1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret; 440 int perf_cpu = sysctl_perf_cpu_time_max_percent; 441 /* 442 * If throttling is disabled don't allow the write: 443 */ 444 if (write && (perf_cpu == 100 || perf_cpu == 0)) 445 return -EINVAL; 446 447 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 448 if (ret || !write) 449 return ret; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add an event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove an event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable an event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable an event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on an event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 static int perf_event_modify_attr(struct perf_event *event, 2878 struct perf_event_attr *attr) 2879 { 2880 if (event->attr.type != attr->type) 2881 return -EINVAL; 2882 2883 switch (event->attr.type) { 2884 case PERF_TYPE_BREAKPOINT: 2885 return perf_event_modify_breakpoint(event, attr); 2886 default: 2887 /* Place holder for future additions. */ 2888 return -EOPNOTSUPP; 2889 } 2890 } 2891 2892 static void ctx_sched_out(struct perf_event_context *ctx, 2893 struct perf_cpu_context *cpuctx, 2894 enum event_type_t event_type) 2895 { 2896 struct perf_event *event, *tmp; 2897 int is_active = ctx->is_active; 2898 2899 lockdep_assert_held(&ctx->lock); 2900 2901 if (likely(!ctx->nr_events)) { 2902 /* 2903 * See __perf_remove_from_context(). 2904 */ 2905 WARN_ON_ONCE(ctx->is_active); 2906 if (ctx->task) 2907 WARN_ON_ONCE(cpuctx->task_ctx); 2908 return; 2909 } 2910 2911 ctx->is_active &= ~event_type; 2912 if (!(ctx->is_active & EVENT_ALL)) 2913 ctx->is_active = 0; 2914 2915 if (ctx->task) { 2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2917 if (!ctx->is_active) 2918 cpuctx->task_ctx = NULL; 2919 } 2920 2921 /* 2922 * Always update time if it was set; not only when it changes. 2923 * Otherwise we can 'forget' to update time for any but the last 2924 * context we sched out. For example: 2925 * 2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2927 * ctx_sched_out(.event_type = EVENT_PINNED) 2928 * 2929 * would only update time for the pinned events. 2930 */ 2931 if (is_active & EVENT_TIME) { 2932 /* update (and stop) ctx time */ 2933 update_context_time(ctx); 2934 update_cgrp_time_from_cpuctx(cpuctx); 2935 } 2936 2937 is_active ^= ctx->is_active; /* changed bits */ 2938 2939 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2940 return; 2941 2942 perf_pmu_disable(ctx->pmu); 2943 if (is_active & EVENT_PINNED) { 2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2945 group_sched_out(event, cpuctx, ctx); 2946 } 2947 2948 if (is_active & EVENT_FLEXIBLE) { 2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 perf_pmu_enable(ctx->pmu); 2953 } 2954 2955 /* 2956 * Test whether two contexts are equivalent, i.e. whether they have both been 2957 * cloned from the same version of the same context. 2958 * 2959 * Equivalence is measured using a generation number in the context that is 2960 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2961 * and list_del_event(). 2962 */ 2963 static int context_equiv(struct perf_event_context *ctx1, 2964 struct perf_event_context *ctx2) 2965 { 2966 lockdep_assert_held(&ctx1->lock); 2967 lockdep_assert_held(&ctx2->lock); 2968 2969 /* Pinning disables the swap optimization */ 2970 if (ctx1->pin_count || ctx2->pin_count) 2971 return 0; 2972 2973 /* If ctx1 is the parent of ctx2 */ 2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2975 return 1; 2976 2977 /* If ctx2 is the parent of ctx1 */ 2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2979 return 1; 2980 2981 /* 2982 * If ctx1 and ctx2 have the same parent; we flatten the parent 2983 * hierarchy, see perf_event_init_context(). 2984 */ 2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2986 ctx1->parent_gen == ctx2->parent_gen) 2987 return 1; 2988 2989 /* Unmatched */ 2990 return 0; 2991 } 2992 2993 static void __perf_event_sync_stat(struct perf_event *event, 2994 struct perf_event *next_event) 2995 { 2996 u64 value; 2997 2998 if (!event->attr.inherit_stat) 2999 return; 3000 3001 /* 3002 * Update the event value, we cannot use perf_event_read() 3003 * because we're in the middle of a context switch and have IRQs 3004 * disabled, which upsets smp_call_function_single(), however 3005 * we know the event must be on the current CPU, therefore we 3006 * don't need to use it. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ACTIVE) 3009 event->pmu->read(event); 3010 3011 perf_event_update_time(event); 3012 3013 /* 3014 * In order to keep per-task stats reliable we need to flip the event 3015 * values when we flip the contexts. 3016 */ 3017 value = local64_read(&next_event->count); 3018 value = local64_xchg(&event->count, value); 3019 local64_set(&next_event->count, value); 3020 3021 swap(event->total_time_enabled, next_event->total_time_enabled); 3022 swap(event->total_time_running, next_event->total_time_running); 3023 3024 /* 3025 * Since we swizzled the values, update the user visible data too. 3026 */ 3027 perf_event_update_userpage(event); 3028 perf_event_update_userpage(next_event); 3029 } 3030 3031 static void perf_event_sync_stat(struct perf_event_context *ctx, 3032 struct perf_event_context *next_ctx) 3033 { 3034 struct perf_event *event, *next_event; 3035 3036 if (!ctx->nr_stat) 3037 return; 3038 3039 update_context_time(ctx); 3040 3041 event = list_first_entry(&ctx->event_list, 3042 struct perf_event, event_entry); 3043 3044 next_event = list_first_entry(&next_ctx->event_list, 3045 struct perf_event, event_entry); 3046 3047 while (&event->event_entry != &ctx->event_list && 3048 &next_event->event_entry != &next_ctx->event_list) { 3049 3050 __perf_event_sync_stat(event, next_event); 3051 3052 event = list_next_entry(event, event_entry); 3053 next_event = list_next_entry(next_event, event_entry); 3054 } 3055 } 3056 3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3058 struct task_struct *next) 3059 { 3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3061 struct perf_event_context *next_ctx; 3062 struct perf_event_context *parent, *next_parent; 3063 struct perf_cpu_context *cpuctx; 3064 int do_switch = 1; 3065 3066 if (likely(!ctx)) 3067 return; 3068 3069 cpuctx = __get_cpu_context(ctx); 3070 if (!cpuctx->task_ctx) 3071 return; 3072 3073 rcu_read_lock(); 3074 next_ctx = next->perf_event_ctxp[ctxn]; 3075 if (!next_ctx) 3076 goto unlock; 3077 3078 parent = rcu_dereference(ctx->parent_ctx); 3079 next_parent = rcu_dereference(next_ctx->parent_ctx); 3080 3081 /* If neither context have a parent context; they cannot be clones. */ 3082 if (!parent && !next_parent) 3083 goto unlock; 3084 3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3086 /* 3087 * Looks like the two contexts are clones, so we might be 3088 * able to optimize the context switch. We lock both 3089 * contexts and check that they are clones under the 3090 * lock (including re-checking that neither has been 3091 * uncloned in the meantime). It doesn't matter which 3092 * order we take the locks because no other cpu could 3093 * be trying to lock both of these tasks. 3094 */ 3095 raw_spin_lock(&ctx->lock); 3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3097 if (context_equiv(ctx, next_ctx)) { 3098 WRITE_ONCE(ctx->task, next); 3099 WRITE_ONCE(next_ctx->task, task); 3100 3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3102 3103 /* 3104 * RCU_INIT_POINTER here is safe because we've not 3105 * modified the ctx and the above modification of 3106 * ctx->task and ctx->task_ctx_data are immaterial 3107 * since those values are always verified under 3108 * ctx->lock which we're now holding. 3109 */ 3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3112 3113 do_switch = 0; 3114 3115 perf_event_sync_stat(ctx, next_ctx); 3116 } 3117 raw_spin_unlock(&next_ctx->lock); 3118 raw_spin_unlock(&ctx->lock); 3119 } 3120 unlock: 3121 rcu_read_unlock(); 3122 3123 if (do_switch) { 3124 raw_spin_lock(&ctx->lock); 3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3126 raw_spin_unlock(&ctx->lock); 3127 } 3128 } 3129 3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3131 3132 void perf_sched_cb_dec(struct pmu *pmu) 3133 { 3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3135 3136 this_cpu_dec(perf_sched_cb_usages); 3137 3138 if (!--cpuctx->sched_cb_usage) 3139 list_del(&cpuctx->sched_cb_entry); 3140 } 3141 3142 3143 void perf_sched_cb_inc(struct pmu *pmu) 3144 { 3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3146 3147 if (!cpuctx->sched_cb_usage++) 3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3149 3150 this_cpu_inc(perf_sched_cb_usages); 3151 } 3152 3153 /* 3154 * This function provides the context switch callback to the lower code 3155 * layer. It is invoked ONLY when the context switch callback is enabled. 3156 * 3157 * This callback is relevant even to per-cpu events; for example multi event 3158 * PEBS requires this to provide PID/TID information. This requires we flush 3159 * all queued PEBS records before we context switch to a new task. 3160 */ 3161 static void perf_pmu_sched_task(struct task_struct *prev, 3162 struct task_struct *next, 3163 bool sched_in) 3164 { 3165 struct perf_cpu_context *cpuctx; 3166 struct pmu *pmu; 3167 3168 if (prev == next) 3169 return; 3170 3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3173 3174 if (WARN_ON_ONCE(!pmu->sched_task)) 3175 continue; 3176 3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3178 perf_pmu_disable(pmu); 3179 3180 pmu->sched_task(cpuctx->task_ctx, sched_in); 3181 3182 perf_pmu_enable(pmu); 3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3184 } 3185 } 3186 3187 static void perf_event_switch(struct task_struct *task, 3188 struct task_struct *next_prev, bool sched_in); 3189 3190 #define for_each_task_context_nr(ctxn) \ 3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3192 3193 /* 3194 * Called from scheduler to remove the events of the current task, 3195 * with interrupts disabled. 3196 * 3197 * We stop each event and update the event value in event->count. 3198 * 3199 * This does not protect us against NMI, but disable() 3200 * sets the disabled bit in the control field of event _before_ 3201 * accessing the event control register. If a NMI hits, then it will 3202 * not restart the event. 3203 */ 3204 void __perf_event_task_sched_out(struct task_struct *task, 3205 struct task_struct *next) 3206 { 3207 int ctxn; 3208 3209 if (__this_cpu_read(perf_sched_cb_usages)) 3210 perf_pmu_sched_task(task, next, false); 3211 3212 if (atomic_read(&nr_switch_events)) 3213 perf_event_switch(task, next, false); 3214 3215 for_each_task_context_nr(ctxn) 3216 perf_event_context_sched_out(task, ctxn, next); 3217 3218 /* 3219 * if cgroup events exist on this CPU, then we need 3220 * to check if we have to switch out PMU state. 3221 * cgroup event are system-wide mode only 3222 */ 3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3224 perf_cgroup_sched_out(task, next); 3225 } 3226 3227 /* 3228 * Called with IRQs disabled 3229 */ 3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3231 enum event_type_t event_type) 3232 { 3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3234 } 3235 3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3237 int (*func)(struct perf_event *, void *), void *data) 3238 { 3239 struct perf_event **evt, *evt1, *evt2; 3240 int ret; 3241 3242 evt1 = perf_event_groups_first(groups, -1); 3243 evt2 = perf_event_groups_first(groups, cpu); 3244 3245 while (evt1 || evt2) { 3246 if (evt1 && evt2) { 3247 if (evt1->group_index < evt2->group_index) 3248 evt = &evt1; 3249 else 3250 evt = &evt2; 3251 } else if (evt1) { 3252 evt = &evt1; 3253 } else { 3254 evt = &evt2; 3255 } 3256 3257 ret = func(*evt, data); 3258 if (ret) 3259 return ret; 3260 3261 *evt = perf_event_groups_next(*evt); 3262 } 3263 3264 return 0; 3265 } 3266 3267 struct sched_in_data { 3268 struct perf_event_context *ctx; 3269 struct perf_cpu_context *cpuctx; 3270 int can_add_hw; 3271 }; 3272 3273 static int pinned_sched_in(struct perf_event *event, void *data) 3274 { 3275 struct sched_in_data *sid = data; 3276 3277 if (event->state <= PERF_EVENT_STATE_OFF) 3278 return 0; 3279 3280 if (!event_filter_match(event)) 3281 return 0; 3282 3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3286 } 3287 3288 /* 3289 * If this pinned group hasn't been scheduled, 3290 * put it in error state. 3291 */ 3292 if (event->state == PERF_EVENT_STATE_INACTIVE) 3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3294 3295 return 0; 3296 } 3297 3298 static int flexible_sched_in(struct perf_event *event, void *data) 3299 { 3300 struct sched_in_data *sid = data; 3301 3302 if (event->state <= PERF_EVENT_STATE_OFF) 3303 return 0; 3304 3305 if (!event_filter_match(event)) 3306 return 0; 3307 3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3311 else 3312 sid->can_add_hw = 0; 3313 } 3314 3315 return 0; 3316 } 3317 3318 static void 3319 ctx_pinned_sched_in(struct perf_event_context *ctx, 3320 struct perf_cpu_context *cpuctx) 3321 { 3322 struct sched_in_data sid = { 3323 .ctx = ctx, 3324 .cpuctx = cpuctx, 3325 .can_add_hw = 1, 3326 }; 3327 3328 visit_groups_merge(&ctx->pinned_groups, 3329 smp_processor_id(), 3330 pinned_sched_in, &sid); 3331 } 3332 3333 static void 3334 ctx_flexible_sched_in(struct perf_event_context *ctx, 3335 struct perf_cpu_context *cpuctx) 3336 { 3337 struct sched_in_data sid = { 3338 .ctx = ctx, 3339 .cpuctx = cpuctx, 3340 .can_add_hw = 1, 3341 }; 3342 3343 visit_groups_merge(&ctx->flexible_groups, 3344 smp_processor_id(), 3345 flexible_sched_in, &sid); 3346 } 3347 3348 static void 3349 ctx_sched_in(struct perf_event_context *ctx, 3350 struct perf_cpu_context *cpuctx, 3351 enum event_type_t event_type, 3352 struct task_struct *task) 3353 { 3354 int is_active = ctx->is_active; 3355 u64 now; 3356 3357 lockdep_assert_held(&ctx->lock); 3358 3359 if (likely(!ctx->nr_events)) 3360 return; 3361 3362 ctx->is_active |= (event_type | EVENT_TIME); 3363 if (ctx->task) { 3364 if (!is_active) 3365 cpuctx->task_ctx = ctx; 3366 else 3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3368 } 3369 3370 is_active ^= ctx->is_active; /* changed bits */ 3371 3372 if (is_active & EVENT_TIME) { 3373 /* start ctx time */ 3374 now = perf_clock(); 3375 ctx->timestamp = now; 3376 perf_cgroup_set_timestamp(task, ctx); 3377 } 3378 3379 /* 3380 * First go through the list and put on any pinned groups 3381 * in order to give them the best chance of going on. 3382 */ 3383 if (is_active & EVENT_PINNED) 3384 ctx_pinned_sched_in(ctx, cpuctx); 3385 3386 /* Then walk through the lower prio flexible groups */ 3387 if (is_active & EVENT_FLEXIBLE) 3388 ctx_flexible_sched_in(ctx, cpuctx); 3389 } 3390 3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3392 enum event_type_t event_type, 3393 struct task_struct *task) 3394 { 3395 struct perf_event_context *ctx = &cpuctx->ctx; 3396 3397 ctx_sched_in(ctx, cpuctx, event_type, task); 3398 } 3399 3400 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3401 struct task_struct *task) 3402 { 3403 struct perf_cpu_context *cpuctx; 3404 3405 cpuctx = __get_cpu_context(ctx); 3406 if (cpuctx->task_ctx == ctx) 3407 return; 3408 3409 perf_ctx_lock(cpuctx, ctx); 3410 /* 3411 * We must check ctx->nr_events while holding ctx->lock, such 3412 * that we serialize against perf_install_in_context(). 3413 */ 3414 if (!ctx->nr_events) 3415 goto unlock; 3416 3417 perf_pmu_disable(ctx->pmu); 3418 /* 3419 * We want to keep the following priority order: 3420 * cpu pinned (that don't need to move), task pinned, 3421 * cpu flexible, task flexible. 3422 * 3423 * However, if task's ctx is not carrying any pinned 3424 * events, no need to flip the cpuctx's events around. 3425 */ 3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3428 perf_event_sched_in(cpuctx, ctx, task); 3429 perf_pmu_enable(ctx->pmu); 3430 3431 unlock: 3432 perf_ctx_unlock(cpuctx, ctx); 3433 } 3434 3435 /* 3436 * Called from scheduler to add the events of the current task 3437 * with interrupts disabled. 3438 * 3439 * We restore the event value and then enable it. 3440 * 3441 * This does not protect us against NMI, but enable() 3442 * sets the enabled bit in the control field of event _before_ 3443 * accessing the event control register. If a NMI hits, then it will 3444 * keep the event running. 3445 */ 3446 void __perf_event_task_sched_in(struct task_struct *prev, 3447 struct task_struct *task) 3448 { 3449 struct perf_event_context *ctx; 3450 int ctxn; 3451 3452 /* 3453 * If cgroup events exist on this CPU, then we need to check if we have 3454 * to switch in PMU state; cgroup event are system-wide mode only. 3455 * 3456 * Since cgroup events are CPU events, we must schedule these in before 3457 * we schedule in the task events. 3458 */ 3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3460 perf_cgroup_sched_in(prev, task); 3461 3462 for_each_task_context_nr(ctxn) { 3463 ctx = task->perf_event_ctxp[ctxn]; 3464 if (likely(!ctx)) 3465 continue; 3466 3467 perf_event_context_sched_in(ctx, task); 3468 } 3469 3470 if (atomic_read(&nr_switch_events)) 3471 perf_event_switch(task, prev, true); 3472 3473 if (__this_cpu_read(perf_sched_cb_usages)) 3474 perf_pmu_sched_task(prev, task, true); 3475 } 3476 3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3478 { 3479 u64 frequency = event->attr.sample_freq; 3480 u64 sec = NSEC_PER_SEC; 3481 u64 divisor, dividend; 3482 3483 int count_fls, nsec_fls, frequency_fls, sec_fls; 3484 3485 count_fls = fls64(count); 3486 nsec_fls = fls64(nsec); 3487 frequency_fls = fls64(frequency); 3488 sec_fls = 30; 3489 3490 /* 3491 * We got @count in @nsec, with a target of sample_freq HZ 3492 * the target period becomes: 3493 * 3494 * @count * 10^9 3495 * period = ------------------- 3496 * @nsec * sample_freq 3497 * 3498 */ 3499 3500 /* 3501 * Reduce accuracy by one bit such that @a and @b converge 3502 * to a similar magnitude. 3503 */ 3504 #define REDUCE_FLS(a, b) \ 3505 do { \ 3506 if (a##_fls > b##_fls) { \ 3507 a >>= 1; \ 3508 a##_fls--; \ 3509 } else { \ 3510 b >>= 1; \ 3511 b##_fls--; \ 3512 } \ 3513 } while (0) 3514 3515 /* 3516 * Reduce accuracy until either term fits in a u64, then proceed with 3517 * the other, so that finally we can do a u64/u64 division. 3518 */ 3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3520 REDUCE_FLS(nsec, frequency); 3521 REDUCE_FLS(sec, count); 3522 } 3523 3524 if (count_fls + sec_fls > 64) { 3525 divisor = nsec * frequency; 3526 3527 while (count_fls + sec_fls > 64) { 3528 REDUCE_FLS(count, sec); 3529 divisor >>= 1; 3530 } 3531 3532 dividend = count * sec; 3533 } else { 3534 dividend = count * sec; 3535 3536 while (nsec_fls + frequency_fls > 64) { 3537 REDUCE_FLS(nsec, frequency); 3538 dividend >>= 1; 3539 } 3540 3541 divisor = nsec * frequency; 3542 } 3543 3544 if (!divisor) 3545 return dividend; 3546 3547 return div64_u64(dividend, divisor); 3548 } 3549 3550 static DEFINE_PER_CPU(int, perf_throttled_count); 3551 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3552 3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3554 { 3555 struct hw_perf_event *hwc = &event->hw; 3556 s64 period, sample_period; 3557 s64 delta; 3558 3559 period = perf_calculate_period(event, nsec, count); 3560 3561 delta = (s64)(period - hwc->sample_period); 3562 delta = (delta + 7) / 8; /* low pass filter */ 3563 3564 sample_period = hwc->sample_period + delta; 3565 3566 if (!sample_period) 3567 sample_period = 1; 3568 3569 hwc->sample_period = sample_period; 3570 3571 if (local64_read(&hwc->period_left) > 8*sample_period) { 3572 if (disable) 3573 event->pmu->stop(event, PERF_EF_UPDATE); 3574 3575 local64_set(&hwc->period_left, 0); 3576 3577 if (disable) 3578 event->pmu->start(event, PERF_EF_RELOAD); 3579 } 3580 } 3581 3582 /* 3583 * combine freq adjustment with unthrottling to avoid two passes over the 3584 * events. At the same time, make sure, having freq events does not change 3585 * the rate of unthrottling as that would introduce bias. 3586 */ 3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3588 int needs_unthr) 3589 { 3590 struct perf_event *event; 3591 struct hw_perf_event *hwc; 3592 u64 now, period = TICK_NSEC; 3593 s64 delta; 3594 3595 /* 3596 * only need to iterate over all events iff: 3597 * - context have events in frequency mode (needs freq adjust) 3598 * - there are events to unthrottle on this cpu 3599 */ 3600 if (!(ctx->nr_freq || needs_unthr)) 3601 return; 3602 3603 raw_spin_lock(&ctx->lock); 3604 perf_pmu_disable(ctx->pmu); 3605 3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3607 if (event->state != PERF_EVENT_STATE_ACTIVE) 3608 continue; 3609 3610 if (!event_filter_match(event)) 3611 continue; 3612 3613 perf_pmu_disable(event->pmu); 3614 3615 hwc = &event->hw; 3616 3617 if (hwc->interrupts == MAX_INTERRUPTS) { 3618 hwc->interrupts = 0; 3619 perf_log_throttle(event, 1); 3620 event->pmu->start(event, 0); 3621 } 3622 3623 if (!event->attr.freq || !event->attr.sample_freq) 3624 goto next; 3625 3626 /* 3627 * stop the event and update event->count 3628 */ 3629 event->pmu->stop(event, PERF_EF_UPDATE); 3630 3631 now = local64_read(&event->count); 3632 delta = now - hwc->freq_count_stamp; 3633 hwc->freq_count_stamp = now; 3634 3635 /* 3636 * restart the event 3637 * reload only if value has changed 3638 * we have stopped the event so tell that 3639 * to perf_adjust_period() to avoid stopping it 3640 * twice. 3641 */ 3642 if (delta > 0) 3643 perf_adjust_period(event, period, delta, false); 3644 3645 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3646 next: 3647 perf_pmu_enable(event->pmu); 3648 } 3649 3650 perf_pmu_enable(ctx->pmu); 3651 raw_spin_unlock(&ctx->lock); 3652 } 3653 3654 /* 3655 * Move @event to the tail of the @ctx's elegible events. 3656 */ 3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3658 { 3659 /* 3660 * Rotate the first entry last of non-pinned groups. Rotation might be 3661 * disabled by the inheritance code. 3662 */ 3663 if (ctx->rotate_disable) 3664 return; 3665 3666 perf_event_groups_delete(&ctx->flexible_groups, event); 3667 perf_event_groups_insert(&ctx->flexible_groups, event); 3668 } 3669 3670 static inline struct perf_event * 3671 ctx_first_active(struct perf_event_context *ctx) 3672 { 3673 return list_first_entry_or_null(&ctx->flexible_active, 3674 struct perf_event, active_list); 3675 } 3676 3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3678 { 3679 struct perf_event *cpu_event = NULL, *task_event = NULL; 3680 bool cpu_rotate = false, task_rotate = false; 3681 struct perf_event_context *ctx = NULL; 3682 3683 /* 3684 * Since we run this from IRQ context, nobody can install new 3685 * events, thus the event count values are stable. 3686 */ 3687 3688 if (cpuctx->ctx.nr_events) { 3689 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3690 cpu_rotate = true; 3691 } 3692 3693 ctx = cpuctx->task_ctx; 3694 if (ctx && ctx->nr_events) { 3695 if (ctx->nr_events != ctx->nr_active) 3696 task_rotate = true; 3697 } 3698 3699 if (!(cpu_rotate || task_rotate)) 3700 return false; 3701 3702 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3703 perf_pmu_disable(cpuctx->ctx.pmu); 3704 3705 if (task_rotate) 3706 task_event = ctx_first_active(ctx); 3707 if (cpu_rotate) 3708 cpu_event = ctx_first_active(&cpuctx->ctx); 3709 3710 /* 3711 * As per the order given at ctx_resched() first 'pop' task flexible 3712 * and then, if needed CPU flexible. 3713 */ 3714 if (task_event || (ctx && cpu_event)) 3715 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3716 if (cpu_event) 3717 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3718 3719 if (task_event) 3720 rotate_ctx(ctx, task_event); 3721 if (cpu_event) 3722 rotate_ctx(&cpuctx->ctx, cpu_event); 3723 3724 perf_event_sched_in(cpuctx, ctx, current); 3725 3726 perf_pmu_enable(cpuctx->ctx.pmu); 3727 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3728 3729 return true; 3730 } 3731 3732 void perf_event_task_tick(void) 3733 { 3734 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3735 struct perf_event_context *ctx, *tmp; 3736 int throttled; 3737 3738 lockdep_assert_irqs_disabled(); 3739 3740 __this_cpu_inc(perf_throttled_seq); 3741 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3742 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3743 3744 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3745 perf_adjust_freq_unthr_context(ctx, throttled); 3746 } 3747 3748 static int event_enable_on_exec(struct perf_event *event, 3749 struct perf_event_context *ctx) 3750 { 3751 if (!event->attr.enable_on_exec) 3752 return 0; 3753 3754 event->attr.enable_on_exec = 0; 3755 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3756 return 0; 3757 3758 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3759 3760 return 1; 3761 } 3762 3763 /* 3764 * Enable all of a task's events that have been marked enable-on-exec. 3765 * This expects task == current. 3766 */ 3767 static void perf_event_enable_on_exec(int ctxn) 3768 { 3769 struct perf_event_context *ctx, *clone_ctx = NULL; 3770 enum event_type_t event_type = 0; 3771 struct perf_cpu_context *cpuctx; 3772 struct perf_event *event; 3773 unsigned long flags; 3774 int enabled = 0; 3775 3776 local_irq_save(flags); 3777 ctx = current->perf_event_ctxp[ctxn]; 3778 if (!ctx || !ctx->nr_events) 3779 goto out; 3780 3781 cpuctx = __get_cpu_context(ctx); 3782 perf_ctx_lock(cpuctx, ctx); 3783 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3784 list_for_each_entry(event, &ctx->event_list, event_entry) { 3785 enabled |= event_enable_on_exec(event, ctx); 3786 event_type |= get_event_type(event); 3787 } 3788 3789 /* 3790 * Unclone and reschedule this context if we enabled any event. 3791 */ 3792 if (enabled) { 3793 clone_ctx = unclone_ctx(ctx); 3794 ctx_resched(cpuctx, ctx, event_type); 3795 } else { 3796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3797 } 3798 perf_ctx_unlock(cpuctx, ctx); 3799 3800 out: 3801 local_irq_restore(flags); 3802 3803 if (clone_ctx) 3804 put_ctx(clone_ctx); 3805 } 3806 3807 struct perf_read_data { 3808 struct perf_event *event; 3809 bool group; 3810 int ret; 3811 }; 3812 3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3814 { 3815 u16 local_pkg, event_pkg; 3816 3817 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3818 int local_cpu = smp_processor_id(); 3819 3820 event_pkg = topology_physical_package_id(event_cpu); 3821 local_pkg = topology_physical_package_id(local_cpu); 3822 3823 if (event_pkg == local_pkg) 3824 return local_cpu; 3825 } 3826 3827 return event_cpu; 3828 } 3829 3830 /* 3831 * Cross CPU call to read the hardware event 3832 */ 3833 static void __perf_event_read(void *info) 3834 { 3835 struct perf_read_data *data = info; 3836 struct perf_event *sub, *event = data->event; 3837 struct perf_event_context *ctx = event->ctx; 3838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3839 struct pmu *pmu = event->pmu; 3840 3841 /* 3842 * If this is a task context, we need to check whether it is 3843 * the current task context of this cpu. If not it has been 3844 * scheduled out before the smp call arrived. In that case 3845 * event->count would have been updated to a recent sample 3846 * when the event was scheduled out. 3847 */ 3848 if (ctx->task && cpuctx->task_ctx != ctx) 3849 return; 3850 3851 raw_spin_lock(&ctx->lock); 3852 if (ctx->is_active & EVENT_TIME) { 3853 update_context_time(ctx); 3854 update_cgrp_time_from_event(event); 3855 } 3856 3857 perf_event_update_time(event); 3858 if (data->group) 3859 perf_event_update_sibling_time(event); 3860 3861 if (event->state != PERF_EVENT_STATE_ACTIVE) 3862 goto unlock; 3863 3864 if (!data->group) { 3865 pmu->read(event); 3866 data->ret = 0; 3867 goto unlock; 3868 } 3869 3870 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3871 3872 pmu->read(event); 3873 3874 for_each_sibling_event(sub, event) { 3875 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3876 /* 3877 * Use sibling's PMU rather than @event's since 3878 * sibling could be on different (eg: software) PMU. 3879 */ 3880 sub->pmu->read(sub); 3881 } 3882 } 3883 3884 data->ret = pmu->commit_txn(pmu); 3885 3886 unlock: 3887 raw_spin_unlock(&ctx->lock); 3888 } 3889 3890 static inline u64 perf_event_count(struct perf_event *event) 3891 { 3892 return local64_read(&event->count) + atomic64_read(&event->child_count); 3893 } 3894 3895 /* 3896 * NMI-safe method to read a local event, that is an event that 3897 * is: 3898 * - either for the current task, or for this CPU 3899 * - does not have inherit set, for inherited task events 3900 * will not be local and we cannot read them atomically 3901 * - must not have a pmu::count method 3902 */ 3903 int perf_event_read_local(struct perf_event *event, u64 *value, 3904 u64 *enabled, u64 *running) 3905 { 3906 unsigned long flags; 3907 int ret = 0; 3908 3909 /* 3910 * Disabling interrupts avoids all counter scheduling (context 3911 * switches, timer based rotation and IPIs). 3912 */ 3913 local_irq_save(flags); 3914 3915 /* 3916 * It must not be an event with inherit set, we cannot read 3917 * all child counters from atomic context. 3918 */ 3919 if (event->attr.inherit) { 3920 ret = -EOPNOTSUPP; 3921 goto out; 3922 } 3923 3924 /* If this is a per-task event, it must be for current */ 3925 if ((event->attach_state & PERF_ATTACH_TASK) && 3926 event->hw.target != current) { 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 3931 /* If this is a per-CPU event, it must be for this CPU */ 3932 if (!(event->attach_state & PERF_ATTACH_TASK) && 3933 event->cpu != smp_processor_id()) { 3934 ret = -EINVAL; 3935 goto out; 3936 } 3937 3938 /* If this is a pinned event it must be running on this CPU */ 3939 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3940 ret = -EBUSY; 3941 goto out; 3942 } 3943 3944 /* 3945 * If the event is currently on this CPU, its either a per-task event, 3946 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3947 * oncpu == -1). 3948 */ 3949 if (event->oncpu == smp_processor_id()) 3950 event->pmu->read(event); 3951 3952 *value = local64_read(&event->count); 3953 if (enabled || running) { 3954 u64 now = event->shadow_ctx_time + perf_clock(); 3955 u64 __enabled, __running; 3956 3957 __perf_update_times(event, now, &__enabled, &__running); 3958 if (enabled) 3959 *enabled = __enabled; 3960 if (running) 3961 *running = __running; 3962 } 3963 out: 3964 local_irq_restore(flags); 3965 3966 return ret; 3967 } 3968 3969 static int perf_event_read(struct perf_event *event, bool group) 3970 { 3971 enum perf_event_state state = READ_ONCE(event->state); 3972 int event_cpu, ret = 0; 3973 3974 /* 3975 * If event is enabled and currently active on a CPU, update the 3976 * value in the event structure: 3977 */ 3978 again: 3979 if (state == PERF_EVENT_STATE_ACTIVE) { 3980 struct perf_read_data data; 3981 3982 /* 3983 * Orders the ->state and ->oncpu loads such that if we see 3984 * ACTIVE we must also see the right ->oncpu. 3985 * 3986 * Matches the smp_wmb() from event_sched_in(). 3987 */ 3988 smp_rmb(); 3989 3990 event_cpu = READ_ONCE(event->oncpu); 3991 if ((unsigned)event_cpu >= nr_cpu_ids) 3992 return 0; 3993 3994 data = (struct perf_read_data){ 3995 .event = event, 3996 .group = group, 3997 .ret = 0, 3998 }; 3999 4000 preempt_disable(); 4001 event_cpu = __perf_event_read_cpu(event, event_cpu); 4002 4003 /* 4004 * Purposely ignore the smp_call_function_single() return 4005 * value. 4006 * 4007 * If event_cpu isn't a valid CPU it means the event got 4008 * scheduled out and that will have updated the event count. 4009 * 4010 * Therefore, either way, we'll have an up-to-date event count 4011 * after this. 4012 */ 4013 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4014 preempt_enable(); 4015 ret = data.ret; 4016 4017 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4018 struct perf_event_context *ctx = event->ctx; 4019 unsigned long flags; 4020 4021 raw_spin_lock_irqsave(&ctx->lock, flags); 4022 state = event->state; 4023 if (state != PERF_EVENT_STATE_INACTIVE) { 4024 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4025 goto again; 4026 } 4027 4028 /* 4029 * May read while context is not active (e.g., thread is 4030 * blocked), in that case we cannot update context time 4031 */ 4032 if (ctx->is_active & EVENT_TIME) { 4033 update_context_time(ctx); 4034 update_cgrp_time_from_event(event); 4035 } 4036 4037 perf_event_update_time(event); 4038 if (group) 4039 perf_event_update_sibling_time(event); 4040 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4041 } 4042 4043 return ret; 4044 } 4045 4046 /* 4047 * Initialize the perf_event context in a task_struct: 4048 */ 4049 static void __perf_event_init_context(struct perf_event_context *ctx) 4050 { 4051 raw_spin_lock_init(&ctx->lock); 4052 mutex_init(&ctx->mutex); 4053 INIT_LIST_HEAD(&ctx->active_ctx_list); 4054 perf_event_groups_init(&ctx->pinned_groups); 4055 perf_event_groups_init(&ctx->flexible_groups); 4056 INIT_LIST_HEAD(&ctx->event_list); 4057 INIT_LIST_HEAD(&ctx->pinned_active); 4058 INIT_LIST_HEAD(&ctx->flexible_active); 4059 atomic_set(&ctx->refcount, 1); 4060 } 4061 4062 static struct perf_event_context * 4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4064 { 4065 struct perf_event_context *ctx; 4066 4067 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4068 if (!ctx) 4069 return NULL; 4070 4071 __perf_event_init_context(ctx); 4072 if (task) { 4073 ctx->task = task; 4074 get_task_struct(task); 4075 } 4076 ctx->pmu = pmu; 4077 4078 return ctx; 4079 } 4080 4081 static struct task_struct * 4082 find_lively_task_by_vpid(pid_t vpid) 4083 { 4084 struct task_struct *task; 4085 4086 rcu_read_lock(); 4087 if (!vpid) 4088 task = current; 4089 else 4090 task = find_task_by_vpid(vpid); 4091 if (task) 4092 get_task_struct(task); 4093 rcu_read_unlock(); 4094 4095 if (!task) 4096 return ERR_PTR(-ESRCH); 4097 4098 return task; 4099 } 4100 4101 /* 4102 * Returns a matching context with refcount and pincount. 4103 */ 4104 static struct perf_event_context * 4105 find_get_context(struct pmu *pmu, struct task_struct *task, 4106 struct perf_event *event) 4107 { 4108 struct perf_event_context *ctx, *clone_ctx = NULL; 4109 struct perf_cpu_context *cpuctx; 4110 void *task_ctx_data = NULL; 4111 unsigned long flags; 4112 int ctxn, err; 4113 int cpu = event->cpu; 4114 4115 if (!task) { 4116 /* Must be root to operate on a CPU event: */ 4117 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4118 return ERR_PTR(-EACCES); 4119 4120 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4121 ctx = &cpuctx->ctx; 4122 get_ctx(ctx); 4123 ++ctx->pin_count; 4124 4125 return ctx; 4126 } 4127 4128 err = -EINVAL; 4129 ctxn = pmu->task_ctx_nr; 4130 if (ctxn < 0) 4131 goto errout; 4132 4133 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4134 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4135 if (!task_ctx_data) { 4136 err = -ENOMEM; 4137 goto errout; 4138 } 4139 } 4140 4141 retry: 4142 ctx = perf_lock_task_context(task, ctxn, &flags); 4143 if (ctx) { 4144 clone_ctx = unclone_ctx(ctx); 4145 ++ctx->pin_count; 4146 4147 if (task_ctx_data && !ctx->task_ctx_data) { 4148 ctx->task_ctx_data = task_ctx_data; 4149 task_ctx_data = NULL; 4150 } 4151 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4152 4153 if (clone_ctx) 4154 put_ctx(clone_ctx); 4155 } else { 4156 ctx = alloc_perf_context(pmu, task); 4157 err = -ENOMEM; 4158 if (!ctx) 4159 goto errout; 4160 4161 if (task_ctx_data) { 4162 ctx->task_ctx_data = task_ctx_data; 4163 task_ctx_data = NULL; 4164 } 4165 4166 err = 0; 4167 mutex_lock(&task->perf_event_mutex); 4168 /* 4169 * If it has already passed perf_event_exit_task(). 4170 * we must see PF_EXITING, it takes this mutex too. 4171 */ 4172 if (task->flags & PF_EXITING) 4173 err = -ESRCH; 4174 else if (task->perf_event_ctxp[ctxn]) 4175 err = -EAGAIN; 4176 else { 4177 get_ctx(ctx); 4178 ++ctx->pin_count; 4179 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4180 } 4181 mutex_unlock(&task->perf_event_mutex); 4182 4183 if (unlikely(err)) { 4184 put_ctx(ctx); 4185 4186 if (err == -EAGAIN) 4187 goto retry; 4188 goto errout; 4189 } 4190 } 4191 4192 kfree(task_ctx_data); 4193 return ctx; 4194 4195 errout: 4196 kfree(task_ctx_data); 4197 return ERR_PTR(err); 4198 } 4199 4200 static void perf_event_free_filter(struct perf_event *event); 4201 static void perf_event_free_bpf_prog(struct perf_event *event); 4202 4203 static void free_event_rcu(struct rcu_head *head) 4204 { 4205 struct perf_event *event; 4206 4207 event = container_of(head, struct perf_event, rcu_head); 4208 if (event->ns) 4209 put_pid_ns(event->ns); 4210 perf_event_free_filter(event); 4211 kfree(event); 4212 } 4213 4214 static void ring_buffer_attach(struct perf_event *event, 4215 struct ring_buffer *rb); 4216 4217 static void detach_sb_event(struct perf_event *event) 4218 { 4219 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4220 4221 raw_spin_lock(&pel->lock); 4222 list_del_rcu(&event->sb_list); 4223 raw_spin_unlock(&pel->lock); 4224 } 4225 4226 static bool is_sb_event(struct perf_event *event) 4227 { 4228 struct perf_event_attr *attr = &event->attr; 4229 4230 if (event->parent) 4231 return false; 4232 4233 if (event->attach_state & PERF_ATTACH_TASK) 4234 return false; 4235 4236 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4237 attr->comm || attr->comm_exec || 4238 attr->task || 4239 attr->context_switch) 4240 return true; 4241 return false; 4242 } 4243 4244 static void unaccount_pmu_sb_event(struct perf_event *event) 4245 { 4246 if (is_sb_event(event)) 4247 detach_sb_event(event); 4248 } 4249 4250 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4251 { 4252 if (event->parent) 4253 return; 4254 4255 if (is_cgroup_event(event)) 4256 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4257 } 4258 4259 #ifdef CONFIG_NO_HZ_FULL 4260 static DEFINE_SPINLOCK(nr_freq_lock); 4261 #endif 4262 4263 static void unaccount_freq_event_nohz(void) 4264 { 4265 #ifdef CONFIG_NO_HZ_FULL 4266 spin_lock(&nr_freq_lock); 4267 if (atomic_dec_and_test(&nr_freq_events)) 4268 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4269 spin_unlock(&nr_freq_lock); 4270 #endif 4271 } 4272 4273 static void unaccount_freq_event(void) 4274 { 4275 if (tick_nohz_full_enabled()) 4276 unaccount_freq_event_nohz(); 4277 else 4278 atomic_dec(&nr_freq_events); 4279 } 4280 4281 static void unaccount_event(struct perf_event *event) 4282 { 4283 bool dec = false; 4284 4285 if (event->parent) 4286 return; 4287 4288 if (event->attach_state & PERF_ATTACH_TASK) 4289 dec = true; 4290 if (event->attr.mmap || event->attr.mmap_data) 4291 atomic_dec(&nr_mmap_events); 4292 if (event->attr.comm) 4293 atomic_dec(&nr_comm_events); 4294 if (event->attr.namespaces) 4295 atomic_dec(&nr_namespaces_events); 4296 if (event->attr.task) 4297 atomic_dec(&nr_task_events); 4298 if (event->attr.freq) 4299 unaccount_freq_event(); 4300 if (event->attr.context_switch) { 4301 dec = true; 4302 atomic_dec(&nr_switch_events); 4303 } 4304 if (is_cgroup_event(event)) 4305 dec = true; 4306 if (has_branch_stack(event)) 4307 dec = true; 4308 4309 if (dec) { 4310 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4311 schedule_delayed_work(&perf_sched_work, HZ); 4312 } 4313 4314 unaccount_event_cpu(event, event->cpu); 4315 4316 unaccount_pmu_sb_event(event); 4317 } 4318 4319 static void perf_sched_delayed(struct work_struct *work) 4320 { 4321 mutex_lock(&perf_sched_mutex); 4322 if (atomic_dec_and_test(&perf_sched_count)) 4323 static_branch_disable(&perf_sched_events); 4324 mutex_unlock(&perf_sched_mutex); 4325 } 4326 4327 /* 4328 * The following implement mutual exclusion of events on "exclusive" pmus 4329 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4330 * at a time, so we disallow creating events that might conflict, namely: 4331 * 4332 * 1) cpu-wide events in the presence of per-task events, 4333 * 2) per-task events in the presence of cpu-wide events, 4334 * 3) two matching events on the same context. 4335 * 4336 * The former two cases are handled in the allocation path (perf_event_alloc(), 4337 * _free_event()), the latter -- before the first perf_install_in_context(). 4338 */ 4339 static int exclusive_event_init(struct perf_event *event) 4340 { 4341 struct pmu *pmu = event->pmu; 4342 4343 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4344 return 0; 4345 4346 /* 4347 * Prevent co-existence of per-task and cpu-wide events on the 4348 * same exclusive pmu. 4349 * 4350 * Negative pmu::exclusive_cnt means there are cpu-wide 4351 * events on this "exclusive" pmu, positive means there are 4352 * per-task events. 4353 * 4354 * Since this is called in perf_event_alloc() path, event::ctx 4355 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4356 * to mean "per-task event", because unlike other attach states it 4357 * never gets cleared. 4358 */ 4359 if (event->attach_state & PERF_ATTACH_TASK) { 4360 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4361 return -EBUSY; 4362 } else { 4363 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4364 return -EBUSY; 4365 } 4366 4367 return 0; 4368 } 4369 4370 static void exclusive_event_destroy(struct perf_event *event) 4371 { 4372 struct pmu *pmu = event->pmu; 4373 4374 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4375 return; 4376 4377 /* see comment in exclusive_event_init() */ 4378 if (event->attach_state & PERF_ATTACH_TASK) 4379 atomic_dec(&pmu->exclusive_cnt); 4380 else 4381 atomic_inc(&pmu->exclusive_cnt); 4382 } 4383 4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4385 { 4386 if ((e1->pmu == e2->pmu) && 4387 (e1->cpu == e2->cpu || 4388 e1->cpu == -1 || 4389 e2->cpu == -1)) 4390 return true; 4391 return false; 4392 } 4393 4394 /* Called under the same ctx::mutex as perf_install_in_context() */ 4395 static bool exclusive_event_installable(struct perf_event *event, 4396 struct perf_event_context *ctx) 4397 { 4398 struct perf_event *iter_event; 4399 struct pmu *pmu = event->pmu; 4400 4401 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4402 return true; 4403 4404 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4405 if (exclusive_event_match(iter_event, event)) 4406 return false; 4407 } 4408 4409 return true; 4410 } 4411 4412 static void perf_addr_filters_splice(struct perf_event *event, 4413 struct list_head *head); 4414 4415 static void _free_event(struct perf_event *event) 4416 { 4417 irq_work_sync(&event->pending); 4418 4419 unaccount_event(event); 4420 4421 if (event->rb) { 4422 /* 4423 * Can happen when we close an event with re-directed output. 4424 * 4425 * Since we have a 0 refcount, perf_mmap_close() will skip 4426 * over us; possibly making our ring_buffer_put() the last. 4427 */ 4428 mutex_lock(&event->mmap_mutex); 4429 ring_buffer_attach(event, NULL); 4430 mutex_unlock(&event->mmap_mutex); 4431 } 4432 4433 if (is_cgroup_event(event)) 4434 perf_detach_cgroup(event); 4435 4436 if (!event->parent) { 4437 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4438 put_callchain_buffers(); 4439 } 4440 4441 perf_event_free_bpf_prog(event); 4442 perf_addr_filters_splice(event, NULL); 4443 kfree(event->addr_filters_offs); 4444 4445 if (event->destroy) 4446 event->destroy(event); 4447 4448 if (event->ctx) 4449 put_ctx(event->ctx); 4450 4451 if (event->hw.target) 4452 put_task_struct(event->hw.target); 4453 4454 exclusive_event_destroy(event); 4455 module_put(event->pmu->module); 4456 4457 call_rcu(&event->rcu_head, free_event_rcu); 4458 } 4459 4460 /* 4461 * Used to free events which have a known refcount of 1, such as in error paths 4462 * where the event isn't exposed yet and inherited events. 4463 */ 4464 static void free_event(struct perf_event *event) 4465 { 4466 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4467 "unexpected event refcount: %ld; ptr=%p\n", 4468 atomic_long_read(&event->refcount), event)) { 4469 /* leak to avoid use-after-free */ 4470 return; 4471 } 4472 4473 _free_event(event); 4474 } 4475 4476 /* 4477 * Remove user event from the owner task. 4478 */ 4479 static void perf_remove_from_owner(struct perf_event *event) 4480 { 4481 struct task_struct *owner; 4482 4483 rcu_read_lock(); 4484 /* 4485 * Matches the smp_store_release() in perf_event_exit_task(). If we 4486 * observe !owner it means the list deletion is complete and we can 4487 * indeed free this event, otherwise we need to serialize on 4488 * owner->perf_event_mutex. 4489 */ 4490 owner = READ_ONCE(event->owner); 4491 if (owner) { 4492 /* 4493 * Since delayed_put_task_struct() also drops the last 4494 * task reference we can safely take a new reference 4495 * while holding the rcu_read_lock(). 4496 */ 4497 get_task_struct(owner); 4498 } 4499 rcu_read_unlock(); 4500 4501 if (owner) { 4502 /* 4503 * If we're here through perf_event_exit_task() we're already 4504 * holding ctx->mutex which would be an inversion wrt. the 4505 * normal lock order. 4506 * 4507 * However we can safely take this lock because its the child 4508 * ctx->mutex. 4509 */ 4510 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4511 4512 /* 4513 * We have to re-check the event->owner field, if it is cleared 4514 * we raced with perf_event_exit_task(), acquiring the mutex 4515 * ensured they're done, and we can proceed with freeing the 4516 * event. 4517 */ 4518 if (event->owner) { 4519 list_del_init(&event->owner_entry); 4520 smp_store_release(&event->owner, NULL); 4521 } 4522 mutex_unlock(&owner->perf_event_mutex); 4523 put_task_struct(owner); 4524 } 4525 } 4526 4527 static void put_event(struct perf_event *event) 4528 { 4529 if (!atomic_long_dec_and_test(&event->refcount)) 4530 return; 4531 4532 _free_event(event); 4533 } 4534 4535 /* 4536 * Kill an event dead; while event:refcount will preserve the event 4537 * object, it will not preserve its functionality. Once the last 'user' 4538 * gives up the object, we'll destroy the thing. 4539 */ 4540 int perf_event_release_kernel(struct perf_event *event) 4541 { 4542 struct perf_event_context *ctx = event->ctx; 4543 struct perf_event *child, *tmp; 4544 LIST_HEAD(free_list); 4545 4546 /* 4547 * If we got here through err_file: fput(event_file); we will not have 4548 * attached to a context yet. 4549 */ 4550 if (!ctx) { 4551 WARN_ON_ONCE(event->attach_state & 4552 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4553 goto no_ctx; 4554 } 4555 4556 if (!is_kernel_event(event)) 4557 perf_remove_from_owner(event); 4558 4559 ctx = perf_event_ctx_lock(event); 4560 WARN_ON_ONCE(ctx->parent_ctx); 4561 perf_remove_from_context(event, DETACH_GROUP); 4562 4563 raw_spin_lock_irq(&ctx->lock); 4564 /* 4565 * Mark this event as STATE_DEAD, there is no external reference to it 4566 * anymore. 4567 * 4568 * Anybody acquiring event->child_mutex after the below loop _must_ 4569 * also see this, most importantly inherit_event() which will avoid 4570 * placing more children on the list. 4571 * 4572 * Thus this guarantees that we will in fact observe and kill _ALL_ 4573 * child events. 4574 */ 4575 event->state = PERF_EVENT_STATE_DEAD; 4576 raw_spin_unlock_irq(&ctx->lock); 4577 4578 perf_event_ctx_unlock(event, ctx); 4579 4580 again: 4581 mutex_lock(&event->child_mutex); 4582 list_for_each_entry(child, &event->child_list, child_list) { 4583 4584 /* 4585 * Cannot change, child events are not migrated, see the 4586 * comment with perf_event_ctx_lock_nested(). 4587 */ 4588 ctx = READ_ONCE(child->ctx); 4589 /* 4590 * Since child_mutex nests inside ctx::mutex, we must jump 4591 * through hoops. We start by grabbing a reference on the ctx. 4592 * 4593 * Since the event cannot get freed while we hold the 4594 * child_mutex, the context must also exist and have a !0 4595 * reference count. 4596 */ 4597 get_ctx(ctx); 4598 4599 /* 4600 * Now that we have a ctx ref, we can drop child_mutex, and 4601 * acquire ctx::mutex without fear of it going away. Then we 4602 * can re-acquire child_mutex. 4603 */ 4604 mutex_unlock(&event->child_mutex); 4605 mutex_lock(&ctx->mutex); 4606 mutex_lock(&event->child_mutex); 4607 4608 /* 4609 * Now that we hold ctx::mutex and child_mutex, revalidate our 4610 * state, if child is still the first entry, it didn't get freed 4611 * and we can continue doing so. 4612 */ 4613 tmp = list_first_entry_or_null(&event->child_list, 4614 struct perf_event, child_list); 4615 if (tmp == child) { 4616 perf_remove_from_context(child, DETACH_GROUP); 4617 list_move(&child->child_list, &free_list); 4618 /* 4619 * This matches the refcount bump in inherit_event(); 4620 * this can't be the last reference. 4621 */ 4622 put_event(event); 4623 } 4624 4625 mutex_unlock(&event->child_mutex); 4626 mutex_unlock(&ctx->mutex); 4627 put_ctx(ctx); 4628 goto again; 4629 } 4630 mutex_unlock(&event->child_mutex); 4631 4632 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4633 list_del(&child->child_list); 4634 free_event(child); 4635 } 4636 4637 no_ctx: 4638 put_event(event); /* Must be the 'last' reference */ 4639 return 0; 4640 } 4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4642 4643 /* 4644 * Called when the last reference to the file is gone. 4645 */ 4646 static int perf_release(struct inode *inode, struct file *file) 4647 { 4648 perf_event_release_kernel(file->private_data); 4649 return 0; 4650 } 4651 4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4653 { 4654 struct perf_event *child; 4655 u64 total = 0; 4656 4657 *enabled = 0; 4658 *running = 0; 4659 4660 mutex_lock(&event->child_mutex); 4661 4662 (void)perf_event_read(event, false); 4663 total += perf_event_count(event); 4664 4665 *enabled += event->total_time_enabled + 4666 atomic64_read(&event->child_total_time_enabled); 4667 *running += event->total_time_running + 4668 atomic64_read(&event->child_total_time_running); 4669 4670 list_for_each_entry(child, &event->child_list, child_list) { 4671 (void)perf_event_read(child, false); 4672 total += perf_event_count(child); 4673 *enabled += child->total_time_enabled; 4674 *running += child->total_time_running; 4675 } 4676 mutex_unlock(&event->child_mutex); 4677 4678 return total; 4679 } 4680 4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4682 { 4683 struct perf_event_context *ctx; 4684 u64 count; 4685 4686 ctx = perf_event_ctx_lock(event); 4687 count = __perf_event_read_value(event, enabled, running); 4688 perf_event_ctx_unlock(event, ctx); 4689 4690 return count; 4691 } 4692 EXPORT_SYMBOL_GPL(perf_event_read_value); 4693 4694 static int __perf_read_group_add(struct perf_event *leader, 4695 u64 read_format, u64 *values) 4696 { 4697 struct perf_event_context *ctx = leader->ctx; 4698 struct perf_event *sub; 4699 unsigned long flags; 4700 int n = 1; /* skip @nr */ 4701 int ret; 4702 4703 ret = perf_event_read(leader, true); 4704 if (ret) 4705 return ret; 4706 4707 raw_spin_lock_irqsave(&ctx->lock, flags); 4708 4709 /* 4710 * Since we co-schedule groups, {enabled,running} times of siblings 4711 * will be identical to those of the leader, so we only publish one 4712 * set. 4713 */ 4714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4715 values[n++] += leader->total_time_enabled + 4716 atomic64_read(&leader->child_total_time_enabled); 4717 } 4718 4719 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4720 values[n++] += leader->total_time_running + 4721 atomic64_read(&leader->child_total_time_running); 4722 } 4723 4724 /* 4725 * Write {count,id} tuples for every sibling. 4726 */ 4727 values[n++] += perf_event_count(leader); 4728 if (read_format & PERF_FORMAT_ID) 4729 values[n++] = primary_event_id(leader); 4730 4731 for_each_sibling_event(sub, leader) { 4732 values[n++] += perf_event_count(sub); 4733 if (read_format & PERF_FORMAT_ID) 4734 values[n++] = primary_event_id(sub); 4735 } 4736 4737 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4738 return 0; 4739 } 4740 4741 static int perf_read_group(struct perf_event *event, 4742 u64 read_format, char __user *buf) 4743 { 4744 struct perf_event *leader = event->group_leader, *child; 4745 struct perf_event_context *ctx = leader->ctx; 4746 int ret; 4747 u64 *values; 4748 4749 lockdep_assert_held(&ctx->mutex); 4750 4751 values = kzalloc(event->read_size, GFP_KERNEL); 4752 if (!values) 4753 return -ENOMEM; 4754 4755 values[0] = 1 + leader->nr_siblings; 4756 4757 /* 4758 * By locking the child_mutex of the leader we effectively 4759 * lock the child list of all siblings.. XXX explain how. 4760 */ 4761 mutex_lock(&leader->child_mutex); 4762 4763 ret = __perf_read_group_add(leader, read_format, values); 4764 if (ret) 4765 goto unlock; 4766 4767 list_for_each_entry(child, &leader->child_list, child_list) { 4768 ret = __perf_read_group_add(child, read_format, values); 4769 if (ret) 4770 goto unlock; 4771 } 4772 4773 mutex_unlock(&leader->child_mutex); 4774 4775 ret = event->read_size; 4776 if (copy_to_user(buf, values, event->read_size)) 4777 ret = -EFAULT; 4778 goto out; 4779 4780 unlock: 4781 mutex_unlock(&leader->child_mutex); 4782 out: 4783 kfree(values); 4784 return ret; 4785 } 4786 4787 static int perf_read_one(struct perf_event *event, 4788 u64 read_format, char __user *buf) 4789 { 4790 u64 enabled, running; 4791 u64 values[4]; 4792 int n = 0; 4793 4794 values[n++] = __perf_event_read_value(event, &enabled, &running); 4795 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4796 values[n++] = enabled; 4797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4798 values[n++] = running; 4799 if (read_format & PERF_FORMAT_ID) 4800 values[n++] = primary_event_id(event); 4801 4802 if (copy_to_user(buf, values, n * sizeof(u64))) 4803 return -EFAULT; 4804 4805 return n * sizeof(u64); 4806 } 4807 4808 static bool is_event_hup(struct perf_event *event) 4809 { 4810 bool no_children; 4811 4812 if (event->state > PERF_EVENT_STATE_EXIT) 4813 return false; 4814 4815 mutex_lock(&event->child_mutex); 4816 no_children = list_empty(&event->child_list); 4817 mutex_unlock(&event->child_mutex); 4818 return no_children; 4819 } 4820 4821 /* 4822 * Read the performance event - simple non blocking version for now 4823 */ 4824 static ssize_t 4825 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4826 { 4827 u64 read_format = event->attr.read_format; 4828 int ret; 4829 4830 /* 4831 * Return end-of-file for a read on an event that is in 4832 * error state (i.e. because it was pinned but it couldn't be 4833 * scheduled on to the CPU at some point). 4834 */ 4835 if (event->state == PERF_EVENT_STATE_ERROR) 4836 return 0; 4837 4838 if (count < event->read_size) 4839 return -ENOSPC; 4840 4841 WARN_ON_ONCE(event->ctx->parent_ctx); 4842 if (read_format & PERF_FORMAT_GROUP) 4843 ret = perf_read_group(event, read_format, buf); 4844 else 4845 ret = perf_read_one(event, read_format, buf); 4846 4847 return ret; 4848 } 4849 4850 static ssize_t 4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4852 { 4853 struct perf_event *event = file->private_data; 4854 struct perf_event_context *ctx; 4855 int ret; 4856 4857 ctx = perf_event_ctx_lock(event); 4858 ret = __perf_read(event, buf, count); 4859 perf_event_ctx_unlock(event, ctx); 4860 4861 return ret; 4862 } 4863 4864 static __poll_t perf_poll(struct file *file, poll_table *wait) 4865 { 4866 struct perf_event *event = file->private_data; 4867 struct ring_buffer *rb; 4868 __poll_t events = EPOLLHUP; 4869 4870 poll_wait(file, &event->waitq, wait); 4871 4872 if (is_event_hup(event)) 4873 return events; 4874 4875 /* 4876 * Pin the event->rb by taking event->mmap_mutex; otherwise 4877 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4878 */ 4879 mutex_lock(&event->mmap_mutex); 4880 rb = event->rb; 4881 if (rb) 4882 events = atomic_xchg(&rb->poll, 0); 4883 mutex_unlock(&event->mmap_mutex); 4884 return events; 4885 } 4886 4887 static void _perf_event_reset(struct perf_event *event) 4888 { 4889 (void)perf_event_read(event, false); 4890 local64_set(&event->count, 0); 4891 perf_event_update_userpage(event); 4892 } 4893 4894 /* 4895 * Holding the top-level event's child_mutex means that any 4896 * descendant process that has inherited this event will block 4897 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4898 * task existence requirements of perf_event_enable/disable. 4899 */ 4900 static void perf_event_for_each_child(struct perf_event *event, 4901 void (*func)(struct perf_event *)) 4902 { 4903 struct perf_event *child; 4904 4905 WARN_ON_ONCE(event->ctx->parent_ctx); 4906 4907 mutex_lock(&event->child_mutex); 4908 func(event); 4909 list_for_each_entry(child, &event->child_list, child_list) 4910 func(child); 4911 mutex_unlock(&event->child_mutex); 4912 } 4913 4914 static void perf_event_for_each(struct perf_event *event, 4915 void (*func)(struct perf_event *)) 4916 { 4917 struct perf_event_context *ctx = event->ctx; 4918 struct perf_event *sibling; 4919 4920 lockdep_assert_held(&ctx->mutex); 4921 4922 event = event->group_leader; 4923 4924 perf_event_for_each_child(event, func); 4925 for_each_sibling_event(sibling, event) 4926 perf_event_for_each_child(sibling, func); 4927 } 4928 4929 static void __perf_event_period(struct perf_event *event, 4930 struct perf_cpu_context *cpuctx, 4931 struct perf_event_context *ctx, 4932 void *info) 4933 { 4934 u64 value = *((u64 *)info); 4935 bool active; 4936 4937 if (event->attr.freq) { 4938 event->attr.sample_freq = value; 4939 } else { 4940 event->attr.sample_period = value; 4941 event->hw.sample_period = value; 4942 } 4943 4944 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4945 if (active) { 4946 perf_pmu_disable(ctx->pmu); 4947 /* 4948 * We could be throttled; unthrottle now to avoid the tick 4949 * trying to unthrottle while we already re-started the event. 4950 */ 4951 if (event->hw.interrupts == MAX_INTERRUPTS) { 4952 event->hw.interrupts = 0; 4953 perf_log_throttle(event, 1); 4954 } 4955 event->pmu->stop(event, PERF_EF_UPDATE); 4956 } 4957 4958 local64_set(&event->hw.period_left, 0); 4959 4960 if (active) { 4961 event->pmu->start(event, PERF_EF_RELOAD); 4962 perf_pmu_enable(ctx->pmu); 4963 } 4964 } 4965 4966 static int perf_event_check_period(struct perf_event *event, u64 value) 4967 { 4968 return event->pmu->check_period(event, value); 4969 } 4970 4971 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4972 { 4973 u64 value; 4974 4975 if (!is_sampling_event(event)) 4976 return -EINVAL; 4977 4978 if (copy_from_user(&value, arg, sizeof(value))) 4979 return -EFAULT; 4980 4981 if (!value) 4982 return -EINVAL; 4983 4984 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4985 return -EINVAL; 4986 4987 if (perf_event_check_period(event, value)) 4988 return -EINVAL; 4989 4990 event_function_call(event, __perf_event_period, &value); 4991 4992 return 0; 4993 } 4994 4995 static const struct file_operations perf_fops; 4996 4997 static inline int perf_fget_light(int fd, struct fd *p) 4998 { 4999 struct fd f = fdget(fd); 5000 if (!f.file) 5001 return -EBADF; 5002 5003 if (f.file->f_op != &perf_fops) { 5004 fdput(f); 5005 return -EBADF; 5006 } 5007 *p = f; 5008 return 0; 5009 } 5010 5011 static int perf_event_set_output(struct perf_event *event, 5012 struct perf_event *output_event); 5013 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5014 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5015 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5016 struct perf_event_attr *attr); 5017 5018 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5019 { 5020 void (*func)(struct perf_event *); 5021 u32 flags = arg; 5022 5023 switch (cmd) { 5024 case PERF_EVENT_IOC_ENABLE: 5025 func = _perf_event_enable; 5026 break; 5027 case PERF_EVENT_IOC_DISABLE: 5028 func = _perf_event_disable; 5029 break; 5030 case PERF_EVENT_IOC_RESET: 5031 func = _perf_event_reset; 5032 break; 5033 5034 case PERF_EVENT_IOC_REFRESH: 5035 return _perf_event_refresh(event, arg); 5036 5037 case PERF_EVENT_IOC_PERIOD: 5038 return perf_event_period(event, (u64 __user *)arg); 5039 5040 case PERF_EVENT_IOC_ID: 5041 { 5042 u64 id = primary_event_id(event); 5043 5044 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5045 return -EFAULT; 5046 return 0; 5047 } 5048 5049 case PERF_EVENT_IOC_SET_OUTPUT: 5050 { 5051 int ret; 5052 if (arg != -1) { 5053 struct perf_event *output_event; 5054 struct fd output; 5055 ret = perf_fget_light(arg, &output); 5056 if (ret) 5057 return ret; 5058 output_event = output.file->private_data; 5059 ret = perf_event_set_output(event, output_event); 5060 fdput(output); 5061 } else { 5062 ret = perf_event_set_output(event, NULL); 5063 } 5064 return ret; 5065 } 5066 5067 case PERF_EVENT_IOC_SET_FILTER: 5068 return perf_event_set_filter(event, (void __user *)arg); 5069 5070 case PERF_EVENT_IOC_SET_BPF: 5071 return perf_event_set_bpf_prog(event, arg); 5072 5073 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5074 struct ring_buffer *rb; 5075 5076 rcu_read_lock(); 5077 rb = rcu_dereference(event->rb); 5078 if (!rb || !rb->nr_pages) { 5079 rcu_read_unlock(); 5080 return -EINVAL; 5081 } 5082 rb_toggle_paused(rb, !!arg); 5083 rcu_read_unlock(); 5084 return 0; 5085 } 5086 5087 case PERF_EVENT_IOC_QUERY_BPF: 5088 return perf_event_query_prog_array(event, (void __user *)arg); 5089 5090 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5091 struct perf_event_attr new_attr; 5092 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5093 &new_attr); 5094 5095 if (err) 5096 return err; 5097 5098 return perf_event_modify_attr(event, &new_attr); 5099 } 5100 default: 5101 return -ENOTTY; 5102 } 5103 5104 if (flags & PERF_IOC_FLAG_GROUP) 5105 perf_event_for_each(event, func); 5106 else 5107 perf_event_for_each_child(event, func); 5108 5109 return 0; 5110 } 5111 5112 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5113 { 5114 struct perf_event *event = file->private_data; 5115 struct perf_event_context *ctx; 5116 long ret; 5117 5118 ctx = perf_event_ctx_lock(event); 5119 ret = _perf_ioctl(event, cmd, arg); 5120 perf_event_ctx_unlock(event, ctx); 5121 5122 return ret; 5123 } 5124 5125 #ifdef CONFIG_COMPAT 5126 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5127 unsigned long arg) 5128 { 5129 switch (_IOC_NR(cmd)) { 5130 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5131 case _IOC_NR(PERF_EVENT_IOC_ID): 5132 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5133 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5134 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5135 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5136 cmd &= ~IOCSIZE_MASK; 5137 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5138 } 5139 break; 5140 } 5141 return perf_ioctl(file, cmd, arg); 5142 } 5143 #else 5144 # define perf_compat_ioctl NULL 5145 #endif 5146 5147 int perf_event_task_enable(void) 5148 { 5149 struct perf_event_context *ctx; 5150 struct perf_event *event; 5151 5152 mutex_lock(¤t->perf_event_mutex); 5153 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5154 ctx = perf_event_ctx_lock(event); 5155 perf_event_for_each_child(event, _perf_event_enable); 5156 perf_event_ctx_unlock(event, ctx); 5157 } 5158 mutex_unlock(¤t->perf_event_mutex); 5159 5160 return 0; 5161 } 5162 5163 int perf_event_task_disable(void) 5164 { 5165 struct perf_event_context *ctx; 5166 struct perf_event *event; 5167 5168 mutex_lock(¤t->perf_event_mutex); 5169 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5170 ctx = perf_event_ctx_lock(event); 5171 perf_event_for_each_child(event, _perf_event_disable); 5172 perf_event_ctx_unlock(event, ctx); 5173 } 5174 mutex_unlock(¤t->perf_event_mutex); 5175 5176 return 0; 5177 } 5178 5179 static int perf_event_index(struct perf_event *event) 5180 { 5181 if (event->hw.state & PERF_HES_STOPPED) 5182 return 0; 5183 5184 if (event->state != PERF_EVENT_STATE_ACTIVE) 5185 return 0; 5186 5187 return event->pmu->event_idx(event); 5188 } 5189 5190 static void calc_timer_values(struct perf_event *event, 5191 u64 *now, 5192 u64 *enabled, 5193 u64 *running) 5194 { 5195 u64 ctx_time; 5196 5197 *now = perf_clock(); 5198 ctx_time = event->shadow_ctx_time + *now; 5199 __perf_update_times(event, ctx_time, enabled, running); 5200 } 5201 5202 static void perf_event_init_userpage(struct perf_event *event) 5203 { 5204 struct perf_event_mmap_page *userpg; 5205 struct ring_buffer *rb; 5206 5207 rcu_read_lock(); 5208 rb = rcu_dereference(event->rb); 5209 if (!rb) 5210 goto unlock; 5211 5212 userpg = rb->user_page; 5213 5214 /* Allow new userspace to detect that bit 0 is deprecated */ 5215 userpg->cap_bit0_is_deprecated = 1; 5216 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5217 userpg->data_offset = PAGE_SIZE; 5218 userpg->data_size = perf_data_size(rb); 5219 5220 unlock: 5221 rcu_read_unlock(); 5222 } 5223 5224 void __weak arch_perf_update_userpage( 5225 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5226 { 5227 } 5228 5229 /* 5230 * Callers need to ensure there can be no nesting of this function, otherwise 5231 * the seqlock logic goes bad. We can not serialize this because the arch 5232 * code calls this from NMI context. 5233 */ 5234 void perf_event_update_userpage(struct perf_event *event) 5235 { 5236 struct perf_event_mmap_page *userpg; 5237 struct ring_buffer *rb; 5238 u64 enabled, running, now; 5239 5240 rcu_read_lock(); 5241 rb = rcu_dereference(event->rb); 5242 if (!rb) 5243 goto unlock; 5244 5245 /* 5246 * compute total_time_enabled, total_time_running 5247 * based on snapshot values taken when the event 5248 * was last scheduled in. 5249 * 5250 * we cannot simply called update_context_time() 5251 * because of locking issue as we can be called in 5252 * NMI context 5253 */ 5254 calc_timer_values(event, &now, &enabled, &running); 5255 5256 userpg = rb->user_page; 5257 /* 5258 * Disable preemption to guarantee consistent time stamps are stored to 5259 * the user page. 5260 */ 5261 preempt_disable(); 5262 ++userpg->lock; 5263 barrier(); 5264 userpg->index = perf_event_index(event); 5265 userpg->offset = perf_event_count(event); 5266 if (userpg->index) 5267 userpg->offset -= local64_read(&event->hw.prev_count); 5268 5269 userpg->time_enabled = enabled + 5270 atomic64_read(&event->child_total_time_enabled); 5271 5272 userpg->time_running = running + 5273 atomic64_read(&event->child_total_time_running); 5274 5275 arch_perf_update_userpage(event, userpg, now); 5276 5277 barrier(); 5278 ++userpg->lock; 5279 preempt_enable(); 5280 unlock: 5281 rcu_read_unlock(); 5282 } 5283 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5284 5285 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5286 { 5287 struct perf_event *event = vmf->vma->vm_file->private_data; 5288 struct ring_buffer *rb; 5289 vm_fault_t ret = VM_FAULT_SIGBUS; 5290 5291 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5292 if (vmf->pgoff == 0) 5293 ret = 0; 5294 return ret; 5295 } 5296 5297 rcu_read_lock(); 5298 rb = rcu_dereference(event->rb); 5299 if (!rb) 5300 goto unlock; 5301 5302 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5303 goto unlock; 5304 5305 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5306 if (!vmf->page) 5307 goto unlock; 5308 5309 get_page(vmf->page); 5310 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5311 vmf->page->index = vmf->pgoff; 5312 5313 ret = 0; 5314 unlock: 5315 rcu_read_unlock(); 5316 5317 return ret; 5318 } 5319 5320 static void ring_buffer_attach(struct perf_event *event, 5321 struct ring_buffer *rb) 5322 { 5323 struct ring_buffer *old_rb = NULL; 5324 unsigned long flags; 5325 5326 if (event->rb) { 5327 /* 5328 * Should be impossible, we set this when removing 5329 * event->rb_entry and wait/clear when adding event->rb_entry. 5330 */ 5331 WARN_ON_ONCE(event->rcu_pending); 5332 5333 old_rb = event->rb; 5334 spin_lock_irqsave(&old_rb->event_lock, flags); 5335 list_del_rcu(&event->rb_entry); 5336 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5337 5338 event->rcu_batches = get_state_synchronize_rcu(); 5339 event->rcu_pending = 1; 5340 } 5341 5342 if (rb) { 5343 if (event->rcu_pending) { 5344 cond_synchronize_rcu(event->rcu_batches); 5345 event->rcu_pending = 0; 5346 } 5347 5348 spin_lock_irqsave(&rb->event_lock, flags); 5349 list_add_rcu(&event->rb_entry, &rb->event_list); 5350 spin_unlock_irqrestore(&rb->event_lock, flags); 5351 } 5352 5353 /* 5354 * Avoid racing with perf_mmap_close(AUX): stop the event 5355 * before swizzling the event::rb pointer; if it's getting 5356 * unmapped, its aux_mmap_count will be 0 and it won't 5357 * restart. See the comment in __perf_pmu_output_stop(). 5358 * 5359 * Data will inevitably be lost when set_output is done in 5360 * mid-air, but then again, whoever does it like this is 5361 * not in for the data anyway. 5362 */ 5363 if (has_aux(event)) 5364 perf_event_stop(event, 0); 5365 5366 rcu_assign_pointer(event->rb, rb); 5367 5368 if (old_rb) { 5369 ring_buffer_put(old_rb); 5370 /* 5371 * Since we detached before setting the new rb, so that we 5372 * could attach the new rb, we could have missed a wakeup. 5373 * Provide it now. 5374 */ 5375 wake_up_all(&event->waitq); 5376 } 5377 } 5378 5379 static void ring_buffer_wakeup(struct perf_event *event) 5380 { 5381 struct ring_buffer *rb; 5382 5383 rcu_read_lock(); 5384 rb = rcu_dereference(event->rb); 5385 if (rb) { 5386 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5387 wake_up_all(&event->waitq); 5388 } 5389 rcu_read_unlock(); 5390 } 5391 5392 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5393 { 5394 struct ring_buffer *rb; 5395 5396 rcu_read_lock(); 5397 rb = rcu_dereference(event->rb); 5398 if (rb) { 5399 if (!atomic_inc_not_zero(&rb->refcount)) 5400 rb = NULL; 5401 } 5402 rcu_read_unlock(); 5403 5404 return rb; 5405 } 5406 5407 void ring_buffer_put(struct ring_buffer *rb) 5408 { 5409 if (!atomic_dec_and_test(&rb->refcount)) 5410 return; 5411 5412 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5413 5414 call_rcu(&rb->rcu_head, rb_free_rcu); 5415 } 5416 5417 static void perf_mmap_open(struct vm_area_struct *vma) 5418 { 5419 struct perf_event *event = vma->vm_file->private_data; 5420 5421 atomic_inc(&event->mmap_count); 5422 atomic_inc(&event->rb->mmap_count); 5423 5424 if (vma->vm_pgoff) 5425 atomic_inc(&event->rb->aux_mmap_count); 5426 5427 if (event->pmu->event_mapped) 5428 event->pmu->event_mapped(event, vma->vm_mm); 5429 } 5430 5431 static void perf_pmu_output_stop(struct perf_event *event); 5432 5433 /* 5434 * A buffer can be mmap()ed multiple times; either directly through the same 5435 * event, or through other events by use of perf_event_set_output(). 5436 * 5437 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5438 * the buffer here, where we still have a VM context. This means we need 5439 * to detach all events redirecting to us. 5440 */ 5441 static void perf_mmap_close(struct vm_area_struct *vma) 5442 { 5443 struct perf_event *event = vma->vm_file->private_data; 5444 5445 struct ring_buffer *rb = ring_buffer_get(event); 5446 struct user_struct *mmap_user = rb->mmap_user; 5447 int mmap_locked = rb->mmap_locked; 5448 unsigned long size = perf_data_size(rb); 5449 5450 if (event->pmu->event_unmapped) 5451 event->pmu->event_unmapped(event, vma->vm_mm); 5452 5453 /* 5454 * rb->aux_mmap_count will always drop before rb->mmap_count and 5455 * event->mmap_count, so it is ok to use event->mmap_mutex to 5456 * serialize with perf_mmap here. 5457 */ 5458 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5459 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5460 /* 5461 * Stop all AUX events that are writing to this buffer, 5462 * so that we can free its AUX pages and corresponding PMU 5463 * data. Note that after rb::aux_mmap_count dropped to zero, 5464 * they won't start any more (see perf_aux_output_begin()). 5465 */ 5466 perf_pmu_output_stop(event); 5467 5468 /* now it's safe to free the pages */ 5469 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5470 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5471 5472 /* this has to be the last one */ 5473 rb_free_aux(rb); 5474 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5475 5476 mutex_unlock(&event->mmap_mutex); 5477 } 5478 5479 atomic_dec(&rb->mmap_count); 5480 5481 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5482 goto out_put; 5483 5484 ring_buffer_attach(event, NULL); 5485 mutex_unlock(&event->mmap_mutex); 5486 5487 /* If there's still other mmap()s of this buffer, we're done. */ 5488 if (atomic_read(&rb->mmap_count)) 5489 goto out_put; 5490 5491 /* 5492 * No other mmap()s, detach from all other events that might redirect 5493 * into the now unreachable buffer. Somewhat complicated by the 5494 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5495 */ 5496 again: 5497 rcu_read_lock(); 5498 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5499 if (!atomic_long_inc_not_zero(&event->refcount)) { 5500 /* 5501 * This event is en-route to free_event() which will 5502 * detach it and remove it from the list. 5503 */ 5504 continue; 5505 } 5506 rcu_read_unlock(); 5507 5508 mutex_lock(&event->mmap_mutex); 5509 /* 5510 * Check we didn't race with perf_event_set_output() which can 5511 * swizzle the rb from under us while we were waiting to 5512 * acquire mmap_mutex. 5513 * 5514 * If we find a different rb; ignore this event, a next 5515 * iteration will no longer find it on the list. We have to 5516 * still restart the iteration to make sure we're not now 5517 * iterating the wrong list. 5518 */ 5519 if (event->rb == rb) 5520 ring_buffer_attach(event, NULL); 5521 5522 mutex_unlock(&event->mmap_mutex); 5523 put_event(event); 5524 5525 /* 5526 * Restart the iteration; either we're on the wrong list or 5527 * destroyed its integrity by doing a deletion. 5528 */ 5529 goto again; 5530 } 5531 rcu_read_unlock(); 5532 5533 /* 5534 * It could be there's still a few 0-ref events on the list; they'll 5535 * get cleaned up by free_event() -- they'll also still have their 5536 * ref on the rb and will free it whenever they are done with it. 5537 * 5538 * Aside from that, this buffer is 'fully' detached and unmapped, 5539 * undo the VM accounting. 5540 */ 5541 5542 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5543 vma->vm_mm->pinned_vm -= mmap_locked; 5544 free_uid(mmap_user); 5545 5546 out_put: 5547 ring_buffer_put(rb); /* could be last */ 5548 } 5549 5550 static const struct vm_operations_struct perf_mmap_vmops = { 5551 .open = perf_mmap_open, 5552 .close = perf_mmap_close, /* non mergable */ 5553 .fault = perf_mmap_fault, 5554 .page_mkwrite = perf_mmap_fault, 5555 }; 5556 5557 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5558 { 5559 struct perf_event *event = file->private_data; 5560 unsigned long user_locked, user_lock_limit; 5561 struct user_struct *user = current_user(); 5562 unsigned long locked, lock_limit; 5563 struct ring_buffer *rb = NULL; 5564 unsigned long vma_size; 5565 unsigned long nr_pages; 5566 long user_extra = 0, extra = 0; 5567 int ret = 0, flags = 0; 5568 5569 /* 5570 * Don't allow mmap() of inherited per-task counters. This would 5571 * create a performance issue due to all children writing to the 5572 * same rb. 5573 */ 5574 if (event->cpu == -1 && event->attr.inherit) 5575 return -EINVAL; 5576 5577 if (!(vma->vm_flags & VM_SHARED)) 5578 return -EINVAL; 5579 5580 vma_size = vma->vm_end - vma->vm_start; 5581 5582 if (vma->vm_pgoff == 0) { 5583 nr_pages = (vma_size / PAGE_SIZE) - 1; 5584 } else { 5585 /* 5586 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5587 * mapped, all subsequent mappings should have the same size 5588 * and offset. Must be above the normal perf buffer. 5589 */ 5590 u64 aux_offset, aux_size; 5591 5592 if (!event->rb) 5593 return -EINVAL; 5594 5595 nr_pages = vma_size / PAGE_SIZE; 5596 5597 mutex_lock(&event->mmap_mutex); 5598 ret = -EINVAL; 5599 5600 rb = event->rb; 5601 if (!rb) 5602 goto aux_unlock; 5603 5604 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5605 aux_size = READ_ONCE(rb->user_page->aux_size); 5606 5607 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5608 goto aux_unlock; 5609 5610 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5611 goto aux_unlock; 5612 5613 /* already mapped with a different offset */ 5614 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5615 goto aux_unlock; 5616 5617 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5618 goto aux_unlock; 5619 5620 /* already mapped with a different size */ 5621 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5622 goto aux_unlock; 5623 5624 if (!is_power_of_2(nr_pages)) 5625 goto aux_unlock; 5626 5627 if (!atomic_inc_not_zero(&rb->mmap_count)) 5628 goto aux_unlock; 5629 5630 if (rb_has_aux(rb)) { 5631 atomic_inc(&rb->aux_mmap_count); 5632 ret = 0; 5633 goto unlock; 5634 } 5635 5636 atomic_set(&rb->aux_mmap_count, 1); 5637 user_extra = nr_pages; 5638 5639 goto accounting; 5640 } 5641 5642 /* 5643 * If we have rb pages ensure they're a power-of-two number, so we 5644 * can do bitmasks instead of modulo. 5645 */ 5646 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5647 return -EINVAL; 5648 5649 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5650 return -EINVAL; 5651 5652 WARN_ON_ONCE(event->ctx->parent_ctx); 5653 again: 5654 mutex_lock(&event->mmap_mutex); 5655 if (event->rb) { 5656 if (event->rb->nr_pages != nr_pages) { 5657 ret = -EINVAL; 5658 goto unlock; 5659 } 5660 5661 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5662 /* 5663 * Raced against perf_mmap_close() through 5664 * perf_event_set_output(). Try again, hope for better 5665 * luck. 5666 */ 5667 mutex_unlock(&event->mmap_mutex); 5668 goto again; 5669 } 5670 5671 goto unlock; 5672 } 5673 5674 user_extra = nr_pages + 1; 5675 5676 accounting: 5677 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5678 5679 /* 5680 * Increase the limit linearly with more CPUs: 5681 */ 5682 user_lock_limit *= num_online_cpus(); 5683 5684 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5685 5686 if (user_locked > user_lock_limit) 5687 extra = user_locked - user_lock_limit; 5688 5689 lock_limit = rlimit(RLIMIT_MEMLOCK); 5690 lock_limit >>= PAGE_SHIFT; 5691 locked = vma->vm_mm->pinned_vm + extra; 5692 5693 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5694 !capable(CAP_IPC_LOCK)) { 5695 ret = -EPERM; 5696 goto unlock; 5697 } 5698 5699 WARN_ON(!rb && event->rb); 5700 5701 if (vma->vm_flags & VM_WRITE) 5702 flags |= RING_BUFFER_WRITABLE; 5703 5704 if (!rb) { 5705 rb = rb_alloc(nr_pages, 5706 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5707 event->cpu, flags); 5708 5709 if (!rb) { 5710 ret = -ENOMEM; 5711 goto unlock; 5712 } 5713 5714 atomic_set(&rb->mmap_count, 1); 5715 rb->mmap_user = get_current_user(); 5716 rb->mmap_locked = extra; 5717 5718 ring_buffer_attach(event, rb); 5719 5720 perf_event_init_userpage(event); 5721 perf_event_update_userpage(event); 5722 } else { 5723 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5724 event->attr.aux_watermark, flags); 5725 if (!ret) 5726 rb->aux_mmap_locked = extra; 5727 } 5728 5729 unlock: 5730 if (!ret) { 5731 atomic_long_add(user_extra, &user->locked_vm); 5732 vma->vm_mm->pinned_vm += extra; 5733 5734 atomic_inc(&event->mmap_count); 5735 } else if (rb) { 5736 atomic_dec(&rb->mmap_count); 5737 } 5738 aux_unlock: 5739 mutex_unlock(&event->mmap_mutex); 5740 5741 /* 5742 * Since pinned accounting is per vm we cannot allow fork() to copy our 5743 * vma. 5744 */ 5745 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5746 vma->vm_ops = &perf_mmap_vmops; 5747 5748 if (event->pmu->event_mapped) 5749 event->pmu->event_mapped(event, vma->vm_mm); 5750 5751 return ret; 5752 } 5753 5754 static int perf_fasync(int fd, struct file *filp, int on) 5755 { 5756 struct inode *inode = file_inode(filp); 5757 struct perf_event *event = filp->private_data; 5758 int retval; 5759 5760 inode_lock(inode); 5761 retval = fasync_helper(fd, filp, on, &event->fasync); 5762 inode_unlock(inode); 5763 5764 if (retval < 0) 5765 return retval; 5766 5767 return 0; 5768 } 5769 5770 static const struct file_operations perf_fops = { 5771 .llseek = no_llseek, 5772 .release = perf_release, 5773 .read = perf_read, 5774 .poll = perf_poll, 5775 .unlocked_ioctl = perf_ioctl, 5776 .compat_ioctl = perf_compat_ioctl, 5777 .mmap = perf_mmap, 5778 .fasync = perf_fasync, 5779 }; 5780 5781 /* 5782 * Perf event wakeup 5783 * 5784 * If there's data, ensure we set the poll() state and publish everything 5785 * to user-space before waking everybody up. 5786 */ 5787 5788 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5789 { 5790 /* only the parent has fasync state */ 5791 if (event->parent) 5792 event = event->parent; 5793 return &event->fasync; 5794 } 5795 5796 void perf_event_wakeup(struct perf_event *event) 5797 { 5798 ring_buffer_wakeup(event); 5799 5800 if (event->pending_kill) { 5801 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5802 event->pending_kill = 0; 5803 } 5804 } 5805 5806 static void perf_pending_event(struct irq_work *entry) 5807 { 5808 struct perf_event *event = container_of(entry, 5809 struct perf_event, pending); 5810 int rctx; 5811 5812 rctx = perf_swevent_get_recursion_context(); 5813 /* 5814 * If we 'fail' here, that's OK, it means recursion is already disabled 5815 * and we won't recurse 'further'. 5816 */ 5817 5818 if (event->pending_disable) { 5819 event->pending_disable = 0; 5820 perf_event_disable_local(event); 5821 } 5822 5823 if (event->pending_wakeup) { 5824 event->pending_wakeup = 0; 5825 perf_event_wakeup(event); 5826 } 5827 5828 if (rctx >= 0) 5829 perf_swevent_put_recursion_context(rctx); 5830 } 5831 5832 /* 5833 * We assume there is only KVM supporting the callbacks. 5834 * Later on, we might change it to a list if there is 5835 * another virtualization implementation supporting the callbacks. 5836 */ 5837 struct perf_guest_info_callbacks *perf_guest_cbs; 5838 5839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5840 { 5841 perf_guest_cbs = cbs; 5842 return 0; 5843 } 5844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5845 5846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5847 { 5848 perf_guest_cbs = NULL; 5849 return 0; 5850 } 5851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5852 5853 static void 5854 perf_output_sample_regs(struct perf_output_handle *handle, 5855 struct pt_regs *regs, u64 mask) 5856 { 5857 int bit; 5858 DECLARE_BITMAP(_mask, 64); 5859 5860 bitmap_from_u64(_mask, mask); 5861 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5862 u64 val; 5863 5864 val = perf_reg_value(regs, bit); 5865 perf_output_put(handle, val); 5866 } 5867 } 5868 5869 static void perf_sample_regs_user(struct perf_regs *regs_user, 5870 struct pt_regs *regs, 5871 struct pt_regs *regs_user_copy) 5872 { 5873 if (user_mode(regs)) { 5874 regs_user->abi = perf_reg_abi(current); 5875 regs_user->regs = regs; 5876 } else if (current->mm) { 5877 perf_get_regs_user(regs_user, regs, regs_user_copy); 5878 } else { 5879 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5880 regs_user->regs = NULL; 5881 } 5882 } 5883 5884 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5885 struct pt_regs *regs) 5886 { 5887 regs_intr->regs = regs; 5888 regs_intr->abi = perf_reg_abi(current); 5889 } 5890 5891 5892 /* 5893 * Get remaining task size from user stack pointer. 5894 * 5895 * It'd be better to take stack vma map and limit this more 5896 * precisly, but there's no way to get it safely under interrupt, 5897 * so using TASK_SIZE as limit. 5898 */ 5899 static u64 perf_ustack_task_size(struct pt_regs *regs) 5900 { 5901 unsigned long addr = perf_user_stack_pointer(regs); 5902 5903 if (!addr || addr >= TASK_SIZE) 5904 return 0; 5905 5906 return TASK_SIZE - addr; 5907 } 5908 5909 static u16 5910 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5911 struct pt_regs *regs) 5912 { 5913 u64 task_size; 5914 5915 /* No regs, no stack pointer, no dump. */ 5916 if (!regs) 5917 return 0; 5918 5919 /* 5920 * Check if we fit in with the requested stack size into the: 5921 * - TASK_SIZE 5922 * If we don't, we limit the size to the TASK_SIZE. 5923 * 5924 * - remaining sample size 5925 * If we don't, we customize the stack size to 5926 * fit in to the remaining sample size. 5927 */ 5928 5929 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5930 stack_size = min(stack_size, (u16) task_size); 5931 5932 /* Current header size plus static size and dynamic size. */ 5933 header_size += 2 * sizeof(u64); 5934 5935 /* Do we fit in with the current stack dump size? */ 5936 if ((u16) (header_size + stack_size) < header_size) { 5937 /* 5938 * If we overflow the maximum size for the sample, 5939 * we customize the stack dump size to fit in. 5940 */ 5941 stack_size = USHRT_MAX - header_size - sizeof(u64); 5942 stack_size = round_up(stack_size, sizeof(u64)); 5943 } 5944 5945 return stack_size; 5946 } 5947 5948 static void 5949 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5950 struct pt_regs *regs) 5951 { 5952 /* Case of a kernel thread, nothing to dump */ 5953 if (!regs) { 5954 u64 size = 0; 5955 perf_output_put(handle, size); 5956 } else { 5957 unsigned long sp; 5958 unsigned int rem; 5959 u64 dyn_size; 5960 mm_segment_t fs; 5961 5962 /* 5963 * We dump: 5964 * static size 5965 * - the size requested by user or the best one we can fit 5966 * in to the sample max size 5967 * data 5968 * - user stack dump data 5969 * dynamic size 5970 * - the actual dumped size 5971 */ 5972 5973 /* Static size. */ 5974 perf_output_put(handle, dump_size); 5975 5976 /* Data. */ 5977 sp = perf_user_stack_pointer(regs); 5978 fs = get_fs(); 5979 set_fs(USER_DS); 5980 rem = __output_copy_user(handle, (void *) sp, dump_size); 5981 set_fs(fs); 5982 dyn_size = dump_size - rem; 5983 5984 perf_output_skip(handle, rem); 5985 5986 /* Dynamic size. */ 5987 perf_output_put(handle, dyn_size); 5988 } 5989 } 5990 5991 static void __perf_event_header__init_id(struct perf_event_header *header, 5992 struct perf_sample_data *data, 5993 struct perf_event *event) 5994 { 5995 u64 sample_type = event->attr.sample_type; 5996 5997 data->type = sample_type; 5998 header->size += event->id_header_size; 5999 6000 if (sample_type & PERF_SAMPLE_TID) { 6001 /* namespace issues */ 6002 data->tid_entry.pid = perf_event_pid(event, current); 6003 data->tid_entry.tid = perf_event_tid(event, current); 6004 } 6005 6006 if (sample_type & PERF_SAMPLE_TIME) 6007 data->time = perf_event_clock(event); 6008 6009 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6010 data->id = primary_event_id(event); 6011 6012 if (sample_type & PERF_SAMPLE_STREAM_ID) 6013 data->stream_id = event->id; 6014 6015 if (sample_type & PERF_SAMPLE_CPU) { 6016 data->cpu_entry.cpu = raw_smp_processor_id(); 6017 data->cpu_entry.reserved = 0; 6018 } 6019 } 6020 6021 void perf_event_header__init_id(struct perf_event_header *header, 6022 struct perf_sample_data *data, 6023 struct perf_event *event) 6024 { 6025 if (event->attr.sample_id_all) 6026 __perf_event_header__init_id(header, data, event); 6027 } 6028 6029 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6030 struct perf_sample_data *data) 6031 { 6032 u64 sample_type = data->type; 6033 6034 if (sample_type & PERF_SAMPLE_TID) 6035 perf_output_put(handle, data->tid_entry); 6036 6037 if (sample_type & PERF_SAMPLE_TIME) 6038 perf_output_put(handle, data->time); 6039 6040 if (sample_type & PERF_SAMPLE_ID) 6041 perf_output_put(handle, data->id); 6042 6043 if (sample_type & PERF_SAMPLE_STREAM_ID) 6044 perf_output_put(handle, data->stream_id); 6045 6046 if (sample_type & PERF_SAMPLE_CPU) 6047 perf_output_put(handle, data->cpu_entry); 6048 6049 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6050 perf_output_put(handle, data->id); 6051 } 6052 6053 void perf_event__output_id_sample(struct perf_event *event, 6054 struct perf_output_handle *handle, 6055 struct perf_sample_data *sample) 6056 { 6057 if (event->attr.sample_id_all) 6058 __perf_event__output_id_sample(handle, sample); 6059 } 6060 6061 static void perf_output_read_one(struct perf_output_handle *handle, 6062 struct perf_event *event, 6063 u64 enabled, u64 running) 6064 { 6065 u64 read_format = event->attr.read_format; 6066 u64 values[4]; 6067 int n = 0; 6068 6069 values[n++] = perf_event_count(event); 6070 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6071 values[n++] = enabled + 6072 atomic64_read(&event->child_total_time_enabled); 6073 } 6074 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6075 values[n++] = running + 6076 atomic64_read(&event->child_total_time_running); 6077 } 6078 if (read_format & PERF_FORMAT_ID) 6079 values[n++] = primary_event_id(event);