1 /* 2 * Performance events ring-buffer code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/perf_event.h> 13 #include <linux/vmalloc.h> 14 #include <linux/slab.h> 15 #include <linux/circ_buf.h> 16 #include <linux/poll.h> 17 18 #include "internal.h" 19 20 static void perf_output_wakeup(struct perf_output_handle *handle) 21 { 22 atomic_set(&handle->rb->poll, POLLIN); 23 24 handle->event->pending_wakeup = 1; 25 irq_work_queue(&handle->event->pending); 26 } 27 28 /* 29 * We need to ensure a later event_id doesn't publish a head when a former 30 * event isn't done writing. However since we need to deal with NMIs we 31 * cannot fully serialize things. 32 * 33 * We only publish the head (and generate a wakeup) when the outer-most 34 * event completes. 35 */ 36 static void perf_output_get_handle(struct perf_output_handle *handle) 37 { 38 struct ring_buffer *rb = handle->rb; 39 40 preempt_disable(); 41 local_inc(&rb->nest); 42 handle->wakeup = local_read(&rb->wakeup); 43 } 44 45 static void perf_output_put_handle(struct perf_output_handle *handle) 46 { 47 struct ring_buffer *rb = handle->rb; 48 unsigned long head; 49 50 again: 51 head = local_read(&rb->head); 52 53 /* 54 * IRQ/NMI can happen here, which means we can miss a head update. 55 */ 56 57 if (!local_dec_and_test(&rb->nest)) 58 goto out; 59 60 /* 61 * Since the mmap() consumer (userspace) can run on a different CPU: 62 * 63 * kernel user 64 * 65 * if (LOAD ->data_tail) { LOAD ->data_head 66 * (A) smp_rmb() (C) 67 * STORE $data LOAD $data 68 * smp_wmb() (B) smp_mb() (D) 69 * STORE ->data_head STORE ->data_tail 70 * } 71 * 72 * Where A pairs with D, and B pairs with C. 73 * 74 * In our case (A) is a control dependency that separates the load of 75 * the ->data_tail and the stores of $data. In case ->data_tail 76 * indicates there is no room in the buffer to store $data we do not. 77 * 78 * D needs to be a full barrier since it separates the data READ 79 * from the tail WRITE. 80 * 81 * For B a WMB is sufficient since it separates two WRITEs, and for C 82 * an RMB is sufficient since it separates two READs. 83 * 84 * See perf_output_begin(). 85 */ 86 smp_wmb(); /* B, matches C */ 87 rb->user_page->data_head = head; 88 89 /* 90 * Now check if we missed an update -- rely on previous implied 91 * compiler barriers to force a re-read. 92 */ 93 if (unlikely(head != local_read(&rb->head))) { 94 local_inc(&rb->nest); 95 goto again; 96 } 97 98 if (handle->wakeup != local_read(&rb->wakeup)) 99 perf_output_wakeup(handle); 100 101 out: 102 preempt_enable(); 103 } 104 105 int perf_output_begin(struct perf_output_handle *handle, 106 struct perf_event *event, unsigned int size) 107 { 108 struct ring_buffer *rb; 109 unsigned long tail, offset, head; 110 int have_lost, page_shift; 111 struct { 112 struct perf_event_header header; 113 u64 id; 114 u64 lost; 115 } lost_event; 116 117 rcu_read_lock(); 118 /* 119 * For inherited events we send all the output towards the parent. 120 */ 121 if (event->parent) 122 event = event->parent; 123 124 rb = rcu_dereference(event->rb); 125 if (unlikely(!rb)) 126 goto out; 127 128 if (unlikely(!rb->nr_pages)) 129 goto out; 130 131 handle->rb = rb; 132 handle->event = event; 133 134 have_lost = local_read(&rb->lost); 135 if (unlikely(have_lost)) { 136 size += sizeof(lost_event); 137 if (event->attr.sample_id_all) 138 size += event->id_header_size; 139 } 140 141 perf_output_get_handle(handle); 142 143 do { 144 tail = READ_ONCE(rb->user_page->data_tail); 145 offset = head = local_read(&rb->head); 146 if (!rb->overwrite && 147 unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size)) 148 goto fail; 149 150 /* 151 * The above forms a control dependency barrier separating the 152 * @tail load above from the data stores below. Since the @tail 153 * load is required to compute the branch to fail below. 154 * 155 * A, matches D; the full memory barrier userspace SHOULD issue 156 * after reading the data and before storing the new tail 157 * position. 158 * 159 * See perf_output_put_handle(). 160 */ 161 162 head += size; 163 } while (local_cmpxchg(&rb->head, offset, head) != offset); 164 165 /* 166 * We rely on the implied barrier() by local_cmpxchg() to ensure 167 * none of the data stores below can be lifted up by the compiler. 168 */ 169 170 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) 171 local_add(rb->watermark, &rb->wakeup); 172 173 page_shift = PAGE_SHIFT + page_order(rb); 174 175 handle->page = (offset >> page_shift) & (rb->nr_pages - 1); 176 offset &= (1UL << page_shift) - 1; 177 handle->addr = rb->data_pages[handle->page] + offset; 178 handle->size = (1UL << page_shift) - offset; 179 180 if (unlikely(have_lost)) { 181 struct perf_sample_data sample_data; 182 183 lost_event.header.size = sizeof(lost_event); 184 lost_event.header.type = PERF_RECORD_LOST; 185 lost_event.header.misc = 0; 186 lost_event.id = event->id; 187 lost_event.lost = local_xchg(&rb->lost, 0); 188 189 perf_event_header__init_id(&lost_event.header, 190 &sample_data, event); 191 perf_output_put(handle, lost_event); 192 perf_event__output_id_sample(event, handle, &sample_data); 193 } 194 195 return 0; 196 197 fail: 198 local_inc(&rb->lost); 199 perf_output_put_handle(handle); 200 out: 201 rcu_read_unlock(); 202 203 return -ENOSPC; 204 } 205 206 unsigned int perf_output_copy(struct perf_output_handle *handle, 207 const void *buf, unsigned int len) 208 { 209 return __output_copy(handle, buf, len); 210 } 211 212 unsigned int perf_output_skip(struct perf_output_handle *handle, 213 unsigned int len) 214 { 215 return __output_skip(handle, NULL, len); 216 } 217 218 void perf_output_end(struct perf_output_handle *handle) 219 { 220 perf_output_put_handle(handle); 221 rcu_read_unlock(); 222 } 223 224 static void rb_irq_work(struct irq_work *work); 225 226 static void 227 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) 228 { 229 long max_size = perf_data_size(rb); 230 231 if (watermark) 232 rb->watermark = min(max_size, watermark); 233 234 if (!rb->watermark) 235 rb->watermark = max_size / 2; 236 237 if (flags & RING_BUFFER_WRITABLE) 238 rb->overwrite = 0; 239 else 240 rb->overwrite = 1; 241 242 atomic_set(&rb->refcount, 1); 243 244 INIT_LIST_HEAD(&rb->event_list); 245 spin_lock_init(&rb->event_lock); 246 init_irq_work(&rb->irq_work, rb_irq_work); 247 } 248 249 static void ring_buffer_put_async(struct ring_buffer *rb) 250 { 251 if (!atomic_dec_and_test(&rb->refcount)) 252 return; 253 254 rb->rcu_head.next = (void *)rb; 255 irq_work_queue(&rb->irq_work); 256 } 257 258 /* 259 * This is called before hardware starts writing to the AUX area to 260 * obtain an output handle and make sure there's room in the buffer. 261 * When the capture completes, call perf_aux_output_end() to commit 262 * the recorded data to the buffer. 263 * 264 * The ordering is similar to that of perf_output_{begin,end}, with 265 * the exception of (B), which should be taken care of by the pmu 266 * driver, since ordering rules will differ depending on hardware. 267 */ 268 void *perf_aux_output_begin(struct perf_output_handle *handle, 269 struct perf_event *event) 270 { 271 struct perf_event *output_event = event; 272 unsigned long aux_head, aux_tail; 273 struct ring_buffer *rb; 274 275 if (output_event->parent) 276 output_event = output_event->parent; 277 278 /* 279 * Since this will typically be open across pmu::add/pmu::del, we 280 * grab ring_buffer's refcount instead of holding rcu read lock 281 * to make sure it doesn't disappear under us. 282 */ 283 rb = ring_buffer_get(output_event); 284 if (!rb) 285 return NULL; 286 287 if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount)) 288 goto err; 289 290 /* 291 * Nesting is not supported for AUX area, make sure nested 292 * writers are caught early 293 */ 294 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) 295 goto err_put; 296 297 aux_head = local_read(&rb->aux_head); 298 299 handle->rb = rb; 300 handle->event = event; 301 handle->head = aux_head; 302 handle->size = 0; 303 304 /* 305 * In overwrite mode, AUX data stores do not depend on aux_tail, 306 * therefore (A) control dependency barrier does not exist. The 307 * (B) <-> (C) ordering is still observed by the pmu driver. 308 */ 309 if (!rb->aux_overwrite) { 310 aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); 311 handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark; 312 if (aux_head - aux_tail < perf_aux_size(rb)) 313 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); 314 315 /* 316 * handle->size computation depends on aux_tail load; this forms a 317 * control dependency barrier separating aux_tail load from aux data 318 * store that will be enabled on successful return 319 */ 320 if (!handle->size) { /* A, matches D */ 321 event->pending_disable = 1; 322 perf_output_wakeup(handle); 323 local_set(&rb->aux_nest, 0); 324 goto err_put; 325 } 326 } 327 328 return handle->rb->aux_priv; 329 330 err_put: 331 rb_free_aux(rb); 332 333 err: 334 ring_buffer_put_async(rb); 335 handle->event = NULL; 336 337 return NULL; 338 } 339 340 /* 341 * Commit the data written by hardware into the ring buffer by adjusting 342 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the 343 * pmu driver's responsibility to observe ordering rules of the hardware, 344 * so that all the data is externally visible before this is called. 345 */ 346 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, 347 bool truncated) 348 { 349 struct ring_buffer *rb = handle->rb; 350 bool wakeup = truncated; 351 unsigned long aux_head; 352 u64 flags = 0; 353 354 if (truncated) 355 flags |= PERF_AUX_FLAG_TRUNCATED; 356 357 /* in overwrite mode, driver provides aux_head via handle */ 358 if (rb->aux_overwrite) { 359 flags |= PERF_AUX_FLAG_OVERWRITE; 360 361 aux_head = handle->head; 362 local_set(&rb->aux_head, aux_head); 363 } else { 364 aux_head = local_read(&rb->aux_head); 365 local_add(size, &rb->aux_head); 366 } 367 368 if (size || flags) { 369 /* 370 * Only send RECORD_AUX if we have something useful to communicate 371 */ 372 373 perf_event_aux_event(handle->event, aux_head, size, flags); 374 } 375 376 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 377 378 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 379 wakeup = true; 380 local_add(rb->aux_watermark, &rb->aux_wakeup); 381 } 382 383 if (wakeup) { 384 if (truncated) 385 handle->event->pending_disable = 1; 386 perf_output_wakeup(handle); 387 } 388 389 handle->event = NULL; 390 391 local_set(&rb->aux_nest, 0); 392 rb_free_aux(rb); 393 ring_buffer_put_async(rb); 394 } 395 396 /* 397 * Skip over a given number of bytes in the AUX buffer, due to, for example, 398 * hardware's alignment constraints. 399 */ 400 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) 401 { 402 struct ring_buffer *rb = handle->rb; 403 unsigned long aux_head; 404 405 if (size > handle->size) 406 return -ENOSPC; 407 408 local_add(size, &rb->aux_head); 409 410 aux_head = rb->user_page->aux_head = local_read(&rb->aux_head); 411 if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) { 412 perf_output_wakeup(handle); 413 local_add(rb->aux_watermark, &rb->aux_wakeup); 414 handle->wakeup = local_read(&rb->aux_wakeup) + 415 rb->aux_watermark; 416 } 417 418 handle->head = aux_head; 419 handle->size -= size; 420 421 return 0; 422 } 423 424 void *perf_get_aux(struct perf_output_handle *handle) 425 { 426 /* this is only valid between perf_aux_output_begin and *_end */ 427 if (!handle->event) 428 return NULL; 429 430 return handle->rb->aux_priv; 431 } 432 433 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) 434 435 static struct page *rb_alloc_aux_page(int node, int order) 436 { 437 struct page *page; 438 439 if (order > MAX_ORDER) 440 order = MAX_ORDER; 441 442 do { 443 page = alloc_pages_node(node, PERF_AUX_GFP, order); 444 } while (!page && order--); 445 446 if (page && order) { 447 /* 448 * Communicate the allocation size to the driver: 449 * if we managed to secure a high-order allocation, 450 * set its first page's private to this order; 451 * !PagePrivate(page) means it's just a normal page. 452 */ 453 split_page(page, order); 454 SetPagePrivate(page); 455 set_page_private(page, order); 456 } 457 458 return page; 459 } 460 461 static void rb_free_aux_page(struct ring_buffer *rb, int idx) 462 { 463 struct page *page = virt_to_page(rb->aux_pages[idx]); 464 465 ClearPagePrivate(page); 466 page->mapping = NULL; 467 __free_page(page); 468 } 469 470 static void __rb_free_aux(struct ring_buffer *rb) 471 { 472 int pg; 473 474 if (rb->aux_priv) { 475 rb->free_aux(rb->aux_priv); 476 rb->free_aux = NULL; 477 rb->aux_priv = NULL; 478 } 479 480 if (rb->aux_nr_pages) { 481 for (pg = 0; pg < rb->aux_nr_pages; pg++) 482 rb_free_aux_page(rb, pg); 483 484 kfree(rb->aux_pages); 485 rb->aux_nr_pages = 0; 486 } 487 } 488 489 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, 490 pgoff_t pgoff, int nr_pages, long watermark, int flags) 491 { 492 bool overwrite = !(flags & RING_BUFFER_WRITABLE); 493 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); 494 int ret = -ENOMEM, max_order = 0; 495 496 if (!has_aux(event)) 497 return -ENOTSUPP; 498 499 if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { 500 /* 501 * We need to start with the max_order that fits in nr_pages, 502 * not the other way around, hence ilog2() and not get_order. 503 */ 504 max_order = ilog2(nr_pages); 505 506 /* 507 * PMU requests more than one contiguous chunks of memory 508 * for SW double buffering 509 */ 510 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && 511 !overwrite) { 512 if (!max_order) 513 return -EINVAL; 514 515 max_order--; 516 } 517 } 518 519 rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); 520 if (!rb->aux_pages) 521 return -ENOMEM; 522 523 rb->free_aux = event->pmu->free_aux; 524 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { 525 struct page *page; 526 int last, order; 527 528 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); 529 page = rb_alloc_aux_page(node, order); 530 if (!page) 531 goto out; 532 533 for (last = rb->aux_nr_pages + (1 << page_private(page)); 534 last > rb->aux_nr_pages; rb->aux_nr_pages++) 535 rb->aux_pages[rb->aux_nr_pages] = page_address(page++); 536 } 537 538 /* 539 * In overwrite mode, PMUs that don't support SG may not handle more 540 * than one contiguous allocation, since they rely on PMI to do double 541 * buffering. In this case, the entire buffer has to be one contiguous 542 * chunk. 543 */ 544 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && 545 overwrite) { 546 struct page *page = virt_to_page(rb->aux_pages[0]); 547 548 if (page_private(page) != max_order) 549 goto out; 550 } 551 552 rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, 553 overwrite); 554 if (!rb->aux_priv) 555 goto out; 556 557 ret = 0; 558 559 /* 560 * aux_pages (and pmu driver's private data, aux_priv) will be 561 * referenced in both producer's and consumer's contexts, thus 562 * we keep a refcount here to make sure either of the two can 563 * reference them safely. 564 */ 565 atomic_set(&rb->aux_refcount, 1); 566 567 rb->aux_overwrite = overwrite; 568 rb->aux_watermark = watermark; 569 570 if (!rb->aux_watermark && !rb->aux_overwrite) 571 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1); 572 573 out: 574 if (!ret) 575 rb->aux_pgoff = pgoff; 576 else 577 __rb_free_aux(rb); 578 579 return ret; 580 } 581 582 void rb_free_aux(struct ring_buffer *rb) 583 { 584 if (atomic_dec_and_test(&rb->aux_refcount)) 585 irq_work_queue(&rb->irq_work); 586 } 587 588 static void rb_irq_work(struct irq_work *work) 589 { 590 struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work); 591 592 if (!atomic_read(&rb->aux_refcount)) 593 __rb_free_aux(rb); 594 595 if (rb->rcu_head.next == (void *)rb) 596 call_rcu(&rb->rcu_head, rb_free_rcu); 597 } 598 599 #ifndef CONFIG_PERF_USE_VMALLOC 600 601 /* 602 * Back perf_mmap() with regular GFP_KERNEL-0 pages. 603 */ 604 605 static struct page * 606 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 607 { 608 if (pgoff > rb->nr_pages) 609 return NULL; 610 611 if (pgoff == 0) 612 return virt_to_page(rb->user_page); 613 614 return virt_to_page(rb->data_pages[pgoff - 1]); 615 } 616 617 static void *perf_mmap_alloc_page(int cpu) 618 { 619 struct page *page; 620 int node; 621 622 node = (cpu == -1) ? cpu : cpu_to_node(cpu); 623 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 624 if (!page) 625 return NULL; 626 627 return page_address(page); 628 } 629 630 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 631 { 632 struct ring_buffer *rb; 633 unsigned long size; 634 int i; 635 636 size = sizeof(struct ring_buffer); 637 size += nr_pages * sizeof(void *); 638 639 rb = kzalloc(size, GFP_KERNEL); 640 if (!rb) 641 goto fail; 642 643 rb->user_page = perf_mmap_alloc_page(cpu); 644 if (!rb->user_page) 645 goto fail_user_page; 646 647 for (i = 0; i < nr_pages; i++) { 648 rb->data_pages[i] = perf_mmap_alloc_page(cpu); 649 if (!rb->data_pages[i]) 650 goto fail_data_pages; 651 } 652 653 rb->nr_pages = nr_pages; 654 655 ring_buffer_init(rb, watermark, flags); 656 657 return rb; 658 659 fail_data_pages: 660 for (i--; i >= 0; i--) 661 free_page((unsigned long)rb->data_pages[i]); 662 663 free_page((unsigned long)rb->user_page); 664 665 fail_user_page: 666 kfree(rb); 667 668 fail: 669 return NULL; 670 } 671 672 static void perf_mmap_free_page(unsigned long addr) 673 { 674 struct page *page = virt_to_page((void *)addr); 675 676 page->mapping = NULL; 677 __free_page(page); 678 } 679 680 void rb_free(struct ring_buffer *rb) 681 { 682 int i; 683 684 perf_mmap_free_page((unsigned long)rb->user_page); 685 for (i = 0; i < rb->nr_pages; i++) 686 perf_mmap_free_page((unsigned long)rb->data_pages[i]); 687 kfree(rb); 688 } 689 690 #else 691 static int data_page_nr(struct ring_buffer *rb) 692 { 693 return rb->nr_pages << page_order(rb); 694 } 695 696 static struct page * 697 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 698 { 699 /* The '>' counts in the user page. */ 700 if (pgoff > data_page_nr(rb)) 701 return NULL; 702 703 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); 704 } 705 706 static void perf_mmap_unmark_page(void *addr) 707 { 708 struct page *page = vmalloc_to_page(addr); 709 710 page->mapping = NULL; 711 } 712 713 static void rb_free_work(struct work_struct *work) 714 { 715 struct ring_buffer *rb; 716 void *base; 717 int i, nr; 718 719 rb = container_of(work, struct ring_buffer, work); 720 nr = data_page_nr(rb); 721 722 base = rb->user_page; 723 /* The '<=' counts in the user page. */ 724 for (i = 0; i <= nr; i++) 725 perf_mmap_unmark_page(base + (i * PAGE_SIZE)); 726 727 vfree(base); 728 kfree(rb); 729 } 730 731 void rb_free(struct ring_buffer *rb) 732 { 733 schedule_work(&rb->work); 734 } 735 736 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) 737 { 738 struct ring_buffer *rb; 739 unsigned long size; 740 void *all_buf; 741 742 size = sizeof(struct ring_buffer); 743 size += sizeof(void *); 744 745 rb = kzalloc(size, GFP_KERNEL); 746 if (!rb) 747 goto fail; 748 749 INIT_WORK(&rb->work, rb_free_work); 750 751 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); 752 if (!all_buf) 753 goto fail_all_buf; 754 755 rb->user_page = all_buf; 756 rb->data_pages[0] = all_buf + PAGE_SIZE; 757 rb->page_order = ilog2(nr_pages); 758 rb->nr_pages = !!nr_pages; 759 760 ring_buffer_init(rb, watermark, flags); 761 762 return rb; 763 764 fail_all_buf: 765 kfree(rb); 766 767 fail: 768 return NULL; 769 } 770 771 #endif 772 773 struct page * 774 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) 775 { 776 if (rb->aux_nr_pages) { 777 /* above AUX space */ 778 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) 779 return NULL; 780 781 /* AUX space */ 782 if (pgoff >= rb->aux_pgoff) 783 return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); 784 } 785 786 return __perf_mmap_to_page(rb, pgoff); 787 } 788
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.