~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/auditsc.c

Version: ~ [ linux-6.1-rc7 ] ~ [ linux-6.0.10 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.80 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.156 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.225 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.267 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.300 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.334 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* auditsc.c -- System-call auditing support
  2  * Handles all system-call specific auditing features.
  3  *
  4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
  6  * Copyright (C) 2005, 2006 IBM Corporation
  7  * All Rights Reserved.
  8  *
  9  * This program is free software; you can redistribute it and/or modify
 10  * it under the terms of the GNU General Public License as published by
 11  * the Free Software Foundation; either version 2 of the License, or
 12  * (at your option) any later version.
 13  *
 14  * This program is distributed in the hope that it will be useful,
 15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17  * GNU General Public License for more details.
 18  *
 19  * You should have received a copy of the GNU General Public License
 20  * along with this program; if not, write to the Free Software
 21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 22  *
 23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
 24  *
 25  * Many of the ideas implemented here are from Stephen C. Tweedie,
 26  * especially the idea of avoiding a copy by using getname.
 27  *
 28  * The method for actual interception of syscall entry and exit (not in
 29  * this file -- see entry.S) is based on a GPL'd patch written by
 30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
 31  *
 32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
 33  * 2006.
 34  *
 35  * The support of additional filter rules compares (>, <, >=, <=) was
 36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
 37  *
 38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
 39  * filesystem information.
 40  *
 41  * Subject and object context labeling support added by <danjones@us.ibm.com>
 42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
 43  */
 44 
 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 46 
 47 #include <linux/init.h>
 48 #include <asm/types.h>
 49 #include <linux/atomic.h>
 50 #include <linux/fs.h>
 51 #include <linux/namei.h>
 52 #include <linux/mm.h>
 53 #include <linux/export.h>
 54 #include <linux/slab.h>
 55 #include <linux/mount.h>
 56 #include <linux/socket.h>
 57 #include <linux/mqueue.h>
 58 #include <linux/audit.h>
 59 #include <linux/personality.h>
 60 #include <linux/time.h>
 61 #include <linux/netlink.h>
 62 #include <linux/compiler.h>
 63 #include <asm/unistd.h>
 64 #include <linux/security.h>
 65 #include <linux/list.h>
 66 #include <linux/tty.h>
 67 #include <linux/binfmts.h>
 68 #include <linux/highmem.h>
 69 #include <linux/syscalls.h>
 70 #include <asm/syscall.h>
 71 #include <linux/capability.h>
 72 #include <linux/fs_struct.h>
 73 #include <linux/compat.h>
 74 #include <linux/ctype.h>
 75 #include <linux/string.h>
 76 #include <linux/uaccess.h>
 77 #include <uapi/linux/limits.h>
 78 
 79 #include "audit.h"
 80 
 81 /* flags stating the success for a syscall */
 82 #define AUDITSC_INVALID 0
 83 #define AUDITSC_SUCCESS 1
 84 #define AUDITSC_FAILURE 2
 85 
 86 /* no execve audit message should be longer than this (userspace limits),
 87  * see the note near the top of audit_log_execve_info() about this value */
 88 #define MAX_EXECVE_AUDIT_LEN 7500
 89 
 90 /* max length to print of cmdline/proctitle value during audit */
 91 #define MAX_PROCTITLE_AUDIT_LEN 128
 92 
 93 /* number of audit rules */
 94 int audit_n_rules;
 95 
 96 /* determines whether we collect data for signals sent */
 97 int audit_signals;
 98 
 99 struct audit_aux_data {
100         struct audit_aux_data   *next;
101         int                     type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM       0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS  16
108 
109 struct audit_aux_data_pids {
110         struct audit_aux_data   d;
111         pid_t                   target_pid[AUDIT_AUX_PIDS];
112         kuid_t                  target_auid[AUDIT_AUX_PIDS];
113         kuid_t                  target_uid[AUDIT_AUX_PIDS];
114         unsigned int            target_sessionid[AUDIT_AUX_PIDS];
115         u32                     target_sid[AUDIT_AUX_PIDS];
116         char                    target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117         int                     pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121         struct audit_aux_data   d;
122         struct audit_cap_data   fcap;
123         unsigned int            fcap_ver;
124         struct audit_cap_data   old_pcap;
125         struct audit_cap_data   new_pcap;
126 };
127 
128 struct audit_tree_refs {
129         struct audit_tree_refs *next;
130         struct audit_chunk *c[31];
131 };
132 
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135         unsigned n;
136         if (unlikely(!ctx))
137                 return 0;
138         n = ctx->major;
139 
140         switch (audit_classify_syscall(ctx->arch, n)) {
141         case 0: /* native */
142                 if ((mask & AUDIT_PERM_WRITE) &&
143                      audit_match_class(AUDIT_CLASS_WRITE, n))
144                         return 1;
145                 if ((mask & AUDIT_PERM_READ) &&
146                      audit_match_class(AUDIT_CLASS_READ, n))
147                         return 1;
148                 if ((mask & AUDIT_PERM_ATTR) &&
149                      audit_match_class(AUDIT_CLASS_CHATTR, n))
150                         return 1;
151                 return 0;
152         case 1: /* 32bit on biarch */
153                 if ((mask & AUDIT_PERM_WRITE) &&
154                      audit_match_class(AUDIT_CLASS_WRITE_32, n))
155                         return 1;
156                 if ((mask & AUDIT_PERM_READ) &&
157                      audit_match_class(AUDIT_CLASS_READ_32, n))
158                         return 1;
159                 if ((mask & AUDIT_PERM_ATTR) &&
160                      audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161                         return 1;
162                 return 0;
163         case 2: /* open */
164                 return mask & ACC_MODE(ctx->argv[1]);
165         case 3: /* openat */
166                 return mask & ACC_MODE(ctx->argv[2]);
167         case 4: /* socketcall */
168                 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169         case 5: /* execve */
170                 return mask & AUDIT_PERM_EXEC;
171         default:
172                 return 0;
173         }
174 }
175 
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178         struct audit_names *n;
179         umode_t mode = (umode_t)val;
180 
181         if (unlikely(!ctx))
182                 return 0;
183 
184         list_for_each_entry(n, &ctx->names_list, list) {
185                 if ((n->ino != AUDIT_INO_UNSET) &&
186                     ((n->mode & S_IFMT) == mode))
187                         return 1;
188         }
189 
190         return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206         if (!ctx->prio) {
207                 ctx->prio = 1;
208                 ctx->current_state = AUDIT_RECORD_CONTEXT;
209         }
210 }
211 
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214         struct audit_tree_refs *p = ctx->trees;
215         int left = ctx->tree_count;
216         if (likely(left)) {
217                 p->c[--left] = chunk;
218                 ctx->tree_count = left;
219                 return 1;
220         }
221         if (!p)
222                 return 0;
223         p = p->next;
224         if (p) {
225                 p->c[30] = chunk;
226                 ctx->trees = p;
227                 ctx->tree_count = 30;
228                 return 1;
229         }
230         return 0;
231 }
232 
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235         struct audit_tree_refs *p = ctx->trees;
236         ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237         if (!ctx->trees) {
238                 ctx->trees = p;
239                 return 0;
240         }
241         if (p)
242                 p->next = ctx->trees;
243         else
244                 ctx->first_trees = ctx->trees;
245         ctx->tree_count = 31;
246         return 1;
247 }
248 #endif
249 
250 static void unroll_tree_refs(struct audit_context *ctx,
251                       struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254         struct audit_tree_refs *q;
255         int n;
256         if (!p) {
257                 /* we started with empty chain */
258                 p = ctx->first_trees;
259                 count = 31;
260                 /* if the very first allocation has failed, nothing to do */
261                 if (!p)
262                         return;
263         }
264         n = count;
265         for (q = p; q != ctx->trees; q = q->next, n = 31) {
266                 while (n--) {
267                         audit_put_chunk(q->c[n]);
268                         q->c[n] = NULL;
269                 }
270         }
271         while (n-- > ctx->tree_count) {
272                 audit_put_chunk(q->c[n]);
273                 q->c[n] = NULL;
274         }
275         ctx->trees = p;
276         ctx->tree_count = count;
277 #endif
278 }
279 
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282         struct audit_tree_refs *p, *q;
283         for (p = ctx->first_trees; p; p = q) {
284                 q = p->next;
285                 kfree(p);
286         }
287 }
288 
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292         struct audit_tree_refs *p;
293         int n;
294         if (!tree)
295                 return 0;
296         /* full ones */
297         for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298                 for (n = 0; n < 31; n++)
299                         if (audit_tree_match(p->c[n], tree))
300                                 return 1;
301         }
302         /* partial */
303         if (p) {
304                 for (n = ctx->tree_count; n < 31; n++)
305                         if (audit_tree_match(p->c[n], tree))
306                                 return 1;
307         }
308 #endif
309         return 0;
310 }
311 
312 static int audit_compare_uid(kuid_t uid,
313                              struct audit_names *name,
314                              struct audit_field *f,
315                              struct audit_context *ctx)
316 {
317         struct audit_names *n;
318         int rc;
319  
320         if (name) {
321                 rc = audit_uid_comparator(uid, f->op, name->uid);
322                 if (rc)
323                         return rc;
324         }
325  
326         if (ctx) {
327                 list_for_each_entry(n, &ctx->names_list, list) {
328                         rc = audit_uid_comparator(uid, f->op, n->uid);
329                         if (rc)
330                                 return rc;
331                 }
332         }
333         return 0;
334 }
335 
336 static int audit_compare_gid(kgid_t gid,
337                              struct audit_names *name,
338                              struct audit_field *f,
339                              struct audit_context *ctx)
340 {
341         struct audit_names *n;
342         int rc;
343  
344         if (name) {
345                 rc = audit_gid_comparator(gid, f->op, name->gid);
346                 if (rc)
347                         return rc;
348         }
349  
350         if (ctx) {
351                 list_for_each_entry(n, &ctx->names_list, list) {
352                         rc = audit_gid_comparator(gid, f->op, n->gid);
353                         if (rc)
354                                 return rc;
355                 }
356         }
357         return 0;
358 }
359 
360 static int audit_field_compare(struct task_struct *tsk,
361                                const struct cred *cred,
362                                struct audit_field *f,
363                                struct audit_context *ctx,
364                                struct audit_names *name)
365 {
366         switch (f->val) {
367         /* process to file object comparisons */
368         case AUDIT_COMPARE_UID_TO_OBJ_UID:
369                 return audit_compare_uid(cred->uid, name, f, ctx);
370         case AUDIT_COMPARE_GID_TO_OBJ_GID:
371                 return audit_compare_gid(cred->gid, name, f, ctx);
372         case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373                 return audit_compare_uid(cred->euid, name, f, ctx);
374         case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375                 return audit_compare_gid(cred->egid, name, f, ctx);
376         case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377                 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378         case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379                 return audit_compare_uid(cred->suid, name, f, ctx);
380         case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381                 return audit_compare_gid(cred->sgid, name, f, ctx);
382         case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383                 return audit_compare_uid(cred->fsuid, name, f, ctx);
384         case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385                 return audit_compare_gid(cred->fsgid, name, f, ctx);
386         /* uid comparisons */
387         case AUDIT_COMPARE_UID_TO_AUID:
388                 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389         case AUDIT_COMPARE_UID_TO_EUID:
390                 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391         case AUDIT_COMPARE_UID_TO_SUID:
392                 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393         case AUDIT_COMPARE_UID_TO_FSUID:
394                 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395         /* auid comparisons */
396         case AUDIT_COMPARE_AUID_TO_EUID:
397                 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398         case AUDIT_COMPARE_AUID_TO_SUID:
399                 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400         case AUDIT_COMPARE_AUID_TO_FSUID:
401                 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402         /* euid comparisons */
403         case AUDIT_COMPARE_EUID_TO_SUID:
404                 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405         case AUDIT_COMPARE_EUID_TO_FSUID:
406                 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407         /* suid comparisons */
408         case AUDIT_COMPARE_SUID_TO_FSUID:
409                 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410         /* gid comparisons */
411         case AUDIT_COMPARE_GID_TO_EGID:
412                 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413         case AUDIT_COMPARE_GID_TO_SGID:
414                 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415         case AUDIT_COMPARE_GID_TO_FSGID:
416                 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417         /* egid comparisons */
418         case AUDIT_COMPARE_EGID_TO_SGID:
419                 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420         case AUDIT_COMPARE_EGID_TO_FSGID:
421                 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422         /* sgid comparison */
423         case AUDIT_COMPARE_SGID_TO_FSGID:
424                 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425         default:
426                 WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
427                 return 0;
428         }
429         return 0;
430 }
431 
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
434  * otherwise.
435  *
436  * If task_creation is true, this is an explicit indication that we are
437  * filtering a task rule at task creation time.  This and tsk == current are
438  * the only situations where tsk->cred may be accessed without an rcu read lock.
439  */
440 static int audit_filter_rules(struct task_struct *tsk,
441                               struct audit_krule *rule,
442                               struct audit_context *ctx,
443                               struct audit_names *name,
444                               enum audit_state *state,
445                               bool task_creation)
446 {
447         const struct cred *cred;
448         int i, need_sid = 1;
449         u32 sid;
450 
451         cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
452 
453         for (i = 0; i < rule->field_count; i++) {
454                 struct audit_field *f = &rule->fields[i];
455                 struct audit_names *n;
456                 int result = 0;
457                 pid_t pid;
458 
459                 switch (f->type) {
460                 case AUDIT_PID:
461                         pid = task_pid_nr(tsk);
462                         result = audit_comparator(pid, f->op, f->val);
463                         break;
464                 case AUDIT_PPID:
465                         if (ctx) {
466                                 if (!ctx->ppid)
467                                         ctx->ppid = task_ppid_nr(tsk);
468                                 result = audit_comparator(ctx->ppid, f->op, f->val);
469                         }
470                         break;
471                 case AUDIT_EXE:
472                         result = audit_exe_compare(tsk, rule->exe);
473                         if (f->op == Audit_not_equal)
474                                 result = !result;
475                         break;
476                 case AUDIT_UID:
477                         result = audit_uid_comparator(cred->uid, f->op, f->uid);
478                         break;
479                 case AUDIT_EUID:
480                         result = audit_uid_comparator(cred->euid, f->op, f->uid);
481                         break;
482                 case AUDIT_SUID:
483                         result = audit_uid_comparator(cred->suid, f->op, f->uid);
484                         break;
485                 case AUDIT_FSUID:
486                         result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
487                         break;
488                 case AUDIT_GID:
489                         result = audit_gid_comparator(cred->gid, f->op, f->gid);
490                         if (f->op == Audit_equal) {
491                                 if (!result)
492                                         result = in_group_p(f->gid);
493                         } else if (f->op == Audit_not_equal) {
494                                 if (result)
495                                         result = !in_group_p(f->gid);
496                         }
497                         break;
498                 case AUDIT_EGID:
499                         result = audit_gid_comparator(cred->egid, f->op, f->gid);
500                         if (f->op == Audit_equal) {
501                                 if (!result)
502                                         result = in_egroup_p(f->gid);
503                         } else if (f->op == Audit_not_equal) {
504                                 if (result)
505                                         result = !in_egroup_p(f->gid);
506                         }
507                         break;
508                 case AUDIT_SGID:
509                         result = audit_gid_comparator(cred->sgid, f->op, f->gid);
510                         break;
511                 case AUDIT_FSGID:
512                         result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
513                         break;
514                 case AUDIT_PERS:
515                         result = audit_comparator(tsk->personality, f->op, f->val);
516                         break;
517                 case AUDIT_ARCH:
518                         if (ctx)
519                                 result = audit_comparator(ctx->arch, f->op, f->val);
520                         break;
521 
522                 case AUDIT_EXIT:
523                         if (ctx && ctx->return_valid)
524                                 result = audit_comparator(ctx->return_code, f->op, f->val);
525                         break;
526                 case AUDIT_SUCCESS:
527                         if (ctx && ctx->return_valid) {
528                                 if (f->val)
529                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
530                                 else
531                                         result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
532                         }
533                         break;
534                 case AUDIT_DEVMAJOR:
535                         if (name) {
536                                 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
537                                     audit_comparator(MAJOR(name->rdev), f->op, f->val))
538                                         ++result;
539                         } else if (ctx) {
540                                 list_for_each_entry(n, &ctx->names_list, list) {
541                                         if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
542                                             audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
543                                                 ++result;
544                                                 break;
545                                         }
546                                 }
547                         }
548                         break;
549                 case AUDIT_DEVMINOR:
550                         if (name) {
551                                 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
552                                     audit_comparator(MINOR(name->rdev), f->op, f->val))
553                                         ++result;
554                         } else if (ctx) {
555                                 list_for_each_entry(n, &ctx->names_list, list) {
556                                         if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
557                                             audit_comparator(MINOR(n->rdev), f->op, f->val)) {
558                                                 ++result;
559                                                 break;
560                                         }
561                                 }
562                         }
563                         break;
564                 case AUDIT_INODE:
565                         if (name)
566                                 result = audit_comparator(name->ino, f->op, f->val);
567                         else if (ctx) {
568                                 list_for_each_entry(n, &ctx->names_list, list) {
569                                         if (audit_comparator(n->ino, f->op, f->val)) {
570                                                 ++result;
571                                                 break;
572                                         }
573                                 }
574                         }
575                         break;
576                 case AUDIT_OBJ_UID:
577                         if (name) {
578                                 result = audit_uid_comparator(name->uid, f->op, f->uid);
579                         } else if (ctx) {
580                                 list_for_each_entry(n, &ctx->names_list, list) {
581                                         if (audit_uid_comparator(n->uid, f->op, f->uid)) {
582                                                 ++result;
583                                                 break;
584                                         }
585                                 }
586                         }
587                         break;
588                 case AUDIT_OBJ_GID:
589                         if (name) {
590                                 result = audit_gid_comparator(name->gid, f->op, f->gid);
591                         } else if (ctx) {
592                                 list_for_each_entry(n, &ctx->names_list, list) {
593                                         if (audit_gid_comparator(n->gid, f->op, f->gid)) {
594                                                 ++result;
595                                                 break;
596                                         }
597                                 }
598                         }
599                         break;
600                 case AUDIT_WATCH:
601                         if (name)
602                                 result = audit_watch_compare(rule->watch, name->ino, name->dev);
603                         break;
604                 case AUDIT_DIR:
605                         if (ctx)
606                                 result = match_tree_refs(ctx, rule->tree);
607                         break;
608                 case AUDIT_LOGINUID:
609                         result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
610                         break;
611                 case AUDIT_LOGINUID_SET:
612                         result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
613                         break;
614                 case AUDIT_SUBJ_USER:
615                 case AUDIT_SUBJ_ROLE:
616                 case AUDIT_SUBJ_TYPE:
617                 case AUDIT_SUBJ_SEN:
618                 case AUDIT_SUBJ_CLR:
619                         /* NOTE: this may return negative values indicating
620                            a temporary error.  We simply treat this as a
621                            match for now to avoid losing information that
622                            may be wanted.   An error message will also be
623                            logged upon error */
624                         if (f->lsm_rule) {
625                                 if (need_sid) {
626                                         security_task_getsecid(tsk, &sid);
627                                         need_sid = 0;
628                                 }
629                                 result = security_audit_rule_match(sid, f->type,
630                                                                   f->op,
631                                                                   f->lsm_rule,
632                                                                   ctx);
633                         }
634                         break;
635                 case AUDIT_OBJ_USER:
636                 case AUDIT_OBJ_ROLE:
637                 case AUDIT_OBJ_TYPE:
638                 case AUDIT_OBJ_LEV_LOW:
639                 case AUDIT_OBJ_LEV_HIGH:
640                         /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
641                            also applies here */
642                         if (f->lsm_rule) {
643                                 /* Find files that match */
644                                 if (name) {
645                                         result = security_audit_rule_match(
646                                                    name->osid, f->type, f->op,
647                                                    f->lsm_rule, ctx);
648                                 } else if (ctx) {
649                                         list_for_each_entry(n, &ctx->names_list, list) {
650                                                 if (security_audit_rule_match(n->osid, f->type,
651                                                                               f->op, f->lsm_rule,
652                                                                               ctx)) {
653                                                         ++result;
654                                                         break;
655                                                 }
656                                         }
657                                 }
658                                 /* Find ipc objects that match */
659                                 if (!ctx || ctx->type != AUDIT_IPC)
660                                         break;
661                                 if (security_audit_rule_match(ctx->ipc.osid,
662                                                               f->type, f->op,
663                                                               f->lsm_rule, ctx))
664                                         ++result;
665                         }
666                         break;
667                 case AUDIT_ARG0:
668                 case AUDIT_ARG1:
669                 case AUDIT_ARG2:
670                 case AUDIT_ARG3:
671                         if (ctx)
672                                 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
673                         break;
674                 case AUDIT_FILTERKEY:
675                         /* ignore this field for filtering */
676                         result = 1;
677                         break;
678                 case AUDIT_PERM:
679                         result = audit_match_perm(ctx, f->val);
680                         break;
681                 case AUDIT_FILETYPE:
682                         result = audit_match_filetype(ctx, f->val);
683                         break;
684                 case AUDIT_FIELD_COMPARE:
685                         result = audit_field_compare(tsk, cred, f, ctx, name);
686                         break;
687                 }
688                 if (!result)
689                         return 0;
690         }
691 
692         if (ctx) {
693                 if (rule->prio <= ctx->prio)
694                         return 0;
695                 if (rule->filterkey) {
696                         kfree(ctx->filterkey);
697                         ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
698                 }
699                 ctx->prio = rule->prio;
700         }
701         switch (rule->action) {
702         case AUDIT_NEVER:    *state = AUDIT_DISABLED;       break;
703         case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
704         }
705         return 1;
706 }
707 
708 /* At process creation time, we can determine if system-call auditing is
709  * completely disabled for this task.  Since we only have the task
710  * structure at this point, we can only check uid and gid.
711  */
712 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
713 {
714         struct audit_entry *e;
715         enum audit_state   state;
716 
717         rcu_read_lock();
718         list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
719                 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
720                                        &state, true)) {
721                         if (state == AUDIT_RECORD_CONTEXT)
722                                 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
723                         rcu_read_unlock();
724                         return state;
725                 }
726         }
727         rcu_read_unlock();
728         return AUDIT_BUILD_CONTEXT;
729 }
730 
731 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
732 {
733         int word, bit;
734 
735         if (val > 0xffffffff)
736                 return false;
737 
738         word = AUDIT_WORD(val);
739         if (word >= AUDIT_BITMASK_SIZE)
740                 return false;
741 
742         bit = AUDIT_BIT(val);
743 
744         return rule->mask[word] & bit;
745 }
746 
747 /* At syscall entry and exit time, this filter is called if the
748  * audit_state is not low enough that auditing cannot take place, but is
749  * also not high enough that we already know we have to write an audit
750  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
751  */
752 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
753                                              struct audit_context *ctx,
754                                              struct list_head *list)
755 {
756         struct audit_entry *e;
757         enum audit_state state;
758 
759         if (audit_pid && tsk->tgid == audit_pid)
760                 return AUDIT_DISABLED;
761 
762         rcu_read_lock();
763         if (!list_empty(list)) {
764                 list_for_each_entry_rcu(e, list, list) {
765                         if (audit_in_mask(&e->rule, ctx->major) &&
766                             audit_filter_rules(tsk, &e->rule, ctx, NULL,
767                                                &state, false)) {
768                                 rcu_read_unlock();
769                                 ctx->current_state = state;
770                                 return state;
771                         }
772                 }
773         }
774         rcu_read_unlock();
775         return AUDIT_BUILD_CONTEXT;
776 }
777 
778 /*
779  * Given an audit_name check the inode hash table to see if they match.
780  * Called holding the rcu read lock to protect the use of audit_inode_hash
781  */
782 static int audit_filter_inode_name(struct task_struct *tsk,
783                                    struct audit_names *n,
784                                    struct audit_context *ctx) {
785         int h = audit_hash_ino((u32)n->ino);
786         struct list_head *list = &audit_inode_hash[h];
787         struct audit_entry *e;
788         enum audit_state state;
789 
790         if (list_empty(list))
791                 return 0;
792 
793         list_for_each_entry_rcu(e, list, list) {
794                 if (audit_in_mask(&e->rule, ctx->major) &&
795                     audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
796                         ctx->current_state = state;
797                         return 1;
798                 }
799         }
800 
801         return 0;
802 }
803 
804 /* At syscall exit time, this filter is called if any audit_names have been
805  * collected during syscall processing.  We only check rules in sublists at hash
806  * buckets applicable to the inode numbers in audit_names.
807  * Regarding audit_state, same rules apply as for audit_filter_syscall().
808  */
809 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
810 {
811         struct audit_names *n;
812 
813         if (audit_pid && tsk->tgid == audit_pid)
814                 return;
815 
816         rcu_read_lock();
817 
818         list_for_each_entry(n, &ctx->names_list, list) {
819                 if (audit_filter_inode_name(tsk, n, ctx))
820                         break;
821         }
822         rcu_read_unlock();
823 }
824 
825 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
826 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
827                                                       int return_valid,
828                                                       long return_code)
829 {
830         struct audit_context *context = tsk->audit_context;
831 
832         if (!context)
833                 return NULL;
834         context->return_valid = return_valid;
835 
836         /*
837          * we need to fix up the return code in the audit logs if the actual
838          * return codes are later going to be fixed up by the arch specific
839          * signal handlers
840          *
841          * This is actually a test for:
842          * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843          * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
844          *
845          * but is faster than a bunch of ||
846          */
847         if (unlikely(return_code <= -ERESTARTSYS) &&
848             (return_code >= -ERESTART_RESTARTBLOCK) &&
849             (return_code != -ENOIOCTLCMD))
850                 context->return_code = -EINTR;
851         else
852                 context->return_code  = return_code;
853 
854         if (context->in_syscall && !context->dummy) {
855                 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
856                 audit_filter_inodes(tsk, context);
857         }
858 
859         tsk->audit_context = NULL;
860         return context;
861 }
862 
863 static inline void audit_proctitle_free(struct audit_context *context)
864 {
865         kfree(context->proctitle.value);
866         context->proctitle.value = NULL;
867         context->proctitle.len = 0;
868 }
869 
870 static inline void audit_free_names(struct audit_context *context)
871 {
872         struct audit_names *n, *next;
873 
874         list_for_each_entry_safe(n, next, &context->names_list, list) {
875                 list_del(&n->list);
876                 if (n->name)
877                         putname(n->name);
878                 if (n->should_free)
879                         kfree(n);
880         }
881         context->name_count = 0;
882         path_put(&context->pwd);
883         context->pwd.dentry = NULL;
884         context->pwd.mnt = NULL;
885 }
886 
887 static inline void audit_free_aux(struct audit_context *context)
888 {
889         struct audit_aux_data *aux;
890 
891         while ((aux = context->aux)) {
892                 context->aux = aux->next;
893                 kfree(aux);
894         }
895         while ((aux = context->aux_pids)) {
896                 context->aux_pids = aux->next;
897                 kfree(aux);
898         }
899 }
900 
901 static inline struct audit_context *audit_alloc_context(enum audit_state state)
902 {
903         struct audit_context *context;
904 
905         context = kzalloc(sizeof(*context), GFP_KERNEL);
906         if (!context)
907                 return NULL;
908         context->state = state;
909         context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
910         INIT_LIST_HEAD(&context->killed_trees);
911         INIT_LIST_HEAD(&context->names_list);
912         return context;
913 }
914 
915 /**
916  * audit_alloc - allocate an audit context block for a task
917  * @tsk: task
918  *
919  * Filter on the task information and allocate a per-task audit context
920  * if necessary.  Doing so turns on system call auditing for the
921  * specified task.  This is called from copy_process, so no lock is
922  * needed.
923  */
924 int audit_alloc(struct task_struct *tsk)
925 {
926         struct audit_context *context;
927         enum audit_state     state;
928         char *key = NULL;
929 
930         if (likely(!audit_ever_enabled))
931                 return 0; /* Return if not auditing. */
932 
933         state = audit_filter_task(tsk, &key);
934         if (state == AUDIT_DISABLED) {
935                 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
936                 return 0;
937         }
938 
939         if (!(context = audit_alloc_context(state))) {
940                 kfree(key);
941                 audit_log_lost("out of memory in audit_alloc");
942                 return -ENOMEM;
943         }
944         context->filterkey = key;
945 
946         tsk->audit_context  = context;
947         set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
948         return 0;
949 }
950 
951 static inline void audit_free_context(struct audit_context *context)
952 {
953         audit_free_names(context);
954         unroll_tree_refs(context, NULL, 0);
955         free_tree_refs(context);
956         audit_free_aux(context);
957         kfree(context->filterkey);
958         kfree(context->sockaddr);
959         audit_proctitle_free(context);
960         kfree(context);
961 }
962 
963 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
964                                  kuid_t auid, kuid_t uid, unsigned int sessionid,
965                                  u32 sid, char *comm)
966 {
967         struct audit_buffer *ab;
968         char *ctx = NULL;
969         u32 len;
970         int rc = 0;
971 
972         ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
973         if (!ab)
974                 return rc;
975 
976         audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
977                          from_kuid(&init_user_ns, auid),
978                          from_kuid(&init_user_ns, uid), sessionid);
979         if (sid) {
980                 if (security_secid_to_secctx(sid, &ctx, &len)) {
981                         audit_log_format(ab, " obj=(none)");
982                         rc = 1;
983                 } else {
984                         audit_log_format(ab, " obj=%s", ctx);
985                         security_release_secctx(ctx, len);
986                 }
987         }
988         audit_log_format(ab, " ocomm=");
989         audit_log_untrustedstring(ab, comm);
990         audit_log_end(ab);
991 
992         return rc;
993 }
994 
995 static void audit_log_execve_info(struct audit_context *context,
996                                   struct audit_buffer **ab)
997 {
998         long len_max;
999         long len_rem;
1000         long len_full;
1001         long len_buf;
1002         long len_abuf;
1003         long len_tmp;
1004         bool require_data;
1005         bool encode;
1006         unsigned int iter;
1007         unsigned int arg;
1008         char *buf_head;
1009         char *buf;
1010         const char __user *p = (const char __user *)current->mm->arg_start;
1011 
1012         /* NOTE: this buffer needs to be large enough to hold all the non-arg
1013          *       data we put in the audit record for this argument (see the
1014          *       code below) ... at this point in time 96 is plenty */
1015         char abuf[96];
1016 
1017         /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1018          *       current value of 7500 is not as important as the fact that it
1019          *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1020          *       room if we go over a little bit in the logging below */
1021         WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1022         len_max = MAX_EXECVE_AUDIT_LEN;
1023 
1024         /* scratch buffer to hold the userspace args */
1025         buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1026         if (!buf_head) {
1027                 audit_panic("out of memory for argv string");
1028                 return;
1029         }
1030         buf = buf_head;
1031 
1032         audit_log_format(*ab, "argc=%d", context->execve.argc);
1033 
1034         len_rem = len_max;
1035         len_buf = 0;
1036         len_full = 0;
1037         require_data = true;
1038         encode = false;
1039         iter = 0;
1040         arg = 0;
1041         do {
1042                 /* NOTE: we don't ever want to trust this value for anything
1043                  *       serious, but the audit record format insists we
1044                  *       provide an argument length for really long arguments,
1045                  *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1046                  *       to use strncpy_from_user() to obtain this value for
1047                  *       recording in the log, although we don't use it
1048                  *       anywhere here to avoid a double-fetch problem */
1049                 if (len_full == 0)
1050                         len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1051 
1052                 /* read more data from userspace */
1053                 if (require_data) {
1054                         /* can we make more room in the buffer? */
1055                         if (buf != buf_head) {
1056                                 memmove(buf_head, buf, len_buf);
1057                                 buf = buf_head;
1058                         }
1059 
1060                         /* fetch as much as we can of the argument */
1061                         len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1062                                                     len_max - len_buf);
1063                         if (len_tmp == -EFAULT) {
1064                                 /* unable to copy from userspace */
1065                                 send_sig(SIGKILL, current, 0);
1066                                 goto out;
1067                         } else if (len_tmp == (len_max - len_buf)) {
1068                                 /* buffer is not large enough */
1069                                 require_data = true;
1070                                 /* NOTE: if we are going to span multiple
1071                                  *       buffers force the encoding so we stand
1072                                  *       a chance at a sane len_full value and
1073                                  *       consistent record encoding */
1074                                 encode = true;
1075                                 len_full = len_full * 2;
1076                                 p += len_tmp;
1077                         } else {
1078                                 require_data = false;
1079                                 if (!encode)
1080                                         encode = audit_string_contains_control(
1081                                                                 buf, len_tmp);
1082                                 /* try to use a trusted value for len_full */
1083                                 if (len_full < len_max)
1084                                         len_full = (encode ?
1085                                                     len_tmp * 2 : len_tmp);
1086                                 p += len_tmp + 1;
1087                         }
1088                         len_buf += len_tmp;
1089                         buf_head[len_buf] = '\0';
1090 
1091                         /* length of the buffer in the audit record? */
1092                         len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1093                 }
1094 
1095                 /* write as much as we can to the audit log */
1096                 if (len_buf >= 0) {
1097                         /* NOTE: some magic numbers here - basically if we
1098                          *       can't fit a reasonable amount of data into the
1099                          *       existing audit buffer, flush it and start with
1100                          *       a new buffer */
1101                         if ((sizeof(abuf) + 8) > len_rem) {
1102                                 len_rem = len_max;
1103                                 audit_log_end(*ab);
1104                                 *ab = audit_log_start(context,
1105                                                       GFP_KERNEL, AUDIT_EXECVE);
1106                                 if (!*ab)
1107                                         goto out;
1108                         }
1109 
1110                         /* create the non-arg portion of the arg record */
1111                         len_tmp = 0;
1112                         if (require_data || (iter > 0) ||
1113                             ((len_abuf + sizeof(abuf)) > len_rem)) {
1114                                 if (iter == 0) {
1115                                         len_tmp += snprintf(&abuf[len_tmp],
1116                                                         sizeof(abuf) - len_tmp,
1117                                                         " a%d_len=%lu",
1118                                                         arg, len_full);
1119                                 }
1120                                 len_tmp += snprintf(&abuf[len_tmp],
1121                                                     sizeof(abuf) - len_tmp,
1122                                                     " a%d[%d]=", arg, iter++);
1123                         } else
1124                                 len_tmp += snprintf(&abuf[len_tmp],
1125                                                     sizeof(abuf) - len_tmp,
1126                                                     " a%d=", arg);
1127                         WARN_ON(len_tmp >= sizeof(abuf));
1128                         abuf[sizeof(abuf) - 1] = '\0';
1129 
1130                         /* log the arg in the audit record */
1131                         audit_log_format(*ab, "%s", abuf);
1132                         len_rem -= len_tmp;
1133                         len_tmp = len_buf;
1134                         if (encode) {
1135                                 if (len_abuf > len_rem)
1136                                         len_tmp = len_rem / 2; /* encoding */
1137                                 audit_log_n_hex(*ab, buf, len_tmp);
1138                                 len_rem -= len_tmp * 2;
1139                                 len_abuf -= len_tmp * 2;
1140                         } else {
1141                                 if (len_abuf > len_rem)
1142                                         len_tmp = len_rem - 2; /* quotes */
1143                                 audit_log_n_string(*ab, buf, len_tmp);
1144                                 len_rem -= len_tmp + 2;
1145                                 /* don't subtract the "2" because we still need
1146                                  * to add quotes to the remaining string */
1147                                 len_abuf -= len_tmp;
1148                         }
1149                         len_buf -= len_tmp;
1150                         buf += len_tmp;
1151                 }
1152 
1153                 /* ready to move to the next argument? */
1154                 if ((len_buf == 0) && !require_data) {
1155                         arg++;
1156                         iter = 0;
1157                         len_full = 0;
1158                         require_data = true;
1159                         encode = false;
1160                 }
1161         } while (arg < context->execve.argc);
1162 
1163         /* NOTE: the caller handles the final audit_log_end() call */
1164 
1165 out:
1166         kfree(buf_head);
1167 }
1168 
1169 static void show_special(struct audit_context *context, int *call_panic)
1170 {
1171         struct audit_buffer *ab;
1172         int i;
1173 
1174         ab = audit_log_start(context, GFP_KERNEL, context->type);
1175         if (!ab)
1176                 return;
1177 
1178         switch (context->type) {
1179         case AUDIT_SOCKETCALL: {
1180                 int nargs = context->socketcall.nargs;
1181                 audit_log_format(ab, "nargs=%d", nargs);
1182                 for (i = 0; i < nargs; i++)
1183                         audit_log_format(ab, " a%d=%lx", i,
1184                                 context->socketcall.args[i]);
1185                 break; }
1186         case AUDIT_IPC: {
1187                 u32 osid = context->ipc.osid;
1188 
1189                 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1190                                  from_kuid(&init_user_ns, context->ipc.uid),
1191                                  from_kgid(&init_user_ns, context->ipc.gid),
1192                                  context->ipc.mode);
1193                 if (osid) {
1194                         char *ctx = NULL;
1195                         u32 len;
1196                         if (security_secid_to_secctx(osid, &ctx, &len)) {
1197                                 audit_log_format(ab, " osid=%u", osid);
1198                                 *call_panic = 1;
1199                         } else {
1200                                 audit_log_format(ab, " obj=%s", ctx);
1201                                 security_release_secctx(ctx, len);
1202                         }
1203                 }
1204                 if (context->ipc.has_perm) {
1205                         audit_log_end(ab);
1206                         ab = audit_log_start(context, GFP_KERNEL,
1207                                              AUDIT_IPC_SET_PERM);
1208                         if (unlikely(!ab))
1209                                 return;
1210                         audit_log_format(ab,
1211                                 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1212                                 context->ipc.qbytes,
1213                                 context->ipc.perm_uid,
1214                                 context->ipc.perm_gid,
1215                                 context->ipc.perm_mode);
1216                 }
1217                 break; }
1218         case AUDIT_MQ_OPEN: {
1219                 audit_log_format(ab,
1220                         "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1221                         "mq_msgsize=%ld mq_curmsgs=%ld",
1222                         context->mq_open.oflag, context->mq_open.mode,
1223                         context->mq_open.attr.mq_flags,
1224                         context->mq_open.attr.mq_maxmsg,
1225                         context->mq_open.attr.mq_msgsize,
1226                         context->mq_open.attr.mq_curmsgs);
1227                 break; }
1228         case AUDIT_MQ_SENDRECV: {
1229                 audit_log_format(ab,
1230                         "mqdes=%d msg_len=%zd msg_prio=%u "
1231                         "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1232                         context->mq_sendrecv.mqdes,
1233                         context->mq_sendrecv.msg_len,
1234                         context->mq_sendrecv.msg_prio,
1235                         context->mq_sendrecv.abs_timeout.tv_sec,
1236                         context->mq_sendrecv.abs_timeout.tv_nsec);
1237                 break; }
1238         case AUDIT_MQ_NOTIFY: {
1239                 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1240                                 context->mq_notify.mqdes,
1241                                 context->mq_notify.sigev_signo);
1242                 break; }
1243         case AUDIT_MQ_GETSETATTR: {
1244                 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1245                 audit_log_format(ab,
1246                         "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1247                         "mq_curmsgs=%ld ",
1248                         context->mq_getsetattr.mqdes,
1249                         attr->mq_flags, attr->mq_maxmsg,
1250                         attr->mq_msgsize, attr->mq_curmsgs);
1251                 break; }
1252         case AUDIT_CAPSET: {
1253                 audit_log_format(ab, "pid=%d", context->capset.pid);
1254                 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1255                 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1256                 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1257                 break; }
1258         case AUDIT_MMAP: {
1259                 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1260                                  context->mmap.flags);
1261                 break; }
1262         case AUDIT_EXECVE: {
1263                 audit_log_execve_info(context, &ab);
1264                 break; }
1265         }
1266         audit_log_end(ab);
1267 }
1268 
1269 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1270 {
1271         char *end = proctitle + len - 1;
1272         while (end > proctitle && !isprint(*end))
1273                 end--;
1274 
1275         /* catch the case where proctitle is only 1 non-print character */
1276         len = end - proctitle + 1;
1277         len -= isprint(proctitle[len-1]) == 0;
1278         return len;
1279 }
1280 
1281 static void audit_log_proctitle(struct task_struct *tsk,
1282                          struct audit_context *context)
1283 {
1284         int res;
1285         char *buf;
1286         char *msg = "(null)";
1287         int len = strlen(msg);
1288         struct audit_buffer *ab;
1289 
1290         ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1291         if (!ab)
1292                 return; /* audit_panic or being filtered */
1293 
1294         audit_log_format(ab, "proctitle=");
1295 
1296         /* Not  cached */
1297         if (!context->proctitle.value) {
1298                 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1299                 if (!buf)
1300                         goto out;
1301                 /* Historically called this from procfs naming */
1302                 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1303                 if (res == 0) {
1304                         kfree(buf);
1305                         goto out;
1306                 }
1307                 res = audit_proctitle_rtrim(buf, res);
1308                 if (res == 0) {
1309                         kfree(buf);
1310                         goto out;
1311                 }
1312                 context->proctitle.value = buf;
1313                 context->proctitle.len = res;
1314         }
1315         msg = context->proctitle.value;
1316         len = context->proctitle.len;
1317 out:
1318         audit_log_n_untrustedstring(ab, msg, len);
1319         audit_log_end(ab);
1320 }
1321 
1322 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1323 {
1324         int i, call_panic = 0;
1325         struct audit_buffer *ab;
1326         struct audit_aux_data *aux;
1327         struct audit_names *n;
1328 
1329         /* tsk == current */
1330         context->personality = tsk->personality;
1331 
1332         ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1333         if (!ab)
1334                 return;         /* audit_panic has been called */
1335         audit_log_format(ab, "arch=%x syscall=%d",
1336                          context->arch, context->major);
1337         if (context->personality != PER_LINUX)
1338                 audit_log_format(ab, " per=%lx", context->personality);
1339         if (context->return_valid)
1340                 audit_log_format(ab, " success=%s exit=%ld",
1341                                  (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1342                                  context->return_code);
1343 
1344         audit_log_format(ab,
1345                          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1346                          context->argv[0],
1347                          context->argv[1],
1348                          context->argv[2],
1349                          context->argv[3],
1350                          context->name_count);
1351 
1352         audit_log_task_info(ab, tsk);
1353         audit_log_key(ab, context->filterkey);
1354         audit_log_end(ab);
1355 
1356         for (aux = context->aux; aux; aux = aux->next) {
1357 
1358                 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1359                 if (!ab)
1360                         continue; /* audit_panic has been called */
1361 
1362                 switch (aux->type) {
1363 
1364                 case AUDIT_BPRM_FCAPS: {
1365                         struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1366                         audit_log_format(ab, "fver=%x", axs->fcap_ver);
1367                         audit_log_cap(ab, "fp", &axs->fcap.permitted);
1368                         audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1369                         audit_log_format(ab, " fe=%d", axs->fcap.fE);
1370                         audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1371                         audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1372                         audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1373                         audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1374                         audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1375                         audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1376                         break; }
1377 
1378                 }
1379                 audit_log_end(ab);
1380         }
1381 
1382         if (context->type)
1383                 show_special(context, &call_panic);
1384 
1385         if (context->fds[0] >= 0) {
1386                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1387                 if (ab) {
1388                         audit_log_format(ab, "fd0=%d fd1=%d",
1389                                         context->fds[0], context->fds[1]);
1390                         audit_log_end(ab);
1391                 }
1392         }
1393 
1394         if (context->sockaddr_len) {
1395                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1396                 if (ab) {
1397                         audit_log_format(ab, "saddr=");
1398                         audit_log_n_hex(ab, (void *)context->sockaddr,
1399                                         context->sockaddr_len);
1400                         audit_log_end(ab);
1401                 }
1402         }
1403 
1404         for (aux = context->aux_pids; aux; aux = aux->next) {
1405                 struct audit_aux_data_pids *axs = (void *)aux;
1406 
1407                 for (i = 0; i < axs->pid_count; i++)
1408                         if (audit_log_pid_context(context, axs->target_pid[i],
1409                                                   axs->target_auid[i],
1410                                                   axs->target_uid[i],
1411                                                   axs->target_sessionid[i],
1412                                                   axs->target_sid[i],
1413                                                   axs->target_comm[i]))
1414                                 call_panic = 1;
1415         }
1416 
1417         if (context->target_pid &&
1418             audit_log_pid_context(context, context->target_pid,
1419                                   context->target_auid, context->target_uid,
1420                                   context->target_sessionid,
1421                                   context->target_sid, context->target_comm))
1422                         call_panic = 1;
1423 
1424         if (context->pwd.dentry && context->pwd.mnt) {
1425                 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1426                 if (ab) {
1427                         audit_log_d_path(ab, " cwd=", &context->pwd);
1428                         audit_log_end(ab);
1429                 }
1430         }
1431 
1432         i = 0;
1433         list_for_each_entry(n, &context->names_list, list) {
1434                 if (n->hidden)
1435                         continue;
1436                 audit_log_name(context, n, NULL, i++, &call_panic);
1437         }
1438 
1439         audit_log_proctitle(tsk, context);
1440 
1441         /* Send end of event record to help user space know we are finished */
1442         ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1443         if (ab)
1444                 audit_log_end(ab);
1445         if (call_panic)
1446                 audit_panic("error converting sid to string");
1447 }
1448 
1449 /**
1450  * audit_free - free a per-task audit context
1451  * @tsk: task whose audit context block to free
1452  *
1453  * Called from copy_process and do_exit
1454  */
1455 void __audit_free(struct task_struct *tsk)
1456 {
1457         struct audit_context *context;
1458 
1459         context = audit_take_context(tsk, 0, 0);
1460         if (!context)
1461                 return;
1462 
1463         /* Check for system calls that do not go through the exit
1464          * function (e.g., exit_group), then free context block.
1465          * We use GFP_ATOMIC here because we might be doing this
1466          * in the context of the idle thread */
1467         /* that can happen only if we are called from do_exit() */
1468         if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1469                 audit_log_exit(context, tsk);
1470         if (!list_empty(&context->killed_trees))
1471                 audit_kill_trees(&context->killed_trees);
1472 
1473         audit_free_context(context);
1474 }
1475 
1476 /**
1477  * audit_syscall_entry - fill in an audit record at syscall entry
1478  * @major: major syscall type (function)
1479  * @a1: additional syscall register 1
1480  * @a2: additional syscall register 2
1481  * @a3: additional syscall register 3
1482  * @a4: additional syscall register 4
1483  *
1484  * Fill in audit context at syscall entry.  This only happens if the
1485  * audit context was created when the task was created and the state or
1486  * filters demand the audit context be built.  If the state from the
1487  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1488  * then the record will be written at syscall exit time (otherwise, it
1489  * will only be written if another part of the kernel requests that it
1490  * be written).
1491  */
1492 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1493                            unsigned long a3, unsigned long a4)
1494 {
1495         struct task_struct *tsk = current;
1496         struct audit_context *context = tsk->audit_context;
1497         enum audit_state     state;
1498 
1499         if (!context)
1500                 return;
1501 
1502         BUG_ON(context->in_syscall || context->name_count);
1503 
1504         if (!audit_enabled)
1505                 return;
1506 
1507         context->arch       = syscall_get_arch();
1508         context->major      = major;
1509         context->argv[0]    = a1;
1510         context->argv[1]    = a2;
1511         context->argv[2]    = a3;
1512         context->argv[3]    = a4;
1513 
1514         state = context->state;
1515         context->dummy = !audit_n_rules;
1516         if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1517                 context->prio = 0;
1518                 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1519         }
1520         if (state == AUDIT_DISABLED)
1521                 return;
1522 
1523         context->serial     = 0;
1524         context->ctime      = CURRENT_TIME;
1525         context->in_syscall = 1;
1526         context->current_state  = state;
1527         context->ppid       = 0;
1528 }
1529 
1530 /**
1531  * audit_syscall_exit - deallocate audit context after a system call
1532  * @success: success value of the syscall
1533  * @return_code: return value of the syscall
1534  *
1535  * Tear down after system call.  If the audit context has been marked as
1536  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1537  * filtering, or because some other part of the kernel wrote an audit
1538  * message), then write out the syscall information.  In call cases,
1539  * free the names stored from getname().
1540  */
1541 void __audit_syscall_exit(int success, long return_code)
1542 {
1543         struct task_struct *tsk = current;
1544         struct audit_context *context;
1545 
1546         if (success)
1547                 success = AUDITSC_SUCCESS;
1548         else
1549                 success = AUDITSC_FAILURE;
1550 
1551         context = audit_take_context(tsk, success, return_code);
1552         if (!context)
1553                 return;
1554 
1555         if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1556                 audit_log_exit(context, tsk);
1557 
1558         context->in_syscall = 0;
1559         context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1560 
1561         if (!list_empty(&context->killed_trees))
1562                 audit_kill_trees(&context->killed_trees);
1563 
1564         audit_free_names(context);
1565         unroll_tree_refs(context, NULL, 0);
1566         audit_free_aux(context);
1567         context->aux = NULL;
1568         context->aux_pids = NULL;
1569         context->target_pid = 0;
1570         context->target_sid = 0;
1571         context->sockaddr_len = 0;
1572         context->type = 0;
1573         context->fds[0] = -1;
1574         if (context->state != AUDIT_RECORD_CONTEXT) {
1575                 kfree(context->filterkey);
1576                 context->filterkey = NULL;
1577         }
1578         tsk->audit_context = context;
1579 }
1580 
1581 static inline void handle_one(const struct inode *inode)
1582 {
1583 #ifdef CONFIG_AUDIT_TREE
1584         struct audit_context *context;
1585         struct audit_tree_refs *p;
1586         struct audit_chunk *chunk;
1587         int count;
1588         if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1589                 return;
1590         context = current->audit_context;
1591         p = context->trees;
1592         count = context->tree_count;
1593         rcu_read_lock();
1594         chunk = audit_tree_lookup(inode);
1595         rcu_read_unlock();
1596         if (!chunk)
1597                 return;
1598         if (likely(put_tree_ref(context, chunk)))
1599                 return;
1600         if (unlikely(!grow_tree_refs(context))) {
1601                 pr_warn("out of memory, audit has lost a tree reference\n");
1602                 audit_set_auditable(context);
1603                 audit_put_chunk(chunk);
1604                 unroll_tree_refs(context, p, count);
1605                 return;
1606         }
1607         put_tree_ref(context, chunk);
1608 #endif
1609 }
1610 
1611 static void handle_path(const struct dentry *dentry)
1612 {
1613 #ifdef CONFIG_AUDIT_TREE
1614         struct audit_context *context;
1615         struct audit_tree_refs *p;
1616         const struct dentry *d, *parent;
1617         struct audit_chunk *drop;
1618         unsigned long seq;
1619         int count;
1620 
1621         context = current->audit_context;
1622         p = context->trees;
1623         count = context->tree_count;
1624 retry:
1625         drop = NULL;
1626         d = dentry;
1627         rcu_read_lock();
1628         seq = read_seqbegin(&rename_lock);
1629         for(;;) {
1630                 struct inode *inode = d_backing_inode(d);
1631                 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1632                         struct audit_chunk *chunk;
1633                         chunk = audit_tree_lookup(inode);
1634                         if (chunk) {
1635                                 if (unlikely(!put_tree_ref(context, chunk))) {
1636                                         drop = chunk;
1637                                         break;
1638                                 }
1639                         }
1640                 }
1641                 parent = d->d_parent;
1642                 if (parent == d)
1643                         break;
1644                 d = parent;
1645         }
1646         if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1647                 rcu_read_unlock();
1648                 if (!drop) {
1649                         /* just a race with rename */
1650                         unroll_tree_refs(context, p, count);
1651                         goto retry;
1652                 }
1653                 audit_put_chunk(drop);
1654                 if (grow_tree_refs(context)) {
1655                         /* OK, got more space */
1656                         unroll_tree_refs(context, p, count);
1657                         goto retry;
1658                 }
1659                 /* too bad */
1660                 pr_warn("out of memory, audit has lost a tree reference\n");
1661                 unroll_tree_refs(context, p, count);
1662                 audit_set_auditable(context);
1663                 return;
1664         }
1665         rcu_read_unlock();
1666 #endif
1667 }
1668 
1669 static struct audit_names *audit_alloc_name(struct audit_context *context,
1670                                                 unsigned char type)
1671 {
1672         struct audit_names *aname;
1673 
1674         if (context->name_count < AUDIT_NAMES) {
1675                 aname = &context->preallocated_names[context->name_count];
1676                 memset(aname, 0, sizeof(*aname));
1677         } else {
1678                 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1679                 if (!aname)
1680                         return NULL;
1681                 aname->should_free = true;
1682         }
1683 
1684         aname->ino = AUDIT_INO_UNSET;
1685         aname->type = type;
1686         list_add_tail(&aname->list, &context->names_list);
1687 
1688         context->name_count++;
1689         return aname;
1690 }
1691 
1692 /**
1693  * audit_reusename - fill out filename with info from existing entry
1694  * @uptr: userland ptr to pathname
1695  *
1696  * Search the audit_names list for the current audit context. If there is an
1697  * existing entry with a matching "uptr" then return the filename
1698  * associated with that audit_name. If not, return NULL.
1699  */
1700 struct filename *
1701 __audit_reusename(const __user char *uptr)
1702 {
1703         struct audit_context *context = current->audit_context;
1704         struct audit_names *n;
1705 
1706         list_for_each_entry(n, &context->names_list, list) {
1707                 if (!n->name)
1708                         continue;
1709                 if (n->name->uptr == uptr) {
1710                         n->name->refcnt++;
1711                         return n->name;
1712                 }
1713         }
1714         return NULL;
1715 }
1716 
1717 /**
1718  * audit_getname - add a name to the list
1719  * @name: name to add
1720  *
1721  * Add a name to the list of audit names for this context.
1722  * Called from fs/namei.c:getname().
1723  */
1724 void __audit_getname(struct filename *name)
1725 {
1726         struct audit_context *context = current->audit_context;
1727         struct audit_names *n;
1728 
1729         if (!context->in_syscall)
1730                 return;
1731 
1732         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1733         if (!n)
1734                 return;
1735 
1736         n->name = name;
1737         n->name_len = AUDIT_NAME_FULL;
1738         name->aname = n;
1739         name->refcnt++;
1740 
1741         if (!context->pwd.dentry)
1742                 get_fs_pwd(current->fs, &context->pwd);
1743 }
1744 
1745 /**
1746  * __audit_inode - store the inode and device from a lookup
1747  * @name: name being audited
1748  * @dentry: dentry being audited
1749  * @flags: attributes for this particular entry
1750  */
1751 void __audit_inode(struct filename *name, const struct dentry *dentry,
1752                    unsigned int flags)
1753 {
1754         struct audit_context *context = current->audit_context;
1755         const struct inode *inode = d_backing_inode(dentry);
1756         struct audit_names *n;
1757         bool parent = flags & AUDIT_INODE_PARENT;
1758 
1759         if (!context->in_syscall)
1760                 return;
1761 
1762         if (!name)
1763                 goto out_alloc;
1764 
1765         /*
1766          * If we have a pointer to an audit_names entry already, then we can
1767          * just use it directly if the type is correct.
1768          */
1769         n = name->aname;
1770         if (n) {
1771                 if (parent) {
1772                         if (n->type == AUDIT_TYPE_PARENT ||
1773                             n->type == AUDIT_TYPE_UNKNOWN)
1774                                 goto out;
1775                 } else {
1776                         if (n->type != AUDIT_TYPE_PARENT)
1777                                 goto out;
1778                 }
1779         }
1780 
1781         list_for_each_entry_reverse(n, &context->names_list, list) {
1782                 if (n->ino) {
1783                         /* valid inode number, use that for the comparison */
1784                         if (n->ino != inode->i_ino ||
1785                             n->dev != inode->i_sb->s_dev)
1786                                 continue;
1787                 } else if (n->name) {
1788                         /* inode number has not been set, check the name */
1789                         if (strcmp(n->name->name, name->name))
1790                                 continue;
1791                 } else
1792                         /* no inode and no name (?!) ... this is odd ... */
1793                         continue;
1794 
1795                 /* match the correct record type */
1796                 if (parent) {
1797                         if (n->type == AUDIT_TYPE_PARENT ||
1798                             n->type == AUDIT_TYPE_UNKNOWN)
1799                                 goto out;
1800                 } else {
1801                         if (n->type != AUDIT_TYPE_PARENT)
1802                                 goto out;
1803                 }
1804         }
1805 
1806 out_alloc:
1807         /* unable to find an entry with both a matching name and type */
1808         n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1809         if (!n)
1810                 return;
1811         if (name) {
1812                 n->name = name;
1813                 name->refcnt++;
1814         }
1815 
1816 out:
1817         if (parent) {
1818                 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1819                 n->type = AUDIT_TYPE_PARENT;
1820                 if (flags & AUDIT_INODE_HIDDEN)
1821                         n->hidden = true;
1822         } else {
1823                 n->name_len = AUDIT_NAME_FULL;
1824                 n->type = AUDIT_TYPE_NORMAL;
1825         }
1826         handle_path(dentry);
1827         audit_copy_inode(n, dentry, inode);
1828 }
1829 
1830 void __audit_file(const struct file *file)
1831 {
1832         __audit_inode(NULL, file->f_path.dentry, 0);
1833 }
1834 
1835 /**
1836  * __audit_inode_child - collect inode info for created/removed objects
1837  * @parent: inode of dentry parent
1838  * @dentry: dentry being audited
1839  * @type:   AUDIT_TYPE_* value that we're looking for
1840  *
1841  * For syscalls that create or remove filesystem objects, audit_inode
1842  * can only collect information for the filesystem object's parent.
1843  * This call updates the audit context with the child's information.
1844  * Syscalls that create a new filesystem object must be hooked after
1845  * the object is created.  Syscalls that remove a filesystem object
1846  * must be hooked prior, in order to capture the target inode during
1847  * unsuccessful attempts.
1848  */
1849 void __audit_inode_child(const struct inode *parent,
1850                          const struct dentry *dentry,
1851                          const unsigned char type)
1852 {
1853         struct audit_context *context = current->audit_context;
1854         const struct inode *inode = d_backing_inode(dentry);
1855         const char *dname = dentry->d_name.name;
1856         struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1857 
1858         if (!context->in_syscall)
1859                 return;
1860 
1861         if (inode)
1862                 handle_one(inode);
1863 
1864         /* look for a parent entry first */
1865         list_for_each_entry(n, &context->names_list, list) {
1866                 if (!n->name ||
1867                     (n->type != AUDIT_TYPE_PARENT &&
1868                      n->type != AUDIT_TYPE_UNKNOWN))
1869                         continue;
1870 
1871                 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1872                     !audit_compare_dname_path(dname,
1873                                               n->name->name, n->name_len)) {
1874                         if (n->type == AUDIT_TYPE_UNKNOWN)
1875                                 n->type = AUDIT_TYPE_PARENT;
1876                         found_parent = n;
1877                         break;
1878                 }
1879         }
1880 
1881         /* is there a matching child entry? */
1882         list_for_each_entry(n, &context->names_list, list) {
1883                 /* can only match entries that have a name */
1884                 if (!n->name ||
1885                     (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1886                         continue;
1887 
1888                 if (!strcmp(dname, n->name->name) ||
1889                     !audit_compare_dname_path(dname, n->name->name,
1890                                                 found_parent ?
1891                                                 found_parent->name_len :
1892                                                 AUDIT_NAME_FULL)) {
1893                         if (n->type == AUDIT_TYPE_UNKNOWN)
1894                                 n->type = type;
1895                         found_child = n;
1896                         break;
1897                 }
1898         }
1899 
1900         if (!found_parent) {
1901                 /* create a new, "anonymous" parent record */
1902                 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1903                 if (!n)
1904                         return;
1905                 audit_copy_inode(n, NULL, parent);
1906         }
1907 
1908         if (!found_child) {
1909                 found_child = audit_alloc_name(context, type);
1910                 if (!found_child)
1911                         return;
1912 
1913                 /* Re-use the name belonging to the slot for a matching parent
1914                  * directory. All names for this context are relinquished in
1915                  * audit_free_names() */
1916                 if (found_parent) {
1917                         found_child->name = found_parent->name;
1918                         found_child->name_len = AUDIT_NAME_FULL;
1919                         found_child->name->refcnt++;
1920                 }
1921         }
1922 
1923         if (inode)
1924                 audit_copy_inode(found_child, dentry, inode);
1925         else
1926                 found_child->ino = AUDIT_INO_UNSET;
1927 }
1928 EXPORT_SYMBOL_GPL(__audit_inode_child);
1929 
1930 /**
1931  * auditsc_get_stamp - get local copies of audit_context values
1932  * @ctx: audit_context for the task
1933  * @t: timespec to store time recorded in the audit_context
1934  * @serial: serial value that is recorded in the audit_context
1935  *
1936  * Also sets the context as auditable.
1937  */
1938 int auditsc_get_stamp(struct audit_context *ctx,
1939                        struct timespec *t, unsigned int *serial)
1940 {
1941         if (!ctx->in_syscall)
1942                 return 0;
1943         if (!ctx->serial)
1944                 ctx->serial = audit_serial();
1945         t->tv_sec  = ctx->ctime.tv_sec;
1946         t->tv_nsec = ctx->ctime.tv_nsec;
1947         *serial    = ctx->serial;
1948         if (!ctx->prio) {
1949                 ctx->prio = 1;
1950                 ctx->current_state = AUDIT_RECORD_CONTEXT;
1951         }
1952         return 1;
1953 }
1954 
1955 /* global counter which is incremented every time something logs in */
1956 static atomic_t session_id = ATOMIC_INIT(0);
1957 
1958 static int audit_set_loginuid_perm(kuid_t loginuid)
1959 {
1960         /* if we are unset, we don't need privs */
1961         if (!audit_loginuid_set(current))
1962                 return 0;
1963         /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1964         if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1965                 return -EPERM;
1966         /* it is set, you need permission */
1967         if (!capable(CAP_AUDIT_CONTROL))
1968                 return -EPERM;
1969         /* reject if this is not an unset and we don't allow that */
1970         if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1971                 return -EPERM;
1972         return 0;
1973 }
1974 
1975 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1976                                    unsigned int oldsessionid, unsigned int sessionid,
1977                                    int rc)
1978 {
1979         struct audit_buffer *ab;
1980         uid_t uid, oldloginuid, loginuid;
1981         struct tty_struct *tty;
1982 
1983         if (!audit_enabled)
1984                 return;
1985 
1986         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1987         if (!ab)
1988                 return;
1989 
1990         uid = from_kuid(&init_user_ns, task_uid(current));
1991         oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1992         loginuid = from_kuid(&init_user_ns, kloginuid),
1993         tty = audit_get_tty(current);
1994 
1995         audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1996         audit_log_task_context(ab);
1997         audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1998                          oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
1999                          oldsessionid, sessionid, !rc);
2000         audit_put_tty(tty);
2001         audit_log_end(ab);
2002 }
2003 
2004 /**
2005  * audit_set_loginuid - set current task's audit_context loginuid
2006  * @loginuid: loginuid value
2007  *
2008  * Returns 0.
2009  *
2010  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2011  */
2012 int audit_set_loginuid(kuid_t loginuid)
2013 {
2014         struct task_struct *task = current;
2015         unsigned int oldsessionid, sessionid = (unsigned int)-1;
2016         kuid_t oldloginuid;
2017         int rc;
2018 
2019         oldloginuid = audit_get_loginuid(current);
2020         oldsessionid = audit_get_sessionid(current);
2021 
2022         rc = audit_set_loginuid_perm(loginuid);
2023         if (rc)
2024                 goto out;
2025 
2026         /* are we setting or clearing? */
2027         if (uid_valid(loginuid))
2028                 sessionid = (unsigned int)atomic_inc_return(&session_id);
2029 
2030         task->sessionid = sessionid;
2031         task->loginuid = loginuid;
2032 out:
2033         audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2034         return rc;
2035 }
2036 
2037 /**
2038  * __audit_mq_open - record audit data for a POSIX MQ open
2039  * @oflag: open flag
2040  * @mode: mode bits
2041  * @attr: queue attributes
2042  *
2043  */
2044 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2045 {
2046         struct audit_context *context = current->audit_context;
2047 
2048         if (attr)
2049                 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2050         else
2051                 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2052 
2053         context->mq_open.oflag = oflag;
2054         context->mq_open.mode = mode;
2055 
2056         context->type = AUDIT_MQ_OPEN;
2057 }
2058 
2059 /**
2060  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2061  * @mqdes: MQ descriptor
2062  * @msg_len: Message length
2063  * @msg_prio: Message priority
2064  * @abs_timeout: Message timeout in absolute time
2065  *
2066  */
2067 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2068                         const struct timespec *abs_timeout)
2069 {
2070         struct audit_context *context = current->audit_context;
2071         struct timespec *p = &context->mq_sendrecv.abs_timeout;
2072 
2073         if (abs_timeout)
2074                 memcpy(p, abs_timeout, sizeof(struct timespec));
2075         else
2076                 memset(p, 0, sizeof(struct timespec));
2077 
2078         context->mq_sendrecv.mqdes = mqdes;
2079         context->mq_sendrecv.msg_len = msg_len;
2080         context->mq_sendrecv.msg_prio = msg_prio;
2081 
2082         context->type = AUDIT_MQ_SENDRECV;
2083 }
2084 
2085 /**
2086  * __audit_mq_notify - record audit data for a POSIX MQ notify
2087  * @mqdes: MQ descriptor
2088  * @notification: Notification event
2089  *
2090  */
2091 
2092 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2093 {
2094         struct audit_context *context = current->audit_context;
2095 
2096         if (notification)
2097                 context->mq_notify.sigev_signo = notification->sigev_signo;
2098         else
2099                 context->mq_notify.sigev_signo = 0;
2100 
2101         context->mq_notify.mqdes = mqdes;
2102         context->type = AUDIT_MQ_NOTIFY;
2103 }
2104 
2105 /**
2106  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2107  * @mqdes: MQ descriptor
2108  * @mqstat: MQ flags
2109  *
2110  */
2111 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2112 {
2113         struct audit_context *context = current->audit_context;
2114         context->mq_getsetattr.mqdes = mqdes;
2115         context->mq_getsetattr.mqstat = *mqstat;
2116         context->type = AUDIT_MQ_GETSETATTR;
2117 }
2118 
2119 /**
2120  * audit_ipc_obj - record audit data for ipc object
2121  * @ipcp: ipc permissions
2122  *
2123  */
2124 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2125 {
2126         struct audit_context *context = current->audit_context;
2127         context->ipc.uid = ipcp->uid;
2128         context->ipc.gid = ipcp->gid;
2129         context->ipc.mode = ipcp->mode;
2130         context->ipc.has_perm = 0;
2131         security_ipc_getsecid(ipcp, &context->ipc.osid);
2132         context->type = AUDIT_IPC;
2133 }
2134 
2135 /**
2136  * audit_ipc_set_perm - record audit data for new ipc permissions
2137  * @qbytes: msgq bytes
2138  * @uid: msgq user id
2139  * @gid: msgq group id
2140  * @mode: msgq mode (permissions)
2141  *
2142  * Called only after audit_ipc_obj().
2143  */
2144 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2145 {
2146         struct audit_context *context = current->audit_context;
2147 
2148         context->ipc.qbytes = qbytes;
2149         context->ipc.perm_uid = uid;
2150         context->ipc.perm_gid = gid;
2151         context->ipc.perm_mode = mode;
2152         context->ipc.has_perm = 1;
2153 }
2154 
2155 void __audit_bprm(struct linux_binprm *bprm)
2156 {
2157         struct audit_context *context = current->audit_context;
2158 
2159         context->type = AUDIT_EXECVE;
2160         context->execve.argc = bprm->argc;
2161 }
2162 
2163 
2164 /**
2165  * audit_socketcall - record audit data for sys_socketcall
2166  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2167  * @args: args array
2168  *
2169  */
2170 int __audit_socketcall(int nargs, unsigned long *args)
2171 {
2172         struct audit_context *context = current->audit_context;
2173 
2174         if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2175                 return -EINVAL;
2176         context->type = AUDIT_SOCKETCALL;
2177         context->socketcall.nargs = nargs;
2178         memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2179         return 0;
2180 }
2181 
2182 /**
2183  * __audit_fd_pair - record audit data for pipe and socketpair
2184  * @fd1: the first file descriptor
2185  * @fd2: the second file descriptor
2186  *
2187  */
2188 void __audit_fd_pair(int fd1, int fd2)
2189 {
2190         struct audit_context *context = current->audit_context;
2191         context->fds[0] = fd1;
2192         context->fds[1] = fd2;
2193 }
2194 
2195 /**
2196  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2197  * @len: data length in user space
2198  * @a: data address in kernel space
2199  *
2200  * Returns 0 for success or NULL context or < 0 on error.
2201  */
2202 int __audit_sockaddr(int len, void *a)
2203 {
2204         struct audit_context *context = current->audit_context;
2205 
2206         if (!context->sockaddr) {
2207                 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2208                 if (!p)
2209                         return -ENOMEM;
2210                 context->sockaddr = p;
2211         }
2212 
2213         context->sockaddr_len = len;
2214         memcpy(context->sockaddr, a, len);
2215         return 0;
2216 }
2217 
2218 void __audit_ptrace(struct task_struct *t)
2219 {
2220         struct audit_context *context = current->audit_context;
2221 
2222         context->target_pid = task_pid_nr(t);
2223         context->target_auid = audit_get_loginuid(t);
2224         context->target_uid = task_uid(t);
2225         context->target_sessionid = audit_get_sessionid(t);
2226         security_task_getsecid(t, &context->target_sid);
2227         memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2228 }
2229 
2230 /**
2231  * audit_signal_info - record signal info for shutting down audit subsystem
2232  * @sig: signal value
2233  * @t: task being signaled
2234  *
2235  * If the audit subsystem is being terminated, record the task (pid)
2236  * and uid that is doing that.
2237  */
2238 int __audit_signal_info(int sig, struct task_struct *t)
2239 {
2240         struct audit_aux_data_pids *axp;
2241         struct task_struct *tsk = current;
2242         struct audit_context *ctx = tsk->audit_context;
2243         kuid_t uid = current_uid(), t_uid = task_uid(t);
2244 
2245         if (audit_pid && t->tgid == audit_pid) {
2246                 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2247                         audit_sig_pid = task_pid_nr(tsk);
2248                         if (uid_valid(tsk->loginuid))
2249                                 audit_sig_uid = tsk->loginuid;
2250                         else
2251                                 audit_sig_uid = uid;
2252                         security_task_getsecid(tsk, &audit_sig_sid);
2253                 }
2254                 if (!audit_signals || audit_dummy_context())
2255                         return 0;
2256         }
2257 
2258         /* optimize the common case by putting first signal recipient directly
2259          * in audit_context */
2260         if (!ctx->target_pid) {
2261                 ctx->target_pid = task_tgid_nr(t);
2262                 ctx->target_auid = audit_get_loginuid(t);
2263                 ctx->target_uid = t_uid;
2264                 ctx->target_sessionid = audit_get_sessionid(t);
2265                 security_task_getsecid(t, &ctx->target_sid);
2266                 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2267                 return 0;
2268         }
2269 
2270         axp = (void *)ctx->aux_pids;
2271         if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2272                 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2273                 if (!axp)
2274                         return -ENOMEM;
2275 
2276                 axp->d.type = AUDIT_OBJ_PID;
2277                 axp->d.next = ctx->aux_pids;
2278                 ctx->aux_pids = (void *)axp;
2279         }
2280         BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2281 
2282         axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2283         axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2284         axp->target_uid[axp->pid_count] = t_uid;
2285         axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2286         security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2287         memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2288         axp->pid_count++;
2289 
2290         return 0;
2291 }
2292 
2293 /**
2294  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2295  * @bprm: pointer to the bprm being processed
2296  * @new: the proposed new credentials
2297  * @old: the old credentials
2298  *
2299  * Simply check if the proc already has the caps given by the file and if not
2300  * store the priv escalation info for later auditing at the end of the syscall
2301  *
2302  * -Eric
2303  */
2304 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2305                            const struct cred *new, const struct cred *old)
2306 {
2307         struct audit_aux_data_bprm_fcaps *ax;
2308         struct audit_context *context = current->audit_context;
2309         struct cpu_vfs_cap_data vcaps;
2310 
2311         ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2312         if (!ax)
2313                 return -ENOMEM;
2314 
2315         ax->d.type = AUDIT_BPRM_FCAPS;
2316         ax->d.next = context->aux;
2317         context->aux = (void *)ax;
2318 
2319         get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2320 
2321         ax->fcap.permitted = vcaps.permitted;
2322         ax->fcap.inheritable = vcaps.inheritable;
2323         ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2324         ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2325 
2326         ax->old_pcap.permitted   = old->cap_permitted;
2327         ax->old_pcap.inheritable = old->cap_inheritable;
2328         ax->old_pcap.effective   = old->cap_effective;
2329 
2330         ax->new_pcap.permitted   = new->cap_permitted;
2331         ax->new_pcap.inheritable = new->cap_inheritable;
2332         ax->new_pcap.effective   = new->cap_effective;
2333         return 0;
2334 }
2335 
2336 /**
2337  * __audit_log_capset - store information about the arguments to the capset syscall
2338  * @new: the new credentials
2339  * @old: the old (current) credentials
2340  *
2341  * Record the arguments userspace sent to sys_capset for later printing by the
2342  * audit system if applicable
2343  */
2344 void __audit_log_capset(const struct cred *new, const struct cred *old)
2345 {
2346         struct audit_context *context = current->audit_context;
2347         context->capset.pid = task_pid_nr(current);
2348         context->capset.cap.effective   = new->cap_effective;
2349         context->capset.cap.inheritable = new->cap_effective;
2350         context->capset.cap.permitted   = new->cap_permitted;
2351         context->type = AUDIT_CAPSET;
2352 }
2353 
2354 void __audit_mmap_fd(int fd, int flags)
2355 {
2356         struct audit_context *context = current->audit_context;
2357         context->mmap.fd = fd;
2358         context->mmap.flags = flags;
2359         context->type = AUDIT_MMAP;
2360 }
2361 
2362 static void audit_log_task(struct audit_buffer *ab)
2363 {
2364         kuid_t auid, uid;
2365         kgid_t gid;
2366         unsigned int sessionid;
2367         char comm[sizeof(current->comm)];
2368 
2369         auid = audit_get_loginuid(current);
2370         sessionid = audit_get_sessionid(current);
2371         current_uid_gid(&uid, &gid);
2372 
2373         audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2374                          from_kuid(&init_user_ns, auid),
2375                          from_kuid(&init_user_ns, uid),
2376                          from_kgid(&init_user_ns, gid),
2377                          sessionid);
2378         audit_log_task_context(ab);
2379         audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2380         audit_log_untrustedstring(ab, get_task_comm(comm, current));
2381         audit_log_d_path_exe(ab, current->mm);
2382 }
2383 
2384 /**
2385  * audit_core_dumps - record information about processes that end abnormally
2386  * @signr: signal value
2387  *
2388  * If a process ends with a core dump, something fishy is going on and we
2389  * should record the event for investigation.
2390  */
2391 void audit_core_dumps(long signr)
2392 {
2393         struct audit_buffer *ab;
2394 
2395         if (!audit_enabled)
2396                 return;
2397 
2398         if (signr == SIGQUIT)   /* don't care for those */
2399                 return;
2400 
2401         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2402         if (unlikely(!ab))
2403                 return;
2404         audit_log_task(ab);
2405         audit_log_format(ab, " sig=%ld", signr);
2406         audit_log_end(ab);
2407 }
2408 
2409 void __audit_seccomp(unsigned long syscall, long signr, int code)
2410 {
2411         struct audit_buffer *ab;
2412 
2413         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2414         if (unlikely(!ab))
2415                 return;
2416         audit_log_task(ab);
2417         audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2418                          signr, syscall_get_arch(), syscall, is_compat_task(),
2419                          KSTK_EIP(current), code);
2420         audit_log_end(ab);
2421 }
2422 
2423 struct list_head *audit_killed_trees(void)
2424 {
2425         struct audit_context *ctx = current->audit_context;
2426         if (likely(!ctx || !ctx->in_syscall))
2427                 return NULL;
2428         return &ctx->killed_trees;
2429 }
2430 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp