1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type); 578 579 static void update_context_time(struct perf_event_context *ctx); 580 static u64 perf_event_time(struct perf_event *event); 581 582 void __weak perf_event_print_debug(void) { } 583 584 static inline u64 perf_clock(void) 585 { 586 return local_clock(); 587 } 588 589 static inline u64 perf_event_clock(struct perf_event *event) 590 { 591 return event->clock(); 592 } 593 594 /* 595 * State based event timekeeping... 596 * 597 * The basic idea is to use event->state to determine which (if any) time 598 * fields to increment with the current delta. This means we only need to 599 * update timestamps when we change state or when they are explicitly requested 600 * (read). 601 * 602 * Event groups make things a little more complicated, but not terribly so. The 603 * rules for a group are that if the group leader is OFF the entire group is 604 * OFF, irrespecive of what the group member states are. This results in 605 * __perf_effective_state(). 606 * 607 * A futher ramification is that when a group leader flips between OFF and 608 * !OFF, we need to update all group member times. 609 * 610 * 611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 612 * need to make sure the relevant context time is updated before we try and 613 * update our timestamps. 614 */ 615 616 static __always_inline enum perf_event_state 617 __perf_effective_state(struct perf_event *event) 618 { 619 struct perf_event *leader = event->group_leader; 620 621 if (leader->state <= PERF_EVENT_STATE_OFF) 622 return leader->state; 623 624 return event->state; 625 } 626 627 static __always_inline void 628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 629 { 630 enum perf_event_state state = __perf_effective_state(event); 631 u64 delta = now - event->tstamp; 632 633 *enabled = event->total_time_enabled; 634 if (state >= PERF_EVENT_STATE_INACTIVE) 635 *enabled += delta; 636 637 *running = event->total_time_running; 638 if (state >= PERF_EVENT_STATE_ACTIVE) 639 *running += delta; 640 } 641 642 static void perf_event_update_time(struct perf_event *event) 643 { 644 u64 now = perf_event_time(event); 645 646 __perf_update_times(event, now, &event->total_time_enabled, 647 &event->total_time_running); 648 event->tstamp = now; 649 } 650 651 static void perf_event_update_sibling_time(struct perf_event *leader) 652 { 653 struct perf_event *sibling; 654 655 for_each_sibling_event(sibling, leader) 656 perf_event_update_time(sibling); 657 } 658 659 static void 660 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 661 { 662 if (event->state == state) 663 return; 664 665 perf_event_update_time(event); 666 /* 667 * If a group leader gets enabled/disabled all its siblings 668 * are affected too. 669 */ 670 if ((event->state < 0) ^ (state < 0)) 671 perf_event_update_sibling_time(event); 672 673 WRITE_ONCE(event->state, state); 674 } 675 676 /* 677 * UP store-release, load-acquire 678 */ 679 680 #define __store_release(ptr, val) \ 681 do { \ 682 barrier(); \ 683 WRITE_ONCE(*(ptr), (val)); \ 684 } while (0) 685 686 #define __load_acquire(ptr) \ 687 ({ \ 688 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 689 barrier(); \ 690 ___p; \ 691 }) 692 693 #ifdef CONFIG_CGROUP_PERF 694 695 static inline bool 696 perf_cgroup_match(struct perf_event *event) 697 { 698 struct perf_event_context *ctx = event->ctx; 699 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 700 701 /* @event doesn't care about cgroup */ 702 if (!event->cgrp) 703 return true; 704 705 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 706 if (!cpuctx->cgrp) 707 return false; 708 709 /* 710 * Cgroup scoping is recursive. An event enabled for a cgroup is 711 * also enabled for all its descendant cgroups. If @cpuctx's 712 * cgroup is a descendant of @event's (the test covers identity 713 * case), it's a match. 714 */ 715 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 716 event->cgrp->css.cgroup); 717 } 718 719 static inline void perf_detach_cgroup(struct perf_event *event) 720 { 721 css_put(&event->cgrp->css); 722 event->cgrp = NULL; 723 } 724 725 static inline int is_cgroup_event(struct perf_event *event) 726 { 727 return event->cgrp != NULL; 728 } 729 730 static inline u64 perf_cgroup_event_time(struct perf_event *event) 731 { 732 struct perf_cgroup_info *t; 733 734 t = per_cpu_ptr(event->cgrp->info, event->cpu); 735 return t->time; 736 } 737 738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 739 { 740 struct perf_cgroup_info *t; 741 742 t = per_cpu_ptr(event->cgrp->info, event->cpu); 743 if (!__load_acquire(&t->active)) 744 return t->time; 745 now += READ_ONCE(t->timeoffset); 746 return now; 747 } 748 749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 750 { 751 if (adv) 752 info->time += now - info->timestamp; 753 info->timestamp = now; 754 /* 755 * see update_context_time() 756 */ 757 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 758 } 759 760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 761 { 762 struct perf_cgroup *cgrp = cpuctx->cgrp; 763 struct cgroup_subsys_state *css; 764 struct perf_cgroup_info *info; 765 766 if (cgrp) { 767 u64 now = perf_clock(); 768 769 for (css = &cgrp->css; css; css = css->parent) { 770 cgrp = container_of(css, struct perf_cgroup, css); 771 info = this_cpu_ptr(cgrp->info); 772 773 __update_cgrp_time(info, now, true); 774 if (final) 775 __store_release(&info->active, 0); 776 } 777 } 778 } 779 780 static inline void update_cgrp_time_from_event(struct perf_event *event) 781 { 782 struct perf_cgroup_info *info; 783 784 /* 785 * ensure we access cgroup data only when needed and 786 * when we know the cgroup is pinned (css_get) 787 */ 788 if (!is_cgroup_event(event)) 789 return; 790 791 info = this_cpu_ptr(event->cgrp->info); 792 /* 793 * Do not update time when cgroup is not active 794 */ 795 if (info->active) 796 __update_cgrp_time(info, perf_clock(), true); 797 } 798 799 static inline void 800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 801 { 802 struct perf_event_context *ctx = &cpuctx->ctx; 803 struct perf_cgroup *cgrp = cpuctx->cgrp; 804 struct perf_cgroup_info *info; 805 struct cgroup_subsys_state *css; 806 807 /* 808 * ctx->lock held by caller 809 * ensure we do not access cgroup data 810 * unless we have the cgroup pinned (css_get) 811 */ 812 if (!cgrp) 813 return; 814 815 WARN_ON_ONCE(!ctx->nr_cgroups); 816 817 for (css = &cgrp->css; css; css = css->parent) { 818 cgrp = container_of(css, struct perf_cgroup, css); 819 info = this_cpu_ptr(cgrp->info); 820 __update_cgrp_time(info, ctx->timestamp, false); 821 __store_release(&info->active, 1); 822 } 823 } 824 825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 826 827 /* 828 * reschedule events based on the cgroup constraint of task. 829 */ 830 static void perf_cgroup_switch(struct task_struct *task) 831 { 832 struct perf_cgroup *cgrp; 833 struct perf_cpu_context *cpuctx, *tmp; 834 struct list_head *list; 835 unsigned long flags; 836 837 /* 838 * Disable interrupts and preemption to avoid this CPU's 839 * cgrp_cpuctx_entry to change under us. 840 */ 841 local_irq_save(flags); 842 843 cgrp = perf_cgroup_from_task(task, NULL); 844 845 list = this_cpu_ptr(&cgrp_cpuctx_list); 846 list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { 847 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 848 if (READ_ONCE(cpuctx->cgrp) == cgrp) 849 continue; 850 851 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 852 perf_pmu_disable(cpuctx->ctx.pmu); 853 854 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 855 /* 856 * must not be done before ctxswout due 857 * to update_cgrp_time_from_cpuctx() in 858 * ctx_sched_out() 859 */ 860 cpuctx->cgrp = cgrp; 861 /* 862 * set cgrp before ctxsw in to allow 863 * perf_cgroup_set_timestamp() in ctx_sched_in() 864 * to not have to pass task around 865 */ 866 cpu_ctx_sched_in(cpuctx, EVENT_ALL); 867 868 perf_pmu_enable(cpuctx->ctx.pmu); 869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 870 } 871 872 local_irq_restore(flags); 873 } 874 875 static int perf_cgroup_ensure_storage(struct perf_event *event, 876 struct cgroup_subsys_state *css) 877 { 878 struct perf_cpu_context *cpuctx; 879 struct perf_event **storage; 880 int cpu, heap_size, ret = 0; 881 882 /* 883 * Allow storage to have sufficent space for an iterator for each 884 * possibly nested cgroup plus an iterator for events with no cgroup. 885 */ 886 for (heap_size = 1; css; css = css->parent) 887 heap_size++; 888 889 for_each_possible_cpu(cpu) { 890 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 891 if (heap_size <= cpuctx->heap_size) 892 continue; 893 894 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 895 GFP_KERNEL, cpu_to_node(cpu)); 896 if (!storage) { 897 ret = -ENOMEM; 898 break; 899 } 900 901 raw_spin_lock_irq(&cpuctx->ctx.lock); 902 if (cpuctx->heap_size < heap_size) { 903 swap(cpuctx->heap, storage); 904 if (storage == cpuctx->heap_default) 905 storage = NULL; 906 cpuctx->heap_size = heap_size; 907 } 908 raw_spin_unlock_irq(&cpuctx->ctx.lock); 909 910 kfree(storage); 911 } 912 913 return ret; 914 } 915 916 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 917 struct perf_event_attr *attr, 918 struct perf_event *group_leader) 919 { 920 struct perf_cgroup *cgrp; 921 struct cgroup_subsys_state *css; 922 struct fd f = fdget(fd); 923 int ret = 0; 924 925 if (!f.file) 926 return -EBADF; 927 928 css = css_tryget_online_from_dir(f.file->f_path.dentry, 929 &perf_event_cgrp_subsys); 930 if (IS_ERR(css)) { 931 ret = PTR_ERR(css); 932 goto out; 933 } 934 935 ret = perf_cgroup_ensure_storage(event, css); 936 if (ret) 937 goto out; 938 939 cgrp = container_of(css, struct perf_cgroup, css); 940 event->cgrp = cgrp; 941 942 /* 943 * all events in a group must monitor 944 * the same cgroup because a task belongs 945 * to only one perf cgroup at a time 946 */ 947 if (group_leader && group_leader->cgrp != cgrp) { 948 perf_detach_cgroup(event); 949 ret = -EINVAL; 950 } 951 out: 952 fdput(f); 953 return ret; 954 } 955 956 static inline void 957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 958 { 959 struct perf_cpu_context *cpuctx; 960 961 if (!is_cgroup_event(event)) 962 return; 963 964 /* 965 * Because cgroup events are always per-cpu events, 966 * @ctx == &cpuctx->ctx. 967 */ 968 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 969 970 if (ctx->nr_cgroups++) 971 return; 972 973 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 974 list_add(&cpuctx->cgrp_cpuctx_entry, 975 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 976 } 977 978 static inline void 979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 980 { 981 struct perf_cpu_context *cpuctx; 982 983 if (!is_cgroup_event(event)) 984 return; 985 986 /* 987 * Because cgroup events are always per-cpu events, 988 * @ctx == &cpuctx->ctx. 989 */ 990 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 991 992 if (--ctx->nr_cgroups) 993 return; 994 995 cpuctx->cgrp = NULL; 996 list_del(&cpuctx->cgrp_cpuctx_entry); 997 } 998 999 #else /* !CONFIG_CGROUP_PERF */ 1000 1001 static inline bool 1002 perf_cgroup_match(struct perf_event *event) 1003 { 1004 return true; 1005 } 1006 1007 static inline void perf_detach_cgroup(struct perf_event *event) 1008 {} 1009 1010 static inline int is_cgroup_event(struct perf_event *event) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void update_cgrp_time_from_event(struct perf_event *event) 1016 { 1017 } 1018 1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1020 bool final) 1021 { 1022 } 1023 1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1025 struct perf_event_attr *attr, 1026 struct perf_event *group_leader) 1027 { 1028 return -EINVAL; 1029 } 1030 1031 static inline void 1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1033 { 1034 } 1035 1036 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1037 { 1038 return 0; 1039 } 1040 1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1042 { 1043 return 0; 1044 } 1045 1046 static inline void 1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1048 { 1049 } 1050 1051 static inline void 1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1053 { 1054 } 1055 1056 static void perf_cgroup_switch(struct task_struct *task) 1057 { 1058 } 1059 #endif 1060 1061 /* 1062 * set default to be dependent on timer tick just 1063 * like original code 1064 */ 1065 #define PERF_CPU_HRTIMER (1000 / HZ) 1066 /* 1067 * function must be called with interrupts disabled 1068 */ 1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1070 { 1071 struct perf_cpu_context *cpuctx; 1072 bool rotations; 1073 1074 lockdep_assert_irqs_disabled(); 1075 1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1077 rotations = perf_rotate_context(cpuctx); 1078 1079 raw_spin_lock(&cpuctx->hrtimer_lock); 1080 if (rotations) 1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1082 else 1083 cpuctx->hrtimer_active = 0; 1084 raw_spin_unlock(&cpuctx->hrtimer_lock); 1085 1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1087 } 1088 1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1090 { 1091 struct hrtimer *timer = &cpuctx->hrtimer; 1092 struct pmu *pmu = cpuctx->ctx.pmu; 1093 u64 interval; 1094 1095 /* no multiplexing needed for SW PMU */ 1096 if (pmu->task_ctx_nr == perf_sw_context) 1097 return; 1098 1099 /* 1100 * check default is sane, if not set then force to 1101 * default interval (1/tick) 1102 */ 1103 interval = pmu->hrtimer_interval_ms; 1104 if (interval < 1) 1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1106 1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1108 1109 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1111 timer->function = perf_mux_hrtimer_handler; 1112 } 1113 1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1115 { 1116 struct hrtimer *timer = &cpuctx->hrtimer; 1117 struct pmu *pmu = cpuctx->ctx.pmu; 1118 unsigned long flags; 1119 1120 /* not for SW PMU */ 1121 if (pmu->task_ctx_nr == perf_sw_context) 1122 return 0; 1123 1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1125 if (!cpuctx->hrtimer_active) { 1126 cpuctx->hrtimer_active = 1; 1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1129 } 1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1131 1132 return 0; 1133 } 1134 1135 void perf_pmu_disable(struct pmu *pmu) 1136 { 1137 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1138 if (!(*count)++) 1139 pmu->pmu_disable(pmu); 1140 } 1141 1142 void perf_pmu_enable(struct pmu *pmu) 1143 { 1144 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1145 if (!--(*count)) 1146 pmu->pmu_enable(pmu); 1147 } 1148 1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1150 1151 /* 1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1153 * perf_event_task_tick() are fully serialized because they're strictly cpu 1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1155 * disabled, while perf_event_task_tick is called from IRQ context. 1156 */ 1157 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1158 { 1159 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1160 1161 lockdep_assert_irqs_disabled(); 1162 1163 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1164 1165 list_add(&ctx->active_ctx_list, head); 1166 } 1167 1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1169 { 1170 lockdep_assert_irqs_disabled(); 1171 1172 WARN_ON(list_empty(&ctx->active_ctx_list)); 1173 1174 list_del_init(&ctx->active_ctx_list); 1175 } 1176 1177 static void get_ctx(struct perf_event_context *ctx) 1178 { 1179 refcount_inc(&ctx->refcount); 1180 } 1181 1182 static void *alloc_task_ctx_data(struct pmu *pmu) 1183 { 1184 if (pmu->task_ctx_cache) 1185 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1186 1187 return NULL; 1188 } 1189 1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1191 { 1192 if (pmu->task_ctx_cache && task_ctx_data) 1193 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1194 } 1195 1196 static void free_ctx(struct rcu_head *head) 1197 { 1198 struct perf_event_context *ctx; 1199 1200 ctx = container_of(head, struct perf_event_context, rcu_head); 1201 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1202 kfree(ctx); 1203 } 1204 1205 static void put_ctx(struct perf_event_context *ctx) 1206 { 1207 if (refcount_dec_and_test(&ctx->refcount)) { 1208 if (ctx->parent_ctx) 1209 put_ctx(ctx->parent_ctx); 1210 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1211 put_task_struct(ctx->task); 1212 call_rcu(&ctx->rcu_head, free_ctx); 1213 } 1214 } 1215 1216 /* 1217 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1218 * perf_pmu_migrate_context() we need some magic. 1219 * 1220 * Those places that change perf_event::ctx will hold both 1221 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1222 * 1223 * Lock ordering is by mutex address. There are two other sites where 1224 * perf_event_context::mutex nests and those are: 1225 * 1226 * - perf_event_exit_task_context() [ child , 0 ] 1227 * perf_event_exit_event() 1228 * put_event() [ parent, 1 ] 1229 * 1230 * - perf_event_init_context() [ parent, 0 ] 1231 * inherit_task_group() 1232 * inherit_group() 1233 * inherit_event() 1234 * perf_event_alloc() 1235 * perf_init_event() 1236 * perf_try_init_event() [ child , 1 ] 1237 * 1238 * While it appears there is an obvious deadlock here -- the parent and child 1239 * nesting levels are inverted between the two. This is in fact safe because 1240 * life-time rules separate them. That is an exiting task cannot fork, and a 1241 * spawning task cannot (yet) exit. 1242 * 1243 * But remember that these are parent<->child context relations, and 1244 * migration does not affect children, therefore these two orderings should not 1245 * interact. 1246 * 1247 * The change in perf_event::ctx does not affect children (as claimed above) 1248 * because the sys_perf_event_open() case will install a new event and break 1249 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1250 * concerned with cpuctx and that doesn't have children. 1251 * 1252 * The places that change perf_event::ctx will issue: 1253 * 1254 * perf_remove_from_context(); 1255 * synchronize_rcu(); 1256 * perf_install_in_context(); 1257 * 1258 * to affect the change. The remove_from_context() + synchronize_rcu() should 1259 * quiesce the event, after which we can install it in the new location. This 1260 * means that only external vectors (perf_fops, prctl) can perturb the event 1261 * while in transit. Therefore all such accessors should also acquire 1262 * perf_event_context::mutex to serialize against this. 1263 * 1264 * However; because event->ctx can change while we're waiting to acquire 1265 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1266 * function. 1267 * 1268 * Lock order: 1269 * exec_update_lock 1270 * task_struct::perf_event_mutex 1271 * perf_event_context::mutex 1272 * perf_event::child_mutex; 1273 * perf_event_context::lock 1274 * perf_event::mmap_mutex 1275 * mmap_lock 1276 * perf_addr_filters_head::lock 1277 * 1278 * cpu_hotplug_lock 1279 * pmus_lock 1280 * cpuctx->mutex / perf_event_context::mutex 1281 */ 1282 static struct perf_event_context * 1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1284 { 1285 struct perf_event_context *ctx; 1286 1287 again: 1288 rcu_read_lock(); 1289 ctx = READ_ONCE(event->ctx); 1290 if (!refcount_inc_not_zero(&ctx->refcount)) { 1291 rcu_read_unlock(); 1292 goto again; 1293 } 1294 rcu_read_unlock(); 1295 1296 mutex_lock_nested(&ctx->mutex, nesting); 1297 if (event->ctx != ctx) { 1298 mutex_unlock(&ctx->mutex); 1299 put_ctx(ctx); 1300 goto again; 1301 } 1302 1303 return ctx; 1304 } 1305 1306 static inline struct perf_event_context * 1307 perf_event_ctx_lock(struct perf_event *event) 1308 { 1309 return perf_event_ctx_lock_nested(event, 0); 1310 } 1311 1312 static void perf_event_ctx_unlock(struct perf_event *event, 1313 struct perf_event_context *ctx) 1314 { 1315 mutex_unlock(&ctx->mutex); 1316 put_ctx(ctx); 1317 } 1318 1319 /* 1320 * This must be done under the ctx->lock, such as to serialize against 1321 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1322 * calling scheduler related locks and ctx->lock nests inside those. 1323 */ 1324 static __must_check struct perf_event_context * 1325 unclone_ctx(struct perf_event_context *ctx) 1326 { 1327 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1328 1329 lockdep_assert_held(&ctx->lock); 1330 1331 if (parent_ctx) 1332 ctx->parent_ctx = NULL; 1333 ctx->generation++; 1334 1335 return parent_ctx; 1336 } 1337 1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1339 enum pid_type type) 1340 { 1341 u32 nr; 1342 /* 1343 * only top level events have the pid namespace they were created in 1344 */ 1345 if (event->parent) 1346 event = event->parent; 1347 1348 nr = __task_pid_nr_ns(p, type, event->ns); 1349 /* avoid -1 if it is idle thread or runs in another ns */ 1350 if (!nr && !pid_alive(p)) 1351 nr = -1; 1352 return nr; 1353 } 1354 1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1356 { 1357 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1358 } 1359 1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1361 { 1362 return perf_event_pid_type(event, p, PIDTYPE_PID); 1363 } 1364 1365 /* 1366 * If we inherit events we want to return the parent event id 1367 * to userspace. 1368 */ 1369 static u64 primary_event_id(struct perf_event *event) 1370 { 1371 u64 id = event->id; 1372 1373 if (event->parent) 1374 id = event->parent->id; 1375 1376 return id; 1377 } 1378 1379 /* 1380 * Get the perf_event_context for a task and lock it. 1381 * 1382 * This has to cope with the fact that until it is locked, 1383 * the context could get moved to another task. 1384 */ 1385 static struct perf_event_context * 1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1387 { 1388 struct perf_event_context *ctx; 1389 1390 retry: 1391 /* 1392 * One of the few rules of preemptible RCU is that one cannot do 1393 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1394 * part of the read side critical section was irqs-enabled -- see 1395 * rcu_read_unlock_special(). 1396 * 1397 * Since ctx->lock nests under rq->lock we must ensure the entire read 1398 * side critical section has interrupts disabled. 1399 */ 1400 local_irq_save(*flags); 1401 rcu_read_lock(); 1402 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1403 if (ctx) { 1404 /* 1405 * If this context is a clone of another, it might 1406 * get swapped for another underneath us by 1407 * perf_event_task_sched_out, though the 1408 * rcu_read_lock() protects us from any context 1409 * getting freed. Lock the context and check if it 1410 * got swapped before we could get the lock, and retry 1411 * if so. If we locked the right context, then it 1412 * can't get swapped on us any more. 1413 */ 1414 raw_spin_lock(&ctx->lock); 1415 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1416 raw_spin_unlock(&ctx->lock); 1417 rcu_read_unlock(); 1418 local_irq_restore(*flags); 1419 goto retry; 1420 } 1421 1422 if (ctx->task == TASK_TOMBSTONE || 1423 !refcount_inc_not_zero(&ctx->refcount)) { 1424 raw_spin_unlock(&ctx->lock); 1425 ctx = NULL; 1426 } else { 1427 WARN_ON_ONCE(ctx->task != task); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 if (!ctx) 1432 local_irq_restore(*flags); 1433 return ctx; 1434 } 1435 1436 /* 1437 * Get the context for a task and increment its pin_count so it 1438 * can't get swapped to another task. This also increments its 1439 * reference count so that the context can't get freed. 1440 */ 1441 static struct perf_event_context * 1442 perf_pin_task_context(struct task_struct *task, int ctxn) 1443 { 1444 struct perf_event_context *ctx; 1445 unsigned long flags; 1446 1447 ctx = perf_lock_task_context(task, ctxn, &flags); 1448 if (ctx) { 1449 ++ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 return ctx; 1453 } 1454 1455 static void perf_unpin_context(struct perf_event_context *ctx) 1456 { 1457 unsigned long flags; 1458 1459 raw_spin_lock_irqsave(&ctx->lock, flags); 1460 --ctx->pin_count; 1461 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1462 } 1463 1464 /* 1465 * Update the record of the current time in a context. 1466 */ 1467 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1468 { 1469 u64 now = perf_clock(); 1470 1471 if (adv) 1472 ctx->time += now - ctx->timestamp; 1473 ctx->timestamp = now; 1474 1475 /* 1476 * The above: time' = time + (now - timestamp), can be re-arranged 1477 * into: time` = now + (time - timestamp), which gives a single value 1478 * offset to compute future time without locks on. 1479 * 1480 * See perf_event_time_now(), which can be used from NMI context where 1481 * it's (obviously) not possible to acquire ctx->lock in order to read 1482 * both the above values in a consistent manner. 1483 */ 1484 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1485 } 1486 1487 static void update_context_time(struct perf_event_context *ctx) 1488 { 1489 __update_context_time(ctx, true); 1490 } 1491 1492 static u64 perf_event_time(struct perf_event *event) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 1496 if (unlikely(!ctx)) 1497 return 0; 1498 1499 if (is_cgroup_event(event)) 1500 return perf_cgroup_event_time(event); 1501 1502 return ctx->time; 1503 } 1504 1505 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1506 { 1507 struct perf_event_context *ctx = event->ctx; 1508 1509 if (unlikely(!ctx)) 1510 return 0; 1511 1512 if (is_cgroup_event(event)) 1513 return perf_cgroup_event_time_now(event, now); 1514 1515 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1516 return ctx->time; 1517 1518 now += READ_ONCE(ctx->timeoffset); 1519 return now; 1520 } 1521 1522 static enum event_type_t get_event_type(struct perf_event *event) 1523 { 1524 struct perf_event_context *ctx = event->ctx; 1525 enum event_type_t event_type; 1526 1527 lockdep_assert_held(&ctx->lock); 1528 1529 /* 1530 * It's 'group type', really, because if our group leader is 1531 * pinned, so are we. 1532 */ 1533 if (event->group_leader != event) 1534 event = event->group_leader; 1535 1536 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1537 if (!ctx->task) 1538 event_type |= EVENT_CPU; 1539 1540 return event_type; 1541 } 1542 1543 /* 1544 * Helper function to initialize event group nodes. 1545 */ 1546 static void init_event_group(struct perf_event *event) 1547 { 1548 RB_CLEAR_NODE(&event->group_node); 1549 event->group_index = 0; 1550 } 1551 1552 /* 1553 * Extract pinned or flexible groups from the context 1554 * based on event attrs bits. 1555 */ 1556 static struct perf_event_groups * 1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1558 { 1559 if (event->attr.pinned) 1560 return &ctx->pinned_groups; 1561 else 1562 return &ctx->flexible_groups; 1563 } 1564 1565 /* 1566 * Helper function to initializes perf_event_group trees. 1567 */ 1568 static void perf_event_groups_init(struct perf_event_groups *groups) 1569 { 1570 groups->tree = RB_ROOT; 1571 groups->index = 0; 1572 } 1573 1574 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1575 { 1576 struct cgroup *cgroup = NULL; 1577 1578 #ifdef CONFIG_CGROUP_PERF 1579 if (event->cgrp) 1580 cgroup = event->cgrp->css.cgroup; 1581 #endif 1582 1583 return cgroup; 1584 } 1585 1586 /* 1587 * Compare function for event groups; 1588 * 1589 * Implements complex key that first sorts by CPU and then by virtual index 1590 * which provides ordering when rotating groups for the same CPU. 1591 */ 1592 static __always_inline int 1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1594 const u64 left_group_index, const struct perf_event *right) 1595 { 1596 if (left_cpu < right->cpu) 1597 return -1; 1598 if (left_cpu > right->cpu) 1599 return 1; 1600 1601 #ifdef CONFIG_CGROUP_PERF 1602 { 1603 const struct cgroup *right_cgroup = event_cgroup(right); 1604 1605 if (left_cgroup != right_cgroup) { 1606 if (!left_cgroup) { 1607 /* 1608 * Left has no cgroup but right does, no 1609 * cgroups come first. 1610 */ 1611 return -1; 1612 } 1613 if (!right_cgroup) { 1614 /* 1615 * Right has no cgroup but left does, no 1616 * cgroups come first. 1617 */ 1618 return 1; 1619 } 1620 /* Two dissimilar cgroups, order by id. */ 1621 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1622 return -1; 1623 1624 return 1; 1625 } 1626 } 1627 #endif 1628 1629 if (left_group_index < right->group_index) 1630 return -1; 1631 if (left_group_index > right->group_index) 1632 return 1; 1633 1634 return 0; 1635 } 1636 1637 #define __node_2_pe(node) \ 1638 rb_entry((node), struct perf_event, group_node) 1639 1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1641 { 1642 struct perf_event *e = __node_2_pe(a); 1643 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1644 __node_2_pe(b)) < 0; 1645 } 1646 1647 struct __group_key { 1648 int cpu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1659 } 1660 1661 /* 1662 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1663 * key (see perf_event_groups_less). This places it last inside the CPU 1664 * subtree. 1665 */ 1666 static void 1667 perf_event_groups_insert(struct perf_event_groups *groups, 1668 struct perf_event *event) 1669 { 1670 event->group_index = ++groups->index; 1671 1672 rb_add(&event->group_node, &groups->tree, __group_less); 1673 } 1674 1675 /* 1676 * Helper function to insert event into the pinned or flexible groups. 1677 */ 1678 static void 1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1680 { 1681 struct perf_event_groups *groups; 1682 1683 groups = get_event_groups(event, ctx); 1684 perf_event_groups_insert(groups, event); 1685 } 1686 1687 /* 1688 * Delete a group from a tree. 1689 */ 1690 static void 1691 perf_event_groups_delete(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1695 RB_EMPTY_ROOT(&groups->tree)); 1696 1697 rb_erase(&event->group_node, &groups->tree); 1698 init_event_group(event); 1699 } 1700 1701 /* 1702 * Helper function to delete event from its groups. 1703 */ 1704 static void 1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1706 { 1707 struct perf_event_groups *groups; 1708 1709 groups = get_event_groups(event, ctx); 1710 perf_event_groups_delete(groups, event); 1711 } 1712 1713 /* 1714 * Get the leftmost event in the cpu/cgroup subtree. 1715 */ 1716 static struct perf_event * 1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1718 struct cgroup *cgrp) 1719 { 1720 struct __group_key key = { 1721 .cpu = cpu, 1722 .cgroup = cgrp, 1723 }; 1724 struct rb_node *node; 1725 1726 node = rb_find_first(&key, &groups->tree, __group_cmp); 1727 if (node) 1728 return __node_2_pe(node); 1729 1730 return NULL; 1731 } 1732 1733 /* 1734 * Like rb_entry_next_safe() for the @cpu subtree. 1735 */ 1736 static struct perf_event * 1737 perf_event_groups_next(struct perf_event *event) 1738 { 1739 struct __group_key key = { 1740 .cpu = event->cpu, 1741 .cgroup = event_cgroup(event), 1742 }; 1743 struct rb_node *next; 1744 1745 next = rb_next_match(&key, &event->group_node, __group_cmp); 1746 if (next) 1747 return __node_2_pe(next); 1748 1749 return NULL; 1750 } 1751 1752 /* 1753 * Iterate through the whole groups tree. 1754 */ 1755 #define perf_event_groups_for_each(event, groups) \ 1756 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1757 typeof(*event), group_node); event; \ 1758 event = rb_entry_safe(rb_next(&event->group_node), \ 1759 typeof(*event), group_node)) 1760 1761 /* 1762 * Add an event from the lists for its context. 1763 * Must be called with ctx->mutex and ctx->lock held. 1764 */ 1765 static void 1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1767 { 1768 lockdep_assert_held(&ctx->lock); 1769 1770 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1771 event->attach_state |= PERF_ATTACH_CONTEXT; 1772 1773 event->tstamp = perf_event_time(event); 1774 1775 /* 1776 * If we're a stand alone event or group leader, we go to the context 1777 * list, group events are kept attached to the group so that 1778 * perf_group_detach can, at all times, locate all siblings. 1779 */ 1780 if (event->group_leader == event) { 1781 event->group_caps = event->event_caps; 1782 add_event_to_groups(event, ctx); 1783 } 1784 1785 list_add_rcu(&event->event_entry, &ctx->event_list); 1786 ctx->nr_events++; 1787 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1788 ctx->nr_user++; 1789 if (event->attr.inherit_stat) 1790 ctx->nr_stat++; 1791 1792 if (event->state > PERF_EVENT_STATE_OFF) 1793 perf_cgroup_event_enable(event, ctx); 1794 1795 ctx->generation++; 1796 } 1797 1798 /* 1799 * Initialize event state based on the perf_event_attr::disabled. 1800 */ 1801 static inline void perf_event__state_init(struct perf_event *event) 1802 { 1803 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1804 PERF_EVENT_STATE_INACTIVE; 1805 } 1806 1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1808 { 1809 int entry = sizeof(u64); /* value */ 1810 int size = 0; 1811 int nr = 1; 1812 1813 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1814 size += sizeof(u64); 1815 1816 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1817 size += sizeof(u64); 1818 1819 if (event->attr.read_format & PERF_FORMAT_ID) 1820 entry += sizeof(u64); 1821 1822 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1823 nr += nr_siblings; 1824 size += sizeof(u64); 1825 } 1826 1827 size += entry * nr; 1828 event->read_size = size; 1829 } 1830 1831 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1832 { 1833 struct perf_sample_data *data; 1834 u16 size = 0; 1835 1836 if (sample_type & PERF_SAMPLE_IP) 1837 size += sizeof(data->ip); 1838 1839 if (sample_type & PERF_SAMPLE_ADDR) 1840 size += sizeof(data->addr); 1841 1842 if (sample_type & PERF_SAMPLE_PERIOD) 1843 size += sizeof(data->period); 1844 1845 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1846 size += sizeof(data->weight.full); 1847 1848 if (sample_type & PERF_SAMPLE_READ) 1849 size += event->read_size; 1850 1851 if (sample_type & PERF_SAMPLE_DATA_SRC) 1852 size += sizeof(data->data_src.val); 1853 1854 if (sample_type & PERF_SAMPLE_TRANSACTION) 1855 size += sizeof(data->txn); 1856 1857 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1858 size += sizeof(data->phys_addr); 1859 1860 if (sample_type & PERF_SAMPLE_CGROUP) 1861 size += sizeof(data->cgroup); 1862 1863 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1864 size += sizeof(data->data_page_size); 1865 1866 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1867 size += sizeof(data->code_page_size); 1868 1869 event->header_size = size; 1870 } 1871 1872 /* 1873 * Called at perf_event creation and when events are attached/detached from a 1874 * group. 1875 */ 1876 static void perf_event__header_size(struct perf_event *event) 1877 { 1878 __perf_event_read_size(event, 1879 event->group_leader->nr_siblings); 1880 __perf_event_header_size(event, event->attr.sample_type); 1881 } 1882 1883 static void perf_event__id_header_size(struct perf_event *event) 1884 { 1885 struct perf_sample_data *data; 1886 u64 sample_type = event->attr.sample_type; 1887 u16 size = 0; 1888 1889 if (sample_type & PERF_SAMPLE_TID) 1890 size += sizeof(data->tid_entry); 1891 1892 if (sample_type & PERF_SAMPLE_TIME) 1893 size += sizeof(data->time); 1894 1895 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1896 size += sizeof(data->id); 1897 1898 if (sample_type & PERF_SAMPLE_ID) 1899 size += sizeof(data->id); 1900 1901 if (sample_type & PERF_SAMPLE_STREAM_ID) 1902 size += sizeof(data->stream_id); 1903 1904 if (sample_type & PERF_SAMPLE_CPU) 1905 size += sizeof(data->cpu_entry); 1906 1907 event->id_header_size = size; 1908 } 1909 1910 static bool perf_event_validate_size(struct perf_event *event) 1911 { 1912 /* 1913 * The values computed here will be over-written when we actually 1914 * attach the event. 1915 */ 1916 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1917 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1918 perf_event__id_header_size(event); 1919 1920 /* 1921 * Sum the lot; should not exceed the 64k limit we have on records. 1922 * Conservative limit to allow for callchains and other variable fields. 1923 */ 1924 if (event->read_size + event->header_size + 1925 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1926 return false; 1927 1928 return true; 1929 } 1930 1931 static void perf_group_attach(struct perf_event *event) 1932 { 1933 struct perf_event *group_leader = event->group_leader, *pos; 1934 1935 lockdep_assert_held(&event->ctx->lock); 1936 1937 /* 1938 * We can have double attach due to group movement in perf_event_open. 1939 */ 1940 if (event->attach_state & PERF_ATTACH_GROUP) 1941 return; 1942 1943 event->attach_state |= PERF_ATTACH_GROUP; 1944 1945 if (group_leader == event) 1946 return; 1947 1948 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1949 1950 group_leader->group_caps &= event->event_caps; 1951 1952 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1953 group_leader->nr_siblings++; 1954 1955 perf_event__header_size(group_leader); 1956 1957 for_each_sibling_event(pos, group_leader) 1958 perf_event__header_size(pos); 1959 } 1960 1961 /* 1962 * Remove an event from the lists for its context. 1963 * Must be called with ctx->mutex and ctx->lock held. 1964 */ 1965 static void 1966 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1967 { 1968 WARN_ON_ONCE(event->ctx != ctx); 1969 lockdep_assert_held(&ctx->lock); 1970 1971 /* 1972 * We can have double detach due to exit/hot-unplug + close. 1973 */ 1974 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1975 return; 1976 1977 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1978 1979 ctx->nr_events--; 1980 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1981 ctx->nr_user--; 1982 if (event->attr.inherit_stat) 1983 ctx->nr_stat--; 1984 1985 list_del_rcu(&event->event_entry); 1986 1987 if (event->group_leader == event) 1988 del_event_from_groups(event, ctx); 1989 1990 /* 1991 * If event was in error state, then keep it 1992 * that way, otherwise bogus counts will be 1993 * returned on read(). The only way to get out 1994 * of error state is by explicit re-enabling 1995 * of the event 1996 */ 1997 if (event->state > PERF_EVENT_STATE_OFF) { 1998 perf_cgroup_event_disable(event, ctx); 1999 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2000 } 2001 2002 ctx->generation++; 2003 } 2004 2005 static int 2006 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2007 { 2008 if (!has_aux(aux_event)) 2009 return 0; 2010 2011 if (!event->pmu->aux_output_match) 2012 return 0; 2013 2014 return event->pmu->aux_output_match(aux_event); 2015 } 2016 2017 static void put_event(struct perf_event *event); 2018 static void event_sched_out(struct perf_event *event, 2019 struct perf_cpu_context *cpuctx, 2020 struct perf_event_context *ctx); 2021 2022 static void perf_put_aux_event(struct perf_event *event) 2023 { 2024 struct perf_event_context *ctx = event->ctx; 2025 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2026 struct perf_event *iter; 2027 2028 /* 2029 * If event uses aux_event tear down the link 2030 */ 2031 if (event->aux_event) { 2032 iter = event->aux_event; 2033 event->aux_event = NULL; 2034 put_event(iter); 2035 return; 2036 } 2037 2038 /* 2039 * If the event is an aux_event, tear down all links to 2040 * it from other events. 2041 */ 2042 for_each_sibling_event(iter, event->group_leader) { 2043 if (iter->aux_event != event) 2044 continue; 2045 2046 iter->aux_event = NULL; 2047 put_event(event); 2048 2049 /* 2050 * If it's ACTIVE, schedule it out and put it into ERROR 2051 * state so that we don't try to schedule it again. Note 2052 * that perf_event_enable() will clear the ERROR status. 2053 */ 2054 event_sched_out(iter, cpuctx, ctx); 2055 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2056 } 2057 } 2058 2059 static bool perf_need_aux_event(struct perf_event *event) 2060 { 2061 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2062 } 2063 2064 static int perf_get_aux_event(struct perf_event *event, 2065 struct perf_event *group_leader) 2066 { 2067 /* 2068 * Our group leader must be an aux event if we want to be 2069 * an aux_output. This way, the aux event will precede its 2070 * aux_output events in the group, and therefore will always 2071 * schedule first. 2072 */ 2073 if (!group_leader) 2074 return 0; 2075 2076 /* 2077 * aux_output and aux_sample_size are mutually exclusive. 2078 */ 2079 if (event->attr.aux_output && event->attr.aux_sample_size) 2080 return 0; 2081 2082 if (event->attr.aux_output && 2083 !perf_aux_output_match(event, group_leader)) 2084 return 0; 2085 2086 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2087 return 0; 2088 2089 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2090 return 0; 2091 2092 /* 2093 * Link aux_outputs to their aux event; this is undone in 2094 * perf_group_detach() by perf_put_aux_event(). When the 2095 * group in torn down, the aux_output events loose their 2096 * link to the aux_event and can't schedule any more. 2097 */ 2098 event->aux_event = group_leader; 2099 2100 return 1; 2101 } 2102 2103 static inline struct list_head *get_event_list(struct perf_event *event) 2104 { 2105 struct perf_event_context *ctx = event->ctx; 2106 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2107 } 2108 2109 /* 2110 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2111 * cannot exist on their own, schedule them out and move them into the ERROR 2112 * state. Also see _perf_event_enable(), it will not be able to recover 2113 * this ERROR state. 2114 */ 2115 static inline void perf_remove_sibling_event(struct perf_event *event) 2116 { 2117 struct perf_event_context *ctx = event->ctx; 2118 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2119 2120 event_sched_out(event, cpuctx, ctx); 2121 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2122 } 2123 2124 static void perf_group_detach(struct perf_event *event) 2125 { 2126 struct perf_event *leader = event->group_leader; 2127 struct perf_event *sibling, *tmp; 2128 struct perf_event_context *ctx = event->ctx; 2129 2130 lockdep_assert_held(&ctx->lock); 2131 2132 /* 2133 * We can have double detach due to exit/hot-unplug + close. 2134 */ 2135 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2136 return; 2137 2138 event->attach_state &= ~PERF_ATTACH_GROUP; 2139 2140 perf_put_aux_event(event); 2141 2142 /* 2143 * If this is a sibling, remove it from its group. 2144 */ 2145 if (leader != event) { 2146 list_del_init(&event->sibling_list); 2147 event->group_leader->nr_siblings--; 2148 goto out; 2149 } 2150 2151 /* 2152 * If this was a group event with sibling events then 2153 * upgrade the siblings to singleton events by adding them 2154 * to whatever list we are on. 2155 */ 2156 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2157 2158 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2159 perf_remove_sibling_event(sibling); 2160 2161 sibling->group_leader = sibling; 2162 list_del_init(&sibling->sibling_list); 2163 2164 /* Inherit group flags from the previous leader */ 2165 sibling->group_caps = event->group_caps; 2166 2167 if (!RB_EMPTY_NODE(&event->group_node)) { 2168 add_event_to_groups(sibling, event->ctx); 2169 2170 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2171 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2172 } 2173 2174 WARN_ON_ONCE(sibling->ctx != event->ctx); 2175 } 2176 2177 out: 2178 for_each_sibling_event(tmp, leader) 2179 perf_event__header_size(tmp); 2180 2181 perf_event__header_size(leader); 2182 } 2183 2184 static void sync_child_event(struct perf_event *child_event); 2185 2186 static void perf_child_detach(struct perf_event *event) 2187 { 2188 struct perf_event *parent_event = event->parent; 2189 2190 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2191 return; 2192 2193 event->attach_state &= ~PERF_ATTACH_CHILD; 2194 2195 if (WARN_ON_ONCE(!parent_event)) 2196 return; 2197 2198 lockdep_assert_held(&parent_event->child_mutex); 2199 2200 sync_child_event(event); 2201 list_del_init(&event->child_list); 2202 } 2203 2204 static bool is_orphaned_event(struct perf_event *event) 2205 { 2206 return event->state == PERF_EVENT_STATE_DEAD; 2207 } 2208 2209 static inline int __pmu_filter_match(struct perf_event *event) 2210 { 2211 struct pmu *pmu = event->pmu; 2212 return pmu->filter_match ? pmu->filter_match(event) : 1; 2213 } 2214 2215 /* 2216 * Check whether we should attempt to schedule an event group based on 2217 * PMU-specific filtering. An event group can consist of HW and SW events, 2218 * potentially with a SW leader, so we must check all the filters, to 2219 * determine whether a group is schedulable: 2220 */ 2221 static inline int pmu_filter_match(struct perf_event *event) 2222 { 2223 struct perf_event *sibling; 2224 2225 if (!__pmu_filter_match(event)) 2226 return 0; 2227 2228 for_each_sibling_event(sibling, event) { 2229 if (!__pmu_filter_match(sibling)) 2230 return 0; 2231 } 2232 2233 return 1; 2234 } 2235 2236 static inline int 2237 event_filter_match(struct perf_event *event) 2238 { 2239 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2240 perf_cgroup_match(event) && pmu_filter_match(event); 2241 } 2242 2243 static void 2244 event_sched_out(struct perf_event *event, 2245 struct perf_cpu_context *cpuctx, 2246 struct perf_event_context *ctx) 2247 { 2248 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2249 2250 WARN_ON_ONCE(event->ctx != ctx); 2251 lockdep_assert_held(&ctx->lock); 2252 2253 if (event->state != PERF_EVENT_STATE_ACTIVE) 2254 return; 2255 2256 /* 2257 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2258 * we can schedule events _OUT_ individually through things like 2259 * __perf_remove_from_context(). 2260 */ 2261 list_del_init(&event->active_list); 2262 2263 perf_pmu_disable(event->pmu); 2264 2265 event->pmu->del(event, 0); 2266 event->oncpu = -1; 2267 2268 if (READ_ONCE(event->pending_disable) >= 0) { 2269 WRITE_ONCE(event->pending_disable, -1); 2270 perf_cgroup_event_disable(event, ctx); 2271 state = PERF_EVENT_STATE_OFF; 2272 } 2273 perf_event_set_state(event, state); 2274 2275 if (!is_software_event(event)) 2276 cpuctx->active_oncpu--; 2277 if (!--ctx->nr_active) 2278 perf_event_ctx_deactivate(ctx); 2279 if (event->attr.freq && event->attr.sample_freq) 2280 ctx->nr_freq--; 2281 if (event->attr.exclusive || !cpuctx->active_oncpu) 2282 cpuctx->exclusive = 0; 2283 2284 perf_pmu_enable(event->pmu); 2285 } 2286 2287 static void 2288 group_sched_out(struct perf_event *group_event, 2289 struct perf_cpu_context *cpuctx, 2290 struct perf_event_context *ctx) 2291 { 2292 struct perf_event *event; 2293 2294 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2295 return; 2296 2297 perf_pmu_disable(ctx->pmu); 2298 2299 event_sched_out(group_event, cpuctx, ctx); 2300 2301 /* 2302 * Schedule out siblings (if any): 2303 */ 2304 for_each_sibling_event(event, group_event) 2305 event_sched_out(event, cpuctx, ctx); 2306 2307 perf_pmu_enable(ctx->pmu); 2308 } 2309 2310 #define DETACH_GROUP 0x01UL 2311 #define DETACH_CHILD 0x02UL 2312 2313 /* 2314 * Cross CPU call to remove a performance event 2315 * 2316 * We disable the event on the hardware level first. After that we 2317 * remove it from the context list. 2318 */ 2319 static void 2320 __perf_remove_from_context(struct perf_event *event, 2321 struct perf_cpu_context *cpuctx, 2322 struct perf_event_context *ctx, 2323 void *info) 2324 { 2325 unsigned long flags = (unsigned long)info; 2326 2327 if (ctx->is_active & EVENT_TIME) { 2328 update_context_time(ctx); 2329 update_cgrp_time_from_cpuctx(cpuctx, false); 2330 } 2331 2332 event_sched_out(event, cpuctx, ctx); 2333 if (flags & DETACH_GROUP) 2334 perf_group_detach(event); 2335 if (flags & DETACH_CHILD) 2336 perf_child_detach(event); 2337 list_del_event(event, ctx); 2338 2339 if (!ctx->nr_events && ctx->is_active) { 2340 if (ctx == &cpuctx->ctx) 2341 update_cgrp_time_from_cpuctx(cpuctx, true); 2342 2343 ctx->is_active = 0; 2344 ctx->rotate_necessary = 0; 2345 if (ctx->task) { 2346 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2347 cpuctx->task_ctx = NULL; 2348 } 2349 } 2350 } 2351 2352 /* 2353 * Remove the event from a task's (or a CPU's) list of events. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This is OK when called from perf_release since 2358 * that only calls us on the top-level context, which can't be a clone. 2359 * When called from perf_event_exit_task, it's OK because the 2360 * context has been detached from its task. 2361 */ 2362 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2363 { 2364 struct perf_event_context *ctx = event->ctx; 2365 2366 lockdep_assert_held(&ctx->mutex); 2367 2368 /* 2369 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2370 * to work in the face of TASK_TOMBSTONE, unlike every other 2371 * event_function_call() user. 2372 */ 2373 raw_spin_lock_irq(&ctx->lock); 2374 /* 2375 * Cgroup events are per-cpu events, and must IPI because of 2376 * cgrp_cpuctx_list. 2377 */ 2378 if (!ctx->is_active && !is_cgroup_event(event)) { 2379 __perf_remove_from_context(event, __get_cpu_context(ctx), 2380 ctx, (void *)flags); 2381 raw_spin_unlock_irq(&ctx->lock); 2382 return; 2383 } 2384 raw_spin_unlock_irq(&ctx->lock); 2385 2386 event_function_call(event, __perf_remove_from_context, (void *)flags); 2387 } 2388 2389 /* 2390 * Cross CPU call to disable a performance event 2391 */ 2392 static void __perf_event_disable(struct perf_event *event, 2393 struct perf_cpu_context *cpuctx, 2394 struct perf_event_context *ctx, 2395 void *info) 2396 { 2397 if (event->state < PERF_EVENT_STATE_INACTIVE) 2398 return; 2399 2400 if (ctx->is_active & EVENT_TIME) { 2401 update_context_time(ctx); 2402 update_cgrp_time_from_event(event); 2403 } 2404 2405 if (event == event->group_leader) 2406 group_sched_out(event, cpuctx, ctx); 2407 else 2408 event_sched_out(event, cpuctx, ctx); 2409 2410 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2411 perf_cgroup_event_disable(event, ctx); 2412 } 2413 2414 /* 2415 * Disable an event. 2416 * 2417 * If event->ctx is a cloned context, callers must make sure that 2418 * every task struct that event->ctx->task could possibly point to 2419 * remains valid. This condition is satisfied when called through 2420 * perf_event_for_each_child or perf_event_for_each because they 2421 * hold the top-level event's child_mutex, so any descendant that 2422 * goes to exit will block in perf_event_exit_event(). 2423 * 2424 * When called from perf_pending_event it's OK because event->ctx 2425 * is the current context on this CPU and preemption is disabled, 2426 * hence we can't get into perf_event_task_sched_out for this context. 2427 */ 2428 static void _perf_event_disable(struct perf_event *event) 2429 { 2430 struct perf_event_context *ctx = event->ctx; 2431 2432 raw_spin_lock_irq(&ctx->lock); 2433 if (event->state <= PERF_EVENT_STATE_OFF) { 2434 raw_spin_unlock_irq(&ctx->lock); 2435 return; 2436 } 2437 raw_spin_unlock_irq(&ctx->lock); 2438 2439 event_function_call(event, __perf_event_disable, NULL); 2440 } 2441 2442 void perf_event_disable_local(struct perf_event *event) 2443 { 2444 event_function_local(event, __perf_event_disable, NULL); 2445 } 2446 2447 /* 2448 * Strictly speaking kernel users cannot create groups and therefore this 2449 * interface does not need the perf_event_ctx_lock() magic. 2450 */ 2451 void perf_event_disable(struct perf_event *event) 2452 { 2453 struct perf_event_context *ctx; 2454 2455 ctx = perf_event_ctx_lock(event); 2456 _perf_event_disable(event); 2457 perf_event_ctx_unlock(event, ctx); 2458 } 2459 EXPORT_SYMBOL_GPL(perf_event_disable); 2460 2461 void perf_event_disable_inatomic(struct perf_event *event) 2462 { 2463 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2464 /* can fail, see perf_pending_event_disable() */ 2465 irq_work_queue(&event->pending); 2466 } 2467 2468 #define MAX_INTERRUPTS (~0ULL) 2469 2470 static void perf_log_throttle(struct perf_event *event, int enable); 2471 static void perf_log_itrace_start(struct perf_event *event); 2472 2473 static int 2474 event_sched_in(struct perf_event *event, 2475 struct perf_cpu_context *cpuctx, 2476 struct perf_event_context *ctx) 2477 { 2478 int ret = 0; 2479 2480 WARN_ON_ONCE(event->ctx != ctx); 2481 2482 lockdep_assert_held(&ctx->lock); 2483 2484 if (event->state <= PERF_EVENT_STATE_OFF) 2485 return 0; 2486 2487 WRITE_ONCE(event->oncpu, smp_processor_id()); 2488 /* 2489 * Order event::oncpu write to happen before the ACTIVE state is 2490 * visible. This allows perf_event_{stop,read}() to observe the correct 2491 * ->oncpu if it sees ACTIVE. 2492 */ 2493 smp_wmb(); 2494 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2495 2496 /* 2497 * Unthrottle events, since we scheduled we might have missed several 2498 * ticks already, also for a heavily scheduling task there is little 2499 * guarantee it'll get a tick in a timely manner. 2500 */ 2501 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2502 perf_log_throttle(event, 1); 2503 event->hw.interrupts = 0; 2504 } 2505 2506 perf_pmu_disable(event->pmu); 2507 2508 perf_log_itrace_start(event); 2509 2510 if (event->pmu->add(event, PERF_EF_START)) { 2511 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2512 event->oncpu = -1; 2513 ret = -EAGAIN; 2514 goto out; 2515 } 2516 2517 if (!is_software_event(event)) 2518 cpuctx->active_oncpu++; 2519 if (!ctx->nr_active++) 2520 perf_event_ctx_activate(ctx); 2521 if (event->attr.freq && event->attr.sample_freq) 2522 ctx->nr_freq++; 2523 2524 if (event->attr.exclusive) 2525 cpuctx->exclusive = 1; 2526 2527 out: 2528 perf_pmu_enable(event->pmu); 2529 2530 return ret; 2531 } 2532 2533 static int 2534 group_sched_in(struct perf_event *group_event, 2535 struct perf_cpu_context *cpuctx, 2536 struct perf_event_context *ctx) 2537 { 2538 struct perf_event *event, *partial_group = NULL; 2539 struct pmu *pmu = ctx->pmu; 2540 2541 if (group_event->state == PERF_EVENT_STATE_OFF) 2542 return 0; 2543 2544 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2545 2546 if (event_sched_in(group_event, cpuctx, ctx)) 2547 goto error; 2548 2549 /* 2550 * Schedule in siblings as one group (if any): 2551 */ 2552 for_each_sibling_event(event, group_event) { 2553 if (event_sched_in(event, cpuctx, ctx)) { 2554 partial_group = event; 2555 goto group_error; 2556 } 2557 } 2558 2559 if (!pmu->commit_txn(pmu)) 2560 return 0; 2561 2562 group_error: 2563 /* 2564 * Groups can be scheduled in as one unit only, so undo any 2565 * partial group before returning: 2566 * The events up to the failed event are scheduled out normally. 2567 */ 2568 for_each_sibling_event(event, group_event) { 2569 if (event == partial_group) 2570 break; 2571 2572 event_sched_out(event, cpuctx, ctx); 2573 } 2574 event_sched_out(group_event, cpuctx, ctx); 2575 2576 error: 2577 pmu->cancel_txn(pmu); 2578 return -EAGAIN; 2579 } 2580 2581 /* 2582 * Work out whether we can put this event group on the CPU now. 2583 */ 2584 static int group_can_go_on(struct perf_event *event, 2585 struct perf_cpu_context *cpuctx, 2586 int can_add_hw) 2587 { 2588 /* 2589 * Groups consisting entirely of software events can always go on. 2590 */ 2591 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2592 return 1; 2593 /* 2594 * If an exclusive group is already on, no other hardware 2595 * events can go on. 2596 */ 2597 if (cpuctx->exclusive) 2598 return 0; 2599 /* 2600 * If this group is exclusive and there are already 2601 * events on the CPU, it can't go on. 2602 */ 2603 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2604 return 0; 2605 /* 2606 * Otherwise, try to add it if all previous groups were able 2607 * to go on. 2608 */ 2609 return can_add_hw; 2610 } 2611 2612 static void add_event_to_ctx(struct perf_event *event, 2613 struct perf_event_context *ctx) 2614 { 2615 list_add_event(event, ctx); 2616 perf_group_attach(event); 2617 } 2618 2619 static void ctx_sched_out(struct perf_event_context *ctx, 2620 struct perf_cpu_context *cpuctx, 2621 enum event_type_t event_type); 2622 static void 2623 ctx_sched_in(struct perf_event_context *ctx, 2624 struct perf_cpu_context *cpuctx, 2625 enum event_type_t event_type); 2626 2627 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2628 struct perf_event_context *ctx, 2629 enum event_type_t event_type) 2630 { 2631 if (!cpuctx->task_ctx) 2632 return; 2633 2634 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2635 return; 2636 2637 ctx_sched_out(ctx, cpuctx, event_type); 2638 } 2639 2640 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2641 struct perf_event_context *ctx) 2642 { 2643 cpu_ctx_sched_in(cpuctx, EVENT_PINNED); 2644 if (ctx) 2645 ctx_sched_in(ctx, cpuctx, EVENT_PINNED); 2646 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); 2647 if (ctx) 2648 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); 2649 } 2650 2651 /* 2652 * We want to maintain the following priority of scheduling: 2653 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2654 * - task pinned (EVENT_PINNED) 2655 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2656 * - task flexible (EVENT_FLEXIBLE). 2657 * 2658 * In order to avoid unscheduling and scheduling back in everything every 2659 * time an event is added, only do it for the groups of equal priority and 2660 * below. 2661 * 2662 * This can be called after a batch operation on task events, in which case 2663 * event_type is a bit mask of the types of events involved. For CPU events, 2664 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2665 */ 2666 static void ctx_resched(struct perf_cpu_context *cpuctx, 2667 struct perf_event_context *task_ctx, 2668 enum event_type_t event_type) 2669 { 2670 enum event_type_t ctx_event_type; 2671 bool cpu_event = !!(event_type & EVENT_CPU); 2672 2673 /* 2674 * If pinned groups are involved, flexible groups also need to be 2675 * scheduled out. 2676 */ 2677 if (event_type & EVENT_PINNED) 2678 event_type |= EVENT_FLEXIBLE; 2679 2680 ctx_event_type = event_type & EVENT_ALL; 2681 2682 perf_pmu_disable(cpuctx->ctx.pmu); 2683 if (task_ctx) 2684 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2685 2686 /* 2687 * Decide which cpu ctx groups to schedule out based on the types 2688 * of events that caused rescheduling: 2689 * - EVENT_CPU: schedule out corresponding groups; 2690 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2691 * - otherwise, do nothing more. 2692 */ 2693 if (cpu_event) 2694 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2695 else if (ctx_event_type & EVENT_PINNED) 2696 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2697 2698 perf_event_sched_in(cpuctx, task_ctx); 2699 perf_pmu_enable(cpuctx->ctx.pmu); 2700 } 2701 2702 void perf_pmu_resched(struct pmu *pmu) 2703 { 2704 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2705 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2706 2707 perf_ctx_lock(cpuctx, task_ctx); 2708 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2709 perf_ctx_unlock(cpuctx, task_ctx); 2710 } 2711 2712 /* 2713 * Cross CPU call to install and enable a performance event 2714 * 2715 * Very similar to remote_function() + event_function() but cannot assume that 2716 * things like ctx->is_active and cpuctx->task_ctx are set. 2717 */ 2718 static int __perf_install_in_context(void *info) 2719 { 2720 struct perf_event *event = info; 2721 struct perf_event_context *ctx = event->ctx; 2722 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2723 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2724 bool reprogram = true; 2725 int ret = 0; 2726 2727 raw_spin_lock(&cpuctx->ctx.lock); 2728 if (ctx->task) { 2729 raw_spin_lock(&ctx->lock); 2730 task_ctx = ctx; 2731 2732 reprogram = (ctx->task == current); 2733 2734 /* 2735 * If the task is running, it must be running on this CPU, 2736 * otherwise we cannot reprogram things. 2737 * 2738 * If its not running, we don't care, ctx->lock will 2739 * serialize against it becoming runnable. 2740 */ 2741 if (task_curr(ctx->task) && !reprogram) { 2742 ret = -ESRCH; 2743 goto unlock; 2744 } 2745 2746 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2747 } else if (task_ctx) { 2748 raw_spin_lock(&task_ctx->lock); 2749 } 2750 2751 #ifdef CONFIG_CGROUP_PERF 2752 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2753 /* 2754 * If the current cgroup doesn't match the event's 2755 * cgroup, we should not try to schedule it. 2756 */ 2757 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2758 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2759 event->cgrp->css.cgroup); 2760 } 2761 #endif 2762 2763 if (reprogram) { 2764 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2765 add_event_to_ctx(event, ctx); 2766 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2767 } else { 2768 add_event_to_ctx(event, ctx); 2769 } 2770 2771 unlock: 2772 perf_ctx_unlock(cpuctx, task_ctx); 2773 2774 return ret; 2775 } 2776 2777 static bool exclusive_event_installable(struct perf_event *event, 2778 struct perf_event_context *ctx); 2779 2780 /* 2781 * Attach a performance event to a context. 2782 * 2783 * Very similar to event_function_call, see comment there. 2784 */ 2785 static void 2786 perf_install_in_context(struct perf_event_context *ctx, 2787 struct perf_event *event, 2788 int cpu) 2789 { 2790 struct task_struct *task = READ_ONCE(ctx->task); 2791 2792 lockdep_assert_held(&ctx->mutex); 2793 2794 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2795 2796 if (event->cpu != -1) 2797 event->cpu = cpu; 2798 2799 /* 2800 * Ensures that if we can observe event->ctx, both the event and ctx 2801 * will be 'complete'. See perf_iterate_sb_cpu(). 2802 */ 2803 smp_store_release(&event->ctx, ctx); 2804 2805 /* 2806 * perf_event_attr::disabled events will not run and can be initialized 2807 * without IPI. Except when this is the first event for the context, in 2808 * that case we need the magic of the IPI to set ctx->is_active. 2809 * Similarly, cgroup events for the context also needs the IPI to 2810 * manipulate the cgrp_cpuctx_list. 2811 * 2812 * The IOC_ENABLE that is sure to follow the creation of a disabled 2813 * event will issue the IPI and reprogram the hardware. 2814 */ 2815 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2816 ctx->nr_events && !is_cgroup_event(event)) { 2817 raw_spin_lock_irq(&ctx->lock); 2818 if (ctx->task == TASK_TOMBSTONE) { 2819 raw_spin_unlock_irq(&ctx->lock); 2820 return; 2821 } 2822 add_event_to_ctx(event, ctx); 2823 raw_spin_unlock_irq(&ctx->lock); 2824 return; 2825 } 2826 2827 if (!task) { 2828 cpu_function_call(cpu, __perf_install_in_context, event); 2829 return; 2830 } 2831 2832 /* 2833 * Should not happen, we validate the ctx is still alive before calling. 2834 */ 2835 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2836 return; 2837 2838 /* 2839 * Installing events is tricky because we cannot rely on ctx->is_active 2840 * to be set in case this is the nr_events 0 -> 1 transition. 2841 * 2842 * Instead we use task_curr(), which tells us if the task is running. 2843 * However, since we use task_curr() outside of rq::lock, we can race 2844 * against the actual state. This means the result can be wrong. 2845 * 2846 * If we get a false positive, we retry, this is harmless. 2847 * 2848 * If we get a false negative, things are complicated. If we are after 2849 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2850 * value must be correct. If we're before, it doesn't matter since 2851 * perf_event_context_sched_in() will program the counter. 2852 * 2853 * However, this hinges on the remote context switch having observed 2854 * our task->perf_event_ctxp[] store, such that it will in fact take 2855 * ctx::lock in perf_event_context_sched_in(). 2856 * 2857 * We do this by task_function_call(), if the IPI fails to hit the task 2858 * we know any future context switch of task must see the 2859 * perf_event_ctpx[] store. 2860 */ 2861 2862 /* 2863 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2864 * task_cpu() load, such that if the IPI then does not find the task 2865 * running, a future context switch of that task must observe the 2866 * store. 2867 */ 2868 smp_mb(); 2869 again: 2870 if (!task_function_call(task, __perf_install_in_context, event)) 2871 return; 2872 2873 raw_spin_lock_irq(&ctx->lock); 2874 task = ctx->task; 2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2876 /* 2877 * Cannot happen because we already checked above (which also 2878 * cannot happen), and we hold ctx->mutex, which serializes us 2879 * against perf_event_exit_task_context(). 2880 */ 2881 raw_spin_unlock_irq(&ctx->lock); 2882 return; 2883 } 2884 /* 2885 * If the task is not running, ctx->lock will avoid it becoming so, 2886 * thus we can safely install the event. 2887 */ 2888 if (task_curr(task)) { 2889 raw_spin_unlock_irq(&ctx->lock); 2890 goto again; 2891 } 2892 add_event_to_ctx(event, ctx); 2893 raw_spin_unlock_irq(&ctx->lock); 2894 } 2895 2896 /* 2897 * Cross CPU call to enable a performance event 2898 */ 2899 static void __perf_event_enable(struct perf_event *event, 2900 struct perf_cpu_context *cpuctx, 2901 struct perf_event_context *ctx, 2902 void *info) 2903 { 2904 struct perf_event *leader = event->group_leader; 2905 struct perf_event_context *task_ctx; 2906 2907 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2908 event->state <= PERF_EVENT_STATE_ERROR) 2909 return; 2910 2911 if (ctx->is_active) 2912 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2913 2914 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2915 perf_cgroup_event_enable(event, ctx); 2916 2917 if (!ctx->is_active) 2918 return; 2919 2920 if (!event_filter_match(event)) { 2921 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2922 return; 2923 } 2924 2925 /* 2926 * If the event is in a group and isn't the group leader, 2927 * then don't put it on unless the group is on. 2928 */ 2929 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2930 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 2931 return; 2932 } 2933 2934 task_ctx = cpuctx->task_ctx; 2935 if (ctx->task) 2936 WARN_ON_ONCE(task_ctx != ctx); 2937 2938 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2939 } 2940 2941 /* 2942 * Enable an event. 2943 * 2944 * If event->ctx is a cloned context, callers must make sure that 2945 * every task struct that event->ctx->task could possibly point to 2946 * remains valid. This condition is satisfied when called through 2947 * perf_event_for_each_child or perf_event_for_each as described 2948 * for perf_event_disable. 2949 */ 2950 static void _perf_event_enable(struct perf_event *event) 2951 { 2952 struct perf_event_context *ctx = event->ctx; 2953 2954 raw_spin_lock_irq(&ctx->lock); 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state < PERF_EVENT_STATE_ERROR) { 2957 out: 2958 raw_spin_unlock_irq(&ctx->lock); 2959 return; 2960 } 2961 2962 /* 2963 * If the event is in error state, clear that first. 2964 * 2965 * That way, if we see the event in error state below, we know that it 2966 * has gone back into error state, as distinct from the task having 2967 * been scheduled away before the cross-call arrived. 2968 */ 2969 if (event->state == PERF_EVENT_STATE_ERROR) { 2970 /* 2971 * Detached SIBLING events cannot leave ERROR state. 2972 */ 2973 if (event->event_caps & PERF_EV_CAP_SIBLING && 2974 event->group_leader == event) 2975 goto out; 2976 2977 event->state = PERF_EVENT_STATE_OFF; 2978 } 2979 raw_spin_unlock_irq(&ctx->lock); 2980 2981 event_function_call(event, __perf_event_enable, NULL); 2982 } 2983 2984 /* 2985 * See perf_event_disable(); 2986 */ 2987 void perf_event_enable(struct perf_event *event) 2988 { 2989 struct perf_event_context *ctx; 2990 2991 ctx = perf_event_ctx_lock(event); 2992 _perf_event_enable(event); 2993 perf_event_ctx_unlock(event, ctx); 2994 } 2995 EXPORT_SYMBOL_GPL(perf_event_enable); 2996 2997 struct stop_event_data { 2998 struct perf_event *event; 2999 unsigned int restart; 3000 }; 3001 3002 static int __perf_event_stop(void *info) 3003 { 3004 struct stop_event_data *sd = info; 3005 struct perf_event *event = sd->event; 3006 3007 /* if it's already INACTIVE, do nothing */ 3008 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3009 return 0; 3010 3011 /* matches smp_wmb() in event_sched_in() */ 3012 smp_rmb(); 3013 3014 /* 3015 * There is a window with interrupts enabled before we get here, 3016 * so we need to check again lest we try to stop another CPU's event. 3017 */ 3018 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3019 return -EAGAIN; 3020 3021 event->pmu->stop(event, PERF_EF_UPDATE); 3022 3023 /* 3024 * May race with the actual stop (through perf_pmu_output_stop()), 3025 * but it is only used for events with AUX ring buffer, and such 3026 * events will refuse to restart because of rb::aux_mmap_count==0, 3027 * see comments in perf_aux_output_begin(). 3028 * 3029 * Since this is happening on an event-local CPU, no trace is lost 3030 * while restarting. 3031 */ 3032 if (sd->restart) 3033 event->pmu->start(event, 0); 3034 3035 return 0; 3036 } 3037 3038 static int perf_event_stop(struct perf_event *event, int restart) 3039 { 3040 struct stop_event_data sd = { 3041 .event = event, 3042 .restart = restart, 3043 }; 3044 int ret = 0; 3045 3046 do { 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * We only want to restart ACTIVE events, so if the event goes 3055 * inactive here (event->oncpu==-1), there's nothing more to do; 3056 * fall through with ret==-ENXIO. 3057 */ 3058 ret = cpu_function_call(READ_ONCE(event->oncpu), 3059 __perf_event_stop, &sd); 3060 } while (ret == -EAGAIN); 3061 3062 return ret; 3063 } 3064 3065 /* 3066 * In order to contain the amount of racy and tricky in the address filter 3067 * configuration management, it is a two part process: 3068 * 3069 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3070 * we update the addresses of corresponding vmas in 3071 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3072 * (p2) when an event is scheduled in (pmu::add), it calls 3073 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3074 * if the generation has changed since the previous call. 3075 * 3076 * If (p1) happens while the event is active, we restart it to force (p2). 3077 * 3078 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3079 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3080 * ioctl; 3081 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3082 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3083 * for reading; 3084 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3085 * of exec. 3086 */ 3087 void perf_event_addr_filters_sync(struct perf_event *event) 3088 { 3089 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3090 3091 if (!has_addr_filter(event)) 3092 return; 3093 3094 raw_spin_lock(&ifh->lock); 3095 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3096 event->pmu->addr_filters_sync(event); 3097 event->hw.addr_filters_gen = event->addr_filters_gen; 3098 } 3099 raw_spin_unlock(&ifh->lock); 3100 } 3101 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3102 3103 static int _perf_event_refresh(struct perf_event *event, int refresh) 3104 { 3105 /* 3106 * not supported on inherited events 3107 */ 3108 if (event->attr.inherit || !is_sampling_event(event)) 3109 return -EINVAL; 3110 3111 atomic_add(refresh, &event->event_limit); 3112 _perf_event_enable(event); 3113 3114 return 0; 3115 } 3116 3117 /* 3118 * See perf_event_disable() 3119 */ 3120 int perf_event_refresh(struct perf_event *event, int refresh) 3121 { 3122 struct perf_event_context *ctx; 3123 int ret; 3124 3125 ctx = perf_event_ctx_lock(event); 3126 ret = _perf_event_refresh(event, refresh); 3127 perf_event_ctx_unlock(event, ctx); 3128 3129 return ret; 3130 } 3131 EXPORT_SYMBOL_GPL(perf_event_refresh); 3132 3133 static int perf_event_modify_breakpoint(struct perf_event *bp, 3134 struct perf_event_attr *attr) 3135 { 3136 int err; 3137 3138 _perf_event_disable(bp); 3139 3140 err = modify_user_hw_breakpoint_check(bp, attr, true); 3141 3142 if (!bp->attr.disabled) 3143 _perf_event_enable(bp); 3144 3145 return err; 3146 } 3147 3148 /* 3149 * Copy event-type-independent attributes that may be modified. 3150 */ 3151 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3152 const struct perf_event_attr *from) 3153 { 3154 to->sig_data = from->sig_data; 3155 } 3156 3157 static int perf_event_modify_attr(struct perf_event *event, 3158 struct perf_event_attr *attr) 3159 { 3160 int (*func)(struct perf_event *, struct perf_event_attr *); 3161 struct perf_event *child; 3162 int err; 3163 3164 if (event->attr.type != attr->type) 3165 return -EINVAL; 3166 3167 switch (event->attr.type) { 3168 case PERF_TYPE_BREAKPOINT: 3169 func = perf_event_modify_breakpoint; 3170 break; 3171 default: 3172 /* Place holder for future additions. */ 3173 return -EOPNOTSUPP; 3174 } 3175 3176 WARN_ON_ONCE(event->ctx->parent_ctx); 3177 3178 mutex_lock(&event->child_mutex); 3179 /* 3180 * Event-type-independent attributes must be copied before event-type 3181 * modification, which will validate that final attributes match the 3182 * source attributes after all relevant attributes have been copied. 3183 */ 3184 perf_event_modify_copy_attr(&event->attr, attr); 3185 err = func(event, attr); 3186 if (err) 3187 goto out; 3188 list_for_each_entry(child, &event->child_list, child_list) { 3189 perf_event_modify_copy_attr(&child->attr, attr); 3190 err = func(child, attr); 3191 if (err) 3192 goto out; 3193 } 3194 out: 3195 mutex_unlock(&event->child_mutex); 3196 return err; 3197 } 3198 3199 static void ctx_sched_out(struct perf_event_context *ctx, 3200 struct perf_cpu_context *cpuctx, 3201 enum event_type_t event_type) 3202 { 3203 struct perf_event *event, *tmp; 3204 int is_active = ctx->is_active; 3205 3206 lockdep_assert_held(&ctx->lock); 3207 3208 if (likely(!ctx->nr_events)) { 3209 /* 3210 * See __perf_remove_from_context(). 3211 */ 3212 WARN_ON_ONCE(ctx->is_active); 3213 if (ctx->task) 3214 WARN_ON_ONCE(cpuctx->task_ctx); 3215 return; 3216 } 3217 3218 /* 3219 * Always update time if it was set; not only when it changes. 3220 * Otherwise we can 'forget' to update time for any but the last 3221 * context we sched out. For example: 3222 * 3223 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3224 * ctx_sched_out(.event_type = EVENT_PINNED) 3225 * 3226 * would only update time for the pinned events. 3227 */ 3228 if (is_active & EVENT_TIME) { 3229 /* update (and stop) ctx time */ 3230 update_context_time(ctx); 3231 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3232 /* 3233 * CPU-release for the below ->is_active store, 3234 * see __load_acquire() in perf_event_time_now() 3235 */ 3236 barrier(); 3237 } 3238 3239 ctx->is_active &= ~event_type; 3240 if (!(ctx->is_active & EVENT_ALL)) 3241 ctx->is_active = 0; 3242 3243 if (ctx->task) { 3244 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3245 if (!ctx->is_active) 3246 cpuctx->task_ctx = NULL; 3247 } 3248 3249 is_active ^= ctx->is_active; /* changed bits */ 3250 3251 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3252 return; 3253 3254 perf_pmu_disable(ctx->pmu); 3255 if (is_active & EVENT_PINNED) { 3256 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3257 group_sched_out(event, cpuctx, ctx); 3258 } 3259 3260 if (is_active & EVENT_FLEXIBLE) { 3261 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3262 group_sched_out(event, cpuctx, ctx); 3263 3264 /* 3265 * Since we cleared EVENT_FLEXIBLE, also clear 3266 * rotate_necessary, is will be reset by 3267 * ctx_flexible_sched_in() when needed. 3268 */ 3269 ctx->rotate_necessary = 0; 3270 } 3271 perf_pmu_enable(ctx->pmu); 3272 } 3273 3274 /* 3275 * Test whether two contexts are equivalent, i.e. whether they have both been 3276 * cloned from the same version of the same context. 3277 * 3278 * Equivalence is measured using a generation number in the context that is 3279 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3280 * and list_del_event(). 3281 */ 3282 static int context_equiv(struct perf_event_context *ctx1, 3283 struct perf_event_context *ctx2) 3284 { 3285 lockdep_assert_held(&ctx1->lock); 3286 lockdep_assert_held(&ctx2->lock); 3287 3288 /* Pinning disables the swap optimization */ 3289 if (ctx1->pin_count || ctx2->pin_count) 3290 return 0; 3291 3292 /* If ctx1 is the parent of ctx2 */ 3293 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3294 return 1; 3295 3296 /* If ctx2 is the parent of ctx1 */ 3297 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3298 return 1; 3299 3300 /* 3301 * If ctx1 and ctx2 have the same parent; we flatten the parent 3302 * hierarchy, see perf_event_init_context(). 3303 */ 3304 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3305 ctx1->parent_gen == ctx2->parent_gen) 3306 return 1; 3307 3308 /* Unmatched */ 3309 return 0; 3310 } 3311 3312 static void __perf_event_sync_stat(struct perf_event *event, 3313 struct perf_event *next_event) 3314 { 3315 u64 value; 3316 3317 if (!event->attr.inherit_stat) 3318 return; 3319 3320 /* 3321 * Update the event value, we cannot use perf_event_read() 3322 * because we're in the middle of a context switch and have IRQs 3323 * disabled, which upsets smp_call_function_single(), however 3324 * we know the event must be on the current CPU, therefore we 3325 * don't need to use it. 3326 */ 3327 if (event->state == PERF_EVENT_STATE_ACTIVE) 3328 event->pmu->read(event); 3329 3330 perf_event_update_time(event); 3331 3332 /* 3333 * In order to keep per-task stats reliable we need to flip the event 3334 * values when we flip the contexts. 3335 */ 3336 value = local64_read(&next_event->count); 3337 value = local64_xchg(&event->count, value); 3338 local64_set(&next_event->count, value); 3339 3340 swap(event->total_time_enabled, next_event->total_time_enabled); 3341 swap(event->total_time_running, next_event->total_time_running); 3342 3343 /* 3344 * Since we swizzled the values, update the user visible data too. 3345 */ 3346 perf_event_update_userpage(event); 3347 perf_event_update_userpage(next_event); 3348 } 3349 3350 static void perf_event_sync_stat(struct perf_event_context *ctx, 3351 struct perf_event_context *next_ctx) 3352 { 3353 struct perf_event *event, *next_event; 3354 3355 if (!ctx->nr_stat) 3356 return; 3357 3358 update_context_time(ctx); 3359 3360 event = list_first_entry(&ctx->event_list, 3361 struct perf_event, event_entry); 3362 3363 next_event = list_first_entry(&next_ctx->event_list, 3364 struct perf_event, event_entry); 3365 3366 while (&event->event_entry != &ctx->event_list && 3367 &next_event->event_entry != &next_ctx->event_list) { 3368 3369 __perf_event_sync_stat(event, next_event); 3370 3371 event = list_next_entry(event, event_entry); 3372 next_event = list_next_entry(next_event, event_entry); 3373 } 3374 } 3375 3376 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3377 struct task_struct *next) 3378 { 3379 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3380 struct perf_event_context *next_ctx; 3381 struct perf_event_context *parent, *next_parent; 3382 struct perf_cpu_context *cpuctx; 3383 int do_switch = 1; 3384 struct pmu *pmu; 3385 3386 if (likely(!ctx)) 3387 return; 3388 3389 pmu = ctx->pmu; 3390 cpuctx = __get_cpu_context(ctx); 3391 if (!cpuctx->task_ctx) 3392 return; 3393 3394 rcu_read_lock(); 3395 next_ctx = next->perf_event_ctxp[ctxn]; 3396 if (!next_ctx) 3397 goto unlock; 3398 3399 parent = rcu_dereference(ctx->parent_ctx); 3400 next_parent = rcu_dereference(next_ctx->parent_ctx); 3401 3402 /* If neither context have a parent context; they cannot be clones. */ 3403 if (!parent && !next_parent) 3404 goto unlock; 3405 3406 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3407 /* 3408 * Looks like the two contexts are clones, so we might be 3409 * able to optimize the context switch. We lock both 3410 * contexts and check that they are clones under the 3411 * lock (including re-checking that neither has been 3412 * uncloned in the meantime). It doesn't matter which 3413 * order we take the locks because no other cpu could 3414 * be trying to lock both of these tasks. 3415 */ 3416 raw_spin_lock(&ctx->lock); 3417 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3418 if (context_equiv(ctx, next_ctx)) { 3419 3420 WRITE_ONCE(ctx->task, next); 3421 WRITE_ONCE(next_ctx->task, task); 3422 3423 perf_pmu_disable(pmu); 3424 3425 if (cpuctx->sched_cb_usage && pmu->sched_task) 3426 pmu->sched_task(ctx, false); 3427 3428 /* 3429 * PMU specific parts of task perf context can require 3430 * additional synchronization. As an example of such 3431 * synchronization see implementation details of Intel 3432 * LBR call stack data profiling; 3433 */ 3434 if (pmu->swap_task_ctx) 3435 pmu->swap_task_ctx(ctx, next_ctx); 3436 else 3437 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3438 3439 perf_pmu_enable(pmu); 3440 3441 /* 3442 * RCU_INIT_POINTER here is safe because we've not 3443 * modified the ctx and the above modification of 3444 * ctx->task and ctx->task_ctx_data are immaterial 3445 * since those values are always verified under 3446 * ctx->lock which we're now holding. 3447 */ 3448 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3449 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3450 3451 do_switch = 0; 3452 3453 perf_event_sync_stat(ctx, next_ctx); 3454 } 3455 raw_spin_unlock(&next_ctx->lock); 3456 raw_spin_unlock(&ctx->lock); 3457 } 3458 unlock: 3459 rcu_read_unlock(); 3460 3461 if (do_switch) { 3462 raw_spin_lock(&ctx->lock); 3463 perf_pmu_disable(pmu); 3464 3465 if (cpuctx->sched_cb_usage && pmu->sched_task) 3466 pmu->sched_task(ctx, false); 3467 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3468 3469 perf_pmu_enable(pmu); 3470 raw_spin_unlock(&ctx->lock); 3471 } 3472 } 3473 3474 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3475 3476 void perf_sched_cb_dec(struct pmu *pmu) 3477 { 3478 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3479 3480 this_cpu_dec(perf_sched_cb_usages); 3481 3482 if (!--cpuctx->sched_cb_usage) 3483 list_del(&cpuctx->sched_cb_entry); 3484 } 3485 3486 3487 void perf_sched_cb_inc(struct pmu *pmu) 3488 { 3489 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3490 3491 if (!cpuctx->sched_cb_usage++) 3492 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3493 3494 this_cpu_inc(perf_sched_cb_usages); 3495 } 3496 3497 /* 3498 * This function provides the context switch callback to the lower code 3499 * layer. It is invoked ONLY when the context switch callback is enabled. 3500 * 3501 * This callback is relevant even to per-cpu events; for example multi event 3502 * PEBS requires this to provide PID/TID information. This requires we flush 3503 * all queued PEBS records before we context switch to a new task. 3504 */ 3505 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3506 { 3507 struct pmu *pmu; 3508 3509 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3510 3511 if (WARN_ON_ONCE(!pmu->sched_task)) 3512 return; 3513 3514 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3515 perf_pmu_disable(pmu); 3516 3517 pmu->sched_task(cpuctx->task_ctx, sched_in); 3518 3519 perf_pmu_enable(pmu); 3520 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3521 } 3522 3523 static void perf_pmu_sched_task(struct task_struct *prev, 3524 struct task_struct *next, 3525 bool sched_in) 3526 { 3527 struct perf_cpu_context *cpuctx; 3528 3529 if (prev == next) 3530 return; 3531 3532 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3533 /* will be handled in perf_event_context_sched_in/out */ 3534 if (cpuctx->task_ctx) 3535 continue; 3536 3537 __perf_pmu_sched_task(cpuctx, sched_in); 3538 } 3539 } 3540 3541 static void perf_event_switch(struct task_struct *task, 3542 struct task_struct *next_prev, bool sched_in); 3543 3544 #define for_each_task_context_nr(ctxn) \ 3545 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3546 3547 /* 3548 * Called from scheduler to remove the events of the current task, 3549 * with interrupts disabled. 3550 * 3551 * We stop each event and update the event value in event->count. 3552 * 3553 * This does not protect us against NMI, but disable() 3554 * sets the disabled bit in the control field of event _before_ 3555 * accessing the event control register. If a NMI hits, then it will 3556 * not restart the event. 3557 */ 3558 void __perf_event_task_sched_out(struct task_struct *task, 3559 struct task_struct *next) 3560 { 3561 int ctxn; 3562 3563 if (__this_cpu_read(perf_sched_cb_usages)) 3564 perf_pmu_sched_task(task, next, false); 3565 3566 if (atomic_read(&nr_switch_events)) 3567 perf_event_switch(task, next, false); 3568 3569 for_each_task_context_nr(ctxn) 3570 perf_event_context_sched_out(task, ctxn, next); 3571 3572 /* 3573 * if cgroup events exist on this CPU, then we need 3574 * to check if we have to switch out PMU state. 3575 * cgroup event are system-wide mode only 3576 */ 3577 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3578 perf_cgroup_switch(next); 3579 } 3580 3581 /* 3582 * Called with IRQs disabled 3583 */ 3584 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3585 enum event_type_t event_type) 3586 { 3587 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3588 } 3589 3590 static bool perf_less_group_idx(const void *l, const void *r) 3591 { 3592 const struct perf_event *le = *(const struct perf_event **)l; 3593 const struct perf_event *re = *(const struct perf_event **)r; 3594 3595 return le->group_index < re->group_index; 3596 } 3597 3598 static void swap_ptr(void *l, void *r) 3599 { 3600 void **lp = l, **rp = r; 3601 3602 swap(*lp, *rp); 3603 } 3604 3605 static const struct min_heap_callbacks perf_min_heap = { 3606 .elem_size = sizeof(struct perf_event *), 3607 .less = perf_less_group_idx, 3608 .swp = swap_ptr, 3609 }; 3610 3611 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3612 { 3613 struct perf_event **itrs = heap->data; 3614 3615 if (event) { 3616 itrs[heap->nr] = event; 3617 heap->nr++; 3618 } 3619 } 3620 3621 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3622 struct perf_event_groups *groups, int cpu, 3623 int (*func)(struct perf_event *, void *), 3624 void *data) 3625 { 3626 #ifdef CONFIG_CGROUP_PERF 3627 struct cgroup_subsys_state *css = NULL; 3628 #endif 3629 /* Space for per CPU and/or any CPU event iterators. */ 3630 struct perf_event *itrs[2]; 3631 struct min_heap event_heap; 3632 struct perf_event **evt; 3633 int ret; 3634 3635 if (cpuctx) { 3636 event_heap = (struct min_heap){ 3637 .data = cpuctx->heap, 3638 .nr = 0, 3639 .size = cpuctx->heap_size, 3640 }; 3641 3642 lockdep_assert_held(&cpuctx->ctx.lock); 3643 3644 #ifdef CONFIG_CGROUP_PERF 3645 if (cpuctx->cgrp) 3646 css = &cpuctx->cgrp->css; 3647 #endif 3648 } else { 3649 event_heap = (struct min_heap){ 3650 .data = itrs, 3651 .nr = 0, 3652 .size = ARRAY_SIZE(itrs), 3653 }; 3654 /* Events not within a CPU context may be on any CPU. */ 3655 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3656 } 3657 evt = event_heap.data; 3658 3659 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3660 3661 #ifdef CONFIG_CGROUP_PERF 3662 for (; css; css = css->parent) 3663 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3664 #endif 3665 3666 min_heapify_all(&event_heap, &perf_min_heap); 3667 3668 while (event_heap.nr) { 3669 ret = func(*evt, data); 3670 if (ret) 3671 return ret; 3672 3673 *evt = perf_event_groups_next(*evt); 3674 if (*evt) 3675 min_heapify(&event_heap, 0, &perf_min_heap); 3676 else 3677 min_heap_pop(&event_heap, &perf_min_heap); 3678 } 3679 3680 return 0; 3681 } 3682 3683 /* 3684 * Because the userpage is strictly per-event (there is no concept of context, 3685 * so there cannot be a context indirection), every userpage must be updated 3686 * when context time starts :-( 3687 * 3688 * IOW, we must not miss EVENT_TIME edges. 3689 */ 3690 static inline bool event_update_userpage(struct perf_event *event) 3691 { 3692 if (likely(!atomic_read(&event->mmap_count))) 3693 return false; 3694 3695 perf_event_update_time(event); 3696 perf_event_update_userpage(event); 3697 3698 return true; 3699 } 3700 3701 static inline void group_update_userpage(struct perf_event *group_event) 3702 { 3703 struct perf_event *event; 3704 3705 if (!event_update_userpage(group_event)) 3706 return; 3707 3708 for_each_sibling_event(event, group_event) 3709 event_update_userpage(event); 3710 } 3711 3712 static int merge_sched_in(struct perf_event *event, void *data) 3713 { 3714 struct perf_event_context *ctx = event->ctx; 3715 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3716 int *can_add_hw = data; 3717 3718 if (event->state <= PERF_EVENT_STATE_OFF) 3719 return 0; 3720 3721 if (!event_filter_match(event)) 3722 return 0; 3723 3724 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3725 if (!group_sched_in(event, cpuctx, ctx)) 3726 list_add_tail(&event->active_list, get_event_list(event)); 3727 } 3728 3729 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3730 *can_add_hw = 0; 3731 if (event->attr.pinned) { 3732 perf_cgroup_event_disable(event, ctx); 3733 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3734 } else { 3735 ctx->rotate_necessary = 1; 3736 perf_mux_hrtimer_restart(cpuctx); 3737 group_update_userpage(event); 3738 } 3739 } 3740 3741 return 0; 3742 } 3743 3744 static void 3745 ctx_pinned_sched_in(struct perf_event_context *ctx, 3746 struct perf_cpu_context *cpuctx) 3747 { 3748 int can_add_hw = 1; 3749 3750 if (ctx != &cpuctx->ctx) 3751 cpuctx = NULL; 3752 3753 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3754 smp_processor_id(), 3755 merge_sched_in, &can_add_hw); 3756 } 3757 3758 static void 3759 ctx_flexible_sched_in(struct perf_event_context *ctx, 3760 struct perf_cpu_context *cpuctx) 3761 { 3762 int can_add_hw = 1; 3763 3764 if (ctx != &cpuctx->ctx) 3765 cpuctx = NULL; 3766 3767 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3768 smp_processor_id(), 3769 merge_sched_in, &can_add_hw); 3770 } 3771 3772 static void 3773 ctx_sched_in(struct perf_event_context *ctx, 3774 struct perf_cpu_context *cpuctx, 3775 enum event_type_t event_type) 3776 { 3777 int is_active = ctx->is_active; 3778 3779 lockdep_assert_held(&ctx->lock); 3780 3781 if (likely(!ctx->nr_events)) 3782 return; 3783 3784 if (is_active ^ EVENT_TIME) { 3785 /* start ctx time */ 3786 __update_context_time(ctx, false); 3787 perf_cgroup_set_timestamp(cpuctx); 3788 /* 3789 * CPU-release for the below ->is_active store, 3790 * see __load_acquire() in perf_event_time_now() 3791 */ 3792 barrier(); 3793 } 3794 3795 ctx->is_active |= (event_type | EVENT_TIME); 3796 if (ctx->task) { 3797 if (!is_active) 3798 cpuctx->task_ctx = ctx; 3799 else 3800 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3801 } 3802 3803 is_active ^= ctx->is_active; /* changed bits */ 3804 3805 /* 3806 * First go through the list and put on any pinned groups 3807 * in order to give them the best chance of going on. 3808 */ 3809 if (is_active & EVENT_PINNED) 3810 ctx_pinned_sched_in(ctx, cpuctx); 3811 3812 /* Then walk through the lower prio flexible groups */ 3813 if (is_active & EVENT_FLEXIBLE) 3814 ctx_flexible_sched_in(ctx, cpuctx); 3815 } 3816 3817 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3818 enum event_type_t event_type) 3819 { 3820 struct perf_event_context *ctx = &cpuctx->ctx; 3821 3822 ctx_sched_in(ctx, cpuctx, event_type); 3823 } 3824 3825 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3826 struct task_struct *task) 3827 { 3828 struct perf_cpu_context *cpuctx; 3829 struct pmu *pmu; 3830 3831 cpuctx = __get_cpu_context(ctx); 3832 3833 /* 3834 * HACK: for HETEROGENEOUS the task context might have switched to a 3835 * different PMU, force (re)set the context, 3836 */ 3837 pmu = ctx->pmu = cpuctx->ctx.pmu; 3838 3839 if (cpuctx->task_ctx == ctx) { 3840 if (cpuctx->sched_cb_usage) 3841 __perf_pmu_sched_task(cpuctx, true); 3842 return; 3843 } 3844 3845 perf_ctx_lock(cpuctx, ctx); 3846 /* 3847 * We must check ctx->nr_events while holding ctx->lock, such 3848 * that we serialize against perf_install_in_context(). 3849 */ 3850 if (!ctx->nr_events) 3851 goto unlock; 3852 3853 perf_pmu_disable(pmu); 3854 /* 3855 * We want to keep the following priority order: 3856 * cpu pinned (that don't need to move), task pinned, 3857 * cpu flexible, task flexible. 3858 * 3859 * However, if task's ctx is not carrying any pinned 3860 * events, no need to flip the cpuctx's events around. 3861 */ 3862 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3863 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3864 perf_event_sched_in(cpuctx, ctx); 3865 3866 if (cpuctx->sched_cb_usage && pmu->sched_task) 3867 pmu->sched_task(cpuctx->task_ctx, true); 3868 3869 perf_pmu_enable(pmu); 3870 3871 unlock: 3872 perf_ctx_unlock(cpuctx, ctx); 3873 } 3874 3875 /* 3876 * Called from scheduler to add the events of the current task 3877 * with interrupts disabled. 3878 * 3879 * We restore the event value and then enable it. 3880 * 3881 * This does not protect us against NMI, but enable() 3882 * sets the enabled bit in the control field of event _before_ 3883 * accessing the event control register. If a NMI hits, then it will 3884 * keep the event running. 3885 */ 3886 void __perf_event_task_sched_in(struct task_struct *prev, 3887 struct task_struct *task) 3888 { 3889 struct perf_event_context *ctx; 3890 int ctxn; 3891 3892 for_each_task_context_nr(ctxn) { 3893 ctx = task->perf_event_ctxp[ctxn]; 3894 if (likely(!ctx)) 3895 continue; 3896 3897 perf_event_context_sched_in(ctx, task); 3898 } 3899 3900 if (atomic_read(&nr_switch_events)) 3901 perf_event_switch(task, prev, true); 3902 3903 if (__this_cpu_read(perf_sched_cb_usages)) 3904 perf_pmu_sched_task(prev, task, true); 3905 } 3906 3907 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3908 { 3909 u64 frequency = event->attr.sample_freq; 3910 u64 sec = NSEC_PER_SEC; 3911 u64 divisor, dividend; 3912 3913 int count_fls, nsec_fls, frequency_fls, sec_fls; 3914 3915 count_fls = fls64(count); 3916 nsec_fls = fls64(nsec); 3917 frequency_fls = fls64(frequency); 3918 sec_fls = 30; 3919 3920 /* 3921 * We got @count in @nsec, with a target of sample_freq HZ 3922 * the target period becomes: 3923 * 3924 * @count * 10^9 3925 * period = ------------------- 3926 * @nsec * sample_freq 3927 * 3928 */ 3929 3930 /* 3931 * Reduce accuracy by one bit such that @a and @b converge 3932 * to a similar magnitude. 3933 */ 3934 #define REDUCE_FLS(a, b) \ 3935 do { \ 3936 if (a##_fls > b##_fls) { \ 3937 a >>= 1; \ 3938 a##_fls--; \ 3939 } else { \ 3940 b >>= 1; \ 3941 b##_fls--; \ 3942 } \ 3943 } while (0) 3944 3945 /* 3946 * Reduce accuracy until either term fits in a u64, then proceed with 3947 * the other, so that finally we can do a u64/u64 division. 3948 */ 3949 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3950 REDUCE_FLS(nsec, frequency); 3951 REDUCE_FLS(sec, count); 3952 } 3953 3954 if (count_fls + sec_fls > 64) { 3955 divisor = nsec * frequency; 3956 3957 while (count_fls + sec_fls > 64) { 3958 REDUCE_FLS(count, sec); 3959 divisor >>= 1; 3960 } 3961 3962 dividend = count * sec; 3963 } else { 3964 dividend = count * sec; 3965 3966 while (nsec_fls + frequency_fls > 64) { 3967 REDUCE_FLS(nsec, frequency); 3968 dividend >>= 1; 3969 } 3970 3971 divisor = nsec * frequency; 3972 } 3973 3974 if (!divisor) 3975 return dividend; 3976 3977 return div64_u64(dividend, divisor); 3978 } 3979 3980 static DEFINE_PER_CPU(int, perf_throttled_count); 3981 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3982 3983 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3984 { 3985 struct hw_perf_event *hwc = &event->hw; 3986 s64 period, sample_period; 3987 s64 delta; 3988 3989 period = perf_calculate_period(event, nsec, count); 3990 3991 delta = (s64)(period - hwc->sample_period); 3992 delta = (delta + 7) / 8; /* low pass filter */ 3993 3994 sample_period = hwc->sample_period + delta; 3995 3996 if (!sample_period) 3997 sample_period = 1; 3998 3999 hwc->sample_period = sample_period; 4000 4001 if (local64_read(&hwc->period_left) > 8*sample_period) { 4002 if (disable) 4003 event->pmu->stop(event, PERF_EF_UPDATE); 4004 4005 local64_set(&hwc->period_left, 0); 4006 4007 if (disable) 4008 event->pmu->start(event, PERF_EF_RELOAD); 4009 } 4010 } 4011 4012 /* 4013 * combine freq adjustment with unthrottling to avoid two passes over the 4014 * events. At the same time, make sure, having freq events does not change 4015 * the rate of unthrottling as that would introduce bias. 4016 */ 4017 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4018 int needs_unthr) 4019 { 4020 struct perf_event *event; 4021 struct hw_perf_event *hwc; 4022 u64 now, period = TICK_NSEC; 4023 s64 delta; 4024 4025 /* 4026 * only need to iterate over all events iff: 4027 * - context have events in frequency mode (needs freq adjust) 4028 * - there are events to unthrottle on this cpu 4029 */ 4030 if (!(ctx->nr_freq || needs_unthr)) 4031 return; 4032 4033 raw_spin_lock(&ctx->lock); 4034 perf_pmu_disable(ctx->pmu); 4035 4036 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4037 if (event->state != PERF_EVENT_STATE_ACTIVE) 4038 continue; 4039 4040 if (!event_filter_match(event)) 4041 continue; 4042 4043 perf_pmu_disable(event->pmu); 4044 4045 hwc = &event->hw; 4046 4047 if (hwc->interrupts == MAX_INTERRUPTS) { 4048 hwc->interrupts = 0; 4049 perf_log_throttle(event, 1); 4050 event->pmu->start(event, 0); 4051 } 4052 4053 if (!event->attr.freq || !event->attr.sample_freq) 4054 goto next; 4055 4056 /* 4057 * stop the event and update event->count 4058 */ 4059 event->pmu->stop(event, PERF_EF_UPDATE); 4060 4061 now = local64_read(&event->count); 4062 delta = now - hwc->freq_count_stamp; 4063 hwc->freq_count_stamp = now; 4064 4065 /* 4066 * restart the event 4067 * reload only if value has changed 4068 * we have stopped the event so tell that 4069 * to perf_adjust_period() to avoid stopping it 4070 * twice. 4071 */ 4072 if (delta > 0) 4073 perf_adjust_period(event, period, delta, false); 4074 4075 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4076 next: 4077 perf_pmu_enable(event->pmu); 4078 } 4079 4080 perf_pmu_enable(ctx->pmu); 4081 raw_spin_unlock(&ctx->lock); 4082 } 4083 4084 /* 4085 * Move @event to the tail of the @ctx's elegible events. 4086 */ 4087 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4088 { 4089 /* 4090 * Rotate the first entry last of non-pinned groups. Rotation might be 4091 * disabled by the inheritance code. 4092 */ 4093 if (ctx->rotate_disable) 4094 return; 4095 4096 perf_event_groups_delete(&ctx->flexible_groups, event); 4097 perf_event_groups_insert(&ctx->flexible_groups, event); 4098 } 4099 4100 /* pick an event from the flexible_groups to rotate */ 4101 static inline struct perf_event * 4102 ctx_event_to_rotate(struct perf_event_context *ctx) 4103 { 4104 struct perf_event *event; 4105 4106 /* pick the first active flexible event */ 4107 event = list_first_entry_or_null(&ctx->flexible_active, 4108 struct perf_event, active_list); 4109 4110 /* if no active flexible event, pick the first event */ 4111 if (!event) { 4112 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4113 typeof(*event), group_node); 4114 } 4115 4116 /* 4117 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4118 * finds there are unschedulable events, it will set it again. 4119 */ 4120 ctx->rotate_necessary = 0; 4121 4122 return event; 4123 } 4124 4125 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4126 { 4127 struct perf_event *cpu_event = NULL, *task_event = NULL; 4128 struct perf_event_context *task_ctx = NULL; 4129 int cpu_rotate, task_rotate; 4130 4131 /* 4132 * Since we run this from IRQ context, nobody can install new 4133 * events, thus the event count values are stable. 4134 */ 4135 4136 cpu_rotate = cpuctx->ctx.rotate_necessary; 4137 task_ctx = cpuctx->task_ctx; 4138 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4139 4140 if (!(cpu_rotate || task_rotate)) 4141 return false; 4142 4143 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4144 perf_pmu_disable(cpuctx->ctx.pmu); 4145 4146 if (task_rotate) 4147 task_event = ctx_event_to_rotate(task_ctx); 4148 if (cpu_rotate) 4149 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4150 4151 /* 4152 * As per the order given at ctx_resched() first 'pop' task flexible 4153 * and then, if needed CPU flexible. 4154 */ 4155 if (task_event || (task_ctx && cpu_event)) 4156 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4157 if (cpu_event) 4158 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4159 4160 if (task_event) 4161 rotate_ctx(task_ctx, task_event); 4162 if (cpu_event) 4163 rotate_ctx(&cpuctx->ctx, cpu_event); 4164 4165 perf_event_sched_in(cpuctx, task_ctx); 4166 4167 perf_pmu_enable(cpuctx->ctx.pmu); 4168 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4169 4170 return true; 4171 } 4172 4173 void perf_event_task_tick(void) 4174 { 4175 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4176 struct perf_event_context *ctx, *tmp; 4177 int throttled; 4178 4179 lockdep_assert_irqs_disabled(); 4180 4181 __this_cpu_inc(perf_throttled_seq); 4182 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4183 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4184 4185 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4186 perf_adjust_freq_unthr_context(ctx, throttled); 4187 } 4188 4189 static int event_enable_on_exec(struct perf_event *event, 4190 struct perf_event_context *ctx) 4191 { 4192 if (!event->attr.enable_on_exec) 4193 return 0; 4194 4195 event->attr.enable_on_exec = 0; 4196 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4197 return 0; 4198 4199 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4200 4201 return 1; 4202 } 4203 4204 /* 4205 * Enable all of a task's events that have been marked enable-on-exec. 4206 * This expects task == current. 4207 */ 4208 static void perf_event_enable_on_exec(int ctxn) 4209 { 4210 struct perf_event_context *ctx, *clone_ctx = NULL; 4211 enum event_type_t event_type = 0; 4212 struct perf_cpu_context *cpuctx; 4213 struct perf_event *event; 4214 unsigned long flags; 4215 int enabled = 0; 4216 4217 local_irq_save(flags); 4218 ctx = current->perf_event_ctxp[ctxn]; 4219 if (!ctx || !ctx->nr_events) 4220 goto out; 4221 4222 cpuctx = __get_cpu_context(ctx); 4223 perf_ctx_lock(cpuctx, ctx); 4224 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4225 list_for_each_entry(event, &ctx->event_list, event_entry) { 4226 enabled |= event_enable_on_exec(event, ctx); 4227 event_type |= get_event_type(event); 4228 } 4229 4230 /* 4231 * Unclone and reschedule this context if we enabled any event. 4232 */ 4233 if (enabled) { 4234 clone_ctx = unclone_ctx(ctx); 4235 ctx_resched(cpuctx, ctx, event_type); 4236 } else { 4237 ctx_sched_in(ctx, cpuctx, EVENT_TIME); 4238 } 4239 perf_ctx_unlock(cpuctx, ctx); 4240 4241 out: 4242 local_irq_restore(flags); 4243 4244 if (clone_ctx) 4245 put_ctx(clone_ctx); 4246 } 4247 4248 static void perf_remove_from_owner(struct perf_event *event); 4249 static void perf_event_exit_event(struct perf_event *event, 4250 struct perf_event_context *ctx); 4251 4252 /* 4253 * Removes all events from the current task that have been marked 4254 * remove-on-exec, and feeds their values back to parent events. 4255 */ 4256 static void perf_event_remove_on_exec(int ctxn) 4257 { 4258 struct perf_event_context *ctx, *clone_ctx = NULL; 4259 struct perf_event *event, *next; 4260 LIST_HEAD(free_list); 4261 unsigned long flags; 4262 bool modified = false; 4263 4264 ctx = perf_pin_task_context(current, ctxn); 4265 if (!ctx) 4266 return; 4267 4268 mutex_lock(&ctx->mutex); 4269 4270 if (WARN_ON_ONCE(ctx->task != current)) 4271 goto unlock; 4272 4273 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4274 if (!event->attr.remove_on_exec) 4275 continue; 4276 4277 if (!is_kernel_event(event)) 4278 perf_remove_from_owner(event); 4279 4280 modified = true; 4281 4282 perf_event_exit_event(event, ctx); 4283 } 4284 4285 raw_spin_lock_irqsave(&ctx->lock, flags); 4286 if (modified) 4287 clone_ctx = unclone_ctx(ctx); 4288 --ctx->pin_count; 4289 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4290 4291 unlock: 4292 mutex_unlock(&ctx->mutex); 4293 4294 put_ctx(ctx); 4295 if (clone_ctx) 4296 put_ctx(clone_ctx); 4297 } 4298 4299 struct perf_read_data { 4300 struct perf_event *event; 4301 bool group; 4302 int ret; 4303 }; 4304 4305 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4306 { 4307 u16 local_pkg, event_pkg; 4308 4309 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4310 int local_cpu = smp_processor_id(); 4311 4312 event_pkg = topology_physical_package_id(event_cpu); 4313 local_pkg = topology_physical_package_id(local_cpu); 4314 4315 if (event_pkg == local_pkg) 4316 return local_cpu; 4317 } 4318 4319 return event_cpu; 4320 } 4321 4322 /* 4323 * Cross CPU call to read the hardware event 4324 */ 4325 static void __perf_event_read(void *info) 4326 { 4327 struct perf_read_data *data = info; 4328 struct perf_event *sub, *event = data->event; 4329 struct perf_event_context *ctx = event->ctx; 4330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4331 struct pmu *pmu = event->pmu; 4332 4333 /* 4334 * If this is a task context, we need to check whether it is 4335 * the current task context of this cpu. If not it has been 4336 * scheduled out before the smp call arrived. In that case 4337 * event->count would have been updated to a recent sample 4338 * when the event was scheduled out. 4339 */ 4340 if (ctx->task && cpuctx->task_ctx != ctx) 4341 return; 4342 4343 raw_spin_lock(&ctx->lock); 4344 if (ctx->is_active & EVENT_TIME) { 4345 update_context_time(ctx); 4346 update_cgrp_time_from_event(event); 4347 } 4348 4349 perf_event_update_time(event); 4350 if (data->group) 4351 perf_event_update_sibling_time(event); 4352 4353 if (event->state != PERF_EVENT_STATE_ACTIVE) 4354 goto unlock; 4355 4356 if (!data->group) { 4357 pmu->read(event); 4358 data->ret = 0; 4359 goto unlock; 4360 } 4361 4362 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4363 4364 pmu->read(event); 4365 4366 for_each_sibling_event(sub, event) { 4367 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4368 /* 4369 * Use sibling's PMU rather than @event's since 4370 * sibling could be on different (eg: software) PMU. 4371 */ 4372 sub->pmu->read(sub); 4373 } 4374 } 4375 4376 data->ret = pmu->commit_txn(pmu); 4377 4378 unlock: 4379 raw_spin_unlock(&ctx->lock); 4380 } 4381 4382 static inline u64 perf_event_count(struct perf_event *event) 4383 { 4384 return local64_read(&event->count) + atomic64_read(&event->child_count); 4385 } 4386 4387 static void calc_timer_values(struct perf_event *event, 4388 u64 *now, 4389 u64 *enabled, 4390 u64 *running) 4391 { 4392 u64 ctx_time; 4393 4394 *now = perf_clock(); 4395 ctx_time = perf_event_time_now(event, *now); 4396 __perf_update_times(event, ctx_time, enabled, running); 4397 } 4398 4399 /* 4400 * NMI-safe method to read a local event, that is an event that 4401 * is: 4402 * - either for the current task, or for this CPU 4403 * - does not have inherit set, for inherited task events 4404 * will not be local and we cannot read them atomically 4405 * - must not have a pmu::count method 4406 */ 4407 int perf_event_read_local(struct perf_event *event, u64 *value, 4408 u64 *enabled, u64 *running) 4409 { 4410 unsigned long flags; 4411 int ret = 0; 4412 4413 /* 4414 * Disabling interrupts avoids all counter scheduling (context 4415 * switches, timer based rotation and IPIs). 4416 */ 4417 local_irq_save(flags); 4418 4419 /* 4420 * It must not be an event with inherit set, we cannot read 4421 * all child counters from atomic context. 4422 */ 4423 if (event->attr.inherit) { 4424 ret = -EOPNOTSUPP; 4425 goto out; 4426 } 4427 4428 /* If this is a per-task event, it must be for current */ 4429 if ((event->attach_state & PERF_ATTACH_TASK) && 4430 event->hw.target != current) { 4431 ret = -EINVAL; 4432 goto out; 4433 } 4434 4435 /* If this is a per-CPU event, it must be for this CPU */ 4436 if (!(event->attach_state & PERF_ATTACH_TASK) && 4437 event->cpu != smp_processor_id()) { 4438 ret = -EINVAL; 4439 goto out; 4440 } 4441 4442 /* If this is a pinned event it must be running on this CPU */ 4443 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4444 ret = -EBUSY; 4445 goto out; 4446 } 4447 4448 /* 4449 * If the event is currently on this CPU, its either a per-task event, 4450 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4451 * oncpu == -1). 4452 */ 4453 if (event->oncpu == smp_processor_id()) 4454 event->pmu->read(event); 4455 4456 *value = local64_read(&event->count); 4457 if (enabled || running) { 4458 u64 __enabled, __running, __now;; 4459 4460 calc_timer_values(event, &__now, &__enabled, &__running); 4461 if (enabled) 4462 *enabled = __enabled; 4463 if (running) 4464 *running = __running; 4465 } 4466 out: 4467 local_irq_restore(flags); 4468 4469 return ret; 4470 } 4471 4472 static int perf_event_read(struct perf_event *event, bool group) 4473 { 4474 enum perf_event_state state = READ_ONCE(event->state); 4475 int event_cpu, ret = 0; 4476 4477 /* 4478 * If event is enabled and currently active on a CPU, update the 4479 * value in the event structure: 4480 */ 4481 again: 4482 if (state == PERF_EVENT_STATE_ACTIVE) { 4483 struct perf_read_data data; 4484 4485 /* 4486 * Orders the ->state and ->oncpu loads such that if we see 4487 * ACTIVE we must also see the right ->oncpu. 4488 * 4489 * Matches the smp_wmb() from event_sched_in(). 4490 */ 4491 smp_rmb(); 4492 4493 event_cpu = READ_ONCE(event->oncpu); 4494 if ((unsigned)event_cpu >= nr_cpu_ids) 4495 return 0; 4496 4497 data = (struct perf_read_data){ 4498 .event = event, 4499 .group = group, 4500 .ret = 0, 4501 }; 4502 4503 preempt_disable(); 4504 event_cpu = __perf_event_read_cpu(event, event_cpu); 4505 4506 /* 4507 * Purposely ignore the smp_call_function_single() return 4508 * value. 4509 * 4510 * If event_cpu isn't a valid CPU it means the event got 4511 * scheduled out and that will have updated the event count. 4512 * 4513 * Therefore, either way, we'll have an up-to-date event count 4514 * after this. 4515 */ 4516 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4517 preempt_enable(); 4518 ret = data.ret; 4519 4520 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4521 struct perf_event_context *ctx = event->ctx; 4522 unsigned long flags; 4523 4524 raw_spin_lock_irqsave(&ctx->lock, flags); 4525 state = event->state; 4526 if (state != PERF_EVENT_STATE_INACTIVE) { 4527 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4528 goto again; 4529 } 4530 4531 /* 4532 * May read while context is not active (e.g., thread is 4533 * blocked), in that case we cannot update context time 4534 */ 4535 if (ctx->is_active & EVENT_TIME) { 4536 update_context_time(ctx); 4537 update_cgrp_time_from_event(event); 4538 } 4539 4540 perf_event_update_time(event); 4541 if (group) 4542 perf_event_update_sibling_time(event); 4543 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4544 } 4545 4546 return ret; 4547 } 4548 4549 /* 4550 * Initialize the perf_event context in a task_struct: 4551 */ 4552 static void __perf_event_init_context(struct perf_event_context *ctx) 4553 { 4554 raw_spin_lock_init(&ctx->lock); 4555 mutex_init(&ctx->mutex); 4556 INIT_LIST_HEAD(&ctx->active_ctx_list); 4557 perf_event_groups_init(&ctx->pinned_groups); 4558 perf_event_groups_init(&ctx->flexible_groups); 4559 INIT_LIST_HEAD(&ctx->event_list); 4560 INIT_LIST_HEAD(&ctx->pinned_active); 4561 INIT_LIST_HEAD(&ctx->flexible_active); 4562 refcount_set(&ctx->refcount, 1); 4563 } 4564 4565 static struct perf_event_context * 4566 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4567 { 4568 struct perf_event_context *ctx; 4569 4570 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4571 if (!ctx) 4572 return NULL; 4573 4574 __perf_event_init_context(ctx); 4575 if (task) 4576 ctx->task = get_task_struct(task); 4577 ctx->pmu = pmu; 4578 4579 return ctx; 4580 } 4581 4582 static struct task_struct * 4583 find_lively_task_by_vpid(pid_t vpid) 4584 { 4585 struct task_struct *task; 4586 4587 rcu_read_lock(); 4588 if (!vpid) 4589 task = current; 4590 else 4591 task = find_task_by_vpid(vpid); 4592 if (task) 4593 get_task_struct(task); 4594 rcu_read_unlock(); 4595 4596 if (!task) 4597 return ERR_PTR(-ESRCH); 4598 4599 return task; 4600 } 4601 4602 /* 4603 * Returns a matching context with refcount and pincount. 4604 */ 4605 static struct perf_event_context * 4606 find_get_context(struct pmu *pmu, struct task_struct *task, 4607 struct perf_event *event) 4608 { 4609 struct perf_event_context *ctx, *clone_ctx = NULL; 4610 struct perf_cpu_context *cpuctx; 4611 void *task_ctx_data = NULL; 4612 unsigned long flags; 4613 int ctxn, err; 4614 int cpu = event->cpu; 4615 4616 if (!task) { 4617 /* Must be root to operate on a CPU event: */ 4618 err = perf_allow_cpu(&event->attr); 4619 if (err) 4620 return ERR_PTR(err); 4621 4622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4623 ctx = &cpuctx->ctx; 4624 get_ctx(ctx); 4625 raw_spin_lock_irqsave(&ctx->lock, flags); 4626 ++ctx->pin_count; 4627 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4628 4629 return ctx; 4630 } 4631 4632 err = -EINVAL; 4633 ctxn = pmu->task_ctx_nr; 4634 if (ctxn < 0) 4635 goto errout; 4636 4637 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4638 task_ctx_data = alloc_task_ctx_data(pmu); 4639 if (!task_ctx_data) { 4640 err = -ENOMEM; 4641 goto errout; 4642 } 4643 } 4644 4645 retry: 4646 ctx = perf_lock_task_context(task, ctxn, &flags); 4647 if (ctx) { 4648 clone_ctx = unclone_ctx(ctx); 4649 ++ctx->pin_count; 4650 4651 if (task_ctx_data && !ctx->task_ctx_data) { 4652 ctx->task_ctx_data = task_ctx_data; 4653 task_ctx_data = NULL; 4654 } 4655 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4656 4657 if (clone_ctx) 4658 put_ctx(clone_ctx); 4659 } else { 4660 ctx = alloc_perf_context(pmu, task); 4661 err = -ENOMEM; 4662 if (!ctx) 4663 goto errout; 4664 4665 if (task_ctx_data) { 4666 ctx->task_ctx_data = task_ctx_data; 4667 task_ctx_data = NULL; 4668 } 4669 4670 err = 0; 4671 mutex_lock(&task->perf_event_mutex); 4672 /* 4673 * If it has already passed perf_event_exit_task(). 4674 * we must see PF_EXITING, it takes this mutex too. 4675 */ 4676 if (task->flags & PF_EXITING) 4677 err = -ESRCH; 4678 else if (task->perf_event_ctxp[ctxn]) 4679 err = -EAGAIN; 4680 else { 4681 get_ctx(ctx); 4682 ++ctx->pin_count; 4683 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4684 } 4685 mutex_unlock(&task->perf_event_mutex); 4686 4687 if (unlikely(err)) { 4688 put_ctx(ctx); 4689 4690 if (err == -EAGAIN) 4691 goto retry; 4692 goto errout; 4693 } 4694 } 4695 4696 free_task_ctx_data(pmu, task_ctx_data); 4697 return ctx; 4698 4699 errout: 4700 free_task_ctx_data(pmu, task_ctx_data); 4701 return ERR_PTR(err); 4702 } 4703 4704 static void perf_event_free_filter(struct perf_event *event); 4705 4706 static void free_event_rcu(struct rcu_head *head) 4707 { 4708 struct perf_event *event; 4709 4710 event = container_of(head, struct perf_event, rcu_head); 4711 if (event->ns) 4712 put_pid_ns(event->ns); 4713 perf_event_free_filter(event); 4714 kmem_cache_free(perf_event_cache, event); 4715 } 4716 4717 static void ring_buffer_attach(struct perf_event *event, 4718 struct perf_buffer *rb); 4719 4720 static void detach_sb_event(struct perf_event *event) 4721 { 4722 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4723 4724 raw_spin_lock(&pel->lock); 4725 list_del_rcu(&event->sb_list); 4726 raw_spin_unlock(&pel->lock); 4727 } 4728 4729 static bool is_sb_event(struct perf_event *event) 4730 { 4731 struct perf_event_attr *attr = &event->attr; 4732 4733 if (event->parent) 4734 return false; 4735 4736 if (event->attach_state & PERF_ATTACH_TASK) 4737 return false; 4738 4739 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4740 attr->comm || attr->comm_exec || 4741 attr->task || attr->ksymbol || 4742 attr->context_switch || attr->text_poke || 4743 attr->bpf_event) 4744 return true; 4745 return false; 4746 } 4747 4748 static void unaccount_pmu_sb_event(struct perf_event *event) 4749 { 4750 if (is_sb_event(event)) 4751 detach_sb_event(event); 4752 } 4753 4754 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4755 { 4756 if (event->parent) 4757 return; 4758 4759 if (is_cgroup_event(event)) 4760 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4761 } 4762 4763 #ifdef CONFIG_NO_HZ_FULL 4764 static DEFINE_SPINLOCK(nr_freq_lock); 4765 #endif 4766 4767 static void unaccount_freq_event_nohz(void) 4768 { 4769 #ifdef CONFIG_NO_HZ_FULL 4770 spin_lock(&nr_freq_lock); 4771 if (atomic_dec_and_test(&nr_freq_events)) 4772 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4773 spin_unlock(&nr_freq_lock); 4774 #endif 4775 } 4776 4777 static void unaccount_freq_event(void) 4778 { 4779 if (tick_nohz_full_enabled()) 4780 unaccount_freq_event_nohz(); 4781 else 4782 atomic_dec(&nr_freq_events); 4783 } 4784 4785 static void unaccount_event(struct perf_event *event) 4786 { 4787 bool dec = false; 4788 4789 if (event->parent) 4790 return; 4791 4792 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4793 dec = true; 4794 if (event->attr.mmap || event->attr.mmap_data) 4795 atomic_dec(&nr_mmap_events); 4796 if (event->attr.build_id) 4797 atomic_dec(&nr_build_id_events); 4798 if (event->attr.comm) 4799 atomic_dec(&nr_comm_events); 4800 if (event->attr.namespaces) 4801 atomic_dec(&nr_namespaces_events); 4802 if (event->attr.cgroup) 4803 atomic_dec(&nr_cgroup_events); 4804 if (event->attr.task) 4805 atomic_dec(&nr_task_events); 4806 if (event->attr.freq) 4807 unaccount_freq_event(); 4808 if (event->attr.context_switch) { 4809 dec = true; 4810 atomic_dec(&nr_switch_events); 4811 } 4812 if (is_cgroup_event(event)) 4813 dec = true; 4814 if (has_branch_stack(event)) 4815 dec = true; 4816 if (event->attr.ksymbol) 4817 atomic_dec(&nr_ksymbol_events); 4818 if (event->attr.bpf_event) 4819 atomic_dec(&nr_bpf_events); 4820 if (event->attr.text_poke) 4821 atomic_dec(&nr_text_poke_events); 4822 4823 if (dec) { 4824 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4825 schedule_delayed_work(&perf_sched_work, HZ); 4826 } 4827 4828 unaccount_event_cpu(event, event->cpu); 4829 4830 unaccount_pmu_sb_event(event); 4831 } 4832 4833 static void perf_sched_delayed(struct work_struct *work) 4834 { 4835 mutex_lock(&perf_sched_mutex); 4836 if (atomic_dec_and_test(&perf_sched_count)) 4837 static_branch_disable(&perf_sched_events); 4838 mutex_unlock(&perf_sched_mutex); 4839 } 4840 4841 /* 4842 * The following implement mutual exclusion of events on "exclusive" pmus 4843 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4844 * at a time, so we disallow creating events that might conflict, namely: 4845 * 4846 * 1) cpu-wide events in the presence of per-task events, 4847 * 2) per-task events in the presence of cpu-wide events, 4848 * 3) two matching events on the same context. 4849 * 4850 * The former two cases are handled in the allocation path (perf_event_alloc(), 4851 * _free_event()), the latter -- before the first perf_install_in_context(). 4852 */ 4853 static int exclusive_event_init(struct perf_event *event) 4854 { 4855 struct pmu *pmu = event->pmu; 4856 4857 if (!is_exclusive_pmu(pmu)) 4858 return 0; 4859 4860 /* 4861 * Prevent co-existence of per-task and cpu-wide events on the 4862 * same exclusive pmu. 4863 * 4864 * Negative pmu::exclusive_cnt means there are cpu-wide 4865 * events on this "exclusive" pmu, positive means there are 4866 * per-task events. 4867 * 4868 * Since this is called in perf_event_alloc() path, event::ctx 4869 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4870 * to mean "per-task event", because unlike other attach states it 4871 * never gets cleared. 4872 */ 4873 if (event->attach_state & PERF_ATTACH_TASK) { 4874 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4875 return -EBUSY; 4876 } else { 4877 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4878 return -EBUSY; 4879 } 4880 4881 return 0; 4882 } 4883 4884 static void exclusive_event_destroy(struct perf_event *event) 4885 { 4886 struct pmu *pmu = event->pmu; 4887 4888 if (!is_exclusive_pmu(pmu)) 4889 return; 4890 4891 /* see comment in exclusive_event_init() */ 4892 if (event->attach_state & PERF_ATTACH_TASK) 4893 atomic_dec(&pmu->exclusive_cnt); 4894 else 4895 atomic_inc(&pmu->exclusive_cnt); 4896 } 4897 4898 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4899 { 4900 if ((e1->pmu == e2->pmu) && 4901 (e1->cpu == e2->cpu || 4902 e1->cpu == -1 || 4903 e2->cpu == -1)) 4904 return true; 4905 return false; 4906 } 4907 4908 static bool exclusive_event_installable(struct perf_event *event, 4909 struct perf_event_context *ctx) 4910 { 4911 struct perf_event *iter_event; 4912 struct pmu *pmu = event->pmu; 4913 4914 lockdep_assert_held(&ctx->mutex); 4915 4916 if (!is_exclusive_pmu(pmu)) 4917 return true; 4918 4919 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4920 if (exclusive_event_match(iter_event, event)) 4921 return false; 4922 } 4923 4924 return true; 4925 } 4926 4927 static void perf_addr_filters_splice(struct perf_event *event, 4928 struct list_head *head); 4929 4930 static void _free_event(struct perf_event *event) 4931 { 4932 irq_work_sync(&event->pending); 4933 4934 unaccount_event(event); 4935 4936 security_perf_event_free(event); 4937 4938 if (event->rb) { 4939 /* 4940 * Can happen when we close an event with re-directed output. 4941 * 4942 * Since we have a 0 refcount, perf_mmap_close() will skip 4943 * over us; possibly making our ring_buffer_put() the last. 4944 */ 4945 mutex_lock(&event->mmap_mutex); 4946 ring_buffer_attach(event, NULL); 4947 mutex_unlock(&event->mmap_mutex); 4948 } 4949 4950 if (is_cgroup_event(event)) 4951 perf_detach_cgroup(event); 4952 4953 if (!event->parent) { 4954 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4955 put_callchain_buffers(); 4956 } 4957 4958 perf_event_free_bpf_prog(event); 4959 perf_addr_filters_splice(event, NULL); 4960 kfree(event->addr_filter_ranges); 4961 4962 if (event->destroy) 4963 event->destroy(event); 4964 4965 /* 4966 * Must be after ->destroy(), due to uprobe_perf_close() using 4967 * hw.target. 4968 */ 4969 if (event->hw.target) 4970 put_task_struct(event->hw.target); 4971 4972 /* 4973 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4974 * all task references must be cleaned up. 4975 */ 4976 if (event->ctx) 4977 put_ctx(event->ctx); 4978 4979 exclusive_event_destroy(event); 4980 module_put(event->pmu->module); 4981 4982 call_rcu(&event->rcu_head, free_event_rcu); 4983 } 4984 4985 /* 4986 * Used to free events which have a known refcount of 1, such as in error paths 4987 * where the event isn't exposed yet and inherited events. 4988 */ 4989 static void free_event(struct perf_event *event) 4990 { 4991 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4992 "unexpected event refcount: %ld; ptr=%p\n", 4993 atomic_long_read(&event->refcount), event)) { 4994 /* leak to avoid use-after-free */ 4995 return; 4996 } 4997 4998 _free_event(event); 4999 } 5000 5001 /* 5002 * Remove user event from the owner task. 5003 */ 5004 static void perf_remove_from_owner(struct perf_event *event) 5005 { 5006 struct task_struct *owner; 5007 5008 rcu_read_lock(); 5009 /* 5010 * Matches the smp_store_release() in perf_event_exit_task(). If we 5011 * observe !owner it means the list deletion is complete and we can 5012 * indeed free this event, otherwise we need to serialize on 5013 * owner->perf_event_mutex. 5014 */ 5015 owner = READ_ONCE(event->owner); 5016 if (owner) { 5017 /* 5018 * Since delayed_put_task_struct() also drops the last 5019 * task reference we can safely take a new reference 5020 * while holding the rcu_read_lock(). 5021 */ 5022 get_task_struct(owner); 5023 } 5024 rcu_read_unlock(); 5025 5026 if (owner) { 5027 /* 5028 * If we're here through perf_event_exit_task() we're already 5029 * holding ctx->mutex which would be an inversion wrt. the 5030 * normal lock order. 5031 * 5032 * However we can safely take this lock because its the child 5033 * ctx->mutex. 5034 */ 5035 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5036 5037 /* 5038 * We have to re-check the event->owner field, if it is cleared 5039 * we raced with perf_event_exit_task(), acquiring the mutex 5040 * ensured they're done, and we can proceed with freeing the 5041 * event. 5042 */ 5043 if (event->owner) { 5044 list_del_init(&event->owner_entry); 5045 smp_store_release(&event->owner, NULL); 5046 } 5047 mutex_unlock(&owner->perf_event_mutex); 5048 put_task_struct(owner); 5049 } 5050 } 5051 5052 static void put_event(struct perf_event *event) 5053 { 5054 if (!atomic_long_dec_and_test(&event->refcount)) 5055 return; 5056 5057 _free_event(event); 5058 } 5059 5060 /* 5061 * Kill an event dead; while event:refcount will preserve the event 5062 * object, it will not preserve its functionality. Once the last 'user' 5063 * gives up the object, we'll destroy the thing. 5064 */ 5065 int perf_event_release_kernel(struct perf_event *event) 5066 { 5067 struct perf_event_context *ctx = event->ctx; 5068 struct perf_event *child, *tmp; 5069 LIST_HEAD(free_list); 5070 5071 /* 5072 * If we got here through err_file: fput(event_file); we will not have 5073 * attached to a context yet. 5074 */ 5075 if (!ctx) { 5076 WARN_ON_ONCE(event->attach_state & 5077 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5078 goto no_ctx; 5079 } 5080 5081 if (!is_kernel_event(event)) 5082 perf_remove_from_owner(event); 5083 5084 ctx = perf_event_ctx_lock(event); 5085 WARN_ON_ONCE(ctx->parent_ctx); 5086 perf_remove_from_context(event, DETACH_GROUP); 5087 5088 raw_spin_lock_irq(&ctx->lock); 5089 /* 5090 * Mark this event as STATE_DEAD, there is no external reference to it 5091 * anymore. 5092 * 5093 * Anybody acquiring event->child_mutex after the below loop _must_ 5094 * also see this, most importantly inherit_event() which will avoid 5095 * placing more children on the list. 5096 * 5097 * Thus this guarantees that we will in fact observe and kill _ALL_ 5098 * child events. 5099 */ 5100 event->state = PERF_EVENT_STATE_DEAD; 5101 raw_spin_unlock_irq(&ctx->lock); 5102 5103 perf_event_ctx_unlock(event, ctx); 5104 5105 again: 5106 mutex_lock(&event->child_mutex); 5107 list_for_each_entry(child, &event->child_list, child_list) { 5108 5109 /* 5110 * Cannot change, child events are not migrated, see the 5111 * comment with perf_event_ctx_lock_nested(). 5112 */ 5113 ctx = READ_ONCE(child->ctx); 5114 /* 5115 * Since child_mutex nests inside ctx::mutex, we must jump 5116 * through hoops. We start by grabbing a reference on the ctx. 5117 * 5118 * Since the event cannot get freed while we hold the 5119 * child_mutex, the context must also exist and have a !0 5120 * reference count. 5121 */ 5122 get_ctx(ctx); 5123 5124 /* 5125 * Now that we have a ctx ref, we can drop child_mutex, and 5126 * acquire ctx::mutex without fear of it going away. Then we 5127 * can re-acquire child_mutex. 5128 */ 5129 mutex_unlock(&event->child_mutex); 5130 mutex_lock(&ctx->mutex); 5131 mutex_lock(&event->child_mutex); 5132 5133 /* 5134 * Now that we hold ctx::mutex and child_mutex, revalidate our 5135 * state, if child is still the first entry, it didn't get freed 5136 * and we can continue doing so. 5137 */ 5138 tmp = list_first_entry_or_null(&event->child_list, 5139 struct perf_event, child_list); 5140 if (tmp == child) { 5141 perf_remove_from_context(child, DETACH_GROUP); 5142 list_move(&child->child_list, &free_list); 5143 /* 5144 * This matches the refcount bump in inherit_event(); 5145 * this can't be the last reference. 5146 */ 5147 put_event(event); 5148 } 5149 5150 mutex_unlock(&event->child_mutex); 5151 mutex_unlock(&ctx->mutex); 5152 put_ctx(ctx); 5153 goto again; 5154 } 5155 mutex_unlock(&event->child_mutex); 5156 5157 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5158 void *var = &child->ctx->refcount; 5159 5160 list_del(&child->child_list); 5161 free_event(child); 5162 5163 /* 5164 * Wake any perf_event_free_task() waiting for this event to be 5165 * freed. 5166 */ 5167 smp_mb(); /* pairs with wait_var_event() */ 5168 wake_up_var(var); 5169 } 5170 5171 no_ctx: 5172 put_event(event); /* Must be the 'last' reference */ 5173 return 0; 5174 } 5175 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5176 5177 /* 5178 * Called when the last reference to the file is gone. 5179 */ 5180 static int perf_release(struct inode *inode, struct file *file) 5181 { 5182 perf_event_release_kernel(file->private_data); 5183 return 0; 5184 } 5185 5186 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5187 { 5188 struct perf_event *child; 5189 u64 total = 0; 5190 5191 *enabled = 0; 5192 *running = 0; 5193 5194 mutex_lock(&event->child_mutex); 5195 5196 (void)perf_event_read(event, false); 5197 total += perf_event_count(event); 5198 5199 *enabled += event->total_time_enabled + 5200 atomic64_read(&event->child_total_time_enabled); 5201 *running += event->total_time_running + 5202 atomic64_read(&event->child_total_time_running); 5203 5204 list_for_each_entry(child, &event->child_list, child_list) { 5205 (void)perf_event_read(child, false); 5206 total += perf_event_count(child); 5207 *enabled += child->total_time_enabled; 5208 *running += child->total_time_running; 5209 } 5210 mutex_unlock(&event->child_mutex); 5211 5212 return total; 5213 } 5214 5215 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5216 { 5217 struct perf_event_context *ctx; 5218 u64 count; 5219 5220 ctx = perf_event_ctx_lock(event); 5221 count = __perf_event_read_value(event, enabled, running); 5222 perf_event_ctx_unlock(event, ctx); 5223 5224 return count; 5225 } 5226 EXPORT_SYMBOL_GPL(perf_event_read_value); 5227 5228 static int __perf_read_group_add(struct perf_event *leader, 5229 u64 read_format, u64 *values) 5230 { 5231 struct perf_event_context *ctx = leader->ctx; 5232 struct perf_event *sub; 5233 unsigned long flags; 5234 int n = 1; /* skip @nr */ 5235 int ret; 5236 5237 ret = perf_event_read(leader, true); 5238 if (ret) 5239 return ret; 5240 5241 raw_spin_lock_irqsave(&ctx->lock, flags); 5242 5243 /* 5244 * Since we co-schedule groups, {enabled,running} times of siblings 5245 * will be identical to those of the leader, so we only publish one 5246 * set. 5247 */ 5248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5249 values[n++] += leader->total_time_enabled + 5250 atomic64_read(&leader->child_total_time_enabled); 5251 } 5252 5253 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5254 values[n++] += leader->total_time_running + 5255 atomic64_read(&leader->child_total_time_running); 5256 } 5257 5258 /* 5259 * Write {count,id} tuples for every sibling. 5260 */ 5261 values[n++] += perf_event_count(leader); 5262 if (read_format & PERF_FORMAT_ID) 5263 values[n++] = primary_event_id(leader); 5264 5265 for_each_sibling_event(sub, leader) { 5266 values[n++] += perf_event_count(sub); 5267 if (read_format & PERF_FORMAT_ID) 5268 values[n++] = primary_event_id(sub); 5269 } 5270 5271 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5272 return 0; 5273 } 5274 5275 static int perf_read_group(struct perf_event *event, 5276 u64 read_format, char __user *buf) 5277 { 5278 struct perf_event *leader = event->group_leader, *child; 5279 struct perf_event_context *ctx = leader->ctx; 5280 int ret; 5281 u64 *values; 5282 5283 lockdep_assert_held(&ctx->mutex); 5284 5285 values = kzalloc(event->read_size, GFP_KERNEL); 5286 if (!values) 5287 return -ENOMEM; 5288 5289 values[0] = 1 + leader->nr_siblings; 5290 5291 /* 5292 * By locking the child_mutex of the leader we effectively 5293 * lock the child list of all siblings.. XXX explain how. 5294 */ 5295 mutex_lock(&leader->child_mutex); 5296 5297 ret = __perf_read_group_add(leader, read_format, values); 5298 if (ret) 5299 goto unlock; 5300 5301 list_for_each_entry(child, &leader->child_list, child_list) { 5302 ret = __perf_read_group_add(child, read_format, values); 5303 if (ret) 5304 goto unlock; 5305 } 5306 5307 mutex_unlock(&leader->child_mutex); 5308 5309 ret = event->read_size; 5310 if (copy_to_user(buf, values, event->read_size)) 5311 ret = -EFAULT; 5312 goto out; 5313 5314 unlock: 5315 mutex_unlock(&leader->child_mutex); 5316 out: 5317 kfree(values); 5318 return ret; 5319 } 5320 5321 static int perf_read_one(struct perf_event *event, 5322 u64 read_format, char __user *buf) 5323 { 5324 u64 enabled, running; 5325 u64 values[4]; 5326 int n = 0; 5327 5328 values[n++] = __perf_event_read_value(event, &enabled, &running); 5329 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5330 values[n++] = enabled; 5331 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5332 values[n++] = running; 5333 if (read_format & PERF_FORMAT_ID) 5334 values[n++] = primary_event_id(event); 5335 5336 if (copy_to_user(buf, values, n * sizeof(u64))) 5337 return -EFAULT; 5338 5339 return n * sizeof(u64); 5340 } 5341 5342 static bool is_event_hup(struct perf_event *event) 5343 { 5344 bool no_children; 5345 5346 if (event->state > PERF_EVENT_STATE_EXIT) 5347 return false; 5348 5349 mutex_lock(&event->child_mutex); 5350 no_children = list_empty(&event->child_list); 5351 mutex_unlock(&event->child_mutex); 5352 return no_children; 5353 } 5354 5355 /* 5356 * Read the performance event - simple non blocking version for now 5357 */ 5358 static ssize_t 5359 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5360 { 5361 u64 read_format = event->attr.read_format; 5362 int ret; 5363 5364 /* 5365 * Return end-of-file for a read on an event that is in 5366 * error state (i.e. because it was pinned but it couldn't be 5367 * scheduled on to the CPU at some point). 5368 */ 5369 if (event->state == PERF_EVENT_STATE_ERROR) 5370 return 0; 5371 5372 if (count < event->read_size) 5373 return -ENOSPC; 5374 5375 WARN_ON_ONCE(event->ctx->parent_ctx); 5376 if (read_format & PERF_FORMAT_GROUP) 5377 ret = perf_read_group(event, read_format, buf); 5378 else 5379 ret = perf_read_one(event, read_format, buf); 5380 5381 return ret; 5382 } 5383 5384 static ssize_t 5385 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5386 { 5387 struct perf_event *event = file->private_data; 5388 struct perf_event_context *ctx; 5389 int ret; 5390 5391 ret = security_perf_event_read(event); 5392 if (ret) 5393 return ret; 5394 5395 ctx = perf_event_ctx_lock(event); 5396 ret = __perf_read(event, buf, count); 5397 perf_event_ctx_unlock(event, ctx); 5398 5399 return ret; 5400 } 5401 5402 static __poll_t perf_poll(struct file *file, poll_table *wait) 5403 { 5404 struct perf_event *event = file->private_data; 5405 struct perf_buffer *rb; 5406 __poll_t events = EPOLLHUP; 5407 5408 poll_wait(file, &event->waitq, wait); 5409 5410 if (is_event_hup(event)) 5411 return events; 5412 5413 /* 5414 * Pin the event->rb by taking event->mmap_mutex; otherwise 5415 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5416 */ 5417 mutex_lock(&event->mmap_mutex); 5418 rb = event->rb; 5419 if (rb) 5420 events = atomic_xchg(&rb->poll, 0); 5421 mutex_unlock(&event->mmap_mutex); 5422 return events; 5423 } 5424 5425 static void _perf_event_reset(struct perf_event *event) 5426 { 5427 (void)perf_event_read(event, false); 5428 local64_set(&event->count, 0); 5429 perf_event_update_userpage(event); 5430 } 5431 5432 /* Assume it's not an event with inherit set. */ 5433 u64 perf_event_pause(struct perf_event *event, bool reset) 5434 { 5435 struct perf_event_context *ctx; 5436 u64 count; 5437 5438 ctx = perf_event_ctx_lock(event); 5439 WARN_ON_ONCE(event->attr.inherit); 5440 _perf_event_disable(event); 5441 count = local64_read(&event->count); 5442 if (reset) 5443 local64_set(&event->count, 0); 5444 perf_event_ctx_unlock(event, ctx); 5445 5446 return count; 5447 } 5448 EXPORT_SYMBOL_GPL(perf_event_pause); 5449 5450 /* 5451 * Holding the top-level event's child_mutex means that any 5452 * descendant process that has inherited this event will block 5453 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5454 * task existence requirements of perf_event_enable/disable. 5455 */ 5456 static void perf_event_for_each_child(struct perf_event *event, 5457 void (*func)(struct perf_event *)) 5458 { 5459 struct perf_event *child; 5460 5461 WARN_ON_ONCE(event->ctx->parent_ctx); 5462 5463 mutex_lock(&event->child_mutex); 5464 func(event); 5465 list_for_each_entry(child, &event->child_list, child_list) 5466 func(child); 5467 mutex_unlock(&event->child_mutex); 5468 } 5469 5470 static void perf_event_for_each(struct perf_event *event, 5471 void (*func)(struct perf_event *)) 5472 { 5473 struct perf_event_context *ctx = event->ctx; 5474 struct perf_event *sibling; 5475 5476 lockdep_assert_held(&ctx->mutex); 5477 5478 event = event->group_leader; 5479 5480 perf_event_for_each_child(event, func); 5481 for_each_sibling_event(sibling, event) 5482 perf_event_for_each_child(sibling, func); 5483 } 5484 5485 static void __perf_event_period(struct perf_event *event, 5486 struct perf_cpu_context *cpuctx, 5487 struct perf_event_context *ctx, 5488 void *info) 5489 { 5490 u64 value = *((u64 *)info); 5491 bool active; 5492 5493 if (event->attr.freq) { 5494 event->attr.sample_freq = value; 5495 } else { 5496 event->attr.sample_period = value; 5497 event->hw.sample_period = value; 5498 } 5499 5500 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5501 if (active) { 5502 perf_pmu_disable(ctx->pmu); 5503 /* 5504 * We could be throttled; unthrottle now to avoid the tick 5505 * trying to unthrottle while we already re-started the event. 5506 */ 5507 if (event->hw.interrupts == MAX_INTERRUPTS) { 5508 event->hw.interrupts = 0; 5509 perf_log_throttle(event, 1); 5510 } 5511 event->pmu->stop(event, PERF_EF_UPDATE); 5512 } 5513 5514 local64_set(&event->hw.period_left, 0); 5515 5516 if (active) { 5517 event->pmu->start(event, PERF_EF_RELOAD); 5518 perf_pmu_enable(ctx->pmu); 5519 } 5520 } 5521 5522 static int perf_event_check_period(struct perf_event *event, u64 value) 5523 { 5524 return event->pmu->check_period(event, value); 5525 } 5526 5527 static int _perf_event_period(struct perf_event *event, u64 value) 5528 { 5529 if (!is_sampling_event(event)) 5530 return -EINVAL; 5531 5532 if (!value) 5533 return -EINVAL; 5534 5535 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5536 return -EINVAL; 5537 5538 if (perf_event_check_period(event, value)) 5539 return -EINVAL; 5540 5541 if (!event->attr.freq && (value & (1ULL << 63))) 5542 return -EINVAL; 5543 5544 event_function_call(event, __perf_event_period, &value); 5545 5546 return 0; 5547 } 5548 5549 int perf_event_period(struct perf_event *event, u64 value) 5550 { 5551 struct perf_event_context *ctx; 5552 int ret; 5553 5554 ctx = perf_event_ctx_lock(event); 5555 ret = _perf_event_period(event, value); 5556 perf_event_ctx_unlock(event, ctx); 5557 5558 return ret; 5559 } 5560 EXPORT_SYMBOL_GPL(perf_event_period); 5561 5562 static const struct file_operations perf_fops; 5563 5564 static inline int perf_fget_light(int fd, struct fd *p) 5565 { 5566 struct fd f = fdget(fd); 5567 if (!f.file) 5568 return -EBADF; 5569 5570 if (f.file->f_op != &perf_fops) { 5571 fdput(f); 5572 return -EBADF; 5573 } 5574 *p = f; 5575 return 0; 5576 } 5577 5578 static int perf_event_set_output(struct perf_event *event, 5579 struct perf_event *output_event); 5580 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5581 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5582 struct perf_event_attr *attr); 5583 5584 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5585 { 5586 void (*func)(struct perf_event *); 5587 u32 flags = arg; 5588 5589 switch (cmd) { 5590 case PERF_EVENT_IOC_ENABLE: 5591 func = _perf_event_enable; 5592 break; 5593 case PERF_EVENT_IOC_DISABLE: 5594 func = _perf_event_disable; 5595 break; 5596 case PERF_EVENT_IOC_RESET: 5597 func = _perf_event_reset; 5598 break; 5599 5600 case PERF_EVENT_IOC_REFRESH: 5601 return _perf_event_refresh(event, arg); 5602 5603 case PERF_EVENT_IOC_PERIOD: 5604 { 5605 u64 value; 5606 5607 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5608 return -EFAULT; 5609 5610 return _perf_event_period(event, value); 5611 } 5612 case PERF_EVENT_IOC_ID: 5613 { 5614 u64 id = primary_event_id(event); 5615 5616 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5617 return -EFAULT; 5618 return 0; 5619 } 5620 5621 case PERF_EVENT_IOC_SET_OUTPUT: 5622 { 5623 int ret; 5624 if (arg != -1) { 5625 struct perf_event *output_event; 5626 struct fd output; 5627 ret = perf_fget_light(arg, &output); 5628 if (ret) 5629 return ret; 5630 output_event = output.file->private_data; 5631 ret = perf_event_set_output(event, output_event); 5632 fdput(output); 5633 } else { 5634 ret = perf_event_set_output(event, NULL); 5635 } 5636 return ret; 5637 } 5638 5639 case PERF_EVENT_IOC_SET_FILTER: 5640 return perf_event_set_filter(event, (void __user *)arg); 5641 5642 case PERF_EVENT_IOC_SET_BPF: 5643 { 5644 struct bpf_prog *prog; 5645 int err; 5646 5647 prog = bpf_prog_get(arg); 5648 if (IS_ERR(prog)) 5649 return PTR_ERR(prog); 5650 5651 err = perf_event_set_bpf_prog(event, prog, 0); 5652 if (err) { 5653 bpf_prog_put(prog); 5654 return err; 5655 } 5656 5657 return 0; 5658 } 5659 5660 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5661 struct perf_buffer *rb; 5662 5663 rcu_read_lock(); 5664 rb = rcu_dereference(event->rb); 5665 if (!rb || !rb->nr_pages) { 5666 rcu_read_unlock(); 5667 return -EINVAL; 5668 } 5669 rb_toggle_paused(rb, !!arg); 5670 rcu_read_unlock(); 5671 return 0; 5672 } 5673 5674 case PERF_EVENT_IOC_QUERY_BPF: 5675 return perf_event_query_prog_array(event, (void __user *)arg); 5676 5677 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5678 struct perf_event_attr new_attr; 5679 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5680 &new_attr); 5681 5682 if (err) 5683 return err; 5684 5685 return perf_event_modify_attr(event, &new_attr); 5686 } 5687 default: 5688 return -ENOTTY; 5689 } 5690 5691 if (flags & PERF_IOC_FLAG_GROUP) 5692 perf_event_for_each(event, func); 5693 else 5694 perf_event_for_each_child(event, func); 5695 5696 return 0; 5697 } 5698 5699 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5700 { 5701 struct perf_event *event = file->private_data; 5702 struct perf_event_context *ctx; 5703 long ret; 5704 5705 /* Treat ioctl like writes as it is likely a mutating operation. */ 5706 ret = security_perf_event_write(event); 5707 if (ret) 5708 return ret; 5709 5710 ctx = perf_event_ctx_lock(event); 5711 ret = _perf_ioctl(event, cmd, arg); 5712 perf_event_ctx_unlock(event, ctx); 5713 5714 return ret; 5715 } 5716 5717 #ifdef CONFIG_COMPAT 5718 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5719 unsigned long arg) 5720 { 5721 switch (_IOC_NR(cmd)) { 5722 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5723 case _IOC_NR(PERF_EVENT_IOC_ID): 5724 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5725 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5726 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5727 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5728 cmd &= ~IOCSIZE_MASK; 5729 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5730 } 5731 break; 5732 } 5733 return perf_ioctl(file, cmd, arg); 5734 } 5735 #else 5736 # define perf_compat_ioctl NULL 5737 #endif 5738 5739 int perf_event_task_enable(void) 5740 { 5741 struct perf_event_context *ctx; 5742 struct perf_event *event; 5743 5744 mutex_lock(¤t->perf_event_mutex); 5745 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5746 ctx = perf_event_ctx_lock(event); 5747 perf_event_for_each_child(event, _perf_event_enable); 5748 perf_event_ctx_unlock(event, ctx); 5749 } 5750 mutex_unlock(¤t->perf_event_mutex); 5751 5752 return 0; 5753 } 5754 5755 int perf_event_task_disable(void) 5756 { 5757 struct perf_event_context *ctx; 5758 struct perf_event *event; 5759 5760 mutex_lock(¤t->perf_event_mutex); 5761 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5762 ctx = perf_event_ctx_lock(event); 5763 perf_event_for_each_child(event, _perf_event_disable); 5764 perf_event_ctx_unlock(event, ctx); 5765 } 5766 mutex_unlock(¤t->perf_event_mutex); 5767 5768 return 0; 5769 } 5770 5771 static int perf_event_index(struct perf_event *event) 5772 { 5773 if (event->hw.state & PERF_HES_STOPPED) 5774 return 0; 5775 5776 if (event->state != PERF_EVENT_STATE_ACTIVE) 5777 return 0; 5778 5779 return event->pmu->event_idx(event); 5780 } 5781 5782 static void perf_event_init_userpage(struct perf_event *event) 5783 { 5784 struct perf_event_mmap_page *userpg; 5785 struct perf_buffer *rb; 5786 5787 rcu_read_lock(); 5788 rb = rcu_dereference(event->rb); 5789 if (!rb) 5790 goto unlock; 5791 5792 userpg = rb->user_page; 5793 5794 /* Allow new userspace to detect that bit 0 is deprecated */ 5795 userpg->cap_bit0_is_deprecated = 1; 5796 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5797 userpg->data_offset = PAGE_SIZE; 5798 userpg->data_size = perf_data_size(rb); 5799 5800 unlock: 5801 rcu_read_unlock(); 5802 } 5803 5804 void __weak arch_perf_update_userpage( 5805 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5806 { 5807 } 5808 5809 /* 5810 * Callers need to ensure there can be no nesting of this function, otherwise 5811 * the seqlock logic goes bad. We can not serialize this because the arch 5812 * code calls this from NMI context. 5813 */ 5814 void perf_event_update_userpage(struct perf_event *event) 5815 { 5816 struct perf_event_mmap_page *userpg; 5817 struct perf_buffer *rb; 5818 u64 enabled, running, now; 5819 5820 rcu_read_lock(); 5821 rb = rcu_dereference(event->rb); 5822 if (!rb) 5823 goto unlock; 5824 5825 /* 5826 * compute total_time_enabled, total_time_running 5827 * based on snapshot values taken when the event 5828 * was last scheduled in. 5829 * 5830 * we cannot simply called update_context_time() 5831 * because of locking issue as we can be called in 5832 * NMI context 5833 */ 5834 calc_timer_values(event, &now, &enabled, &running); 5835 5836 userpg = rb->user_page; 5837 /* 5838 * Disable preemption to guarantee consistent time stamps are stored to 5839 * the user page. 5840 */ 5841 preempt_disable(); 5842 ++userpg->lock; 5843 barrier(); 5844 userpg->index = perf_event_index(event); 5845 userpg->offset = perf_event_count(event); 5846 if (userpg->index) 5847 userpg->offset -= local64_read(&event->hw.prev_count); 5848 5849 userpg->time_enabled = enabled + 5850 atomic64_read(&event->child_total_time_enabled); 5851 5852 userpg->time_running = running + 5853 atomic64_read(&event->child_total_time_running); 5854 5855 arch_perf_update_userpage(event, userpg, now); 5856 5857 barrier(); 5858 ++userpg->lock; 5859 preempt_enable(); 5860 unlock: 5861 rcu_read_unlock(); 5862 } 5863 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5864 5865 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5866 { 5867 struct perf_event *event = vmf->vma->vm_file->private_data; 5868 struct perf_buffer *rb; 5869 vm_fault_t ret = VM_FAULT_SIGBUS; 5870 5871 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5872 if (vmf->pgoff == 0) 5873 ret = 0; 5874 return ret; 5875 } 5876 5877 rcu_read_lock(); 5878 rb = rcu_dereference(event->rb); 5879 if (!rb) 5880 goto unlock; 5881 5882<