1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 void perf_pmu_resched(struct pmu *pmu) 2482 { 2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2484 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2485 2486 perf_ctx_lock(cpuctx, task_ctx); 2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2488 perf_ctx_unlock(cpuctx, task_ctx); 2489 } 2490 2491 /* 2492 * Cross CPU call to install and enable a performance event 2493 * 2494 * Very similar to remote_function() + event_function() but cannot assume that 2495 * things like ctx->is_active and cpuctx->task_ctx are set. 2496 */ 2497 static int __perf_install_in_context(void *info) 2498 { 2499 struct perf_event *event = info; 2500 struct perf_event_context *ctx = event->ctx; 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2503 bool reprogram = true; 2504 int ret = 0; 2505 2506 raw_spin_lock(&cpuctx->ctx.lock); 2507 if (ctx->task) { 2508 raw_spin_lock(&ctx->lock); 2509 task_ctx = ctx; 2510 2511 reprogram = (ctx->task == current); 2512 2513 /* 2514 * If the task is running, it must be running on this CPU, 2515 * otherwise we cannot reprogram things. 2516 * 2517 * If its not running, we don't care, ctx->lock will 2518 * serialize against it becoming runnable. 2519 */ 2520 if (task_curr(ctx->task) && !reprogram) { 2521 ret = -ESRCH; 2522 goto unlock; 2523 } 2524 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2526 } else if (task_ctx) { 2527 raw_spin_lock(&task_ctx->lock); 2528 } 2529 2530 #ifdef CONFIG_CGROUP_PERF 2531 if (is_cgroup_event(event)) { 2532 /* 2533 * If the current cgroup doesn't match the event's 2534 * cgroup, we should not try to schedule it. 2535 */ 2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2538 event->cgrp->css.cgroup); 2539 } 2540 #endif 2541 2542 if (reprogram) { 2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2544 add_event_to_ctx(event, ctx); 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2546 } else { 2547 add_event_to_ctx(event, ctx); 2548 } 2549 2550 unlock: 2551 perf_ctx_unlock(cpuctx, task_ctx); 2552 2553 return ret; 2554 } 2555 2556 static bool exclusive_event_installable(struct perf_event *event, 2557 struct perf_event_context *ctx); 2558 2559 /* 2560 * Attach a performance event to a context. 2561 * 2562 * Very similar to event_function_call, see comment there. 2563 */ 2564 static void 2565 perf_install_in_context(struct perf_event_context *ctx, 2566 struct perf_event *event, 2567 int cpu) 2568 { 2569 struct task_struct *task = READ_ONCE(ctx->task); 2570 2571 lockdep_assert_held(&ctx->mutex); 2572 2573 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2574 2575 if (event->cpu != -1) 2576 event->cpu = cpu; 2577 2578 /* 2579 * Ensures that if we can observe event->ctx, both the event and ctx 2580 * will be 'complete'. See perf_iterate_sb_cpu(). 2581 */ 2582 smp_store_release(&event->ctx, ctx); 2583 2584 if (!task) { 2585 cpu_function_call(cpu, __perf_install_in_context, event); 2586 return; 2587 } 2588 2589 /* 2590 * Should not happen, we validate the ctx is still alive before calling. 2591 */ 2592 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2593 return; 2594 2595 /* 2596 * Installing events is tricky because we cannot rely on ctx->is_active 2597 * to be set in case this is the nr_events 0 -> 1 transition. 2598 * 2599 * Instead we use task_curr(), which tells us if the task is running. 2600 * However, since we use task_curr() outside of rq::lock, we can race 2601 * against the actual state. This means the result can be wrong. 2602 * 2603 * If we get a false positive, we retry, this is harmless. 2604 * 2605 * If we get a false negative, things are complicated. If we are after 2606 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2607 * value must be correct. If we're before, it doesn't matter since 2608 * perf_event_context_sched_in() will program the counter. 2609 * 2610 * However, this hinges on the remote context switch having observed 2611 * our task->perf_event_ctxp[] store, such that it will in fact take 2612 * ctx::lock in perf_event_context_sched_in(). 2613 * 2614 * We do this by task_function_call(), if the IPI fails to hit the task 2615 * we know any future context switch of task must see the 2616 * perf_event_ctpx[] store. 2617 */ 2618 2619 /* 2620 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2621 * task_cpu() load, such that if the IPI then does not find the task 2622 * running, a future context switch of that task must observe the 2623 * store. 2624 */ 2625 smp_mb(); 2626 again: 2627 if (!task_function_call(task, __perf_install_in_context, event)) 2628 return; 2629 2630 raw_spin_lock_irq(&ctx->lock); 2631 task = ctx->task; 2632 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2633 /* 2634 * Cannot happen because we already checked above (which also 2635 * cannot happen), and we hold ctx->mutex, which serializes us 2636 * against perf_event_exit_task_context(). 2637 */ 2638 raw_spin_unlock_irq(&ctx->lock); 2639 return; 2640 } 2641 /* 2642 * If the task is not running, ctx->lock will avoid it becoming so, 2643 * thus we can safely install the event. 2644 */ 2645 if (task_curr(task)) { 2646 raw_spin_unlock_irq(&ctx->lock); 2647 goto again; 2648 } 2649 add_event_to_ctx(event, ctx); 2650 raw_spin_unlock_irq(&ctx->lock); 2651 } 2652 2653 /* 2654 * Cross CPU call to enable a performance event 2655 */ 2656 static void __perf_event_enable(struct perf_event *event, 2657 struct perf_cpu_context *cpuctx, 2658 struct perf_event_context *ctx, 2659 void *info) 2660 { 2661 struct perf_event *leader = event->group_leader; 2662 struct perf_event_context *task_ctx; 2663 2664 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2665 event->state <= PERF_EVENT_STATE_ERROR) 2666 return; 2667 2668 if (ctx->is_active) 2669 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2670 2671 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2672 2673 if (!ctx->is_active) 2674 return; 2675 2676 if (!event_filter_match(event)) { 2677 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2678 return; 2679 } 2680 2681 /* 2682 * If the event is in a group and isn't the group leader, 2683 * then don't put it on unless the group is on. 2684 */ 2685 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2686 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2687 return; 2688 } 2689 2690 task_ctx = cpuctx->task_ctx; 2691 if (ctx->task) 2692 WARN_ON_ONCE(task_ctx != ctx); 2693 2694 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2695 } 2696 2697 /* 2698 * Enable an event. 2699 * 2700 * If event->ctx is a cloned context, callers must make sure that 2701 * every task struct that event->ctx->task could possibly point to 2702 * remains valid. This condition is satisfied when called through 2703 * perf_event_for_each_child or perf_event_for_each as described 2704 * for perf_event_disable. 2705 */ 2706 static void _perf_event_enable(struct perf_event *event) 2707 { 2708 struct perf_event_context *ctx = event->ctx; 2709 2710 raw_spin_lock_irq(&ctx->lock); 2711 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2712 event->state < PERF_EVENT_STATE_ERROR) { 2713 raw_spin_unlock_irq(&ctx->lock); 2714 return; 2715 } 2716 2717 /* 2718 * If the event is in error state, clear that first. 2719 * 2720 * That way, if we see the event in error state below, we know that it 2721 * has gone back into error state, as distinct from the task having 2722 * been scheduled away before the cross-call arrived. 2723 */ 2724 if (event->state == PERF_EVENT_STATE_ERROR) 2725 event->state = PERF_EVENT_STATE_OFF; 2726 raw_spin_unlock_irq(&ctx->lock); 2727 2728 event_function_call(event, __perf_event_enable, NULL); 2729 } 2730 2731 /* 2732 * See perf_event_disable(); 2733 */ 2734 void perf_event_enable(struct perf_event *event) 2735 { 2736 struct perf_event_context *ctx; 2737 2738 ctx = perf_event_ctx_lock(event); 2739 _perf_event_enable(event); 2740 perf_event_ctx_unlock(event, ctx); 2741 } 2742 EXPORT_SYMBOL_GPL(perf_event_enable); 2743 2744 struct stop_event_data { 2745 struct perf_event *event; 2746 unsigned int restart; 2747 }; 2748 2749 static int __perf_event_stop(void *info) 2750 { 2751 struct stop_event_data *sd = info; 2752 struct perf_event *event = sd->event; 2753 2754 /* if it's already INACTIVE, do nothing */ 2755 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2756 return 0; 2757 2758 /* matches smp_wmb() in event_sched_in() */ 2759 smp_rmb(); 2760 2761 /* 2762 * There is a window with interrupts enabled before we get here, 2763 * so we need to check again lest we try to stop another CPU's event. 2764 */ 2765 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2766 return -EAGAIN; 2767 2768 event->pmu->stop(event, PERF_EF_UPDATE); 2769 2770 /* 2771 * May race with the actual stop (through perf_pmu_output_stop()), 2772 * but it is only used for events with AUX ring buffer, and such 2773 * events will refuse to restart because of rb::aux_mmap_count==0, 2774 * see comments in perf_aux_output_begin(). 2775 * 2776 * Since this is happening on an event-local CPU, no trace is lost 2777 * while restarting. 2778 */ 2779 if (sd->restart) 2780 event->pmu->start(event, 0); 2781 2782 return 0; 2783 } 2784 2785 static int perf_event_stop(struct perf_event *event, int restart) 2786 { 2787 struct stop_event_data sd = { 2788 .event = event, 2789 .restart = restart, 2790 }; 2791 int ret = 0; 2792 2793 do { 2794 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2795 return 0; 2796 2797 /* matches smp_wmb() in event_sched_in() */ 2798 smp_rmb(); 2799 2800 /* 2801 * We only want to restart ACTIVE events, so if the event goes 2802 * inactive here (event->oncpu==-1), there's nothing more to do; 2803 * fall through with ret==-ENXIO. 2804 */ 2805 ret = cpu_function_call(READ_ONCE(event->oncpu), 2806 __perf_event_stop, &sd); 2807 } while (ret == -EAGAIN); 2808 2809 return ret; 2810 } 2811 2812 /* 2813 * In order to contain the amount of racy and tricky in the address filter 2814 * configuration management, it is a two part process: 2815 * 2816 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2817 * we update the addresses of corresponding vmas in 2818 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2819 * (p2) when an event is scheduled in (pmu::add), it calls 2820 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2821 * if the generation has changed since the previous call. 2822 * 2823 * If (p1) happens while the event is active, we restart it to force (p2). 2824 * 2825 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2826 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2827 * ioctl; 2828 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2829 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2830 * for reading; 2831 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2832 * of exec. 2833 */ 2834 void perf_event_addr_filters_sync(struct perf_event *event) 2835 { 2836 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2837 2838 if (!has_addr_filter(event)) 2839 return; 2840 2841 raw_spin_lock(&ifh->lock); 2842 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2843 event->pmu->addr_filters_sync(event); 2844 event->hw.addr_filters_gen = event->addr_filters_gen; 2845 } 2846 raw_spin_unlock(&ifh->lock); 2847 } 2848 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2849 2850 static int _perf_event_refresh(struct perf_event *event, int refresh) 2851 { 2852 /* 2853 * not supported on inherited events 2854 */ 2855 if (event->attr.inherit || !is_sampling_event(event)) 2856 return -EINVAL; 2857 2858 atomic_add(refresh, &event->event_limit); 2859 _perf_event_enable(event); 2860 2861 return 0; 2862 } 2863 2864 /* 2865 * See perf_event_disable() 2866 */ 2867 int perf_event_refresh(struct perf_event *event, int refresh) 2868 { 2869 struct perf_event_context *ctx; 2870 int ret; 2871 2872 ctx = perf_event_ctx_lock(event); 2873 ret = _perf_event_refresh(event, refresh); 2874 perf_event_ctx_unlock(event, ctx); 2875 2876 return ret; 2877 } 2878 EXPORT_SYMBOL_GPL(perf_event_refresh); 2879 2880 static int perf_event_modify_breakpoint(struct perf_event *bp, 2881 struct perf_event_attr *attr) 2882 { 2883 int err; 2884 2885 _perf_event_disable(bp); 2886 2887 err = modify_user_hw_breakpoint_check(bp, attr, true); 2888 2889 if (!bp->attr.disabled) 2890 _perf_event_enable(bp); 2891 2892 return err; 2893 } 2894 2895 static int perf_event_modify_attr(struct perf_event *event, 2896 struct perf_event_attr *attr) 2897 { 2898 if (event->attr.type != attr->type) 2899 return -EINVAL; 2900 2901 switch (event->attr.type) { 2902 case PERF_TYPE_BREAKPOINT: 2903 return perf_event_modify_breakpoint(event, attr); 2904 default: 2905 /* Place holder for future additions. */ 2906 return -EOPNOTSUPP; 2907 } 2908 } 2909 2910 static void ctx_sched_out(struct perf_event_context *ctx, 2911 struct perf_cpu_context *cpuctx, 2912 enum event_type_t event_type) 2913 { 2914 struct perf_event *event, *tmp; 2915 int is_active = ctx->is_active; 2916 2917 lockdep_assert_held(&ctx->lock); 2918 2919 if (likely(!ctx->nr_events)) { 2920 /* 2921 * See __perf_remove_from_context(). 2922 */ 2923 WARN_ON_ONCE(ctx->is_active); 2924 if (ctx->task) 2925 WARN_ON_ONCE(cpuctx->task_ctx); 2926 return; 2927 } 2928 2929 ctx->is_active &= ~event_type; 2930 if (!(ctx->is_active & EVENT_ALL)) 2931 ctx->is_active = 0; 2932 2933 if (ctx->task) { 2934 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2935 if (!ctx->is_active) 2936 cpuctx->task_ctx = NULL; 2937 } 2938 2939 /* 2940 * Always update time if it was set; not only when it changes. 2941 * Otherwise we can 'forget' to update time for any but the last 2942 * context we sched out. For example: 2943 * 2944 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2945 * ctx_sched_out(.event_type = EVENT_PINNED) 2946 * 2947 * would only update time for the pinned events. 2948 */ 2949 if (is_active & EVENT_TIME) { 2950 /* update (and stop) ctx time */ 2951 update_context_time(ctx); 2952 update_cgrp_time_from_cpuctx(cpuctx); 2953 } 2954 2955 is_active ^= ctx->is_active; /* changed bits */ 2956 2957 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2958 return; 2959 2960 /* 2961 * If we had been multiplexing, no rotations are necessary, now no events 2962 * are active. 2963 */ 2964 ctx->rotate_necessary = 0; 2965 2966 perf_pmu_disable(ctx->pmu); 2967 if (is_active & EVENT_PINNED) { 2968 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2969 group_sched_out(event, cpuctx, ctx); 2970 } 2971 2972 if (is_active & EVENT_FLEXIBLE) { 2973 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2974 group_sched_out(event, cpuctx, ctx); 2975 } 2976 perf_pmu_enable(ctx->pmu); 2977 } 2978 2979 /* 2980 * Test whether two contexts are equivalent, i.e. whether they have both been 2981 * cloned from the same version of the same context. 2982 * 2983 * Equivalence is measured using a generation number in the context that is 2984 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2985 * and list_del_event(). 2986 */ 2987 static int context_equiv(struct perf_event_context *ctx1, 2988 struct perf_event_context *ctx2) 2989 { 2990 lockdep_assert_held(&ctx1->lock); 2991 lockdep_assert_held(&ctx2->lock); 2992 2993 /* Pinning disables the swap optimization */ 2994 if (ctx1->pin_count || ctx2->pin_count) 2995 return 0; 2996 2997 /* If ctx1 is the parent of ctx2 */ 2998 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2999 return 1; 3000 3001 /* If ctx2 is the parent of ctx1 */ 3002 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3003 return 1; 3004 3005 /* 3006 * If ctx1 and ctx2 have the same parent; we flatten the parent 3007 * hierarchy, see perf_event_init_context(). 3008 */ 3009 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3010 ctx1->parent_gen == ctx2->parent_gen) 3011 return 1; 3012 3013 /* Unmatched */ 3014 return 0; 3015 } 3016 3017 static void __perf_event_sync_stat(struct perf_event *event, 3018 struct perf_event *next_event) 3019 { 3020 u64 value; 3021 3022 if (!event->attr.inherit_stat) 3023 return; 3024 3025 /* 3026 * Update the event value, we cannot use perf_event_read() 3027 * because we're in the middle of a context switch and have IRQs 3028 * disabled, which upsets smp_call_function_single(), however 3029 * we know the event must be on the current CPU, therefore we 3030 * don't need to use it. 3031 */ 3032 if (event->state == PERF_EVENT_STATE_ACTIVE) 3033 event->pmu->read(event); 3034 3035 perf_event_update_time(event); 3036 3037 /* 3038 * In order to keep per-task stats reliable we need to flip the event 3039 * values when we flip the contexts. 3040 */ 3041 value = local64_read(&next_event->count); 3042 value = local64_xchg(&event->count, value); 3043 local64_set(&next_event->count, value); 3044 3045 swap(event->total_time_enabled, next_event->total_time_enabled); 3046 swap(event->total_time_running, next_event->total_time_running); 3047 3048 /* 3049 * Since we swizzled the values, update the user visible data too. 3050 */ 3051 perf_event_update_userpage(event); 3052 perf_event_update_userpage(next_event); 3053 } 3054 3055 static void perf_event_sync_stat(struct perf_event_context *ctx, 3056 struct perf_event_context *next_ctx) 3057 { 3058 struct perf_event *event, *next_event; 3059 3060 if (!ctx->nr_stat) 3061 return; 3062 3063 update_context_time(ctx); 3064 3065 event = list_first_entry(&ctx->event_list, 3066 struct perf_event, event_entry); 3067 3068 next_event = list_first_entry(&next_ctx->event_list, 3069 struct perf_event, event_entry); 3070 3071 while (&event->event_entry != &ctx->event_list && 3072 &next_event->event_entry != &next_ctx->event_list) { 3073 3074 __perf_event_sync_stat(event, next_event); 3075 3076 event = list_next_entry(event, event_entry); 3077 next_event = list_next_entry(next_event, event_entry); 3078 } 3079 } 3080 3081 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3082 struct task_struct *next) 3083 { 3084 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3085 struct perf_event_context *next_ctx; 3086 struct perf_event_context *parent, *next_parent; 3087 struct perf_cpu_context *cpuctx; 3088 int do_switch = 1; 3089 3090 if (likely(!ctx)) 3091 return; 3092 3093 cpuctx = __get_cpu_context(ctx); 3094 if (!cpuctx->task_ctx) 3095 return; 3096 3097 rcu_read_lock(); 3098 next_ctx = next->perf_event_ctxp[ctxn]; 3099 if (!next_ctx) 3100 goto unlock; 3101 3102 parent = rcu_dereference(ctx->parent_ctx); 3103 next_parent = rcu_dereference(next_ctx->parent_ctx); 3104 3105 /* If neither context have a parent context; they cannot be clones. */ 3106 if (!parent && !next_parent) 3107 goto unlock; 3108 3109 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3110 /* 3111 * Looks like the two contexts are clones, so we might be 3112 * able to optimize the context switch. We lock both 3113 * contexts and check that they are clones under the 3114 * lock (including re-checking that neither has been 3115 * uncloned in the meantime). It doesn't matter which 3116 * order we take the locks because no other cpu could 3117 * be trying to lock both of these tasks. 3118 */ 3119 raw_spin_lock(&ctx->lock); 3120 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3121 if (context_equiv(ctx, next_ctx)) { 3122 WRITE_ONCE(ctx->task, next); 3123 WRITE_ONCE(next_ctx->task, task); 3124 3125 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3126 3127 /* 3128 * RCU_INIT_POINTER here is safe because we've not 3129 * modified the ctx and the above modification of 3130 * ctx->task and ctx->task_ctx_data are immaterial 3131 * since those values are always verified under 3132 * ctx->lock which we're now holding. 3133 */ 3134 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3135 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3136 3137 do_switch = 0; 3138 3139 perf_event_sync_stat(ctx, next_ctx); 3140 } 3141 raw_spin_unlock(&next_ctx->lock); 3142 raw_spin_unlock(&ctx->lock); 3143 } 3144 unlock: 3145 rcu_read_unlock(); 3146 3147 if (do_switch) { 3148 raw_spin_lock(&ctx->lock); 3149 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3150 raw_spin_unlock(&ctx->lock); 3151 } 3152 } 3153 3154 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3155 3156 void perf_sched_cb_dec(struct pmu *pmu) 3157 { 3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3159 3160 this_cpu_dec(perf_sched_cb_usages); 3161 3162 if (!--cpuctx->sched_cb_usage) 3163 list_del(&cpuctx->sched_cb_entry); 3164 } 3165 3166 3167 void perf_sched_cb_inc(struct pmu *pmu) 3168 { 3169 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3170 3171 if (!cpuctx->sched_cb_usage++) 3172 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3173 3174 this_cpu_inc(perf_sched_cb_usages); 3175 } 3176 3177 /* 3178 * This function provides the context switch callback to the lower code 3179 * layer. It is invoked ONLY when the context switch callback is enabled. 3180 * 3181 * This callback is relevant even to per-cpu events; for example multi event 3182 * PEBS requires this to provide PID/TID information. This requires we flush 3183 * all queued PEBS records before we context switch to a new task. 3184 */ 3185 static void perf_pmu_sched_task(struct task_struct *prev, 3186 struct task_struct *next, 3187 bool sched_in) 3188 { 3189 struct perf_cpu_context *cpuctx; 3190 struct pmu *pmu; 3191 3192 if (prev == next) 3193 return; 3194 3195 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3196 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3197 3198 if (WARN_ON_ONCE(!pmu->sched_task)) 3199 continue; 3200 3201 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3202 perf_pmu_disable(pmu); 3203 3204 pmu->sched_task(cpuctx->task_ctx, sched_in); 3205 3206 perf_pmu_enable(pmu); 3207 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3208 } 3209 } 3210 3211 static void perf_event_switch(struct task_struct *task, 3212 struct task_struct *next_prev, bool sched_in); 3213 3214 #define for_each_task_context_nr(ctxn) \ 3215 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3216 3217 /* 3218 * Called from scheduler to remove the events of the current task, 3219 * with interrupts disabled. 3220 * 3221 * We stop each event and update the event value in event->count. 3222 * 3223 * This does not protect us against NMI, but disable() 3224 * sets the disabled bit in the control field of event _before_ 3225 * accessing the event control register. If a NMI hits, then it will 3226 * not restart the event. 3227 */ 3228 void __perf_event_task_sched_out(struct task_struct *task, 3229 struct task_struct *next) 3230 { 3231 int ctxn; 3232 3233 if (__this_cpu_read(perf_sched_cb_usages)) 3234 perf_pmu_sched_task(task, next, false); 3235 3236 if (atomic_read(&nr_switch_events)) 3237 perf_event_switch(task, next, false); 3238 3239 for_each_task_context_nr(ctxn) 3240 perf_event_context_sched_out(task, ctxn, next); 3241 3242 /* 3243 * if cgroup events exist on this CPU, then we need 3244 * to check if we have to switch out PMU state. 3245 * cgroup event are system-wide mode only 3246 */ 3247 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3248 perf_cgroup_sched_out(task, next); 3249 } 3250 3251 /* 3252 * Called with IRQs disabled 3253 */ 3254 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3255 enum event_type_t event_type) 3256 { 3257 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3258 } 3259 3260 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3261 int (*func)(struct perf_event *, void *), void *data) 3262 { 3263 struct perf_event **evt, *evt1, *evt2; 3264 int ret; 3265 3266 evt1 = perf_event_groups_first(groups, -1); 3267 evt2 = perf_event_groups_first(groups, cpu); 3268 3269 while (evt1 || evt2) { 3270 if (evt1 && evt2) { 3271 if (evt1->group_index < evt2->group_index) 3272 evt = &evt1; 3273 else 3274 evt = &evt2; 3275 } else if (evt1) { 3276 evt = &evt1; 3277 } else { 3278 evt = &evt2; 3279 } 3280 3281 ret = func(*evt, data); 3282 if (ret) 3283 return ret; 3284 3285 *evt = perf_event_groups_next(*evt); 3286 } 3287 3288 return 0; 3289 } 3290 3291 struct sched_in_data { 3292 struct perf_event_context *ctx; 3293 struct perf_cpu_context *cpuctx; 3294 int can_add_hw; 3295 }; 3296 3297 static int pinned_sched_in(struct perf_event *event, void *data) 3298 { 3299 struct sched_in_data *sid = data; 3300 3301 if (event->state <= PERF_EVENT_STATE_OFF) 3302 return 0; 3303 3304 if (!event_filter_match(event)) 3305 return 0; 3306 3307 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3308 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3309 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3310 } 3311 3312 /* 3313 * If this pinned group hasn't been scheduled, 3314 * put it in error state. 3315 */ 3316 if (event->state == PERF_EVENT_STATE_INACTIVE) 3317 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3318 3319 return 0; 3320 } 3321 3322 static int flexible_sched_in(struct perf_event *event, void *data) 3323 { 3324 struct sched_in_data *sid = data; 3325 3326 if (event->state <= PERF_EVENT_STATE_OFF) 3327 return 0; 3328 3329 if (!event_filter_match(event)) 3330 return 0; 3331 3332 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3333 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3334 if (ret) { 3335 sid->can_add_hw = 0; 3336 sid->ctx->rotate_necessary = 1; 3337 return 0; 3338 } 3339 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3340 } 3341 3342 return 0; 3343 } 3344 3345 static void 3346 ctx_pinned_sched_in(struct perf_event_context *ctx, 3347 struct perf_cpu_context *cpuctx) 3348 { 3349 struct sched_in_data sid = { 3350 .ctx = ctx, 3351 .cpuctx = cpuctx, 3352 .can_add_hw = 1, 3353 }; 3354 3355 visit_groups_merge(&ctx->pinned_groups, 3356 smp_processor_id(), 3357 pinned_sched_in, &sid); 3358 } 3359 3360 static void 3361 ctx_flexible_sched_in(struct perf_event_context *ctx, 3362 struct perf_cpu_context *cpuctx) 3363 { 3364 struct sched_in_data sid = { 3365 .ctx = ctx, 3366 .cpuctx = cpuctx, 3367 .can_add_hw = 1, 3368 }; 3369 3370 visit_groups_merge(&ctx->flexible_groups, 3371 smp_processor_id(), 3372 flexible_sched_in, &sid); 3373 } 3374 3375 static void 3376 ctx_sched_in(struct perf_event_context *ctx, 3377 struct perf_cpu_context *cpuctx, 3378 enum event_type_t event_type, 3379 struct task_struct *task) 3380 { 3381 int is_active = ctx->is_active; 3382 u64 now; 3383 3384 lockdep_assert_held(&ctx->lock); 3385 3386 if (likely(!ctx->nr_events)) 3387 return; 3388 3389 ctx->is_active |= (event_type | EVENT_TIME); 3390 if (ctx->task) { 3391 if (!is_active) 3392 cpuctx->task_ctx = ctx; 3393 else 3394 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3395 } 3396 3397 is_active ^= ctx->is_active; /* changed bits */ 3398 3399 if (is_active & EVENT_TIME) { 3400 /* start ctx time */ 3401 now = perf_clock(); 3402 ctx->timestamp = now; 3403 perf_cgroup_set_timestamp(task, ctx); 3404 } 3405 3406 /* 3407 * First go through the list and put on any pinned groups 3408 * in order to give them the best chance of going on. 3409 */ 3410 if (is_active & EVENT_PINNED) 3411 ctx_pinned_sched_in(ctx, cpuctx); 3412 3413 /* Then walk through the lower prio flexible groups */ 3414 if (is_active & EVENT_FLEXIBLE) 3415 ctx_flexible_sched_in(ctx, cpuctx); 3416 } 3417 3418 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3419 enum event_type_t event_type, 3420 struct task_struct *task) 3421 { 3422 struct perf_event_context *ctx = &cpuctx->ctx; 3423 3424 ctx_sched_in(ctx, cpuctx, event_type, task); 3425 } 3426 3427 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3428 struct task_struct *task) 3429 { 3430 struct perf_cpu_context *cpuctx; 3431 3432 cpuctx = __get_cpu_context(ctx); 3433 if (cpuctx->task_ctx == ctx) 3434 return; 3435 3436 perf_ctx_lock(cpuctx, ctx); 3437 /* 3438 * We must check ctx->nr_events while holding ctx->lock, such 3439 * that we serialize against perf_install_in_context(). 3440 */ 3441 if (!ctx->nr_events) 3442 goto unlock; 3443 3444 perf_pmu_disable(ctx->pmu); 3445 /* 3446 * We want to keep the following priority order: 3447 * cpu pinned (that don't need to move), task pinned, 3448 * cpu flexible, task flexible. 3449 * 3450 * However, if task's ctx is not carrying any pinned 3451 * events, no need to flip the cpuctx's events around. 3452 */ 3453 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3454 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3455 perf_event_sched_in(cpuctx, ctx, task); 3456 perf_pmu_enable(ctx->pmu); 3457 3458 unlock: 3459 perf_ctx_unlock(cpuctx, ctx); 3460 } 3461 3462 /* 3463 * Called from scheduler to add the events of the current task 3464 * with interrupts disabled. 3465 * 3466 * We restore the event value and then enable it. 3467 * 3468 * This does not protect us against NMI, but enable() 3469 * sets the enabled bit in the control field of event _before_ 3470 * accessing the event control register. If a NMI hits, then it will 3471 * keep the event running. 3472 */ 3473 void __perf_event_task_sched_in(struct task_struct *prev, 3474 struct task_struct *task) 3475 { 3476 struct perf_event_context *ctx; 3477 int ctxn; 3478 3479 /* 3480 * If cgroup events exist on this CPU, then we need to check if we have 3481 * to switch in PMU state; cgroup event are system-wide mode only. 3482 * 3483 * Since cgroup events are CPU events, we must schedule these in before 3484 * we schedule in the task events. 3485 */ 3486 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3487 perf_cgroup_sched_in(prev, task); 3488 3489 for_each_task_context_nr(ctxn) { 3490 ctx = task->perf_event_ctxp[ctxn]; 3491 if (likely(!ctx)) 3492 continue; 3493 3494 perf_event_context_sched_in(ctx, task); 3495 } 3496 3497 if (atomic_read(&nr_switch_events)) 3498 perf_event_switch(task, prev, true); 3499 3500 if (__this_cpu_read(perf_sched_cb_usages)) 3501 perf_pmu_sched_task(prev, task, true); 3502 } 3503 3504 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3505 { 3506 u64 frequency = event->attr.sample_freq; 3507 u64 sec = NSEC_PER_SEC; 3508 u64 divisor, dividend; 3509 3510 int count_fls, nsec_fls, frequency_fls, sec_fls; 3511 3512 count_fls = fls64(count); 3513 nsec_fls = fls64(nsec); 3514 frequency_fls = fls64(frequency); 3515 sec_fls = 30; 3516 3517 /* 3518 * We got @count in @nsec, with a target of sample_freq HZ 3519 * the target period becomes: 3520 * 3521 * @count * 10^9 3522 * period = ------------------- 3523 * @nsec * sample_freq 3524 * 3525 */ 3526 3527 /* 3528 * Reduce accuracy by one bit such that @a and @b converge 3529 * to a similar magnitude. 3530 */ 3531 #define REDUCE_FLS(a, b) \ 3532 do { \ 3533 if (a##_fls > b##_fls) { \ 3534 a >>= 1; \ 3535 a##_fls--; \ 3536 } else { \ 3537 b >>= 1; \ 3538 b##_fls--; \ 3539 } \ 3540 } while (0) 3541 3542 /* 3543 * Reduce accuracy until either term fits in a u64, then proceed with 3544 * the other, so that finally we can do a u64/u64 division. 3545 */ 3546 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3547 REDUCE_FLS(nsec, frequency); 3548 REDUCE_FLS(sec, count); 3549 } 3550 3551 if (count_fls + sec_fls > 64) { 3552 divisor = nsec * frequency; 3553 3554 while (count_fls + sec_fls > 64) { 3555 REDUCE_FLS(count, sec); 3556 divisor >>= 1; 3557 } 3558 3559 dividend = count * sec; 3560 } else { 3561 dividend = count * sec; 3562 3563 while (nsec_fls + frequency_fls > 64) { 3564 REDUCE_FLS(nsec, frequency); 3565 dividend >>= 1; 3566 } 3567 3568 divisor = nsec * frequency; 3569 } 3570 3571 if (!divisor) 3572 return dividend; 3573 3574 return div64_u64(dividend, divisor); 3575 } 3576 3577 static DEFINE_PER_CPU(int, perf_throttled_count); 3578 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3579 3580 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3581 { 3582 struct hw_perf_event *hwc = &event->hw; 3583 s64 period, sample_period; 3584 s64 delta; 3585 3586 period = perf_calculate_period(event, nsec, count); 3587 3588 delta = (s64)(period - hwc->sample_period); 3589 delta = (delta + 7) / 8; /* low pass filter */ 3590 3591 sample_period = hwc->sample_period + delta; 3592 3593 if (!sample_period) 3594 sample_period = 1; 3595 3596 hwc->sample_period = sample_period; 3597 3598 if (local64_read(&hwc->period_left) > 8*sample_period) { 3599 if (disable) 3600 event->pmu->stop(event, PERF_EF_UPDATE); 3601 3602 local64_set(&hwc->period_left, 0); 3603 3604 if (disable) 3605 event->pmu->start(event, PERF_EF_RELOAD); 3606 } 3607 } 3608 3609 /* 3610 * combine freq adjustment with unthrottling to avoid two passes over the 3611 * events. At the same time, make sure, having freq events does not change 3612 * the rate of unthrottling as that would introduce bias. 3613 */ 3614 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3615 int needs_unthr) 3616 { 3617 struct perf_event *event; 3618 struct hw_perf_event *hwc; 3619 u64 now, period = TICK_NSEC; 3620 s64 delta; 3621 3622 /* 3623 * only need to iterate over all events iff: 3624 * - context have events in frequency mode (needs freq adjust) 3625 * - there are events to unthrottle on this cpu 3626 */ 3627 if (!(ctx->nr_freq || needs_unthr)) 3628 return; 3629 3630 raw_spin_lock(&ctx->lock); 3631 perf_pmu_disable(ctx->pmu); 3632 3633 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3634 if (event->state != PERF_EVENT_STATE_ACTIVE) 3635 continue; 3636 3637 if (!event_filter_match(event)) 3638 continue; 3639 3640 perf_pmu_disable(event->pmu); 3641 3642 hwc = &event->hw; 3643 3644 if (hwc->interrupts == MAX_INTERRUPTS) { 3645 hwc->interrupts = 0; 3646 perf_log_throttle(event, 1); 3647 event->pmu->start(event, 0); 3648 } 3649 3650 if (!event->attr.freq || !event->attr.sample_freq) 3651 goto next; 3652 3653 /* 3654 * stop the event and update event->count 3655 */ 3656 event->pmu->stop(event, PERF_EF_UPDATE); 3657 3658 now = local64_read(&event->count); 3659 delta = now - hwc->freq_count_stamp; 3660 hwc->freq_count_stamp = now; 3661 3662 /* 3663 * restart the event 3664 * reload only if value has changed 3665 * we have stopped the event so tell that 3666 * to perf_adjust_period() to avoid stopping it 3667 * twice. 3668 */ 3669 if (delta > 0) 3670 perf_adjust_period(event, period, delta, false); 3671 3672 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3673 next: 3674 perf_pmu_enable(event->pmu); 3675 } 3676 3677 perf_pmu_enable(ctx->pmu); 3678 raw_spin_unlock(&ctx->lock); 3679 } 3680 3681 /* 3682 * Move @event to the tail of the @ctx's elegible events. 3683 */ 3684 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3685 { 3686 /* 3687 * Rotate the first entry last of non-pinned groups. Rotation might be 3688 * disabled by the inheritance code. 3689 */ 3690 if (ctx->rotate_disable) 3691 return; 3692 3693 perf_event_groups_delete(&ctx->flexible_groups, event); 3694 perf_event_groups_insert(&ctx->flexible_groups, event); 3695 } 3696 3697 /* pick an event from the flexible_groups to rotate */ 3698 static inline struct perf_event * 3699 ctx_event_to_rotate(struct perf_event_context *ctx) 3700 { 3701 struct perf_event *event; 3702 3703 /* pick the first active flexible event */ 3704 event = list_first_entry_or_null(&ctx->flexible_active, 3705 struct perf_event, active_list); 3706 3707 /* if no active flexible event, pick the first event */ 3708 if (!event) { 3709 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 3710 typeof(*event), group_node); 3711 } 3712 3713 return event; 3714 } 3715 3716 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3717 { 3718 struct perf_event *cpu_event = NULL, *task_event = NULL; 3719 struct perf_event_context *task_ctx = NULL; 3720 int cpu_rotate, task_rotate; 3721 3722 /* 3723 * Since we run this from IRQ context, nobody can install new 3724 * events, thus the event count values are stable. 3725 */ 3726 3727 cpu_rotate = cpuctx->ctx.rotate_necessary; 3728 task_ctx = cpuctx->task_ctx; 3729 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3730 3731 if (!(cpu_rotate || task_rotate)) 3732 return false; 3733 3734 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3735 perf_pmu_disable(cpuctx->ctx.pmu); 3736 3737 if (task_rotate) 3738 task_event = ctx_event_to_rotate(task_ctx); 3739 if (cpu_rotate) 3740 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 3741 3742 /* 3743 * As per the order given at ctx_resched() first 'pop' task flexible 3744 * and then, if needed CPU flexible. 3745 */ 3746 if (task_event || (task_ctx && cpu_event)) 3747 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3748 if (cpu_event) 3749 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3750 3751 if (task_event) 3752 rotate_ctx(task_ctx, task_event); 3753 if (cpu_event) 3754 rotate_ctx(&cpuctx->ctx, cpu_event); 3755 3756 perf_event_sched_in(cpuctx, task_ctx, current); 3757 3758 perf_pmu_enable(cpuctx->ctx.pmu); 3759 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3760 3761 return true; 3762 } 3763 3764 void perf_event_task_tick(void) 3765 { 3766 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3767 struct perf_event_context *ctx, *tmp; 3768 int throttled; 3769 3770 lockdep_assert_irqs_disabled(); 3771 3772 __this_cpu_inc(perf_throttled_seq); 3773 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3774 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3775 3776 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3777 perf_adjust_freq_unthr_context(ctx, throttled); 3778 } 3779 3780 static int event_enable_on_exec(struct perf_event *event, 3781 struct perf_event_context *ctx) 3782 { 3783 if (!event->attr.enable_on_exec) 3784 return 0; 3785 3786 event->attr.enable_on_exec = 0; 3787 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3788 return 0; 3789 3790 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3791 3792 return 1; 3793 } 3794 3795 /* 3796 * Enable all of a task's events that have been marked enable-on-exec. 3797 * This expects task == current. 3798 */ 3799 static void perf_event_enable_on_exec(int ctxn) 3800 { 3801 struct perf_event_context *ctx, *clone_ctx = NULL; 3802 enum event_type_t event_type = 0; 3803 struct perf_cpu_context *cpuctx; 3804 struct perf_event *event; 3805 unsigned long flags; 3806 int enabled = 0; 3807 3808 local_irq_save(flags); 3809 ctx = current->perf_event_ctxp[ctxn]; 3810 if (!ctx || !ctx->nr_events) 3811 goto out; 3812 3813 cpuctx = __get_cpu_context(ctx); 3814 perf_ctx_lock(cpuctx, ctx); 3815 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3816 list_for_each_entry(event, &ctx->event_list, event_entry) { 3817 enabled |= event_enable_on_exec(event, ctx); 3818 event_type |= get_event_type(event); 3819 } 3820 3821 /* 3822 * Unclone and reschedule this context if we enabled any event. 3823 */ 3824 if (enabled) { 3825 clone_ctx = unclone_ctx(ctx); 3826 ctx_resched(cpuctx, ctx, event_type); 3827 } else { 3828 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3829 } 3830 perf_ctx_unlock(cpuctx, ctx); 3831 3832 out: 3833 local_irq_restore(flags); 3834 3835 if (clone_ctx) 3836 put_ctx(clone_ctx); 3837 } 3838 3839 struct perf_read_data { 3840 struct perf_event *event; 3841 bool group; 3842 int ret; 3843 }; 3844 3845 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3846 { 3847 u16 local_pkg, event_pkg; 3848 3849 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3850 int local_cpu = smp_processor_id(); 3851 3852 event_pkg = topology_physical_package_id(event_cpu); 3853 local_pkg = topology_physical_package_id(local_cpu); 3854 3855 if (event_pkg == local_pkg) 3856 return local_cpu; 3857 } 3858 3859 return event_cpu; 3860 } 3861 3862 /* 3863 * Cross CPU call to read the hardware event 3864 */ 3865 static void __perf_event_read(void *info) 3866 { 3867 struct perf_read_data *data = info; 3868 struct perf_event *sub, *event = data->event; 3869 struct perf_event_context *ctx = event->ctx; 3870 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3871 struct pmu *pmu = event->pmu; 3872 3873 /* 3874 * If this is a task context, we need to check whether it is 3875 * the current task context of this cpu. If not it has been 3876 * scheduled out before the smp call arrived. In that case 3877 * event->count would have been updated to a recent sample 3878 * when the event was scheduled out. 3879 */ 3880 if (ctx->task && cpuctx->task_ctx != ctx) 3881 return; 3882 3883 raw_spin_lock(&ctx->lock); 3884 if (ctx->is_active & EVENT_TIME) { 3885 update_context_time(ctx); 3886 update_cgrp_time_from_event(event); 3887 } 3888 3889 perf_event_update_time(event); 3890 if (data->group) 3891 perf_event_update_sibling_time(event); 3892 3893 if (event->state != PERF_EVENT_STATE_ACTIVE) 3894 goto unlock; 3895 3896 if (!data->group) { 3897 pmu->read(event); 3898 data->ret = 0; 3899 goto unlock; 3900 } 3901 3902 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3903 3904 pmu->read(event); 3905 3906 for_each_sibling_event(sub, event) { 3907 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3908 /* 3909 * Use sibling's PMU rather than @event's since 3910 * sibling could be on different (eg: software) PMU. 3911 */ 3912 sub->pmu->read(sub); 3913 } 3914 } 3915 3916 data->ret = pmu->commit_txn(pmu); 3917 3918 unlock: 3919 raw_spin_unlock(&ctx->lock); 3920 } 3921 3922 static inline u64 perf_event_count(struct perf_event *event) 3923 { 3924 return local64_read(&event->count) + atomic64_read(&event->child_count); 3925 } 3926 3927 /* 3928 * NMI-safe method to read a local event, that is an event that 3929 * is: 3930 * - either for the current task, or for this CPU 3931 * - does not have inherit set, for inherited task events 3932 * will not be local and we cannot read them atomically 3933 * - must not have a pmu::count method 3934 */ 3935 int perf_event_read_local(struct perf_event *event, u64 *value, 3936 u64 *enabled, u64 *running) 3937 { 3938 unsigned long flags; 3939 int ret = 0; 3940 3941 /* 3942 * Disabling interrupts avoids all counter scheduling (context 3943 * switches, timer based rotation and IPIs). 3944 */ 3945 local_irq_save(flags); 3946 3947 /* 3948 * It must not be an event with inherit set, we cannot read 3949 * all child counters from atomic context. 3950 */ 3951 if (event->attr.inherit) { 3952 ret = -EOPNOTSUPP; 3953 goto out; 3954 } 3955 3956 /* If this is a per-task event, it must be for current */ 3957 if ((event->attach_state & PERF_ATTACH_TASK) && 3958 event->hw.target != current) { 3959 ret = -EINVAL; 3960 goto out; 3961 } 3962 3963 /* If this is a per-CPU event, it must be for this CPU */ 3964 if (!(event->attach_state & PERF_ATTACH_TASK) && 3965 event->cpu != smp_processor_id()) { 3966 ret = -EINVAL; 3967 goto out; 3968 } 3969 3970 /* If this is a pinned event it must be running on this CPU */ 3971 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3972 ret = -EBUSY; 3973 goto out; 3974 } 3975 3976 /* 3977 * If the event is currently on this CPU, its either a per-task event, 3978 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3979 * oncpu == -1). 3980 */ 3981 if (event->oncpu == smp_processor_id()) 3982 event->pmu->read(event); 3983 3984 *value = local64_read(&event->count); 3985 if (enabled || running) { 3986 u64 now = event->shadow_ctx_time + perf_clock(); 3987 u64 __enabled, __running; 3988 3989 __perf_update_times(event, now, &__enabled, &__running); 3990 if (enabled) 3991 *enabled = __enabled; 3992 if (running) 3993 *running = __running; 3994 } 3995 out: 3996 local_irq_restore(flags); 3997 3998 return ret; 3999 } 4000 4001 static int perf_event_read(struct perf_event *event, bool group) 4002 { 4003 enum perf_event_state state = READ_ONCE(event->state); 4004 int event_cpu, ret = 0; 4005 4006 /* 4007 * If event is enabled and currently active on a CPU, update the 4008 * value in the event structure: 4009 */ 4010 again: 4011 if (state == PERF_EVENT_STATE_ACTIVE) { 4012 struct perf_read_data data; 4013 4014 /* 4015 * Orders the ->state and ->oncpu loads such that if we see 4016 * ACTIVE we must also see the right ->oncpu. 4017 * 4018 * Matches the smp_wmb() from event_sched_in(). 4019 */ 4020 smp_rmb(); 4021 4022 event_cpu = READ_ONCE(event->oncpu); 4023 if ((unsigned)event_cpu >= nr_cpu_ids) 4024 return 0; 4025 4026 data = (struct perf_read_data){ 4027 .event = event, 4028 .group = group, 4029 .ret = 0, 4030 }; 4031 4032 preempt_disable(); 4033 event_cpu = __perf_event_read_cpu(event, event_cpu); 4034 4035 /* 4036 * Purposely ignore the smp_call_function_single() return 4037 * value. 4038 * 4039 * If event_cpu isn't a valid CPU it means the event got 4040 * scheduled out and that will have updated the event count. 4041 * 4042 * Therefore, either way, we'll have an up-to-date event count 4043 * after this. 4044 */ 4045 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4046 preempt_enable(); 4047 ret = data.ret; 4048 4049 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4050 struct perf_event_context *ctx = event->ctx; 4051 unsigned long flags; 4052 4053 raw_spin_lock_irqsave(&ctx->lock, flags); 4054 state = event->state; 4055 if (state != PERF_EVENT_STATE_INACTIVE) { 4056 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4057 goto again; 4058 } 4059 4060 /* 4061 * May read while context is not active (e.g., thread is 4062 * blocked), in that case we cannot update context time 4063 */ 4064 if (ctx->is_active & EVENT_TIME) { 4065 update_context_time(ctx); 4066 update_cgrp_time_from_event(event); 4067 } 4068 4069 perf_event_update_time(event); 4070 if (group) 4071 perf_event_update_sibling_time(event); 4072 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4073 } 4074 4075 return ret; 4076 } 4077 4078 /* 4079 * Initialize the perf_event context in a task_struct: 4080 */ 4081 static void __perf_event_init_context(struct perf_event_context *ctx) 4082 { 4083 raw_spin_lock_init(&ctx->lock); 4084 mutex_init(&ctx->mutex); 4085 INIT_LIST_HEAD(&ctx->active_ctx_list); 4086 perf_event_groups_init(&ctx->pinned_groups); 4087 perf_event_groups_init(&ctx->flexible_groups); 4088 INIT_LIST_HEAD(&ctx->event_list); 4089 INIT_LIST_HEAD(&ctx->pinned_active); 4090 INIT_LIST_HEAD(&ctx->flexible_active); 4091 refcount_set(&ctx->refcount, 1); 4092 } 4093 4094 static struct perf_event_context * 4095 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4096 { 4097 struct perf_event_context *ctx; 4098 4099 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4100 if (!ctx) 4101 return NULL; 4102 4103 __perf_event_init_context(ctx); 4104 if (task) { 4105 ctx->task = task; 4106 get_task_struct(task); 4107 } 4108 ctx->pmu = pmu; 4109 4110 return ctx; 4111 } 4112 4113 static struct task_struct * 4114 find_lively_task_by_vpid(pid_t vpid) 4115 { 4116 struct task_struct *task; 4117 4118 rcu_read_lock(); 4119 if (!vpid) 4120 task = current; 4121 else 4122 task = find_task_by_vpid(vpid); 4123 if (task) 4124 get_task_struct(task); 4125 rcu_read_unlock(); 4126 4127 if (!task) 4128 return ERR_PTR(-ESRCH); 4129 4130 return task; 4131 } 4132 4133 /* 4134 * Returns a matching context with refcount and pincount. 4135 */ 4136 static struct perf_event_context * 4137 find_get_context(struct pmu *pmu, struct task_struct *task, 4138 struct perf_event *event) 4139 { 4140 struct perf_event_context *ctx, *clone_ctx = NULL; 4141 struct perf_cpu_context *cpuctx; 4142 void *task_ctx_data = NULL; 4143 unsigned long flags; 4144 int ctxn, err; 4145 int cpu = event->cpu; 4146 4147 if (!task) { 4148 /* Must be root to operate on a CPU event: */ 4149 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4150 return ERR_PTR(-EACCES); 4151 4152 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4153 ctx = &cpuctx->ctx; 4154 get_ctx(ctx); 4155 ++ctx->pin_count; 4156 4157 return ctx; 4158 } 4159 4160 err = -EINVAL; 4161 ctxn = pmu->task_ctx_nr; 4162 if (ctxn < 0) 4163 goto errout; 4164 4165 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4166 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4167 if (!task_ctx_data) { 4168 err = -ENOMEM; 4169 goto errout; 4170 } 4171 } 4172 4173 retry: 4174 ctx = perf_lock_task_context(task, ctxn, &flags); 4175 if (ctx) { 4176 clone_ctx = unclone_ctx(ctx); 4177 ++ctx->pin_count; 4178 4179 if (task_ctx_data && !ctx->task_ctx_data) { 4180 ctx->task_ctx_data = task_ctx_data; 4181 task_ctx_data = NULL; 4182 } 4183 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4184 4185 if (clone_ctx) 4186 put_ctx(clone_ctx); 4187 } else { 4188 ctx = alloc_perf_context(pmu, task); 4189 err = -ENOMEM; 4190 if (!ctx) 4191 goto errout; 4192 4193 if (task_ctx_data) { 4194 ctx->task_ctx_data = task_ctx_data; 4195 task_ctx_data = NULL; 4196 } 4197 4198 err = 0; 4199 mutex_lock(&task->perf_event_mutex); 4200 /* 4201 * If it has already passed perf_event_exit_task(). 4202 * we must see PF_EXITING, it takes this mutex too. 4203 */ 4204 if (task->flags & PF_EXITING) 4205 err = -ESRCH; 4206 else if (task->perf_event_ctxp[ctxn]) 4207 err = -EAGAIN; 4208 else { 4209 get_ctx(ctx); 4210 ++ctx->pin_count; 4211 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4212 } 4213 mutex_unlock(&task->perf_event_mutex); 4214 4215 if (unlikely(err)) { 4216 put_ctx(ctx); 4217 4218 if (err == -EAGAIN) 4219 goto retry; 4220 goto errout; 4221 } 4222 } 4223 4224 kfree(task_ctx_data); 4225 return ctx; 4226 4227 errout: 4228 kfree(task_ctx_data); 4229 return ERR_PTR(err); 4230 } 4231 4232 static void perf_event_free_filter(struct perf_event *event); 4233 static void perf_event_free_bpf_prog(struct perf_event *event); 4234 4235 static void free_event_rcu(struct rcu_head *head) 4236 { 4237 struct perf_event *event; 4238 4239 event = container_of(head, struct perf_event, rcu_head); 4240 if (event->ns) 4241 put_pid_ns(event->ns); 4242 perf_event_free_filter(event); 4243 kfree(event); 4244 } 4245 4246 static void ring_buffer_attach(struct perf_event *event, 4247 struct ring_buffer *rb); 4248 4249 static void detach_sb_event(struct perf_event *event) 4250 { 4251 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4252 4253 raw_spin_lock(&pel->lock); 4254 list_del_rcu(&event->sb_list); 4255 raw_spin_unlock(&pel->lock); 4256 } 4257 4258 static bool is_sb_event(struct perf_event *event) 4259 { 4260 struct perf_event_attr *attr = &event->attr; 4261 4262 if (event->parent) 4263 return false; 4264 4265 if (event->attach_state & PERF_ATTACH_TASK) 4266 return false; 4267 4268 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4269 attr->comm || attr->comm_exec || 4270 attr->task || attr->ksymbol || 4271 attr->context_switch || 4272 attr->bpf_event) 4273 return true; 4274 return false; 4275 } 4276 4277 static void unaccount_pmu_sb_event(struct perf_event *event) 4278 { 4279 if (is_sb_event(event)) 4280 detach_sb_event(event); 4281 } 4282 4283 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4284 { 4285 if (event->parent) 4286 return; 4287 4288 if (is_cgroup_event(event)) 4289 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4290 } 4291 4292 #ifdef CONFIG_NO_HZ_FULL 4293 static DEFINE_SPINLOCK(nr_freq_lock); 4294 #endif 4295 4296 static void unaccount_freq_event_nohz(void) 4297 { 4298 #ifdef CONFIG_NO_HZ_FULL 4299 spin_lock(&nr_freq_lock); 4300 if (atomic_dec_and_test(&nr_freq_events)) 4301 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4302 spin_unlock(&nr_freq_lock); 4303 #endif 4304 } 4305 4306 static void unaccount_freq_event(void) 4307 { 4308 if (tick_nohz_full_enabled()) 4309 unaccount_freq_event_nohz(); 4310 else 4311 atomic_dec(&nr_freq_events); 4312 } 4313 4314 static void unaccount_event(struct perf_event *event) 4315 { 4316 bool dec = false; 4317 4318 if (event->parent) 4319 return; 4320 4321 if (event->attach_state & PERF_ATTACH_TASK) 4322 dec = true; 4323 if (event->attr.mmap || event->attr.mmap_data) 4324 atomic_dec(&nr_mmap_events); 4325 if (event->attr.comm) 4326 atomic_dec(&nr_comm_events); 4327 if (event->attr.namespaces) 4328 atomic_dec(&nr_namespaces_events); 4329 if (event->attr.task) 4330 atomic_dec(&nr_task_events); 4331 if (event->attr.freq) 4332 unaccount_freq_event(); 4333 if (event->attr.context_switch) { 4334 dec = true; 4335 atomic_dec(&nr_switch_events); 4336 } 4337 if (is_cgroup_event(event)) 4338 dec = true; 4339 if (has_branch_stack(event)) 4340 dec = true; 4341 if (event->attr.ksymbol) 4342 atomic_dec(&nr_ksymbol_events); 4343 if (event->attr.bpf_event) 4344 atomic_dec(&nr_bpf_events); 4345 4346 if (dec) { 4347 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4348 schedule_delayed_work(&perf_sched_work, HZ); 4349 } 4350 4351 unaccount_event_cpu(event, event->cpu); 4352 4353 unaccount_pmu_sb_event(event); 4354 } 4355 4356 static void perf_sched_delayed(struct work_struct *work) 4357 { 4358 mutex_lock(&perf_sched_mutex); 4359 if (atomic_dec_and_test(&perf_sched_count)) 4360 static_branch_disable(&perf_sched_events); 4361 mutex_unlock(&perf_sched_mutex); 4362 } 4363 4364 /* 4365 * The following implement mutual exclusion of events on "exclusive" pmus 4366 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4367 * at a time, so we disallow creating events that might conflict, namely: 4368 * 4369 * 1) cpu-wide events in the presence of per-task events, 4370 * 2) per-task events in the presence of cpu-wide events, 4371 * 3) two matching events on the same context. 4372 * 4373 * The former two cases are handled in the allocation path (perf_event_alloc(), 4374 * _free_event()), the latter -- before the first perf_install_in_context(). 4375 */ 4376 static int exclusive_event_init(struct perf_event *event) 4377 { 4378 struct pmu *pmu = event->pmu; 4379 4380 if (!is_exclusive_pmu(pmu)) 4381 return 0; 4382 4383 /* 4384 * Prevent co-existence of per-task and cpu-wide events on the 4385 * same exclusive pmu. 4386 * 4387 * Negative pmu::exclusive_cnt means there are cpu-wide 4388 * events on this "exclusive" pmu, positive means there are 4389 * per-task events. 4390 * 4391 * Since this is called in perf_event_alloc() path, event::ctx 4392 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4393 * to mean "per-task event", because unlike other attach states it 4394 * never gets cleared. 4395 */ 4396 if (event->attach_state & PERF_ATTACH_TASK) { 4397 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4398 return -EBUSY; 4399 } else { 4400 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4401 return -EBUSY; 4402 } 4403 4404 return 0; 4405 } 4406 4407 static void exclusive_event_destroy(struct perf_event *event) 4408 { 4409 struct pmu *pmu = event->pmu; 4410 4411 if (!is_exclusive_pmu(pmu)) 4412 return; 4413 4414 /* see comment in exclusive_event_init() */ 4415 if (event->attach_state & PERF_ATTACH_TASK) 4416 atomic_dec(&pmu->exclusive_cnt); 4417 else 4418 atomic_inc(&pmu->exclusive_cnt); 4419 } 4420 4421 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4422 { 4423 if ((e1->pmu == e2->pmu) && 4424 (e1->cpu == e2->cpu || 4425 e1->cpu == -1 || 4426 e2->cpu == -1)) 4427 return true; 4428 return false; 4429 } 4430 4431 static bool exclusive_event_installable(struct perf_event *event, 4432 struct perf_event_context *ctx) 4433 { 4434 struct perf_event *iter_event; 4435 struct pmu *pmu = event->pmu; 4436 4437 lockdep_assert_held(&ctx->mutex); 4438 4439 if (!is_exclusive_pmu(pmu)) 4440 return true; 4441 4442 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4443 if (exclusive_event_match(iter_event, event)) 4444 return false; 4445 } 4446 4447 return true; 4448 } 4449 4450 static void perf_addr_filters_splice(struct perf_event *event, 4451 struct list_head *head); 4452 4453 static void _free_event(struct perf_event *event) 4454 { 4455 irq_work_sync(&event->pending); 4456 4457 unaccount_event(event); 4458 4459 if (event->rb) { 4460 /* 4461 * Can happen when we close an event with re-directed output. 4462 * 4463 * Since we have a 0 refcount, perf_mmap_close() will skip 4464 * over us; possibly making our ring_buffer_put() the last. 4465 */ 4466 mutex_lock(&event->mmap_mutex); 4467 ring_buffer_attach(event, NULL); 4468 mutex_unlock(&event->mmap_mutex); 4469 } 4470 4471 if (is_cgroup_event(event)) 4472 perf_detach_cgroup(event); 4473 4474 if (!event->parent) { 4475 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4476 put_callchain_buffers(); 4477 } 4478 4479 perf_event_free_bpf_prog(event); 4480 perf_addr_filters_splice(event, NULL); 4481 kfree(event->addr_filter_ranges); 4482 4483 if (event->destroy) 4484 event->destroy(event); 4485 4486 /* 4487 * Must be after ->destroy(), due to uprobe_perf_close() using 4488 * hw.target. 4489 */ 4490 if (event->hw.target) 4491 put_task_struct(event->hw.target); 4492 4493 /* 4494 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4495 * all task references must be cleaned up. 4496 */ 4497 if (event->ctx) 4498 put_ctx(event->ctx); 4499 4500 exclusive_event_destroy(event); 4501 module_put(event->pmu->module); 4502 4503 call_rcu(&event->rcu_head, free_event_rcu); 4504 } 4505 4506 /* 4507 * Used to free events which have a known refcount of 1, such as in error paths 4508 * where the event isn't exposed yet and inherited events. 4509 */ 4510 static void free_event(struct perf_event *event) 4511 { 4512 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4513 "unexpected event refcount: %ld; ptr=%p\n", 4514 atomic_long_read(&event->refcount), event)) { 4515 /* leak to avoid use-after-free */ 4516 return; 4517 } 4518 4519 _free_event(event); 4520 } 4521 4522 /* 4523 * Remove user event from the owner task. 4524 */ 4525 static void perf_remove_from_owner(struct perf_event *event) 4526 { 4527 struct task_struct *owner; 4528 4529 rcu_read_lock(); 4530 /* 4531 * Matches the smp_store_release() in perf_event_exit_task(). If we 4532 * observe !owner it means the list deletion is complete and we can 4533 * indeed free this event, otherwise we need to serialize on 4534 * owner->perf_event_mutex. 4535 */ 4536 owner = READ_ONCE(event->owner); 4537 if (owner) { 4538 /* 4539 * Since delayed_put_task_struct() also drops the last 4540 * task reference we can safely take a new reference 4541 * while holding the rcu_read_lock(). 4542 */ 4543 get_task_struct(owner); 4544 } 4545 rcu_read_unlock(); 4546 4547 if (owner) { 4548 /* 4549 * If we're here through perf_event_exit_task() we're already 4550 * holding ctx->mutex which would be an inversion wrt. the 4551 * normal lock order. 4552 * 4553 * However we can safely take this lock because its the child 4554 * ctx->mutex. 4555 */ 4556 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4557 4558 /* 4559 * We have to re-check the event->owner field, if it is cleared 4560 * we raced with perf_event_exit_task(), acquiring the mutex 4561 * ensured they're done, and we can proceed with freeing the 4562 * event. 4563 */ 4564 if (event->owner) { 4565 list_del_init(&event->owner_entry); 4566 smp_store_release(&event->owner, NULL); 4567 } 4568 mutex_unlock(&owner->perf_event_mutex); 4569 put_task_struct(owner); 4570 } 4571 } 4572 4573 static void put_event(struct perf_event *event) 4574 { 4575 if (!atomic_long_dec_and_test(&event->refcount)) 4576 return; 4577 4578 _free_event(event); 4579 } 4580 4581 /* 4582 * Kill an event dead; while event:refcount will preserve the event 4583 * object, it will not preserve its functionality. Once the last 'user' 4584 * gives up the object, we'll destroy the thing. 4585 */ 4586 int perf_event_release_kernel(struct perf_event *event) 4587 { 4588 struct perf_event_context *ctx = event->ctx; 4589 struct perf_event *child, *tmp; 4590 LIST_HEAD(free_list); 4591 4592 /* 4593 * If we got here through err_file: fput(event_file); we will not have 4594 * attached to a context yet. 4595 */ 4596 if (!ctx) { 4597 WARN_ON_ONCE(event->attach_state & 4598 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4599 goto no_ctx; 4600 } 4601 4602 if (!is_kernel_event(event)) 4603 perf_remove_from_owner(event); 4604 4605 ctx = perf_event_ctx_lock(event); 4606 WARN_ON_ONCE(ctx->parent_ctx); 4607 perf_remove_from_context(event, DETACH_GROUP); 4608 4609 raw_spin_lock_irq(&ctx->lock); 4610 /* 4611 * Mark this event as STATE_DEAD, there is no external reference to it 4612 * anymore. 4613 * 4614 * Anybody acquiring event->child_mutex after the below loop _must_ 4615 * also see this, most importantly inherit_event() which will avoid 4616 * placing more children on the list. 4617 * 4618 * Thus this guarantees that we will in fact observe and kill _ALL_ 4619 * child events. 4620 */ 4621 event->state = PERF_EVENT_STATE_DEAD; 4622 raw_spin_unlock_irq(&ctx->lock); 4623 4624 perf_event_ctx_unlock(event, ctx); 4625 4626 again: 4627 mutex_lock(&event->child_mutex); 4628 list_for_each_entry(child, &event->child_list, child_list) { 4629 4630 /* 4631 * Cannot change, child events are not migrated, see the 4632 * comment with perf_event_ctx_lock_nested(). 4633 */ 4634 ctx = READ_ONCE(child->ctx); 4635 /* 4636 * Since child_mutex nests inside ctx::mutex, we must jump 4637 * through hoops. We start by grabbing a reference on the ctx. 4638 * 4639 * Since the event cannot get freed while we hold the 4640 * child_mutex, the context must also exist and have a !0 4641 * reference count. 4642 */ 4643 get_ctx(ctx); 4644 4645 /* 4646 * Now that we have a ctx ref, we can drop child_mutex, and 4647 * acquire ctx::mutex without fear of it going away. Then we 4648 * can re-acquire child_mutex. 4649 */ 4650 mutex_unlock(&event->child_mutex); 4651 mutex_lock(&ctx->mutex); 4652 mutex_lock(&event->child_mutex); 4653 4654 /* 4655 * Now that we hold ctx::mutex and child_mutex, revalidate our 4656 * state, if child is still the first entry, it didn't get freed 4657 * and we can continue doing so. 4658 */ 4659 tmp = list_first_entry_or_null(&event->child_list, 4660 struct perf_event, child_list); 4661 if (tmp == child) { 4662 perf_remove_from_context(child, DETACH_GROUP); 4663 list_move(&child->child_list, &free_list); 4664 /* 4665 * This matches the refcount bump in inherit_event(); 4666 * this can't be the last reference. 4667 */ 4668 put_event(event); 4669 } 4670 4671 mutex_unlock(&event->child_mutex); 4672 mutex_unlock(&ctx->mutex); 4673 put_ctx(ctx); 4674 goto again; 4675 } 4676 mutex_unlock(&event->child_mutex); 4677 4678 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4679 void *var = &child->ctx->refcount; 4680 4681 list_del(&child->child_list); 4682 free_event(child); 4683 4684 /* 4685 * Wake any perf_event_free_task() waiting for this event to be 4686 * freed. 4687 */ 4688 smp_mb(); /* pairs with wait_var_event() */ 4689 wake_up_var(var); 4690 } 4691 4692 no_ctx: 4693 put_event(event); /* Must be the 'last' reference */ 4694 return 0; 4695 } 4696 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4697 4698 /* 4699 * Called when the last reference to the file is gone. 4700 */ 4701 static int perf_release(struct inode *inode, struct file *file) 4702 { 4703 perf_event_release_kernel(file->private_data); 4704 return 0; 4705 } 4706 4707 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4708 { 4709 struct perf_event *child; 4710 u64 total = 0; 4711 4712 *enabled = 0; 4713 *running = 0; 4714 4715 mutex_lock(&event->child_mutex); 4716 4717 (void)perf_event_read(event, false); 4718 total += perf_event_count(event); 4719 4720 *enabled += event->total_time_enabled + 4721 atomic64_read(&event->child_total_time_enabled); 4722 *running += event->total_time_running + 4723 atomic64_read(&event->child_total_time_running); 4724 4725 list_for_each_entry(child, &event->child_list, child_list) { 4726 (void)perf_event_read(child, false); 4727 total += perf_event_count(child); 4728 *enabled += child->total_time_enabled; 4729 *running += child->total_time_running; 4730 } 4731 mutex_unlock(&event->child_mutex); 4732 4733 return total; 4734 } 4735 4736 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4737 { 4738 struct perf_event_context *ctx; 4739 u64 count; 4740 4741 ctx = perf_event_ctx_lock(event); 4742 count = __perf_event_read_value(event, enabled, running); 4743 perf_event_ctx_unlock(event, ctx); 4744 4745 return count; 4746 } 4747 EXPORT_SYMBOL_GPL(perf_event_read_value); 4748 4749 static int __perf_read_group_add(struct perf_event *leader, 4750 u64 read_format, u64 *values) 4751 { 4752 struct perf_event_context *ctx = leader->ctx; 4753 struct perf_event *sub; 4754 unsigned long flags; 4755 int n = 1; /* skip @nr */ 4756 int ret; 4757 4758 ret = perf_event_read(leader, true); 4759 if (ret) 4760 return ret; 4761 4762 raw_spin_lock_irqsave(&ctx->lock, flags); 4763 4764 /* 4765 * Since we co-schedule groups, {enabled,running} times of siblings 4766 * will be identical to those of the leader, so we only publish one 4767 * set. 4768 */ 4769 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4770 values[n++] += leader->total_time_enabled + 4771 atomic64_read(&leader->child_total_time_enabled); 4772 } 4773 4774 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4775 values[n++] += leader->total_time_running + 4776 atomic64_read(&leader->child_total_time_running); 4777 } 4778 4779 /* 4780 * Write {count,id} tuples for every sibling. 4781 */ 4782 values[n++] += perf_event_count(leader); 4783 if (read_format & PERF_FORMAT_ID) 4784 values[n++] = primary_event_id(leader); 4785 4786 for_each_sibling_event(sub, leader) { 4787 values[n++] += perf_event_count(sub); 4788 if (read_format & PERF_FORMAT_ID) 4789 values[n++] = primary_event_id(sub); 4790 } 4791 4792 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4793 return 0; 4794 } 4795 4796 static int perf_read_group(struct perf_event *event, 4797 u64 read_format, char __user *buf) 4798 { 4799 struct perf_event *leader = event->group_leader, *child; 4800 struct perf_event_context *ctx = leader->ctx; 4801 int ret; 4802 u64 *values; 4803 4804 lockdep_assert_held(&ctx->mutex); 4805 4806 values = kzalloc(event->read_size, GFP_KERNEL); 4807 if (!values) 4808 return -ENOMEM; 4809 4810 values[0] = 1 + leader->nr_siblings; 4811 4812 /* 4813 * By locking the child_mutex of the leader we effectively 4814 * lock the child list of all siblings.. XXX explain how. 4815 */ 4816 mutex_lock(&leader->child_mutex); 4817 4818 ret = __perf_read_group_add(leader, read_format, values); 4819 if (ret) 4820 goto unlock; 4821 4822 list_for_each_entry(child, &leader->child_list, child_list) { 4823 ret = __perf_read_group_add(child, read_format, values); 4824 if (ret) 4825 goto unlock; 4826 } 4827 4828 mutex_unlock(&leader->child_mutex); 4829 4830 ret = event->read_size; 4831 if (copy_to_user(buf, values, event->read_size)) 4832 ret = -EFAULT; 4833 goto out; 4834 4835 unlock: 4836 mutex_unlock(&leader->child_mutex); 4837 out: 4838 kfree(values); 4839 return ret; 4840 } 4841 4842 static int perf_read_one(struct perf_event *event, 4843 u64 read_format, char __user *buf) 4844 { 4845 u64 enabled, running; 4846 u64 values[4]; 4847 int n = 0; 4848 4849 values[n++] = __perf_event_read_value(event, &enabled, &running); 4850 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4851 values[n++] = enabled; 4852 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4853 values[n++] = running; 4854 if (read_format & PERF_FORMAT_ID) 4855 values[n++] = primary_event_id(event); 4856 4857 if (copy_to_user(buf, values, n * sizeof(u64))) 4858 return -EFAULT; 4859 4860 return n * sizeof(u64); 4861 } 4862 4863 static bool is_event_hup(struct perf_event *event) 4864 { 4865 bool no_children; 4866 4867 if (event->state > PERF_EVENT_STATE_EXIT) 4868 return false; 4869 4870 mutex_lock(&event->child_mutex); 4871 no_children = list_empty(&event->child_list); 4872 mutex_unlock(&event->child_mutex); 4873 return no_children; 4874 } 4875 4876 /* 4877 * Read the performance event - simple non blocking version for now 4878 */ 4879 static ssize_t 4880 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4881 { 4882 u64 read_format = event->attr.read_format; 4883 int ret; 4884 4885 /* 4886 * Return end-of-file for a read on an event that is in 4887 * error state (i.e. because it was pinned but it couldn't be 4888 * scheduled on to the CPU at some point). 4889 */ 4890 if (event->state == PERF_EVENT_STATE_ERROR) 4891 return 0; 4892 4893 if (count < event->read_size) 4894 return -ENOSPC; 4895 4896 WARN_ON_ONCE(event->ctx->parent_ctx); 4897 if (read_format & PERF_FORMAT_GROUP) 4898 ret = perf_read_group(event, read_format, buf); 4899 else 4900 ret = perf_read_one(event, read_format, buf); 4901 4902 return ret; 4903 } 4904 4905 static ssize_t 4906 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4907 { 4908 struct perf_event *event = file->private_data; 4909 struct perf_event_context *ctx; 4910 int ret; 4911 4912 ctx = perf_event_ctx_lock(event); 4913 ret = __perf_read(event, buf, count); 4914 perf_event_ctx_unlock(event, ctx); 4915 4916 return ret; 4917 } 4918 4919 static __poll_t perf_poll(struct file *file, poll_table *wait) 4920 { 4921 struct perf_event *event = file->private_data; 4922 struct ring_buffer *rb; 4923 __poll_t events = EPOLLHUP; 4924 4925 poll_wait(file, &event->waitq, wait); 4926 4927 if (is_event_hup(event)) 4928 return events; 4929 4930 /* 4931 * Pin the event->rb by taking event->mmap_mutex; otherwise 4932 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4933 */ 4934 mutex_lock(&event->mmap_mutex); 4935 rb = event->rb; 4936 if (rb) 4937 events = atomic_xchg(&rb->poll, 0); 4938 mutex_unlock(&event->mmap_mutex); 4939 return events; 4940 } 4941 4942 static void _perf_event_reset(struct perf_event *event) 4943 { 4944 (void)perf_event_read(event, false); 4945 local64_set(&event->count, 0); 4946 perf_event_update_userpage(event); 4947 } 4948 4949 /* 4950 * Holding the top-level event's child_mutex means that any 4951 * descendant process that has inherited this event will block 4952 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4953 * task existence requirements of perf_event_enable/disable. 4954 */ 4955 static void perf_event_for_each_child(struct perf_event *event, 4956 void (*func)(struct perf_event *)) 4957 { 4958 struct perf_event *child; 4959 4960 WARN_ON_ONCE(event->ctx->parent_ctx); 4961 4962 mutex_lock(&event->child_mutex); 4963 func(event); 4964 list_for_each_entry(child, &event->child_list, child_list) 4965 func(child); 4966 mutex_unlock(&event->child_mutex); 4967 } 4968 4969 static void perf_event_for_each(struct perf_event *event, 4970 void (*func)(struct perf_event *)) 4971 { 4972 struct perf_event_context *ctx = event->ctx; 4973 struct perf_event *sibling; 4974 4975 lockdep_assert_held(&ctx->mutex); 4976 4977 event = event->group_leader; 4978 4979 perf_event_for_each_child(event, func); 4980 for_each_sibling_event(sibling, event) 4981 perf_event_for_each_child(sibling, func); 4982 } 4983 4984 static void __perf_event_period(struct perf_event *event, 4985 struct perf_cpu_context *cpuctx, 4986 struct perf_event_context *ctx, 4987 void *info) 4988 { 4989 u64 value = *((u64 *)info); 4990 bool active; 4991 4992 if (event->attr.freq) { 4993 event->attr.sample_freq = value; 4994 } else { 4995 event->attr.sample_period = value; 4996 event->hw.sample_period = value; 4997 } 4998 4999 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5000 if (active) { 5001 perf_pmu_disable(ctx->pmu); 5002 /* 5003 * We could be throttled; unthrottle now to avoid the tick 5004 * trying to unthrottle while we already re-started the event. 5005 */ 5006 if (event->hw.interrupts == MAX_INTERRUPTS) { 5007 event->hw.interrupts = 0; 5008 perf_log_throttle(event, 1); 5009 } 5010 event->pmu->stop(event, PERF_EF_UPDATE); 5011 } 5012 5013 local64_set(&event->hw.period_left, 0); 5014 5015 if (active) { 5016 event->pmu->start(event, PERF_EF_RELOAD); 5017 perf_pmu_enable(ctx->pmu); 5018 } 5019 } 5020 5021 static int perf_event_check_period(struct perf_event *event, u64 value) 5022 { 5023 return event->pmu->check_period(event, value); 5024 } 5025 5026 static int perf_event_period(struct perf_event *event, u64 __user *arg) 5027 { 5028 u64 value; 5029 5030 if (!is_sampling_event(event)) 5031 return -EINVAL; 5032 5033 if (copy_from_user(&value, arg, sizeof(value))) 5034 return -EFAULT; 5035 5036 if (!value) 5037 return -EINVAL; 5038 5039 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5040 return -EINVAL; 5041 5042 if (perf_event_check_period(event, value)) 5043 return -EINVAL; 5044 5045 if (!event->attr.freq && (value & (1ULL << 63))) 5046 return -EINVAL; 5047 5048 event_function_call(event, __perf_event_period, &value); 5049 5050 return 0; 5051 } 5052 5053 static const struct file_operations perf_fops; 5054 5055 static inline int perf_fget_light(int fd, struct fd *p) 5056 { 5057 struct fd f = fdget(fd); 5058 if (!f.file) 5059 return -EBADF; 5060 5061 if (f.file->f_op != &perf_fops) { 5062 fdput(f); 5063 return -EBADF; 5064 } 5065 *p = f; 5066 return 0; 5067 } 5068 5069 static int perf_event_set_output(struct perf_event *event, 5070 struct perf_event *output_event); 5071 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5072 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5073 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5074 struct perf_event_attr *attr); 5075 5076 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5077 { 5078 void (*func)(struct perf_event *); 5079 u32 flags = arg; 5080 5081 switch (cmd) { 5082 case PERF_EVENT_IOC_ENABLE: 5083 func = _perf_event_enable; 5084 break; 5085 case PERF_EVENT_IOC_DISABLE: 5086 func = _perf_event_disable; 5087 break; 5088 case PERF_EVENT_IOC_RESET: 5089 func = _perf_event_reset; 5090 break; 5091 5092 case PERF_EVENT_IOC_REFRESH: 5093 return _perf_event_refresh(event, arg); 5094 5095 case PERF_EVENT_IOC_PERIOD: 5096 return perf_event_period(event, (u64 __user *)arg); 5097 5098 case PERF_EVENT_IOC_ID: 5099 { 5100 u64 id = primary_event_id(event); 5101 5102 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5103 return -EFAULT; 5104 return 0; 5105 } 5106 5107 case PERF_EVENT_IOC_SET_OUTPUT: 5108 { 5109 int ret; 5110 if (arg != -1) { 5111 struct perf_event *output_event; 5112 struct fd output; 5113 ret = perf_fget_light(arg, &output); 5114 if (ret) 5115 return ret; 5116 output_event = output.file->private_data; 5117 ret = perf_event_set_output(event, output_event); 5118 fdput(output); 5119 } else { 5120 ret = perf_event_set_output(event, NULL); 5121 } 5122 return ret; 5123 } 5124 5125 case PERF_EVENT_IOC_SET_FILTER: 5126 return perf_event_set_filter(event, (void __user *)arg); 5127 5128 case PERF_EVENT_IOC_SET_BPF: 5129 return perf_event_set_bpf_prog(event, arg); 5130 5131 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5132 struct ring_buffer *rb; 5133 5134 rcu_read_lock(); 5135 rb = rcu_dereference(event->rb); 5136 if (!rb || !rb->nr_pages) { 5137 rcu_read_unlock(); 5138 return -EINVAL; 5139 } 5140 rb_toggle_paused(rb, !!arg); 5141 rcu_read_unlock(); 5142 return 0; 5143 } 5144 5145 case PERF_EVENT_IOC_QUERY_BPF: 5146 return perf_event_query_prog_array(event, (void __user *)arg); 5147 5148 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5149 struct perf_event_attr new_attr; 5150 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5151 &new_attr); 5152 5153 if (err) 5154 return err; 5155 5156 return perf_event_modify_attr(event, &new_attr); 5157 } 5158 default: 5159 return -ENOTTY; 5160 } 5161 5162 if (flags & PERF_IOC_FLAG_GROUP) 5163 perf_event_for_each(event, func); 5164 else 5165 perf_event_for_each_child(event, func); 5166 5167 return 0; 5168 } 5169 5170 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5171 { 5172 struct perf_event *event = file->private_data; 5173 struct perf_event_context *ctx; 5174 long ret; 5175 5176 ctx = perf_event_ctx_lock(event); 5177 ret = _perf_ioctl(event, cmd, arg); 5178 perf_event_ctx_unlock(event, ctx); 5179 5180 return ret; 5181 } 5182 5183 #ifdef CONFIG_COMPAT 5184 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5185 unsigned long arg) 5186 { 5187 switch (_IOC_NR(cmd)) { 5188 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5189 case _IOC_NR(PERF_EVENT_IOC_ID): 5190 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5191 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5192 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5193 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5194 cmd &= ~IOCSIZE_MASK; 5195 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5196 } 5197 break; 5198 } 5199 return perf_ioctl(file, cmd, arg); 5200 } 5201 #else 5202 # define perf_compat_ioctl NULL 5203 #endif 5204 5205 int perf_event_task_enable(void) 5206 { 5207 struct perf_event_context *ctx; 5208 struct perf_event *event; 5209 5210 mutex_lock(¤t->perf_event_mutex); 5211 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5212 ctx = perf_event_ctx_lock(event); 5213 perf_event_for_each_child(event, _perf_event_enable); 5214 perf_event_ctx_unlock(event, ctx); 5215 } 5216 mutex_unlock(¤t->perf_event_mutex); 5217 5218 return 0; 5219 } 5220 5221 int perf_event_task_disable(void) 5222 { 5223 struct perf_event_context *ctx; 5224 struct perf_event *event; 5225 5226 mutex_lock(¤t->perf_event_mutex); 5227 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5228 ctx = perf_event_ctx_lock(event); 5229 perf_event_for_each_child(event, _perf_event_disable); 5230 perf_event_ctx_unlock(event, ctx); 5231 } 5232 mutex_unlock(¤t->perf_event_mutex); 5233 5234 return 0; 5235 } 5236 5237 static int perf_event_index(struct perf_event *event) 5238 { 5239 if (event->hw.state & PERF_HES_STOPPED) 5240 return 0; 5241 5242 if (event->state != PERF_EVENT_STATE_ACTIVE) 5243 return 0; 5244 5245 return event->pmu->event_idx(event); 5246 } 5247 5248 static void calc_timer_values(struct perf_event *event, 5249 u64 *now, 5250 u64 *enabled, 5251 u64 *running) 5252 { 5253 u64 ctx_time; 5254 5255 *now = perf_clock(); 5256 ctx_time = event->shadow_ctx_time + *now; 5257 __perf_update_times(event, ctx_time, enabled, running); 5258 } 5259 5260 static void perf_event_init_userpage(struct perf_event *event) 5261 { 5262 struct perf_event_mmap_page *userpg; 5263 struct ring_buffer *rb; 5264 5265 rcu_read_lock(); 5266 rb = rcu_dereference(event->rb); 5267 if (!rb) 5268 goto unlock; 5269 5270 userpg = rb->user_page; 5271 5272 /* Allow new userspace to detect that bit 0 is deprecated */ 5273 userpg->cap_bit0_is_deprecated = 1; 5274 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5275 userpg->data_offset = PAGE_SIZE; 5276 userpg->data_size = perf_data_size(rb); 5277 5278 unlock: 5279 rcu_read_unlock(); 5280 } 5281 5282 void __weak arch_perf_update_userpage( 5283 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5284 { 5285 } 5286 5287 /* 5288 * Callers need to ensure there can be no nesting of this function, otherwise 5289 * the seqlock logic goes bad. We can not serialize this because the arch 5290 * code calls this from NMI context. 5291 */ 5292 void perf_event_update_userpage(struct perf_event *event) 5293 { 5294 struct perf_event_mmap_page *userpg; 5295 struct ring_buffer *rb; 5296 u64 enabled, running, now; 5297 5298 rcu_read_lock(); 5299 rb = rcu_dereference(event->rb); 5300 if (!rb) 5301 goto unlock; 5302 5303 /* 5304 * compute total_time_enabled, total_time_running 5305 * based on snapshot values taken when the event 5306 * was last scheduled in. 5307 * 5308 * we cannot simply called update_context_time() 5309 * because of locking issue as we can be called in 5310 * NMI context 5311 */ 5312 calc_timer_values(event, &now, &enabled, &running); 5313 5314 userpg = rb->user_page; 5315 /* 5316 * Disable preemption to guarantee consistent time stamps are stored to 5317 * the user page. 5318 */ 5319 preempt_disable(); 5320 ++userpg->lock; 5321 barrier(); 5322 userpg->index = perf_event_index(event); 5323 userpg->offset = perf_event_count(event); 5324 if (userpg->index) 5325 userpg->offset -= local64_read(&event->hw.prev_count); 5326 5327 userpg->time_enabled = enabled + 5328 atomic64_read(&event->child_total_time_enabled); 5329 5330 userpg->time_running = running + 5331 atomic64_read(&event->child_total_time_running); 5332 5333 arch_perf_update_userpage(event, userpg, now); 5334 5335 barrier(); 5336 ++userpg->lock; 5337 preempt_enable(); 5338 unlock: 5339 rcu_read_unlock(); 5340 } 5341 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5342 5343 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5344 { 5345 struct perf_event *event = vmf->vma->vm_file->private_data; 5346 struct ring_buffer *rb; 5347 vm_fault_t ret = VM_FAULT_SIGBUS; 5348 5349 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5350 if (vmf->pgoff == 0) 5351 ret = 0; 5352 return ret; 5353 } 5354 5355 rcu_read_lock(); 5356 rb = rcu_dereference(event->rb); 5357 if (!rb) 5358 goto unlock; 5359 5360 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5361 goto unlock; 5362 5363 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5364 if (!vmf->page) 5365 goto unlock; 5366 5367 get_page(vmf->page); 5368 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5369 vmf->page->index = vmf->pgoff; 5370 5371 ret = 0; 5372 unlock: 5373 rcu_read_unlock(); 5374 5375 return ret; 5376 } 5377 5378 static void ring_buffer_attach(struct perf_event *event, 5379 struct ring_buffer *rb) 5380 { 5381 struct ring_buffer *old_rb = NULL; 5382 unsigned long flags; 5383 5384 if (event->rb) { 5385 /* 5386 * Should be impossible, we set this when removing 5387 * event->rb_entry and wait/clear when adding event->rb_entry. 5388 */ 5389 WARN_ON_ONCE(event->rcu_pending); 5390 5391 old_rb = event->rb; 5392 spin_lock_irqsave(&old_rb->event_lock, flags); 5393 list_del_rcu(&event->rb_entry); 5394 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5395 5396 event->rcu_batches = get_state_synchronize_rcu(); 5397 event->rcu_pending = 1; 5398 } 5399 5400 if (rb) { 5401 if (event->rcu_pending) { 5402 cond_synchronize_rcu(event->rcu_batches); 5403 event->rcu_pending = 0; 5404 } 5405 5406 spin_lock_irqsave(&rb->event_lock, flags); 5407 list_add_rcu(&event->rb_entry, &rb->event_list); 5408 spin_unlock_irqrestore(&rb->event_lock, flags); 5409 } 5410 5411 /* 5412 * Avoid racing with perf_mmap_close(AUX): stop the event 5413 * before swizzling the event::rb pointer; if it's getting 5414 * unmapped, its aux_mmap_count will be 0 and it won't 5415 * restart. See the comment in __perf_pmu_output_stop(). 5416 * 5417 * Data will inevitably be lost when set_output is done in 5418 * mid-air, but then again, whoever does it like this is 5419 * not in for the data anyway. 5420 */ 5421 if (has_aux(event)) 5422 perf_event_stop(event, 0); 5423 5424 rcu_assign_pointer(event->rb, rb); 5425 5426 if (old_rb) { 5427 ring_buffer_put(old_rb); 5428 /* 5429 * Since we detached before setting the new rb, so that we 5430 * could attach the new rb, we could have missed a wakeup. 5431 * Provide it now. 5432 */ 5433 wake_up_all(&event->waitq); 5434 } 5435 } 5436 5437 static void ring_buffer_wakeup(struct perf_event *event) 5438 { 5439 struct ring_buffer *rb; 5440 5441 rcu_read_lock(); 5442 rb = rcu_dereference(event->rb); 5443 if (rb) { 5444 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5445 wake_up_all(&event->waitq); 5446 } 5447 rcu_read_unlock(); 5448 } 5449 5450 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5451 { 5452 struct ring_buffer *rb; 5453 5454 rcu_read_lock(); 5455 rb = rcu_dereference(event->rb); 5456 if (rb) { 5457 if (!refcount_inc_not_zero(&rb->refcount)) 5458 rb = NULL; 5459 } 5460 rcu_read_unlock(); 5461 5462 return rb; 5463 } 5464 5465 void ring_buffer_put(struct ring_buffer *rb) 5466 { 5467 if (!refcount_dec_and_test(&rb->refcount)) 5468 return; 5469 5470 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5471 5472 call_rcu(&rb->rcu_head, rb_free_rcu); 5473 } 5474 5475 static void perf_mmap_open(struct vm_area_struct *vma) 5476 { 5477 struct perf_event *event = vma->vm_file->private_data; 5478 5479 atomic_inc(&event->mmap_count); 5480 atomic_inc(&event->rb->mmap_count); 5481 5482 if (vma->vm_pgoff) 5483 atomic_inc(&event->rb->aux_mmap_count); 5484 5485 if (event->pmu->event_mapped) 5486 event->pmu->event_mapped(event, vma->vm_mm); 5487 } 5488 5489 static void perf_pmu_output_stop(struct perf_event *event); 5490 5491 /* 5492 * A buffer can be mmap()ed multiple times; either directly through the same 5493 * event, or through other events by use of perf_event_set_output(). 5494 * 5495 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5496 * the buffer here, where we still have a VM context. This means we need 5497 * to detach all events redirecting to us. 5498 */ 5499 static void perf_mmap_close(struct vm_area_struct *vma) 5500 { 5501 struct perf_event *event = vma->vm_file->private_data; 5502 5503 struct ring_buffer *rb = ring_buffer_get(event); 5504 struct user_struct *mmap_user = rb->mmap_user; 5505 int mmap_locked = rb->mmap_locked; 5506 unsigned long size = perf_data_size(rb); 5507 5508 if (event->pmu->event_unmapped) 5509 event->pmu->event_unmapped(event, vma->vm_mm); 5510 5511 /* 5512 * rb->aux_mmap_count will always drop before rb->mmap_count and 5513 * event->mmap_count, so it is ok to use event->mmap_mutex to 5514 * serialize with perf_mmap here. 5515 */ 5516 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5517 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5518 /* 5519 * Stop all AUX events that are writing to this buffer, 5520 * so that we can free its AUX pages and corresponding PMU 5521 * data. Note that after rb::aux_mmap_count dropped to zero, 5522 * they won't start any more (see perf_aux_output_begin()). 5523 */ 5524 perf_pmu_output_stop(event); 5525 5526 /* now it's safe to free the pages */ 5527 if (!rb->aux_mmap_locked) 5528 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5529 else 5530 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5531 5532 /* this has to be the last one */ 5533 rb_free_aux(rb); 5534 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5535 5536 mutex_unlock(&event->mmap_mutex); 5537 } 5538 5539 atomic_dec(&rb->mmap_count); 5540 5541 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5542 goto out_put; 5543 5544 ring_buffer_attach(event, NULL); 5545 mutex_unlock(&event->mmap_mutex); 5546 5547 /* If there's still other mmap()s of this buffer, we're done. */ 5548 if (atomic_read(&rb->mmap_count)) 5549 goto out_put; 5550 5551 /* 5552 * No other mmap()s, detach from all other events that might redirect 5553 * into the now unreachable buffer. Somewhat complicated by the 5554 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5555 */ 5556 again: 5557 rcu_read_lock(); 5558 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5559 if (!atomic_long_inc_not_zero(&event->refcount)) { 5560 /* 5561 * This event is en-route to free_event() which will 5562 * detach it and remove it from the list. 5563 */ 5564 continue; 5565 } 5566 rcu_read_unlock(); 5567 5568 mutex_lock(&event->mmap_mutex); 5569 /* 5570 * Check we didn't race with perf_event_set_output() which can 5571 * swizzle the rb from under us while we were waiting to 5572 * acquire mmap_mutex. 5573 * 5574 * If we find a different rb; ignore this event, a next 5575 * iteration will no longer find it on the list. We have to 5576 * still restart the iteration to make sure we're not now 5577 * iterating the wrong list. 5578 */ 5579 if (event->rb == rb) 5580 ring_buffer_attach(event, NULL); 5581 5582 mutex_unlock(&event->mmap_mutex); 5583 put_event(event); 5584 5585 /* 5586 * Restart the iteration; either we're on the wrong list or 5587 * destroyed its integrity by doing a deletion. 5588 */ 5589 goto again; 5590 } 5591 rcu_read_unlock(); 5592 5593 /* 5594 * It could be there's still a few 0-ref events on the list; they'll 5595 * get cleaned up by free_event() -- they'll also still have their 5596 * ref on the rb and will free it whenever they are done with it. 5597 * 5598 * Aside from that, this buffer is 'fully' detached and unmapped, 5599 * undo the VM accounting. 5600 */ 5601 5602 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5603 &mmap_user->locked_vm); 5604 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5605 free_uid(mmap_user); 5606 5607 out_put: 5608 ring_buffer_put(rb); /* could be last */ 5609 } 5610 5611 static const struct vm_operations_struct perf_mmap_vmops = { 5612 .open = perf_mmap_open, 5613 .close = perf_mmap_close, /* non mergeable */ 5614 .fault = perf_mmap_fault, 5615 .page_mkwrite = perf_mmap_fault, 5616 }; 5617 5618 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5619 { 5620 struct perf_event *event = file->private_data; 5621 unsigned long user_locked, user_lock_limit; 5622 struct user_struct *user = current_user(); 5623 unsigned long locked, lock_limit; 5624 struct ring_buffer *rb = NULL; 5625 unsigned long vma_size; 5626 unsigned long nr_pages; 5627 long user_extra = 0, extra = 0; 5628 int ret = 0, flags = 0; 5629 5630 /* 5631 * Don't allow mmap() of inherited per-task counters. This would 5632 * create a performance issue due to all children writing to the 5633 * same rb. 5634 */ 5635 if (event->cpu == -1 && event->attr.inherit) 5636 return -EINVAL; 5637 5638 if (!(vma->vm_flags & VM_SHARED)) 5639 return -EINVAL; 5640 5641 vma_size = vma->vm_end - vma->vm_start; 5642 5643 if (vma->vm_pgoff == 0) { 5644 nr_pages = (vma_size / PAGE_SIZE) - 1; 5645 } else { 5646 /* 5647 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5648 * mapped, all subsequent mappings should have the same size 5649 * and offset. Must be above the normal perf buffer. 5650 */ 5651 u64 aux_offset, aux_size; 5652 5653 if (!event->rb) 5654 return -EINVAL; 5655 5656 nr_pages = vma_size / PAGE_SIZE; 5657 5658 mutex_lock(&event->mmap_mutex); 5659 ret = -EINVAL; 5660 5661 rb = event->rb; 5662 if (!rb) 5663 goto aux_unlock; 5664 5665 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5666 aux_size = READ_ONCE(rb->user_page->aux_size); 5667 5668 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5669 goto aux_unlock; 5670 5671 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5672 goto aux_unlock; 5673 5674 /* already mapped with a different offset */ 5675 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5676 goto aux_unlock; 5677 5678 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5679 goto aux_unlock; 5680 5681 /* already mapped with a different size */ 5682 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5683 goto aux_unlock; 5684 5685 if (!is_power_of_2(nr_pages)) 5686 goto aux_unlock; 5687 5688 if (!atomic_inc_not_zero(&rb->mmap_count)) 5689 goto aux_unlock; 5690 5691 if (rb_has_aux(rb)) { 5692 atomic_inc(&rb->aux_mmap_count); 5693 ret = 0; 5694 goto unlock; 5695 } 5696 5697 atomic_set(&rb->aux_mmap_count, 1); 5698 user_extra = nr_pages; 5699 5700 goto accounting; 5701 } 5702 5703 /* 5704 * If we have rb pages ensure they're a power-of-two number, so we 5705 * can do bitmasks instead of modulo. 5706 */ 5707 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5708 return -EINVAL; 5709 5710 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5711 return -EINVAL; 5712 5713 WARN_ON_ONCE(event->ctx->parent_ctx); 5714 again: 5715 mutex_lock(&event->mmap_mutex); 5716 if (event->rb) { 5717 if (event->rb->nr_pages != nr_pages) { 5718 ret = -EINVAL; 5719 goto unlock; 5720 } 5721 5722 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5723 /* 5724 * Raced against perf_mmap_close() through 5725 * perf_event_set_output(). Try again, hope for better 5726 * luck. 5727 */ 5728 mutex_unlock(&event->mmap_mutex); 5729 goto again; 5730 } 5731 5732 goto unlock; 5733 } 5734 5735 user_extra = nr_pages + 1; 5736 5737 accounting: 5738 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5739 5740 /* 5741 * Increase the limit linearly with more CPUs: 5742 */ 5743 user_lock_limit *= num_online_cpus(); 5744 5745 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5746 5747 if (user_locked <= user_lock_limit) { 5748 /* charge all to locked_vm */ 5749 } else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) { 5750 /* charge all to pinned_vm */ 5751 extra = user_extra; 5752 user_extra = 0; 5753 } else { 5754 /* 5755 * charge locked_vm until it hits user_lock_limit; 5756 * charge the rest from pinned_vm 5757 */ 5758 extra = user_locked - user_lock_limit; 5759 user_extra -= extra; 5760 } 5761 5762 lock_limit = rlimit(RLIMIT_MEMLOCK); 5763 lock_limit >>= PAGE_SHIFT; 5764 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5765 5766 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5767 !capable(CAP_IPC_LOCK)) { 5768 ret = -EPERM; 5769 goto unlock; 5770 } 5771 5772 WARN_ON(!rb && event->rb); 5773 5774 if (vma->vm_flags & VM_WRITE) 5775 flags |= RING_BUFFER_WRITABLE; 5776 5777 if (!rb) { 5778 rb = rb_alloc(nr_pages, 5779 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5780 event->cpu, flags); 5781 5782 if (!rb) { 5783 ret = -ENOMEM; 5784 goto unlock; 5785 } 5786 5787 atomic_set(&rb->mmap_count, 1); 5788 rb->mmap_user = get_current_user(); 5789 rb->mmap_locked = extra; 5790 5791 ring_buffer_attach(event, rb); 5792 5793 perf_event_init_userpage(event); 5794 perf_event_update_userpage(event); 5795 } else { 5796 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5797 event->attr.aux_watermark, flags); 5798 if (!ret) 5799 rb->aux_mmap_locked = extra; 5800 } 5801 5802 unlock: 5803 if (!ret) { 5804 atomic_long_add(user_extra, &user->locked_vm); 5805 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5806 5807 atomic_inc(&event->mmap_count); 5808 } else if (rb) { 5809 atomic_dec(&rb->mmap_count); 5810 } 5811 aux_unlock: 5812 mutex_unlock(&event->mmap_mutex); 5813 5814 /* 5815 * Since pinned accounting is per vm we cannot allow fork() to copy our 5816 * vma. 5817 */ 5818 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5819 vma->vm_ops = &perf_mmap_vmops; 5820 5821 if (event->pmu->event_mapped) 5822 event->pmu->event_mapped(event, vma->vm_mm); 5823 5824 return ret; 5825 } 5826 5827 static int perf_fasync(int fd, struct file *filp, int on) 5828 { 5829 struct inode *inode = file_inode(filp); 5830 struct perf_event *event = filp->private_data; 5831 int retval; 5832 5833 inode_lock(inode); 5834 retval = fasync_helper(fd, filp, on, &event->fasync); 5835 inode_unlock(inode); 5836 5837 if (retval < 0) 5838 return retval; 5839 5840 return 0; 5841 } 5842 5843 static const struct file_operations perf_fops = { 5844 .llseek = no_llseek, 5845 .release = perf_release, 5846 .read = perf_read, 5847 .poll = perf_poll, 5848 .unlocked_ioctl = perf_ioctl, 5849 .compat_ioctl = perf_compat_ioctl, 5850 .mmap = perf_mmap, 5851 .fasync = perf_fasync, 5852 }; 5853 5854 /* 5855 * Perf event wakeup 5856 * 5857 * If there's data, ensure we set the poll() state and publish everything 5858 * to user-space before waking everybody up. 5859 */ 5860 5861 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5862 { 5863 /* only the parent has fasync state */ 5864 if (event->parent) 5865 event = event->parent; 5866 return &event->fasync; 5867 } 5868 5869 void perf_event_wakeup(struct perf_event *event) 5870 { 5871 ring_buffer_wakeup(event); 5872 5873 if (event->pending_kill) { 5874 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5875 event->pending_kill = 0; 5876 } 5877 } 5878 5879 static void perf_pending_event_disable(struct perf_event *event) 5880 { 5881 int cpu = READ_ONCE(event->pending_disable); 5882 5883 if (cpu < 0) 5884 return; 5885 5886 if (cpu == smp_processor_id()) { 5887 WRITE_ONCE(event->pending_disable, -1); 5888 perf_event_disable_local(event); 5889 return; 5890 } 5891 5892 /* 5893 * CPU-A CPU-B 5894 * 5895 * perf_event_disable_inatomic() 5896 * @pending_disable = CPU-A; 5897 * irq_work_queue(); 5898 * 5899 * sched-out 5900 * @pending_disable = -1; 5901 * 5902 * sched-in 5903 * perf_event_disable_inatomic() 5904 * @pending_disable = CPU-B; 5905 * irq_work_queue(); // FAILS 5906 * 5907 * irq_work_run() 5908 * perf_pending_event() 5909 * 5910 * But the event runs on CPU-B and wants disabling there. 5911 */ 5912 irq_work_queue_on(&event->pending, cpu); 5913 } 5914 5915 static void perf_pending_event(struct irq_work *entry) 5916 { 5917 struct perf_event *event = container_of(entry, struct perf_event, pending); 5918 int rctx; 5919 5920 rctx = perf_swevent_get_recursion_context(); 5921 /* 5922 * If we 'fail' here, that's OK, it means recursion is already disabled 5923 * and we won't recurse 'further'. 5924 */ 5925 5926 perf_pending_event_disable(event); 5927 5928 if (event->pending_wakeup) { 5929 event->pending_wakeup = 0; 5930 perf_event_wakeup(event); 5931 } 5932 5933 if (rctx >= 0) 5934 perf_swevent_put_recursion_context(rctx); 5935 } 5936 5937 /* 5938 * We assume there is only KVM supporting the callbacks. 5939 * Later on, we might change it to a list if there is 5940 * another virtualization implementation supporting the callbacks. 5941 */ 5942 struct perf_guest_info_callbacks *perf_guest_cbs; 5943 5944 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5945 { 5946 perf_guest_cbs = cbs; 5947 return 0; 5948 } 5949 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5950 5951 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5952 { 5953 perf_guest_cbs = NULL; 5954 return 0; 5955 } 5956 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5957 5958 static void 5959 perf_output_sample_regs(struct perf_output_handle *handle, 5960 struct pt_regs *regs, u64 mask) 5961 { 5962 int bit; 5963 DECLARE_BITMAP(_mask, 64); 5964 5965 bitmap_from_u64(_mask, mask); 5966 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5967 u64 val; 5968 5969 val = perf_reg_value(regs, bit); 5970 perf_output_put(handle, val); 5971 } 5972 } 5973 5974 static void perf_sample_regs_user(struct perf_regs *regs_user, 5975 struct pt_regs *regs, 5976 struct pt_regs *regs_user_copy) 5977 { 5978 if (user_mode(regs)) { 5979 regs_user->abi = perf_reg_abi(current); 5980 regs_user->regs = regs; 5981 } else if (!(current->flags & PF_KTHREAD)) { 5982 perf_get_regs_user(regs_user, regs, regs_user_copy); 5983 } else { 5984 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5985 regs_user->regs = NULL; 5986 } 5987 } 5988 5989 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5990 struct pt_regs *regs) 5991 { 5992 regs_intr->regs = regs; 5993 regs_intr->abi = perf_reg_abi(current); 5994 } 5995 5996 5997 /* 5998 * Get remaining task size from user stack pointer. 5999 * 6000 * It'd be better to take stack vma map and limit this more 6001 * precisly, but there's no way to get it safely under interrupt, 6002 * so using TASK_SIZE as limit. 6003 */ 6004 static u64 perf_ustack_task_size(struct pt_regs *regs) 6005 { 6006 unsigned long addr = perf_user_stack_pointer(regs); 6007 6008 if (!addr || addr >= TASK_SIZE) 6009 return 0; 6010 6011 return TASK_SIZE - addr; 6012 } 6013 6014 static u16 6015 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6016 struct pt_regs *regs) 6017 { 6018 u64 task_size; 6019 6020 /* No regs, no stack pointer, no dump. */ 6021 if (!regs) 6022 return 0; 6023 6024 /* 6025 * Check if we fit in with the requested stack size into the: 6026 * - TASK_SIZE 6027 * If we don't, we limit the size to the TASK_SIZE. 6028 * 6029 * - remaining sample size 6030 * If we don't, we customize the stack size to 6031 * fit in to the remaining sample size. 6032 */ 6033 6034 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6035 stack_size = min(stack_size, (u16) task_size); 6036 6037 /* Current header size plus static size and dynamic size. */ 6038 header_size += 2 * sizeof(u64); 6039 6040 /* Do we fit in with the current stack dump size? */ 6041 if ((u16) (header_size + stack_size) < header_size) { 6042 /* 6043 * If we overflow the maximum size for the sample, 6044 * we customize the stack dump size to fit in. 6045 */ 6046 stack_size = USHRT_MAX - header_size - sizeof(u64); 6047 stack_size = round_up(stack_size, sizeof(u64)); 6048 } 6049 6050 return stack_size; 6051 } 6052 6053 static void 6054 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6055 struct pt_regs *regs) 6056 { 6057 /* Case of a kernel thread, nothing to dump */ 6058 if (!regs) { 6059 u64 size = 0; 6060 perf_output_put(handle, size); 6061 } else { 6062 unsigned long sp; 6063 unsigned int rem; 6064 u64 dyn_size; 6065 mm_segment_t fs; 6066 6067 /* 6068 * We dump: 6069 * static size 6070 * - the size requested by user or the best one we can fit 6071 * in to the sample max size 6072 * data 6073 * - user stack dump data 6074 * dynamic size 6075 * - the actual dumped size 6076 */ 6077 6078 /* Static size. */ 6079 perf_output_put(handle, dump_size); 6080 6081 /* Data. */ 6082 sp = perf_user_stack_pointer(regs); 6083 fs = get_fs(); 6084 set_fs(USER_DS); 6085 rem = __output_copy_user(handle, (void *) sp, dump_size); 6086 set_fs(fs); 6087 dyn_size = dump_size - rem; 6088 6089 perf_output_skip(handle, rem); 6090 6091 /* Dynamic size. */ 6092 perf_output_put(handle, dyn_size); 6093 } 6094 } 6095 6096 static void __perf_event_header__init_id(struct perf_event_header *header, 6097 struct perf_sample_data *data, 6098 struct perf_event *event) 6099 { 6100 u64 sample_type = event->attr.sample_type; 6101 6102 data->type = sample_type; 6103 header->size += event->id_header_size; 6104 6105 if (sample_type & PERF_SAMPLE_TID) { 6106 /* namespace issues */ 6107 data->tid_entry.pid = perf_event_pid(event, current); 6108 data->tid_entry.tid = perf_event_tid(event, current); 6109 } 6110 6111 if (sample_type & PERF_SAMPLE_TIME) 6112 data->time = perf_event_clock(event); 6113 6114 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6115 data->id = primary_event_id(event); 6116 6117 if (sample_type & PERF_SAMPLE_STREAM_ID) 6118 data->stream_id = event->id; 6119 6120 if (sample_type & PERF_SAMPLE_CPU) { 6121 data->cpu_entry.cpu = raw_smp_processor_id(); 6122 data->cpu_entry.reserved = 0; 6123 } 6124 } 6125 6126 void perf_event_header__init_id(struct perf_event_header *header, 6127 struct perf_sample_data *data, 6128 struct perf_event *event) 6129 { 6130 if (event->attr.sample_id_all) 6131 __perf_event_header__init_id(header, data, event); 6132 } 6133 6134 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6135 struct perf_sample_data *data) 6136 { 6137 u64 sample_type = data->type; 6138 6139 if (sample_type & PERF_SAMPLE_TID) 6140 perf_output_put(handle, data->tid_entry); 6141 6142 if (sample_type & PERF_SAMPLE_TIME) 6143 perf_output_put(handle, data->time); 6144 6145 if (sample_type & PERF_SAMPLE_ID) 6146 perf_output_put(handle, data->id); 6147 6148 if (sample_type & PERF_SAMPLE_STREAM_ID) 6149 perf_output_put(handle, data->stream_id); 6150 6151 if (sample_type & PERF_SAMPLE_CPU) 6152 perf_output_put(handle, data->cpu_entry); 6153 6154 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6155 perf_output_put(handle, data->id); 6156 } 6157 6158 void perf_event__output_id_sample(struct perf_event *event, 6159 struct perf_output_handle *handle, 6160 struct perf_sample_data *sample) 6161 { 6162 if (event->attr.sample_id_all) 6163 __perf_event__output_id_sample(handle, sample); 6164 } 6165 6166 static void perf_output_read_one(struct perf_output_handle *handle, 6167 struct perf_event *event, 6168 u64 enabled, u64 running) 6169 { 6170 u64 read_format = event->attr.read_format; 6171 u64 values[4]; 6172 int n = 0; 6173 6174 values[n++] = perf_event_count(event); 6175 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6176 values[n++] = enabled + 6177 atomic64_read(&event->child_total_time_enabled); 6178 } 6179 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6180 values[n++] = running + 6181 atomic64_read(&event->child_total_time_running); 6182 } 6183 if (read_format & PERF_FORMAT_ID) 6184 values[n++] = primary_event_id(event); 6185 6186 __output_copy(handle, values, n * sizeof(u64)); 6187 } 6188 6189 static void perf_output_read_group(struct perf_output_handle *handle, 6190 struct perf_event *event, 6191 u64 enabled, u64 running) 6192 { 6193 struct perf_event *leader = event->group_leader, *sub; 6194 u64 read_format = event