->module.name)
2405                 audit_log_lost("out of memory in __audit_log_kern_module");
2406         context->type = AUDIT_KERN_MODULE;
2407 }
2408 
2409 void __audit_fanotify(unsigned int response)
2410 {
2411         audit_log(audit_context(), GFP_KERNEL,
2412                 AUDIT_FANOTIFY, "resp=%u", response);
2413 }
2414 
2415 static void audit_log_task(struct audit_buffer *ab)
2416 {
2417         kuid_t auid, uid;
2418         kgid_t gid;
2419         unsigned int sessionid;
2420         char comm[sizeof(current->comm)];
2421 
2422         auid = audit_get_loginuid(current);
2423         sessionid = audit_get_sessionid(current);
2424         current_uid_gid(&uid, &gid);
2425 
2426         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2427                          from_kuid(&init_user_ns, auid),
2428                          from_kuid(&init_user_ns, uid),
2429                          from_kgid(&init_user_ns, gid),
2430                          sessionid);
2431         audit_log_task_context(ab);
2432         audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2433         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2434         audit_log_d_path_exe(ab, current->mm);
2435 }
2436 
2437 /**
2438  * audit_core_dumps - record information about processes that end abnormally
2439  * @signr: signal value
2440  *
2441  * If a process ends with a core dump, something fishy is going on and we
2442  * should record the event for investigation.
2443  */
2444 void audit_core_dumps(long signr)
2445 {
2446         struct audit_buffer *ab;
2447 
2448         if (!audit_enabled)
2449                 return;
2450 
2451         if (signr == SIGQUIT)   /* don't care for those */
2452                 return;
2453 
2454         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2455         if (unlikely(!ab))
2456                 return;
2457         audit_log_task(ab);
2458         audit_log_format(ab, " sig=%ld res=1", signr);
2459         audit_log_end(ab);
2460 }
2461 
2462 /**
2463  * audit_seccomp - record information about a seccomp action
2464  * @syscall: syscall number
2465  * @signr: signal value
2466  * @code: the seccomp action
2467  *
2468  * Record the information associated with a seccomp action. Event filtering for
2469  * seccomp actions that are not to be logged is done in seccomp_log().
2470  * Therefore, this function forces auditing independent of the audit_enabled
2471  * and dummy context state because seccomp actions should be logged even when
2472  * audit is not in use.
2473  */
2474 void audit_seccomp(unsigned long syscall, long signr, int code)
2475 {
2476         struct audit_buffer *ab;
2477 
2478         ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2479         if (unlikely(!ab))
2480                 return;
2481         audit_log_task(ab);
2482         audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2483                          signr, syscall_get_arch(), syscall,
2484                          in_compat_syscall(), KSTK_EIP(current), code);
2485         audit_log_end(ab);
2486 }
2487 
2488 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2489                                   int res)
2490 {
2491         struct audit_buffer *ab;
2492 
2493         if (!audit_enabled)
2494                 return;
2495 
2496         ab = audit_log_start(audit_context(), GFP_KERNEL,
2497                              AUDIT_CONFIG_CHANGE);
2498         if (unlikely(!ab))
2499                 return;
2500 
2501         audit_log_format(ab,
2502                          "op=seccomp-logging actions=%s old-actions=%s res=%d",
2503                          names, old_names, res);
2504         audit_log_end(ab);
2505 }
2506 
2507 struct list_head *audit_killed_trees(void)
2508 {
2509         struct audit_context *ctx = audit_context();
2510         if (likely(!ctx || !ctx->in_syscall))
2511                 return NULL;
2512         return &ctx->killed_trees;
2513 }
2514 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp