~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/events/core.c

Version: ~ [ linux-6.4-rc3 ] ~ [ linux-6.3.4 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.30 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.113 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.180 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.243 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.283 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.315 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Performance events core code:
  4  *
  5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
  8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  9  */
 10 
 11 #include <linux/fs.h>
 12 #include <linux/mm.h>
 13 #include <linux/cpu.h>
 14 #include <linux/smp.h>
 15 #include <linux/idr.h>
 16 #include <linux/file.h>
 17 #include <linux/poll.h>
 18 #include <linux/slab.h>
 19 #include <linux/hash.h>
 20 #include <linux/tick.h>
 21 #include <linux/sysfs.h>
 22 #include <linux/dcache.h>
 23 #include <linux/percpu.h>
 24 #include <linux/ptrace.h>
 25 #include <linux/reboot.h>
 26 #include <linux/vmstat.h>
 27 #include <linux/device.h>
 28 #include <linux/export.h>
 29 #include <linux/vmalloc.h>
 30 #include <linux/hardirq.h>
 31 #include <linux/hugetlb.h>
 32 #include <linux/rculist.h>
 33 #include <linux/uaccess.h>
 34 #include <linux/syscalls.h>
 35 #include <linux/anon_inodes.h>
 36 #include <linux/kernel_stat.h>
 37 #include <linux/cgroup.h>
 38 #include <linux/perf_event.h>
 39 #include <linux/trace_events.h>
 40 #include <linux/hw_breakpoint.h>
 41 #include <linux/mm_types.h>
 42 #include <linux/module.h>
 43 #include <linux/mman.h>
 44 #include <linux/compat.h>
 45 #include <linux/bpf.h>
 46 #include <linux/filter.h>
 47 #include <linux/namei.h>
 48 #include <linux/parser.h>
 49 #include <linux/sched/clock.h>
 50 #include <linux/sched/mm.h>
 51 #include <linux/proc_ns.h>
 52 #include <linux/mount.h>
 53 #include <linux/min_heap.h>
 54 #include <linux/highmem.h>
 55 #include <linux/pgtable.h>
 56 #include <linux/buildid.h>
 57 
 58 #include "internal.h"
 59 
 60 #include <asm/irq_regs.h>
 61 
 62 typedef int (*remote_function_f)(void *);
 63 
 64 struct remote_function_call {
 65         struct task_struct      *p;
 66         remote_function_f       func;
 67         void                    *info;
 68         int                     ret;
 69 };
 70 
 71 static void remote_function(void *data)
 72 {
 73         struct remote_function_call *tfc = data;
 74         struct task_struct *p = tfc->p;
 75 
 76         if (p) {
 77                 /* -EAGAIN */
 78                 if (task_cpu(p) != smp_processor_id())
 79                         return;
 80 
 81                 /*
 82                  * Now that we're on right CPU with IRQs disabled, we can test
 83                  * if we hit the right task without races.
 84                  */
 85 
 86                 tfc->ret = -ESRCH; /* No such (running) process */
 87                 if (p != current)
 88                         return;
 89         }
 90 
 91         tfc->ret = tfc->func(tfc->info);
 92 }
 93 
 94 /**
 95  * task_function_call - call a function on the cpu on which a task runs
 96  * @p:          the task to evaluate
 97  * @func:       the function to be called
 98  * @info:       the function call argument
 99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117 
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123 
124                 if (ret != -EAGAIN)
125                         break;
126 
127                 cond_resched();
128         }
129 
130         return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151 
152         smp_call_function_single(cpu, remote_function, &data, 1);
153 
154         return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222 
223         lockdep_assert_irqs_disabled();
224 
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235 
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252 
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256 
257         return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269 
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278 
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283 
284         if (task == TASK_TOMBSTONE)
285                 return;
286 
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290 
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319 
320         lockdep_assert_irqs_disabled();
321 
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325 
326                 task_ctx = ctx;
327         }
328 
329         perf_ctx_lock(cpuctx, task_ctx);
330 
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334 
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344 
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351 
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429 
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441 
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446 
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462 
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466 
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470 
471         return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481         if (ret || !write)
482                 return ret;
483 
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492 
493         return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525 
526         if (max_len == 0)
527                 return;
528 
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534 
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543 
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546 
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556 
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559 
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)        { }
584 
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621 
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624 
625         return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633 
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637 
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646 
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655 
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665 
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673 
674         WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688 
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692 
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717 
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726 
727         now = perf_clock();
728 
729         info = this_cpu_ptr(cgrp->info);
730 
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739 
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751 
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758 
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774 
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782 
783         cgrp = perf_cgroup_from_task(task, ctx);
784 
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808 
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814 
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821 
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830 
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847 
848         local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856 
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874         rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882 
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900         rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909 
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916 
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921 
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928 
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938                 kfree(storage);
939         }
940 
941         return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952 
953         if (!f.file)
954                 return -EBADF;
955 
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962 
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966 
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969 
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996 
997         if (!is_cgroup_event(event))
998                 return;
999 
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018 
1019         if (ctx->nr_cgroups++)
1020                 return;
1021 
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030 
1031         if (!is_cgroup_event(event))
1032                 return;
1033 
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040         if (--ctx->nr_cgroups)
1041                 return;
1042 
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045 
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134 
1135         lockdep_assert_irqs_disabled();
1136 
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139 
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155 
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159 
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180 
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184 
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193         return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222         lockdep_assert_irqs_disabled();
1223 
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232 
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248         return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260 
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347 
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356 
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363 
1364         return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390         lockdep_assert_held(&ctx->lock);
1391 
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395 
1396         return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408 
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433 
1434         if (event->parent)
1435                 id = event->parent->id;
1436 
1437         return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450 
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482 
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507 
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519 
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531 
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539 
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542 
1543         return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550 
1551         lockdep_assert_held(&ctx->lock);
1552 
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559 
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563 
1564         return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607         return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647 
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652 
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657 
1658         return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680 
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695 
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706 
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720 
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732 
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749 
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753 
1754         return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768 
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772 
1773         return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793 
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797         event->tstamp = perf_event_time(event);
1798 
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808 
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813 
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816 
1817         ctx->generation++;
1818 }
1819 
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828 
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834 
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837 
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840 
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843 
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848 
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852 
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857 
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860 
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863 
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866 
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869 
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872 
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875 
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878 
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881 
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884 
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887 
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890 
1891         event->header_size = size;
1892 }
1893 
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910 
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913 
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916 
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919 
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922 
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925 
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928 
1929         event->id_header_size = size;
1930 }
1931 
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941 
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949 
1950         return true;
1951 }
1952 
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956 
1957         lockdep_assert_held(&event->ctx->lock);
1958 
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964 
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966 
1967         if (group_leader == event)
1968                 return;
1969 
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971 
1972         group_leader->group_caps &= event->event_caps;
1973 
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976 
1977         perf_event__header_size(group_leader);
1978 
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982 
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992 
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998 
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000 
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004 
2005         list_del_rcu(&event->event_entry);
2006 
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009 
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021 
2022         ctx->generation++;
2023 }
2024 
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030 
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033 
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036 
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041 
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047 
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057 
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065 
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068 
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078 
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083 
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095 
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101 
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105 
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108 
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111 
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119 
2120         return 1;
2121 }
2122 
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128 
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139 
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143 
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149 
2150         lockdep_assert_held(&ctx->lock);
2151 
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157 
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159 
2160         perf_put_aux_event(event);
2161 
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170 
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177 
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180 
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183 
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186 
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189 
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193 
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196 
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200 
2201         perf_event__header_size(leader);
2202 }
2203 
2204 static void sync_child_event(struct perf_event *child_event);
2205 
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209 
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212 
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214 
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217 
2218         lockdep_assert_held(&parent_event->child_mutex);
2219 
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223 
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228 
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234 
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244 
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247 
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252 
2253         return 1;
2254 }
2255 
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262 
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269 
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272 
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275 
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282 
2283         perf_pmu_disable(event->pmu);
2284 
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287 
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294 
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303 
2304         perf_pmu_enable(event->pmu);
2305 }
2306 
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313 
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316 
2317         perf_pmu_disable(ctx->pmu);
2318 
2319         event_sched_out(group_event, cpuctx, ctx);
2320 
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326 
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329 
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346 
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351 
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358 
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368 
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382 
2383         lockdep_assert_held(&ctx->mutex);
2384 
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398 
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401 
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412 
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417 
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422 
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426 
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444 
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451 
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454 
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459 
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467 
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473 
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480 
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514 
2515 #define MAX_INTERRUPTS (~0ULL)
2516 
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519 
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526 
2527         WARN_ON_ONCE(event->ctx != ctx);
2528 
2529         lockdep_assert_held(&ctx->lock);
2530 
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533 
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542 
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552 
2553         perf_pmu_disable(event->pmu);
2554 
2555         perf_set_shadow_time(event, ctx);
2556 
2557         perf_log_itrace_start(event);
2558 
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565 
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572 
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575 
2576 out:
2577         perf_pmu_enable(event->pmu);
2578 
2579         return ret;
2580 }
2581 
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589 
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592 
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594 
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597 
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607 
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610 
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620 
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624 
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629 
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660 
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667 
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676 
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683 
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686 
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689 
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701 
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723 
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730 
2731         ctx_event_type = event_type & EVENT_ALL;
2732 
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736 
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748 
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752 
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757 
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762 
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777 
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782 
2783                 reprogram = (ctx->task == current);
2784 
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796 
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801 
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813 
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821 
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824 
2825         return ret;
2826 }
2827 
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830 
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842 
2843         lockdep_assert_held(&ctx->mutex);
2844 
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846 
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849 
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855 
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874 
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879 
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885 
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909 
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920 
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943 
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954 
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958 
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961 
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964 
2965         if (!ctx->is_active)
2966                 return;
2967 
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972 
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981 
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985 
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988 
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001 
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009 
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024 
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028 
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031 
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038 
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044 
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049 
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054 
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058 
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061 
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068 
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070 
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082 
3083         return 0;
3084 }
3085 
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093 
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097 
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100 
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109 
3110         return ret;
3111 }
3112 
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138 
3139         if (!has_addr_filter(event))
3140                 return;
3141 
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150 
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158 
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161 
3162         return 0;
3163 }
3164 
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172 
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176 
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180 
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185 
3186         _perf_event_disable(bp);
3187 
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189 
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192 
3193         return err;
3194 }
3195 
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202 
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205 
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214 
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216 
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230 
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237 
3238         lockdep_assert_held(&ctx->lock);
3239 
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249 
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253 
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259 
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275 
3276         is_active ^= ctx->is_active; /* changed bits */
3277 
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280 
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286 
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290 
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300 
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314 
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318 
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322 
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326 
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334 
3335         /* Unmatched */
3336         return 0;
3337 }
3338 
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343 
3344         if (!event->attr.inherit_stat)
3345                 return;
3346 
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356 
3357         perf_event_update_time(event);
3358 
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366 
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369 
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376 
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381 
3382         if (!ctx->nr_stat)
3383                 return;
3384 
3385         update_context_time(ctx);
3386 
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389 
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392 
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395 
3396                 __perf_event_sync_stat(event, next_event);
3397 
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402 
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412 
3413         if (likely(!ctx))
3414                 return;
3415 
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420 
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425 
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428 
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432 
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446 
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449 
3450                         perf_pmu_disable(pmu);
3451 
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454 
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465 
3466                         perf_pmu_enable(pmu);
3467 
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477 
3478                         do_switch = 0;
3479 
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487 
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491 
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495 
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500 
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502 
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506 
3507         this_cpu_dec(perf_sched_cb_usages);
3508 
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512 
3513 
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517 
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520 
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523 
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535 
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537 
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540 
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543 
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545 
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549 
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555 
3556         if (prev == next)
3557                 return;
3558 
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563 
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567 
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570 
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573 
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589 
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592 
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595 
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598 
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607 
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616 
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621 
3622         return le->group_index < re->group_index;
3623 }
3624 
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628 
3629         swap(*lp, *rp);
3630 }
3631 
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637 
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641 
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647 
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661 
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668 
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670 
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685 
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687 
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692 
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694 
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699 
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706 
3707         return 0;
3708 }
3709 
3710 static inline bool event_update_userpage(struct perf_event *event)
3711 {
3712         if (likely(!atomic_read(&event->mmap_count)))
3713                 return false;
3714 
3715         perf_event_update_time(event);
3716         perf_set_shadow_time(event, event->ctx);
3717         perf_event_update_userpage(event);
3718 
3719         return true;
3720 }
3721 
3722 static inline void group_update_userpage(struct perf_event *group_event)
3723 {
3724         struct perf_event *event;
3725 
3726         if (!event_update_userpage(group_event))
3727                 return;
3728 
3729         for_each_sibling_event(event, group_event)
3730                 event_update_userpage(event);
3731 }
3732 
3733 static int merge_sched_in(struct perf_event *event, void *data)
3734 {
3735         struct perf_event_context *ctx = event->ctx;
3736         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3737         int *can_add_hw = data;
3738 
3739         if (event->state <= PERF_EVENT_STATE_OFF)
3740                 return 0;
3741 
3742         if (!event_filter_match(event))
3743                 return 0;
3744 
3745         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3746                 if (!group_sched_in(event, cpuctx, ctx))
3747                         list_add_tail(&event->active_list, get_event_list(event));
3748         }
3749 
3750         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3751                 *can_add_hw = 0;
3752                 if (event->attr.pinned) {
3753                         perf_cgroup_event_disable(event, ctx);
3754                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3755                 } else {
3756                         ctx->rotate_necessary = 1;
3757                         perf_mux_hrtimer_restart(cpuctx);
3758                         group_update_userpage(event);
3759                 }
3760         }
3761 
3762         return 0;
3763 }
3764 
3765 static void
3766 ctx_pinned_sched_in(struct perf_event_context *ctx,
3767                     struct perf_cpu_context *cpuctx)
3768 {
3769         int can_add_hw = 1;
3770 
3771         if (ctx != &cpuctx->ctx)
3772                 cpuctx = NULL;
3773 
3774         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3775                            smp_processor_id(),
3776                            merge_sched_in, &can_add_hw);
3777 }
3778 
3779 static void
3780 ctx_flexible_sched_in(struct perf_event_context *ctx,
3781                       struct perf_cpu_context *cpuctx)
3782 {
3783         int can_add_hw = 1;
3784 
3785         if (ctx != &cpuctx->ctx)
3786                 cpuctx = NULL;
3787 
3788         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3789                            smp_processor_id(),
3790                            merge_sched_in, &can_add_hw);
3791 }
3792 
3793 static void
3794 ctx_sched_in(struct perf_event_context *ctx,
3795              struct perf_cpu_context *cpuctx,
3796              enum event_type_t event_type,
3797              struct task_struct *task)
3798 {
3799         int is_active = ctx->is_active;
3800         u64 now;
3801 
3802         lockdep_assert_held(&ctx->lock);
3803 
3804         if (likely(!ctx->nr_events))
3805                 return;
3806 
3807         ctx->is_active |= (event_type | EVENT_TIME);
3808         if (ctx->task) {
3809                 if (!is_active)
3810                         cpuctx->task_ctx = ctx;
3811                 else
3812                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3813         }
3814 
3815         is_active ^= ctx->is_active; /* changed bits */
3816 
3817         if (is_active & EVENT_TIME) {
3818                 /* start ctx time */
3819                 now = perf_clock();
3820                 ctx->timestamp = now;
3821                 perf_cgroup_set_timestamp(task, ctx);
3822         }
3823 
3824         /*
3825          * First go through the list and put on any pinned groups
3826          * in order to give them the best chance of going on.
3827          */
3828         if (is_active & EVENT_PINNED)
3829                 ctx_pinned_sched_in(ctx, cpuctx);
3830 
3831         /* Then walk through the lower prio flexible groups */
3832         if (is_active & EVENT_FLEXIBLE)
3833                 ctx_flexible_sched_in(ctx, cpuctx);
3834 }
3835 
3836 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3837                              enum event_type_t event_type,
3838                              struct task_struct *task)
3839 {
3840         struct perf_event_context *ctx = &cpuctx->ctx;
3841 
3842         ctx_sched_in(ctx, cpuctx, event_type, task);
3843 }
3844 
3845 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3846                                         struct task_struct *task)
3847 {
3848         struct perf_cpu_context *cpuctx;
3849         struct pmu *pmu;
3850 
3851         cpuctx = __get_cpu_context(ctx);
3852 
3853         /*
3854          * HACK: for HETEROGENEOUS the task context might have switched to a
3855          * different PMU, force (re)set the context,
3856          */
3857         pmu = ctx->pmu = cpuctx->ctx.pmu;
3858 
3859         if (cpuctx->task_ctx == ctx) {
3860                 if (cpuctx->sched_cb_usage)
3861                         __perf_pmu_sched_task(cpuctx, true);
3862                 return;
3863         }
3864 
3865         perf_ctx_lock(cpuctx, ctx);
3866         /*
3867          * We must check ctx->nr_events while holding ctx->lock, such
3868          * that we serialize against perf_install_in_context().
3869          */
3870         if (!ctx->nr_events)
3871                 goto unlock;
3872 
3873         perf_pmu_disable(pmu);
3874         /*
3875          * We want to keep the following priority order:
3876          * cpu pinned (that don't need to move), task pinned,
3877          * cpu flexible, task flexible.
3878          *
3879          * However, if task's ctx is not carrying any pinned
3880          * events, no need to flip the cpuctx's events around.
3881          */
3882         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3883                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3884         perf_event_sched_in(cpuctx, ctx, task);
3885 
3886         if (cpuctx->sched_cb_usage && pmu->sched_task)
3887                 pmu->sched_task(cpuctx->task_ctx, true);
3888 
3889         perf_pmu_enable(pmu);
3890 
3891 unlock:
3892         perf_ctx_unlock(cpuctx, ctx);
3893 }
3894 
3895 /*
3896  * Called from scheduler to add the events of the current task
3897  * with interrupts disabled.
3898  *
3899  * We restore the event value and then enable it.
3900  *
3901  * This does not protect us against NMI, but enable()
3902  * sets the enabled bit in the control field of event _before_
3903  * accessing the event control register. If a NMI hits, then it will
3904  * keep the event running.
3905  */
3906 void __perf_event_task_sched_in(struct task_struct *prev,
3907                                 struct task_struct *task)
3908 {
3909         struct perf_event_context *ctx;
3910         int ctxn;
3911 
3912         /*
3913          * If cgroup events exist on this CPU, then we need to check if we have
3914          * to switch in PMU state; cgroup event are system-wide mode only.
3915          *
3916          * Since cgroup events are CPU events, we must schedule these in before
3917          * we schedule in the task events.
3918          */
3919         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3920                 perf_cgroup_sched_in(prev, task);
3921 
3922         for_each_task_context_nr(ctxn) {
3923                 ctx = task->perf_event_ctxp[ctxn];
3924                 if (likely(!ctx))
3925                         continue;
3926 
3927                 perf_event_context_sched_in(ctx, task);
3928         }
3929 
3930         if (atomic_read(&nr_switch_events))
3931                 perf_event_switch(task, prev, true);
3932 
3933         if (__this_cpu_read(perf_sched_cb_usages))
3934                 perf_pmu_sched_task(prev, task, true);
3935 }
3936 
3937 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3938 {
3939         u64 frequency = event->attr.sample_freq;
3940         u64 sec = NSEC_PER_SEC;
3941         u64 divisor, dividend;
3942 
3943         int count_fls, nsec_fls, frequency_fls, sec_fls;
3944 
3945         count_fls = fls64(count);
3946         nsec_fls = fls64(nsec);
3947         frequency_fls = fls64(frequency);
3948         sec_fls = 30;
3949 
3950         /*
3951          * We got @count in @nsec, with a target of sample_freq HZ
3952          * the target period becomes:
3953          *
3954          *             @count * 10^9
3955          * period = -------------------
3956          *          @nsec * sample_freq
3957          *
3958          */
3959 
3960         /*
3961          * Reduce accuracy by one bit such that @a and @b converge
3962          * to a similar magnitude.
3963          */
3964 #define REDUCE_FLS(a, b)                \
3965 do {                                    \
3966         if (a##_fls > b##_fls) {        \
3967                 a >>= 1;                \
3968                 a##_fls--;              \
3969         } else {                        \
3970                 b >>= 1;                \
3971                 b##_fls--;              \
3972         }                               \
3973 } while (0)
3974 
3975         /*
3976          * Reduce accuracy until either term fits in a u64, then proceed with
3977          * the other, so that finally we can do a u64/u64 division.
3978          */
3979         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3980                 REDUCE_FLS(nsec, frequency);
3981                 REDUCE_FLS(sec, count);
3982         }
3983 
3984         if (count_fls + sec_fls > 64) {
3985                 divisor = nsec * frequency;
3986 
3987                 while (count_fls + sec_fls > 64) {
3988                         REDUCE_FLS(count, sec);
3989                         divisor >>= 1;
3990                 }
3991 
3992                 dividend = count * sec;
3993         } else {
3994                 dividend = count * sec;
3995 
3996                 while (nsec_fls + frequency_fls > 64) {
3997                         REDUCE_FLS(nsec, frequency);
3998                         dividend >>= 1;
3999                 }
4000 
4001                 divisor = nsec * frequency;
4002         }
4003 
4004         if (!divisor)
4005                 return dividend;
4006 
4007         return div64_u64(dividend, divisor);
4008 }
4009 
4010 static DEFINE_PER_CPU(int, perf_throttled_count);
4011 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4012 
4013 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4014 {
4015         struct hw_perf_event *hwc = &event->hw;
4016         s64 period, sample_period;
4017         s64 delta;
4018 
4019         period = perf_calculate_period(event, nsec, count);
4020 
4021         delta = (s64)(period - hwc->sample_period);
4022         delta = (delta + 7) / 8; /* low pass filter */
4023 
4024         sample_period = hwc->sample_period + delta;
4025 
4026         if (!sample_period)
4027                 sample_period = 1;
4028 
4029         hwc->sample_period = sample_period;
4030 
4031         if (local64_read(&hwc->period_left) > 8*sample_period) {
4032                 if (disable)
4033                         event->pmu->stop(event, PERF_EF_UPDATE);
4034 
4035                 local64_set(&hwc->period_left, 0);
4036 
4037                 if (disable)
4038                         event->pmu->start(event, PERF_EF_RELOAD);
4039         }
4040 }
4041 
4042 /*
4043  * combine freq adjustment with unthrottling to avoid two passes over the
4044  * events. At the same time, make sure, having freq events does not change
4045  * the rate of unthrottling as that would introduce bias.
4046  */
4047 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4048                                            int needs_unthr)
4049 {
4050         struct perf_event *event;
4051         struct hw_perf_event *hwc;
4052         u64 now, period = TICK_NSEC;
4053         s64 delta;
4054 
4055         /*
4056          * only need to iterate over all events iff:
4057          * - context have events in frequency mode (needs freq adjust)
4058          * - there are events to unthrottle on this cpu
4059          */
4060         if (!(ctx->nr_freq || needs_unthr))
4061                 return;
4062 
4063         raw_spin_lock(&ctx->lock);
4064         perf_pmu_disable(ctx->pmu);
4065 
4066         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4068                         continue;
4069 
4070                 if (!event_filter_match(event))
4071                         continue;
4072 
4073                 perf_pmu_disable(event->pmu);
4074 
4075                 hwc = &event->hw;
4076 
4077                 if (hwc->interrupts == MAX_INTERRUPTS) {
4078                         hwc->interrupts = 0;
4079                         perf_log_throttle(event, 1);
4080                         event->pmu->start(event, 0);
4081                 }
4082 
4083                 if (!event->attr.freq || !event->attr.sample_freq)
4084                         goto next;
4085 
4086                 /*
4087                  * stop the event and update event->count
4088                  */
4089                 event->pmu->stop(event, PERF_EF_UPDATE);
4090 
4091                 now = local64_read(&event->count);
4092                 delta = now - hwc->freq_count_stamp;
4093                 hwc->freq_count_stamp = now;
4094 
4095                 /*
4096                  * restart the event
4097                  * reload only if value has changed
4098                  * we have stopped the event so tell that
4099                  * to perf_adjust_period() to avoid stopping it
4100                  * twice.
4101                  */
4102                 if (delta > 0)
4103                         perf_adjust_period(event, period, delta, false);
4104 
4105                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4106         next:
4107                 perf_pmu_enable(event->pmu);
4108         }
4109 
4110         perf_pmu_enable(ctx->pmu);
4111         raw_spin_unlock(&ctx->lock);
4112 }
4113 
4114 /*
4115  * Move @event to the tail of the @ctx's elegible events.
4116  */
4117 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4118 {
4119         /*
4120          * Rotate the first entry last of non-pinned groups. Rotation might be
4121          * disabled by the inheritance code.
4122          */
4123         if (ctx->rotate_disable)
4124                 return;
4125 
4126         perf_event_groups_delete(&ctx->flexible_groups, event);
4127         perf_event_groups_insert(&ctx->flexible_groups, event);
4128 }
4129 
4130 /* pick an event from the flexible_groups to rotate */
4131 static inline struct perf_event *
4132 ctx_event_to_rotate(struct perf_event_context *ctx)
4133 {
4134         struct perf_event *event;
4135 
4136         /* pick the first active flexible event */
4137         event = list_first_entry_or_null(&ctx->flexible_active,
4138                                          struct perf_event, active_list);
4139 
4140         /* if no active flexible event, pick the first event */
4141         if (!event) {
4142                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4143                                       typeof(*event), group_node);
4144         }
4145 
4146         /*
4147          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4148          * finds there are unschedulable events, it will set it again.
4149          */
4150         ctx->rotate_necessary = 0;
4151 
4152         return event;
4153 }
4154 
4155 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4156 {
4157         struct perf_event *cpu_event = NULL, *task_event = NULL;
4158         struct perf_event_context *task_ctx = NULL;
4159         int cpu_rotate, task_rotate;
4160 
4161         /*
4162          * Since we run this from IRQ context, nobody can install new
4163          * events, thus the event count values are stable.
4164          */
4165 
4166         cpu_rotate = cpuctx->ctx.rotate_necessary;
4167         task_ctx = cpuctx->task_ctx;
4168         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4169 
4170         if (!(cpu_rotate || task_rotate))
4171                 return false;
4172 
4173         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4174         perf_pmu_disable(cpuctx->ctx.pmu);
4175 
4176         if (task_rotate)
4177                 task_event = ctx_event_to_rotate(task_ctx);
4178         if (cpu_rotate)
4179                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4180 
4181         /*
4182          * As per the order given at ctx_resched() first 'pop' task flexible
4183          * and then, if needed CPU flexible.
4184          */
4185         if (task_event || (task_ctx && cpu_event))
4186                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4187         if (cpu_event)
4188                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4189 
4190         if (task_event)
4191                 rotate_ctx(task_ctx, task_event);
4192         if (cpu_event)
4193                 rotate_ctx(&cpuctx->ctx, cpu_event);
4194 
4195         perf_event_sched_in(cpuctx, task_ctx, current);
4196 
4197         perf_pmu_enable(cpuctx->ctx.pmu);
4198         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4199 
4200         return true;
4201 }
4202 
4203 void perf_event_task_tick(void)
4204 {
4205         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4206         struct perf_event_context *ctx, *tmp;
4207         int throttled;
4208 
4209         lockdep_assert_irqs_disabled();
4210 
4211         __this_cpu_inc(perf_throttled_seq);
4212         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4213         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4214 
4215         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4216                 perf_adjust_freq_unthr_context(ctx, throttled);
4217 }
4218 
4219 static int event_enable_on_exec(struct perf_event *event,
4220                                 struct perf_event_context *ctx)
4221 {
4222         if (!event->attr.enable_on_exec)
4223                 return 0;
4224 
4225         event->attr.enable_on_exec = 0;
4226         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4227                 return 0;
4228 
4229         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4230 
4231         return 1;
4232 }
4233 
4234 /*
4235  * Enable all of a task's events that have been marked enable-on-exec.
4236  * This expects task == current.
4237  */
4238 static void perf_event_enable_on_exec(int ctxn)
4239 {
4240         struct perf_event_context *ctx, *clone_ctx = NULL;
4241         enum event_type_t event_type = 0;
4242         struct perf_cpu_context *cpuctx;
4243         struct perf_event *event;
4244         unsigned long flags;
4245         int enabled = 0;
4246 
4247         local_irq_save(flags);
4248         ctx = current->perf_event_ctxp[ctxn];
4249         if (!ctx || !ctx->nr_events)
4250                 goto out;
4251 
4252         cpuctx = __get_cpu_context(ctx);
4253         perf_ctx_lock(cpuctx, ctx);
4254         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4255         list_for_each_entry(event, &ctx->event_list, event_entry) {
4256                 enabled |= event_enable_on_exec(event, ctx);
4257                 event_type |= get_event_type(event);
4258         }
4259 
4260         /*
4261          * Unclone and reschedule this context if we enabled any event.
4262          */
4263         if (enabled) {
4264                 clone_ctx = unclone_ctx(ctx);
4265                 ctx_resched(cpuctx, ctx, event_type);
4266         } else {
4267                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4268         }
4269         perf_ctx_unlock(cpuctx, ctx);
4270 
4271 out:
4272         local_irq_restore(flags);
4273 
4274         if (clone_ctx)
4275                 put_ctx(clone_ctx);
4276 }
4277 
4278 static void perf_remove_from_owner(struct perf_event *event);
4279 static void perf_event_exit_event(struct perf_event *event,
4280                                   struct perf_event_context *ctx);
4281 
4282 /*
4283  * Removes all events from the current task that have been marked
4284  * remove-on-exec, and feeds their values back to parent events.
4285  */
4286 static void perf_event_remove_on_exec(int ctxn)
4287 {
4288         struct perf_event_context *ctx, *clone_ctx = NULL;
4289         struct perf_event *event, *next;
4290         LIST_HEAD(free_list);
4291         unsigned long flags;
4292         bool modified = false;
4293 
4294         ctx = perf_pin_task_context(current, ctxn);
4295         if (!ctx)
4296                 return;
4297 
4298         mutex_lock(&ctx->mutex);
4299 
4300         if (WARN_ON_ONCE(ctx->task != current))
4301                 goto unlock;
4302 
4303         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4304                 if (!event->attr.remove_on_exec)
4305                         continue;
4306 
4307                 if (!is_kernel_event(event))
4308                         perf_remove_from_owner(event);
4309 
4310                 modified = true;
4311 
4312                 perf_event_exit_event(event, ctx);
4313         }
4314 
4315         raw_spin_lock_irqsave(&ctx->lock, flags);
4316         if (modified)
4317                 clone_ctx = unclone_ctx(ctx);
4318         --ctx->pin_count;
4319         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4320 
4321 unlock:
4322         mutex_unlock(&ctx->mutex);
4323 
4324         put_ctx(ctx);
4325         if (clone_ctx)
4326                 put_ctx(clone_ctx);
4327 }
4328 
4329 struct perf_read_data {
4330         struct perf_event *event;
4331         bool group;
4332         int ret;
4333 };
4334 
4335 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4336 {
4337         u16 local_pkg, event_pkg;
4338 
4339         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4340                 int local_cpu = smp_processor_id();
4341 
4342                 event_pkg = topology_physical_package_id(event_cpu);
4343                 local_pkg = topology_physical_package_id(local_cpu);
4344 
4345                 if (event_pkg == local_pkg)
4346                         return local_cpu;
4347         }
4348 
4349         return event_cpu;
4350 }
4351 
4352 /*
4353  * Cross CPU call to read the hardware event
4354  */
4355 static void __perf_event_read(void *info)
4356 {
4357         struct perf_read_data *data = info;
4358         struct perf_event *sub, *event = data->event;
4359         struct perf_event_context *ctx = event->ctx;
4360         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4361         struct pmu *pmu = event->pmu;
4362 
4363         /*
4364          * If this is a task context, we need to check whether it is
4365          * the current task context of this cpu.  If not it has been
4366          * scheduled out before the smp call arrived.  In that case
4367          * event->count would have been updated to a recent sample
4368          * when the event was scheduled out.
4369          */
4370         if (ctx->task && cpuctx->task_ctx != ctx)
4371                 return;
4372 
4373         raw_spin_lock(&ctx->lock);
4374         if (ctx->is_active & EVENT_TIME) {
4375                 update_context_time(ctx);
4376                 update_cgrp_time_from_event(event);
4377         }
4378 
4379         perf_event_update_time(event);
4380         if (data->group)
4381                 perf_event_update_sibling_time(event);
4382 
4383         if (event->state != PERF_EVENT_STATE_ACTIVE)
4384                 goto unlock;
4385 
4386         if (!data->group) {
4387                 pmu->read(event);
4388                 data->ret = 0;
4389                 goto unlock;
4390         }
4391 
4392         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4393 
4394         pmu->read(event);
4395 
4396         for_each_sibling_event(sub, event) {
4397                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4398                         /*
4399                          * Use sibling's PMU rather than @event's since
4400                          * sibling could be on different (eg: software) PMU.
4401                          */
4402                         sub->pmu->read(sub);
4403                 }
4404         }
4405 
4406         data->ret = pmu->commit_txn(pmu);
4407 
4408 unlock:
4409         raw_spin_unlock(&ctx->lock);
4410 }
4411 
4412 static inline u64 perf_event_count(struct perf_event *event)
4413 {
4414         return local64_read(&event->count) + atomic64_read(&event->child_count);
4415 }
4416 
4417 /*
4418  * NMI-safe method to read a local event, that is an event that
4419  * is:
4420  *   - either for the current task, or for this CPU
4421  *   - does not have inherit set, for inherited task events
4422  *     will not be local and we cannot read them atomically
4423  *   - must not have a pmu::count method
4424  */
4425 int perf_event_read_local(struct perf_event *event, u64 *value,
4426                           u64 *enabled, u64 *running)
4427 {
4428         unsigned long flags;
4429         int ret = 0;
4430 
4431         /*
4432          * Disabling interrupts avoids all counter scheduling (context
4433          * switches, timer based rotation and IPIs).
4434          */
4435         local_irq_save(flags);
4436 
4437         /*
4438          * It must not be an event with inherit set, we cannot read
4439          * all child counters from atomic context.
4440          */
4441         if (event->attr.inherit) {
4442                 ret = -EOPNOTSUPP;
4443                 goto out;
4444         }
4445 
4446         /* If this is a per-task event, it must be for current */
4447         if ((event->attach_state & PERF_ATTACH_TASK) &&
4448             event->hw.target != current) {
4449                 ret = -EINVAL;
4450                 goto out;
4451         }
4452 
4453         /* If this is a per-CPU event, it must be for this CPU */
4454         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4455             event->cpu != smp_processor_id()) {
4456                 ret = -EINVAL;
4457                 goto out;
4458         }
4459 
4460         /* If this is a pinned event it must be running on this CPU */
4461         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4462                 ret = -EBUSY;
4463                 goto out;
4464         }
4465 
4466         /*
4467          * If the event is currently on this CPU, its either a per-task event,
4468          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4469          * oncpu == -1).
4470          */
4471         if (event->oncpu == smp_processor_id())
4472                 event->pmu->read(event);
4473 
4474         *value = local64_read(&event->count);
4475         if (enabled || running) {
4476                 u64 now = event->shadow_ctx_time + perf_clock();
4477                 u64 __enabled, __running;
4478 
4479                 __perf_update_times(event, now, &__enabled, &__running);
4480                 if (enabled)
4481                         *enabled = __enabled;
4482                 if (running)
4483                         *running = __running;
4484         }
4485 out:
4486         local_irq_restore(flags);
4487 
4488         return ret;
4489 }
4490 
4491 static int perf_event_read(struct perf_event *event, bool group)
4492 {
4493         enum perf_event_state state = READ_ONCE(event->state);
4494         int event_cpu, ret = 0;
4495 
4496         /*
4497          * If event is enabled and currently active on a CPU, update the
4498          * value in the event structure:
4499          */
4500 again:
4501         if (state == PERF_EVENT_STATE_ACTIVE) {
4502                 struct perf_read_data data;
4503 
4504                 /*
4505                  * Orders the ->state and ->oncpu loads such that if we see
4506                  * ACTIVE we must also see the right ->oncpu.
4507                  *
4508                  * Matches the smp_wmb() from event_sched_in().
4509                  */
4510                 smp_rmb();
4511 
4512                 event_cpu = READ_ONCE(event->oncpu);
4513                 if ((unsigned)event_cpu >= nr_cpu_ids)
4514                         return 0;
4515 
4516                 data = (struct perf_read_data){
4517                         .event = event,
4518                         .group = group,
4519                         .ret = 0,
4520                 };
4521 
4522                 preempt_disable();
4523                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4524 
4525                 /*
4526                  * Purposely ignore the smp_call_function_single() return
4527                  * value.
4528                  *
4529                  * If event_cpu isn't a valid CPU it means the event got
4530                  * scheduled out and that will have updated the event count.
4531                  *
4532                  * Therefore, either way, we'll have an up-to-date event count
4533                  * after this.
4534                  */
4535                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4536                 preempt_enable();
4537                 ret = data.ret;
4538 
4539         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4540                 struct perf_event_context *ctx = event->ctx;
4541                 unsigned long flags;
4542 
4543                 raw_spin_lock_irqsave(&ctx->lock, flags);
4544                 state = event->state;
4545                 if (state != PERF_EVENT_STATE_INACTIVE) {
4546                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4547                         goto again;
4548                 }
4549 
4550                 /*
4551                  * May read while context is not active (e.g., thread is
4552                  * blocked), in that case we cannot update context time
4553                  */
4554                 if (ctx->is_active & EVENT_TIME) {
4555                         update_context_time(ctx);
4556                         update_cgrp_time_from_event(event);
4557                 }
4558 
4559                 perf_event_update_time(event);
4560                 if (group)
4561                         perf_event_update_sibling_time(event);
4562                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4563         }
4564 
4565         return ret;
4566 }
4567 
4568 /*
4569  * Initialize the perf_event context in a task_struct:
4570  */
4571 static void __perf_event_init_context(struct perf_event_context *ctx)
4572 {
4573         raw_spin_lock_init(&ctx->lock);
4574         mutex_init(&ctx->mutex);
4575         INIT_LIST_HEAD(&ctx->active_ctx_list);
4576         perf_event_groups_init(&ctx->pinned_groups);
4577         perf_event_groups_init(&ctx->flexible_groups);
4578         INIT_LIST_HEAD(&ctx->event_list);
4579         INIT_LIST_HEAD(&ctx->pinned_active);
4580         INIT_LIST_HEAD(&ctx->flexible_active);
4581         refcount_set(&ctx->refcount, 1);
4582 }
4583 
4584 static struct perf_event_context *
4585 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4586 {
4587         struct perf_event_context *ctx;
4588 
4589         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4590         if (!ctx)
4591                 return NULL;
4592 
4593         __perf_event_init_context(ctx);
4594         if (task)
4595                 ctx->task = get_task_struct(task);
4596         ctx->pmu = pmu;
4597 
4598         return ctx;
4599 }
4600 
4601 static struct task_struct *
4602 find_lively_task_by_vpid(pid_t vpid)
4603 {
4604         struct task_struct *task;
4605 
4606         rcu_read_lock();
4607         if (!vpid)
4608                 task = current;
4609         else
4610                 task = find_task_by_vpid(vpid);
4611         if (task)
4612                 get_task_struct(task);
4613         rcu_read_unlock();
4614 
4615         if (!task)
4616                 return ERR_PTR(-ESRCH);
4617 
4618         return task;
4619 }
4620 
4621 /*
4622  * Returns a matching context with refcount and pincount.
4623  */
4624 static struct perf_event_context *
4625 find_get_context(struct pmu *pmu, struct task_struct *task,
4626                 struct perf_event *event)
4627 {
4628         struct perf_event_context *ctx, *clone_ctx = NULL;
4629         struct perf_cpu_context *cpuctx;
4630         void *task_ctx_data = NULL;
4631         unsigned long flags;
4632         int ctxn, err;
4633         int cpu = event->cpu;
4634 
4635         if (!task) {
4636                 /* Must be root to operate on a CPU event: */
4637                 err = perf_allow_cpu(&event->attr);
4638                 if (err)
4639                         return ERR_PTR(err);
4640 
4641                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4642                 ctx = &cpuctx->ctx;
4643                 get_ctx(ctx);
4644                 raw_spin_lock_irqsave(&ctx->lock, flags);
4645                 ++ctx->pin_count;
4646                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647 
4648                 return ctx;
4649         }
4650 
4651         err = -EINVAL;
4652         ctxn = pmu->task_ctx_nr;
4653         if (ctxn < 0)
4654                 goto errout;
4655 
4656         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4657                 task_ctx_data = alloc_task_ctx_data(pmu);
4658                 if (!task_ctx_data) {
4659                         err = -ENOMEM;
4660                         goto errout;
4661                 }
4662         }
4663 
4664 retry:
4665         ctx = perf_lock_task_context(task, ctxn, &flags);
4666         if (ctx) {
4667                 clone_ctx = unclone_ctx(ctx);
4668                 ++ctx->pin_count;
4669 
4670                 if (task_ctx_data && !ctx->task_ctx_data) {
4671                         ctx->task_ctx_data = task_ctx_data;
4672                         task_ctx_data = NULL;
4673                 }
4674                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675 
4676                 if (clone_ctx)
4677                         put_ctx(clone_ctx);
4678         } else {
4679                 ctx = alloc_perf_context(pmu, task);
4680                 err = -ENOMEM;
4681                 if (!ctx)
4682                         goto errout;
4683 
4684                 if (task_ctx_data) {
4685                         ctx->task_ctx_data = task_ctx_data;
4686                         task_ctx_data = NULL;
4687                 }
4688 
4689                 err = 0;
4690                 mutex_lock(&task->perf_event_mutex);
4691                 /*
4692                  * If it has already passed perf_event_exit_task().
4693                  * we must see PF_EXITING, it takes this mutex too.
4694                  */
4695                 if (task->flags & PF_EXITING)
4696                         err = -ESRCH;
4697                 else if (task->perf_event_ctxp[ctxn])
4698                         err = -EAGAIN;
4699                 else {
4700                         get_ctx(ctx);
4701                         ++ctx->pin_count;
4702                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4703                 }
4704                 mutex_unlock(&task->perf_event_mutex);
4705 
4706                 if (unlikely(err)) {
4707                         put_ctx(ctx);
4708 
4709                         if (err == -EAGAIN)
4710                                 goto retry;
4711                         goto errout;
4712                 }
4713         }
4714 
4715         free_task_ctx_data(pmu, task_ctx_data);
4716         return ctx;
4717 
4718 errout:
4719         free_task_ctx_data(pmu, task_ctx_data);
4720         return ERR_PTR(err);
4721 }
4722 
4723 static void perf_event_free_filter(struct perf_event *event);
4724 static void perf_event_free_bpf_prog(struct perf_event *event);
4725 
4726 static void free_event_rcu(struct rcu_head *head)
4727 {
4728         struct perf_event *event;
4729 
4730         event = container_of(head, struct perf_event, rcu_head);
4731         if (event->ns)
4732                 put_pid_ns(event->ns);
4733         perf_event_free_filter(event);
4734         kmem_cache_free(perf_event_cache, event);
4735 }
4736 
4737 static void ring_buffer_attach(struct perf_event *event,
4738                                struct perf_buffer *rb);
4739 
4740 static void detach_sb_event(struct perf_event *event)
4741 {
4742         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4743 
4744         raw_spin_lock(&pel->lock);
4745         list_del_rcu(&event->sb_list);
4746         raw_spin_unlock(&pel->lock);
4747 }
4748 
4749 static bool is_sb_event(struct perf_event *event)
4750 {
4751         struct perf_event_attr *attr = &event->attr;
4752 
4753         if (event->parent)
4754                 return false;
4755 
4756         if (event->attach_state & PERF_ATTACH_TASK)
4757                 return false;
4758 
4759         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4760             attr->comm || attr->comm_exec ||
4761             attr->task || attr->ksymbol ||
4762             attr->context_switch || attr->text_poke ||
4763             attr->bpf_event)
4764                 return true;
4765         return false;
4766 }
4767 
4768 static void unaccount_pmu_sb_event(struct perf_event *event)
4769 {
4770         if (is_sb_event(event))
4771                 detach_sb_event(event);
4772 }
4773 
4774 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4775 {
4776         if (event->parent)
4777                 return;
4778 
4779         if (is_cgroup_event(event))
4780                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4781 }
4782 
4783 #ifdef CONFIG_NO_HZ_FULL
4784 static DEFINE_SPINLOCK(nr_freq_lock);
4785 #endif
4786 
4787 static void unaccount_freq_event_nohz(void)
4788 {
4789 #ifdef CONFIG_NO_HZ_FULL
4790         spin_lock(&nr_freq_lock);
4791         if (atomic_dec_and_test(&nr_freq_events))
4792                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4793         spin_unlock(&nr_freq_lock);
4794 #endif
4795 }
4796 
4797 static void unaccount_freq_event(void)
4798 {
4799         if (tick_nohz_full_enabled())
4800                 unaccount_freq_event_nohz();
4801         else
4802                 atomic_dec(&nr_freq_events);
4803 }
4804 
4805 static void unaccount_event(struct perf_event *event)
4806 {
4807         bool dec = false;
4808 
4809         if (event->parent)
4810                 return;
4811 
4812         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4813                 dec = true;
4814         if (event->attr.mmap || event->attr.mmap_data)
4815                 atomic_dec(&nr_mmap_events);
4816         if (event->attr.build_id)
4817                 atomic_dec(&nr_build_id_events);
4818         if (event->attr.comm)
4819                 atomic_dec(&nr_comm_events);
4820         if (event->attr.namespaces)
4821                 atomic_dec(&nr_namespaces_events);
4822         if (event->attr.cgroup)
4823                 atomic_dec(&nr_cgroup_events);
4824         if (event->attr.task)
4825                 atomic_dec(&nr_task_events);
4826         if (event->attr.freq)
4827                 unaccount_freq_event();
4828         if (event->attr.context_switch) {
4829                 dec = true;
4830                 atomic_dec(&nr_switch_events);
4831         }
4832         if (is_cgroup_event(event))
4833                 dec = true;
4834         if (has_branch_stack(event))
4835                 dec = true;
4836         if (event->attr.ksymbol)
4837                 atomic_dec(&nr_ksymbol_events);
4838         if (event->attr.bpf_event)
4839                 atomic_dec(&nr_bpf_events);
4840         if (event->attr.text_poke)
4841                 atomic_dec(&nr_text_poke_events);
4842 
4843         if (dec) {
4844                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4845                         schedule_delayed_work(&perf_sched_work, HZ);
4846         }
4847 
4848         unaccount_event_cpu(event, event->cpu);
4849 
4850         unaccount_pmu_sb_event(event);
4851 }
4852 
4853 static void perf_sched_delayed(struct work_struct *work)
4854 {
4855         mutex_lock(&perf_sched_mutex);
4856         if (atomic_dec_and_test(&perf_sched_count))
4857                 static_branch_disable(&perf_sched_events);
4858         mutex_unlock(&perf_sched_mutex);
4859 }
4860 
4861 /*
4862  * The following implement mutual exclusion of events on "exclusive" pmus
4863  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4864  * at a time, so we disallow creating events that might conflict, namely:
4865  *
4866  *  1) cpu-wide events in the presence of per-task events,
4867  *  2) per-task events in the presence of cpu-wide events,
4868  *  3) two matching events on the same context.
4869  *
4870  * The former two cases are handled in the allocation path (perf_event_alloc(),
4871  * _free_event()), the latter -- before the first perf_install_in_context().
4872  */
4873 static int exclusive_event_init(struct perf_event *event)
4874 {
4875         struct pmu *pmu = event->pmu;
4876 
4877         if (!is_exclusive_pmu(pmu))
4878                 return 0;
4879 
4880         /*
4881          * Prevent co-existence of per-task and cpu-wide events on the
4882          * same exclusive pmu.
4883          *
4884          * Negative pmu::exclusive_cnt means there are cpu-wide
4885          * events on this "exclusive" pmu, positive means there are
4886          * per-task events.
4887          *
4888          * Since this is called in perf_event_alloc() path, event::ctx
4889          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4890          * to mean "per-task event", because unlike other attach states it
4891          * never gets cleared.
4892          */
4893         if (event->attach_state & PERF_ATTACH_TASK) {
4894                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4895                         return -EBUSY;
4896         } else {
4897                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4898                         return -EBUSY;
4899         }
4900 
4901         return 0;
4902 }
4903 
4904 static void exclusive_event_destroy(struct perf_event *event)
4905 {
4906         struct pmu *pmu = event->pmu;
4907 
4908         if (!is_exclusive_pmu(pmu))
4909                 return;
4910 
4911         /* see comment in exclusive_event_init() */
4912         if (event->attach_state & PERF_ATTACH_TASK)
4913                 atomic_dec(&pmu->exclusive_cnt);
4914         else
4915                 atomic_inc(&pmu->exclusive_cnt);
4916 }
4917 
4918 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4919 {
4920         if ((e1->pmu == e2->pmu) &&
4921             (e1->cpu == e2->cpu ||
4922              e1->cpu == -1 ||
4923              e2->cpu == -1))
4924                 return true;
4925         return false;
4926 }
4927 
4928 static bool exclusive_event_installable(struct perf_event *event,
4929                                         struct perf_event_context *ctx)
4930 {
4931         struct perf_event *iter_event;
4932         struct pmu *pmu = event->pmu;
4933 
4934         lockdep_assert_held(&ctx->mutex);
4935 
4936         if (!is_exclusive_pmu(pmu))
4937                 return true;
4938 
4939         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4940                 if (exclusive_event_match(iter_event, event))
4941                         return false;
4942         }
4943 
4944         return true;
4945 }
4946 
4947 static void perf_addr_filters_splice(struct perf_event *event,
4948                                        struct list_head *head);
4949 
4950 static void _free_event(struct perf_event *event)
4951 {
4952         irq_work_sync(&event->pending);
4953 
4954         unaccount_event(event);
4955 
4956         security_perf_event_free(event);
4957 
4958         if (event->rb) {
4959                 /*
4960                  * Can happen when we close an event with re-directed output.
4961                  *
4962                  * Since we have a 0 refcount, perf_mmap_close() will skip
4963                  * over us; possibly making our ring_buffer_put() the last.
4964                  */
4965                 mutex_lock(&event->mmap_mutex);
4966                 ring_buffer_attach(event, NULL);
4967                 mutex_unlock(&event->mmap_mutex);
4968         }
4969 
4970         if (is_cgroup_event(event))
4971                 perf_detach_cgroup(event);
4972 
4973         if (!event->parent) {
4974                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4975                         put_callchain_buffers();
4976         }
4977 
4978         perf_event_free_bpf_prog(event);
4979         perf_addr_filters_splice(event, NULL);
4980         kfree(event->addr_filter_ranges);
4981 
4982         if (event->destroy)
4983                 event->destroy(event);
4984 
4985         /*
4986          * Must be after ->destroy(), due to uprobe_perf_close() using
4987          * hw.target.
4988          */
4989         if (event->hw.target)
4990                 put_task_struct(event->hw.target);
4991 
4992         /*
4993          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4994          * all task references must be cleaned up.
4995          */
4996         if (event->ctx)
4997                 put_ctx(event->ctx);
4998 
4999         exclusive_event_destroy(event);
5000         module_put(event->pmu->module);
5001 
5002         call_rcu(&event->rcu_head, free_event_rcu);
5003 }
5004 
5005 /*
5006  * Used to free events which have a known refcount of 1, such as in error paths
5007  * where the event isn't exposed yet and inherited events.
5008  */
5009 static void free_event(struct perf_event *event)
5010 {
5011         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5012                                 "unexpected event refcount: %ld; ptr=%p\n",
5013                                 atomic_long_read(&event->refcount), event)) {
5014                 /* leak to avoid use-after-free */
5015                 return;
5016         }
5017 
5018         _free_event(event);
5019 }
5020 
5021 /*
5022  * Remove user event from the owner task.
5023  */
5024 static void perf_remove_from_owner(struct perf_event *event)
5025 {
5026         struct task_struct *owner;
5027 
5028         rcu_read_lock();
5029         /*
5030          * Matches the smp_store_release() in perf_event_exit_task(). If we
5031          * observe !owner it means the list deletion is complete and we can
5032          * indeed free this event, otherwise we need to serialize on
5033          * owner->perf_event_mutex.
5034          */
5035         owner = READ_ONCE(event->owner);
5036         if (owner) {
5037                 /*
5038                  * Since delayed_put_task_struct() also drops the last
5039                  * task reference we can safely take a new reference
5040                  * while holding the rcu_read_lock().
5041                  */
5042                 get_task_struct(owner);
5043         }
5044         rcu_read_unlock();
5045 
5046         if (owner) {
5047                 /*
5048                  * If we're here through perf_event_exit_task() we're already
5049                  * holding ctx->mutex which would be an inversion wrt. the
5050                  * normal lock order.
5051                  *
5052                  * However we can safely take this lock because its the child
5053                  * ctx->mutex.
5054                  */
5055                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5056 
5057                 /*
5058                  * We have to re-check the event->owner field, if it is cleared
5059                  * we raced with perf_event_exit_task(), acquiring the mutex
5060                  * ensured they're done, and we can proceed with freeing the
5061                  * event.
5062                  */
5063                 if (event->owner) {
5064                         list_del_init(&event->owner_entry);
5065                         smp_store_release(&event->owner, NULL);
5066                 }
5067                 mutex_unlock(&owner->perf_event_mutex);
5068                 put_task_struct(owner);
5069         }
5070 }
5071 
5072 static void put_event(struct perf_event *event)
5073 {
5074         if (!atomic_long_dec_and_test(&event->refcount))
5075                 return;
5076 
5077         _free_event(event);
5078 }
5079 
5080 /*
5081  * Kill an event dead; while event:refcount will preserve the event
5082  * object, it will not preserve its functionality. Once the last 'user'
5083  * gives up the object, we'll destroy the thing.
5084  */
5085 int perf_event_release_kernel(struct perf_event *event)
5086 {
5087         struct perf_event_context *ctx = event->ctx;
5088         struct perf_event *child, *tmp;
5089         LIST_HEAD(free_list);
5090 
5091         /*
5092          * If we got here through err_file: fput(event_file); we will not have
5093          * attached to a context yet.
5094          */
5095         if (!ctx) {
5096                 WARN_ON_ONCE(event->attach_state &
5097                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5098                 goto no_ctx;
5099         }
5100 
5101         if (!is_kernel_event(event))
5102                 perf_remove_from_owner(event);
5103 
5104         ctx = perf_event_ctx_lock(event);
5105         WARN_ON_ONCE(ctx->parent_ctx);
5106         perf_remove_from_context(event, DETACH_GROUP);
5107 
5108         raw_spin_lock_irq(&ctx->lock);
5109         /*
5110          * Mark this event as STATE_DEAD, there is no external reference to it
5111          * anymore.
5112          *
5113          * Anybody acquiring event->child_mutex after the below loop _must_
5114          * also see this, most importantly inherit_event() which will avoid
5115          * placing more children on the list.
5116          *
5117          * Thus this guarantees that we will in fact observe and kill _ALL_
5118          * child events.
5119          */
5120         event->state = PERF_EVENT_STATE_DEAD;
5121         raw_spin_unlock_irq(&ctx->lock);
5122 
5123         perf_event_ctx_unlock(event, ctx);
5124 
5125 again:
5126         mutex_lock(&event->child_mutex);
5127         list_for_each_entry(child, &event->child_list, child_list) {
5128 
5129                 /*
5130                  * Cannot change, child events are not migrated, see the
5131                  * comment with perf_event_ctx_lock_nested().
5132                  */
5133                 ctx = READ_ONCE(child->ctx);
5134                 /*
5135                  * Since child_mutex nests inside ctx::mutex, we must jump
5136                  * through hoops. We start by grabbing a reference on the ctx.
5137                  *
5138                  * Since the event cannot get freed while we hold the
5139                  * child_mutex, the context must also exist and have a !0
5140                  * reference count.
5141                  */
5142                 get_ctx(ctx);
5143 
5144                 /*
5145                  * Now that we have a ctx ref, we can drop child_mutex, and
5146                  * acquire ctx::mutex without fear of it going away. Then we
5147                  * can re-acquire child_mutex.
5148                  */
5149                 mutex_unlock(&event->child_mutex);
5150                 mutex_lock(&ctx->mutex);
5151                 mutex_lock(&event->child_mutex);
5152 
5153                 /*
5154                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5155                  * state, if child is still the first entry, it didn't get freed
5156                  * and we can continue doing so.
5157                  */
5158                 tmp = list_first_entry_or_null(&event->child_list,
5159                                                struct perf_event, child_list);
5160                 if (tmp == child) {
5161                         perf_remove_from_context(child, DETACH_GROUP);
5162                         list_move(&child->child_list, &free_list);
5163                         /*
5164                          * This matches the refcount bump in inherit_event();
5165                          * this can't be the last reference.
5166                          */
5167                         put_event(event);
5168                 }
5169 
5170                 mutex_unlock(&event->child_mutex);
5171                 mutex_unlock(&ctx->mutex);
5172                 put_ctx(ctx);
5173                 goto again;
5174         }
5175         mutex_unlock(&event->child_mutex);
5176 
5177         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5178                 void *var = &child->ctx->refcount;
5179 
5180                 list_del(&child->child_list);
5181                 free_event(child);
5182 
5183                 /*
5184                  * Wake any perf_event_free_task() waiting for this event to be
5185                  * freed.
5186                  */
5187                 smp_mb(); /* pairs with wait_var_event() */
5188                 wake_up_var(var);
5189         }
5190 
5191 no_ctx:
5192         put_event(event); /* Must be the 'last' reference */
5193         return 0;
5194 }
5195 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5196 
5197 /*
5198  * Called when the last reference to the file is gone.
5199  */
5200 static int perf_release(struct inode *inode, struct file *file)
5201 {
5202         perf_event_release_kernel(file->private_data);
5203         return 0;
5204 }
5205 
5206 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5207 {
5208         struct perf_event *child;
5209         u64 total = 0;
5210 
5211         *enabled = 0;
5212         *running = 0;
5213 
5214         mutex_lock(&event->child_mutex);
5215 
5216         (void)perf_event_read(event, false);
5217         total += perf_event_count(event);
5218 
5219         *enabled += event->total_time_enabled +
5220                         atomic64_read(&event->child_total_time_enabled);
5221         *running += event->total_time_running +
5222                         atomic64_read(&event->child_total_time_running);
5223 
5224         list_for_each_entry(child, &event->child_list, child_list) {
5225                 (void)perf_event_read(child, false);
5226                 total += perf_event_count(child);
5227                 *enabled += child->total_time_enabled;
5228                 *running += child->total_time_running;
5229         }
5230         mutex_unlock(&event->child_mutex);
5231 
5232         return total;
5233 }
5234 
5235 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5236 {
5237         struct perf_event_context *ctx;
5238         u64 count;
5239 
5240         ctx = perf_event_ctx_lock(event);
5241         count = __perf_event_read_value(event, enabled, running);
5242         perf_event_ctx_unlock(event, ctx);
5243 
5244         return count;
5245 }
5246 EXPORT_SYMBOL_GPL(perf_event_read_value);
5247 
5248 static int __perf_read_group_add(struct perf_event *leader,
5249                                         u64 read_format, u64 *values)
5250 {
5251         struct perf_event_context *ctx = leader->ctx;
5252         struct perf_event *sub;
5253         unsigned long flags;
5254         int n = 1; /* skip @nr */
5255         int ret;
5256 
5257         ret = perf_event_read(leader, true);
5258         if (ret)
5259                 return ret;
5260 
5261         raw_spin_lock_irqsave(&ctx->lock, flags);
5262 
5263         /*
5264          * Since we co-schedule groups, {enabled,running} times of siblings
5265          * will be identical to those of the leader, so we only publish one
5266          * set.
5267          */
5268         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5269                 values[n++] += leader->total_time_enabled +
5270                         atomic64_read(&leader->child_total_time_enabled);
5271         }
5272 
5273         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5274                 values[n++] += leader->total_time_running +
5275                         atomic64_read(&leader->child_total_time_running);
5276         }
5277 
5278         /*
5279          * Write {count,id} tuples for every sibling.
5280          */
5281         values[n++] += perf_event_count(leader);
5282         if (read_format & PERF_FORMAT_ID)
5283                 values[n++] = primary_event_id(leader);
5284 
5285         for_each_sibling_event(sub, leader) {
5286                 values[n++] += perf_event_count(sub);
5287                 if (read_format & PERF_FORMAT_ID)
5288                         values[n++] = primary_event_id(sub);
5289         }
5290 
5291         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5292         return 0;
5293 }
5294 
5295 static int perf_read_group(struct perf_event *event,
5296                                    u64 read_format, char __user *buf)
5297 {
5298         struct perf_event *leader = event->group_leader, *child;
5299         struct perf_event_context *ctx = leader->ctx;
5300         int ret;
5301         u64 *values;
5302 
5303         lockdep_assert_held(&ctx->mutex);
5304 
5305         values = kzalloc(event->read_size, GFP_KERNEL);
5306         if (!values)
5307                 return -ENOMEM;
5308 
5309         values[0] = 1 + leader->nr_siblings;
5310 
5311         /*
5312          * By locking the child_mutex of the leader we effectively
5313          * lock the child list of all siblings.. XXX explain how.
5314          */
5315         mutex_lock(&leader->child_mutex);
5316 
5317         ret = __perf_read_group_add(leader, read_format, values);
5318         if (ret)
5319                 goto unlock;
5320 
5321         list_for_each_entry(child, &leader->child_list, child_list) {
5322                 ret = __perf_read_group_add(child, read_format, values);
5323                 if (ret)
5324                         goto unlock;
5325         }
5326 
5327         mutex_unlock(&leader->child_mutex);
5328 
5329         ret = event->read_size;
5330         if (copy_to_user(buf, values, event->read_size))
5331                 ret = -EFAULT;
5332         goto out;
5333 
5334 unlock:
5335         mutex_unlock(&leader->child_mutex);
5336 out:
5337         kfree(values);
5338         return ret;
5339 }
5340 
5341 static int perf_read_one(struct perf_event *event,
5342                                  u64 read_format, char __user *buf)
5343 {
5344         u64 enabled, running;
5345         u64 values[4];
5346         int n = 0;
5347 
5348         values[n++] = __perf_event_read_value(event, &enabled, &running);
5349         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5350                 values[n++] = enabled;
5351         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5352                 values[n++] = running;
5353         if (read_format & PERF_FORMAT_ID)
5354                 values[n++] = primary_event_id(event);
5355 
5356         if (copy_to_user(buf, values, n * sizeof(u64)))
5357                 return -EFAULT;
5358 
5359         return n * sizeof(u64);
5360 }
5361 
5362 static bool is_event_hup(struct perf_event *event)
5363 {
5364         bool no_children;
5365 
5366         if (event->state > PERF_EVENT_STATE_EXIT)
5367                 return false;
5368 
5369         mutex_lock(&event->child_mutex);
5370         no_children = list_empty(&event->child_list);
5371         mutex_unlock(&event->child_mutex);
5372         return no_children;
5373 }
5374 
5375 /*
5376  * Read the performance event - simple non blocking version for now
5377  */
5378 static ssize_t
5379 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5380 {
5381         u64 read_format = event->attr.read_format;
5382         int ret;
5383 
5384         /*
5385          * Return end-of-file for a read on an event that is in
5386          * error state (i.e. because it was pinned but it couldn't be
5387          * scheduled on to the CPU at some point).
5388          */
5389         if (event->state == PERF_EVENT_STATE_ERROR)
5390                 return 0;
5391 
5392         if (count < event->read_size)
5393                 return -ENOSPC;
5394 
5395         WARN_ON_ONCE(event->ctx->parent_ctx);
5396         if (read_format & PERF_FORMAT_GROUP)
5397                 ret = perf_read_group(event, read_format, buf);
5398         else
5399                 ret = perf_read_one(event, read_format, buf);
5400 
5401         return ret;
5402 }
5403 
5404 static ssize_t
5405 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5406 {
5407         struct perf_event *event = file->private_data;
5408         struct perf_event_context *ctx;
5409         int ret;
5410 
5411         ret = security_perf_event_read(event);
5412         if (ret)
5413                 return ret;
5414 
5415         ctx = perf_event_ctx_lock(event);
5416         ret = __perf_read(event, buf, count);
5417         perf_event_ctx_unlock(event, ctx);
5418 
5419         return ret;
5420 }
5421 
5422 static __poll_t perf_poll(struct file *file, poll_table *wait)
5423 {
5424         struct perf_event *event = file->private_data;
5425         struct perf_buffer *rb;
5426         __poll_t events = EPOLLHUP;
5427 
5428         poll_wait(file, &event->waitq, wait);
5429 
5430         if (is_event_hup(event))
5431                 return events;
5432 
5433         /*
5434          * Pin the event->rb by taking event->mmap_mutex; otherwise
5435          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5436          */
5437         mutex_lock(&event->mmap_mutex);
5438         rb = event->rb;
5439         if (rb)
5440                 events = atomic_xchg(&rb->poll, 0);
5441         mutex_unlock(&event->mmap_mutex);
5442         return events;
5443 }
5444 
5445 static void _perf_event_reset(struct perf_event *event)
5446 {
5447         (void)perf_event_read(event, false);
5448         local64_set(&event->count, 0);
5449         perf_event_update_userpage(event);
5450 }
5451 
5452 /* Assume it's not an event with inherit set. */
5453 u64 perf_event_pause(struct perf_event *event, bool reset)
5454 {
5455         struct perf_event_context *ctx;
5456         u64 count;
5457 
5458         ctx = perf_event_ctx_lock(event);
5459         WARN_ON_ONCE(event->attr.inherit);
5460         _perf_event_disable(event);
5461         count = local64_read(&event->count);
5462         if (reset)
5463                 local64_set(&event->count, 0);
5464         perf_event_ctx_unlock(event, ctx);
5465 
5466         return count;
5467 }
5468 EXPORT_SYMBOL_GPL(perf_event_pause);
5469 
5470 /*
5471  * Holding the top-level event's child_mutex means that any
5472  * descendant process that has inherited this event will block
5473  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5474  * task existence requirements of perf_event_enable/disable.
5475  */
5476 static void perf_event_for_each_child(struct perf_event *event,
5477                                         void (*func)(struct perf_event *))
5478 {
5479         struct perf_event *child;
5480 
5481         WARN_ON_ONCE(event->ctx->parent_ctx);
5482 
5483         mutex_lock(&event->child_mutex);
5484         func(event);
5485         list_for_each_entry(child, &event->child_list, child_list)
5486                 func(child);
5487         mutex_unlock(&event->child_mutex);
5488 }
5489 
5490 static void perf_event_for_each(struct perf_event *event,
5491                                   void (*func)(struct perf_event *))
5492 {
5493         struct perf_event_context *ctx = event->ctx;
5494         struct perf_event *sibling;
5495 
5496         lockdep_assert_held(&ctx->mutex);
5497 
5498         event = event->group_leader;
5499 
5500         perf_event_for_each_child(event, func);
5501         for_each_sibling_event(sibling, event)
5502                 perf_event_for_each_child(sibling, func);
5503 }
5504 
5505 static void __perf_event_period(struct perf_event *event,
5506                                 struct perf_cpu_context *cpuctx,
5507                                 struct perf_event_context *ctx,
5508                                 void *info)
5509 {
5510         u64 value = *((u64 *)info);
5511         bool active;
5512 
5513         if (event->attr.freq) {
5514                 event->attr.sample_freq = value;
5515         } else {
5516                 event->attr.sample_period = value;
5517                 event->hw.sample_period = value;
5518         }
5519 
5520         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5521         if (active) {
5522                 perf_pmu_disable(ctx->pmu);
5523                 /*
5524                  * We could be throttled; unthrottle now to avoid the tick
5525                  * trying to unthrottle while we already re-started the event.
5526                  */
5527                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5528                         event->hw.interrupts = 0;
5529                         perf_log_throttle(event, 1);
5530                 }
5531                 event->pmu->stop(event, PERF_EF_UPDATE);
5532         }
5533 
5534         local64_set(&event->hw.period_left, 0);
5535 
5536         if (active) {
5537                 event->pmu->start(event, PERF_EF_RELOAD);
5538                 perf_pmu_enable(ctx->pmu);
5539         }
5540 }
5541 
5542 static int perf_event_check_period(struct perf_event *event, u64 value)
5543 {
5544         return event->pmu->check_period(event, value);
5545 }
5546 
5547 static int _perf_event_period(struct perf_event *event, u64 value)
5548 {
5549         if (!is_sampling_event(event))
5550                 return -EINVAL;
5551 
5552         if (!value)
5553                 return -EINVAL;
5554 
5555         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5556                 return -EINVAL;
5557 
5558         if (perf_event_check_period(event, value))
5559                 return -EINVAL;
5560 
5561         if (!event->attr.freq && (value & (1ULL << 63)))
5562                 return -EINVAL;
5563 
5564         event_function_call(event, __perf_event_period, &value);
5565 
5566         return 0;
5567 }
5568 
5569 int perf_event_period(struct perf_event *event, u64 value)
5570 {
5571         struct perf_event_context *ctx;
5572         int ret;
5573 
5574         ctx = perf_event_ctx_lock(event);
5575         ret = _perf_event_period(event, value);
5576         perf_event_ctx_unlock(event, ctx);
5577 
5578         return ret;
5579 }
5580 EXPORT_SYMBOL_GPL(perf_event_period);
5581 
5582 static const struct file_operations perf_fops;
5583 
5584 static inline int perf_fget_light(int fd, struct fd *p)
5585 {
5586         struct fd f = fdget(fd);
5587         if (!f.file)
5588                 return -EBADF;
5589 
5590         if (f.file->f_op != &perf_fops) {
5591                 fdput(f);
5592                 return -EBADF;
5593         }
5594         *p = f;
5595         return 0;
5596 }
5597 
5598 static int perf_event_set_output(struct perf_event *event,
5599                                  struct perf_event *output_event);
5600 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5601 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5602 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5603                           struct perf_event_attr *attr);
5604 
5605 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5606 {
5607         void (*func)(struct perf_event *);
5608         u32 flags = arg;
5609 
5610         switch (cmd) {
5611         case PERF_EVENT_IOC_ENABLE:
5612                 func = _perf_event_enable;
5613                 break;
5614         case PERF_EVENT_IOC_DISABLE:
5615                 func = _perf_event_disable;
5616                 break;
5617         case PERF_EVENT_IOC_RESET:
5618                 func = _perf_event_reset;
5619                 break;
5620 
5621         case PERF_EVENT_IOC_REFRESH:
5622                 return _perf_event_refresh(event, arg);
5623 
5624         case PERF_EVENT_IOC_PERIOD:
5625         {
5626                 u64 value;
5627 
5628                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5629                         return -EFAULT;
5630 
5631                 return _perf_event_period(event, value);
5632         }
5633         case PERF_EVENT_IOC_ID:
5634         {
5635                 u64 id = primary_event_id(event);
5636 
5637                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5638                         return -EFAULT;
5639                 return 0;
5640         }
5641 
5642         case PERF_EVENT_IOC_SET_OUTPUT:
5643         {
5644                 int ret;
5645                 if (arg != -1) {
5646                         struct perf_event *output_event;
5647                         struct fd output;
5648                         ret = perf_fget_light(arg, &output);
5649                         if (ret)
5650                                 return ret;
5651                         output_event = output.file->private_data;
5652                         ret = perf_event_set_output(event, output_event);
5653                         fdput(output);
5654                 } else {
5655                         ret = perf_event_set_output(event, NULL);
5656                 }
5657                 return ret;
5658         }
5659 
5660         case PERF_EVENT_IOC_SET_FILTER:
5661                 return perf_event_set_filter(event, (void __user *)arg);
5662 
5663         case PERF_EVENT_IOC_SET_BPF:
5664                 return perf_event_set_bpf_prog(event, arg);
5665 
5666         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5667                 struct perf_buffer *rb;
5668 
5669                 rcu_read_lock();
5670                 rb = rcu_dereference(event->rb);
5671                 if (!rb || !rb->nr_pages) {
5672                         rcu_read_unlock();
5673                         return -EINVAL;
5674                 }
5675                 rb_toggle_paused(rb, !!arg);
5676                 rcu_read_unlock();
5677                 return 0;
5678         }
5679 
5680         case PERF_EVENT_IOC_QUERY_BPF:
5681                 return perf_event_query_prog_array(event, (void __user *)arg);
5682 
5683         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5684                 struct perf_event_attr new_attr;
5685                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5686                                          &new_attr);
5687 
5688                 if (err)
5689                         return err;
5690 
5691                 return perf_event_modify_attr(event,  &new_attr);
5692         }
5693         default:
5694                 return -ENOTTY;
5695         }
5696 
5697         if (flags & PERF_IOC_FLAG_GROUP)
5698                 perf_event_for_each(event, func);
5699         else
5700                 perf_event_for_each_child(event, func);
5701 
5702         return 0;
5703 }
5704 
5705 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5706 {
5707         struct perf_event *event = file->private_data;
5708         struct perf_event_context *ctx;
5709         long ret;
5710 
5711         /* Treat ioctl like writes as it is likely a mutating operation. */
5712         ret = security_perf_event_write(event);
5713         if (ret)
5714                 return ret;
5715 
5716         ctx = perf_event_ctx_lock(event);
5717         ret = _perf_ioctl(event, cmd, arg);
5718         perf_event_ctx_unlock(event, ctx);
5719 
5720         return ret;
5721 }
5722 
5723 #ifdef CONFIG_COMPAT
5724 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5725                                 unsigned long arg)
5726 {
5727         switch (_IOC_NR(cmd)) {
5728         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5729         case _IOC_NR(PERF_EVENT_IOC_ID):
5730         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5731         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5732                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5733                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5734                         cmd &= ~IOCSIZE_MASK;
5735                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5736                 }
5737                 break;
5738         }
5739         return perf_ioctl(file, cmd, arg);
5740 }
5741 #else
5742 # define perf_compat_ioctl NULL
5743 #endif
5744 
5745 int perf_event_task_enable(void)
5746 {
5747         struct perf_event_context *ctx;
5748         struct perf_event *event;
5749 
5750         mutex_lock(&current->perf_event_mutex);
5751         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5752                 ctx = perf_event_ctx_lock(event);
5753                 perf_event_for_each_child(event, _perf_event_enable);
5754                 perf_event_ctx_unlock(event, ctx);
5755         }
5756         mutex_unlock(&current->perf_event_mutex);
5757 
5758         return 0;
5759 }
5760