1 /* 2 * linux/kernel/fork.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * 'fork.c' contains the help-routines for the 'fork' system call 9 * (see also entry.S and others). 10 * Fork is rather simple, once you get the hang of it, but the memory 11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 12 */ 13 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/unistd.h> 17 #include <linux/module.h> 18 #include <linux/vmalloc.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/mempolicy.h> 22 #include <linux/sem.h> 23 #include <linux/file.h> 24 #include <linux/fdtable.h> 25 #include <linux/iocontext.h> 26 #include <linux/key.h> 27 #include <linux/binfmts.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_notifier.h> 30 #include <linux/fs.h> 31 #include <linux/nsproxy.h> 32 #include <linux/capability.h> 33 #include <linux/cpu.h> 34 #include <linux/cgroup.h> 35 #include <linux/security.h> 36 #include <linux/hugetlb.h> 37 #include <linux/seccomp.h> 38 #include <linux/swap.h> 39 #include <linux/syscalls.h> 40 #include <linux/jiffies.h> 41 #include <linux/futex.h> 42 #include <linux/compat.h> 43 #include <linux/kthread.h> 44 #include <linux/task_io_accounting_ops.h> 45 #include <linux/rcupdate.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/audit.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/rmap.h> 54 #include <linux/ksm.h> 55 #include <linux/acct.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/freezer.h> 59 #include <linux/delayacct.h> 60 #include <linux/taskstats_kern.h> 61 #include <linux/random.h> 62 #include <linux/tty.h> 63 #include <linux/blkdev.h> 64 #include <linux/fs_struct.h> 65 #include <linux/magic.h> 66 #include <linux/perf_event.h> 67 #include <linux/posix-timers.h> 68 #include <linux/user-return-notifier.h> 69 #include <linux/oom.h> 70 #include <linux/khugepaged.h> 71 #include <linux/signalfd.h> 72 #include <linux/uprobes.h> 73 #include <linux/aio.h> 74 75 #include <asm/pgtable.h> 76 #include <asm/pgalloc.h> 77 #include <asm/uaccess.h> 78 #include <asm/mmu_context.h> 79 #include <asm/cacheflush.h> 80 #include <asm/tlbflush.h> 81 82 #include <trace/events/sched.h> 83 84 #define CREATE_TRACE_POINTS 85 #include <trace/events/task.h> 86 87 /* 88 * Protected counters by write_lock_irq(&tasklist_lock) 89 */ 90 unsigned long total_forks; /* Handle normal Linux uptimes. */ 91 int nr_threads; /* The idle threads do not count.. */ 92 93 int max_threads; /* tunable limit on nr_threads */ 94 95 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 96 97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 98 99 #ifdef CONFIG_PROVE_RCU 100 int lockdep_tasklist_lock_is_held(void) 101 { 102 return lockdep_is_held(&tasklist_lock); 103 } 104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 105 #endif /* #ifdef CONFIG_PROVE_RCU */ 106 107 int nr_processes(void) 108 { 109 int cpu; 110 int total = 0; 111 112 for_each_possible_cpu(cpu) 113 total += per_cpu(process_counts, cpu); 114 115 return total; 116 } 117 118 void __weak arch_release_task_struct(struct task_struct *tsk) 119 { 120 } 121 122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 123 static struct kmem_cache *task_struct_cachep; 124 125 static inline struct task_struct *alloc_task_struct_node(int node) 126 { 127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 128 } 129 130 static inline void free_task_struct(struct task_struct *tsk) 131 { 132 kmem_cache_free(task_struct_cachep, tsk); 133 } 134 #endif 135 136 void __weak arch_release_thread_info(struct thread_info *ti) 137 { 138 } 139 140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR 141 142 /* 143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 144 * kmemcache based allocator. 145 */ 146 # if THREAD_SIZE >= PAGE_SIZE 147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 148 int node) 149 { 150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED, 151 THREAD_SIZE_ORDER); 152 153 return page ? page_address(page) : NULL; 154 } 155 156 static inline void free_thread_info(struct thread_info *ti) 157 { 158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); 159 } 160 # else 161 static struct kmem_cache *thread_info_cache; 162 163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, 164 int node) 165 { 166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); 167 } 168 169 static void free_thread_info(struct thread_info *ti) 170 { 171 kmem_cache_free(thread_info_cache, ti); 172 } 173 174 void thread_info_cache_init(void) 175 { 176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 177 THREAD_SIZE, 0, NULL); 178 BUG_ON(thread_info_cache == NULL); 179 } 180 # endif 181 #endif 182 183 /* SLAB cache for signal_struct structures (tsk->signal) */ 184 static struct kmem_cache *signal_cachep; 185 186 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 187 struct kmem_cache *sighand_cachep; 188 189 /* SLAB cache for files_struct structures (tsk->files) */ 190 struct kmem_cache *files_cachep; 191 192 /* SLAB cache for fs_struct structures (tsk->fs) */ 193 struct kmem_cache *fs_cachep; 194 195 /* SLAB cache for vm_area_struct structures */ 196 struct kmem_cache *vm_area_cachep; 197 198 /* SLAB cache for mm_struct structures (tsk->mm) */ 199 static struct kmem_cache *mm_cachep; 200 201 static void account_kernel_stack(struct thread_info *ti, int account) 202 { 203 struct zone *zone = page_zone(virt_to_page(ti)); 204 205 mod_zone_page_state(zone, NR_KERNEL_STACK, account); 206 } 207 208 void free_task(struct task_struct *tsk) 209 { 210 account_kernel_stack(tsk->stack, -1); 211 arch_release_thread_info(tsk->stack); 212 free_thread_info(tsk->stack); 213 rt_mutex_debug_task_free(tsk); 214 ftrace_graph_exit_task(tsk); 215 put_seccomp_filter(tsk); 216 arch_release_task_struct(tsk); 217 free_task_struct(tsk); 218 } 219 EXPORT_SYMBOL(free_task); 220 221 static inline void free_signal_struct(struct signal_struct *sig) 222 { 223 taskstats_tgid_free(sig); 224 sched_autogroup_exit(sig); 225 kmem_cache_free(signal_cachep, sig); 226 } 227 228 static inline void put_signal_struct(struct signal_struct *sig) 229 { 230 if (atomic_dec_and_test(&sig->sigcnt)) 231 free_signal_struct(sig); 232 } 233 234 void __put_task_struct(struct task_struct *tsk) 235 { 236 WARN_ON(!tsk->exit_state); 237 WARN_ON(atomic_read(&tsk->usage)); 238 WARN_ON(tsk == current); 239 240 security_task_free(tsk); 241 exit_creds(tsk); 242 delayacct_tsk_free(tsk); 243 put_signal_struct(tsk->signal); 244 245 ccs_free_task_security(tsk); 246 if (!profile_handoff_task(tsk)) 247 free_task(tsk); 248 } 249 EXPORT_SYMBOL_GPL(__put_task_struct); 250 251 void __init __weak arch_task_cache_init(void) { } 252 253 void __init fork_init(unsigned long mempages) 254 { 255 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 256 #ifndef ARCH_MIN_TASKALIGN 257 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES 258 #endif 259 /* create a slab on which task_structs can be allocated */ 260 task_struct_cachep = 261 kmem_cache_create("task_struct", sizeof(struct task_struct), 262 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); 263 #endif 264 265 /* do the arch specific task caches init */ 266 arch_task_cache_init(); 267 268 /* 269 * The default maximum number of threads is set to a safe 270 * value: the thread structures can take up at most half 271 * of memory. 272 */ 273 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); 274 275 /* 276 * we need to allow at least 20 threads to boot a system 277 */ 278 if (max_threads < 20) 279 max_threads = 20; 280 281 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 282 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 283 init_task.signal->rlim[RLIMIT_SIGPENDING] = 284 init_task.signal->rlim[RLIMIT_NPROC]; 285 } 286 287 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, 288 struct task_struct *src) 289 { 290 *dst = *src; 291 return 0; 292 } 293 294 static struct task_struct *dup_task_struct(struct task_struct *orig) 295 { 296 struct task_struct *tsk; 297 struct thread_info *ti; 298 unsigned long *stackend; 299 int node = tsk_fork_get_node(orig); 300 int err; 301 302 tsk = alloc_task_struct_node(node); 303 if (!tsk) 304 return NULL; 305 306 ti = alloc_thread_info_node(tsk, node); 307 if (!ti) 308 goto free_tsk; 309 310 err = arch_dup_task_struct(tsk, orig); 311 if (err) 312 goto free_ti; 313 314 tsk->stack = ti; 315 316 setup_thread_stack(tsk, orig); 317 clear_user_return_notifier(tsk); 318 clear_tsk_need_resched(tsk); 319 stackend = end_of_stack(tsk); 320 *stackend = STACK_END_MAGIC; /* for overflow detection */ 321 322 #ifdef CONFIG_CC_STACKPROTECTOR 323 tsk->stack_canary = get_random_int(); 324 #endif 325 326 /* 327 * One for us, one for whoever does the "release_task()" (usually 328 * parent) 329 */ 330 atomic_set(&tsk->usage, 2); 331 #ifdef CONFIG_BLK_DEV_IO_TRACE 332 tsk->btrace_seq = 0; 333 #endif 334 tsk->splice_pipe = NULL; 335 tsk->task_frag.page = NULL; 336 337 account_kernel_stack(ti, 1); 338 339 return tsk; 340 341 free_ti: 342 free_thread_info(ti); 343 free_tsk: 344 free_task_struct(tsk); 345 return NULL; 346 } 347 348 #ifdef CONFIG_MMU 349 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 350 { 351 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 352 struct rb_node **rb_link, *rb_parent; 353 int retval; 354 unsigned long charge; 355 356 uprobe_start_dup_mmap(); 357 down_write(&oldmm->mmap_sem); 358 flush_cache_dup_mm(oldmm); 359 uprobe_dup_mmap(oldmm, mm); 360 /* 361 * Not linked in yet - no deadlock potential: 362 */ 363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 364 365 mm->locked_vm = 0; 366 mm->mmap = NULL; 367 mm->mmap_cache = NULL; 368 mm->map_count = 0; 369 cpumask_clear(mm_cpumask(mm)); 370 mm->mm_rb = RB_ROOT; 371 rb_link = &mm->mm_rb.rb_node; 372 rb_parent = NULL; 373 pprev = &mm->mmap; 374 retval = ksm_fork(mm, oldmm); 375 if (retval) 376 goto out; 377 retval = khugepaged_fork(mm, oldmm); 378 if (retval) 379 goto out; 380 381 prev = NULL; 382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 383 struct file *file; 384 385 if (mpnt->vm_flags & VM_DONTCOPY) { 386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, 387 -vma_pages(mpnt)); 388 continue; 389 } 390 charge = 0; 391 if (mpnt->vm_flags & VM_ACCOUNT) { 392 unsigned long len = vma_pages(mpnt); 393 394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 395 goto fail_nomem; 396 charge = len; 397 } 398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 399 if (!tmp) 400 goto fail_nomem; 401 *tmp = *mpnt; 402 INIT_LIST_HEAD(&tmp->anon_vma_chain); 403 retval = vma_dup_policy(mpnt, tmp); 404 if (retval) 405 goto fail_nomem_policy; 406 tmp->vm_mm = mm; 407 if (anon_vma_fork(tmp, mpnt)) 408 goto fail_nomem_anon_vma_fork; 409 tmp->vm_flags &= ~VM_LOCKED; 410 tmp->vm_next = tmp->vm_prev = NULL; 411 file = tmp->vm_file; 412 if (file) { 413 struct inode *inode = file_inode(file); 414 struct address_space *mapping = file->f_mapping; 415 416 get_file(file); 417 if (tmp->vm_flags & VM_DENYWRITE) 418 atomic_dec(&inode->i_writecount); 419 mutex_lock(&mapping->i_mmap_mutex); 420 if (tmp->vm_flags & VM_SHARED) 421 mapping->i_mmap_writable++; 422 flush_dcache_mmap_lock(mapping); 423 /* insert tmp into the share list, just after mpnt */ 424 if (unlikely(tmp->vm_flags & VM_NONLINEAR)) 425 vma_nonlinear_insert(tmp, 426 &mapping->i_mmap_nonlinear); 427 else 428 vma_interval_tree_insert_after(tmp, mpnt, 429 &mapping->i_mmap); 430 flush_dcache_mmap_unlock(mapping); 431 mutex_unlock(&mapping->i_mmap_mutex); 432 } 433 434 /* 435 * Clear hugetlb-related page reserves for children. This only 436 * affects MAP_PRIVATE mappings. Faults generated by the child 437 * are not guaranteed to succeed, even if read-only 438 */ 439 if (is_vm_hugetlb_page(tmp)) 440 reset_vma_resv_huge_pages(tmp); 441 442 /* 443 * Link in the new vma and copy the page table entries. 444 */ 445 *pprev = tmp; 446 pprev = &tmp->vm_next; 447 tmp->vm_prev = prev; 448 prev = tmp; 449 450 __vma_link_rb(mm, tmp, rb_link, rb_parent); 451 rb_link = &tmp->vm_rb.rb_right; 452 rb_parent = &tmp->vm_rb; 453 454 mm->map_count++; 455 retval = copy_page_range(mm, oldmm, mpnt); 456 457 if (tmp->vm_ops && tmp->vm_ops->open) 458 tmp->vm_ops->open(tmp); 459 460 if (retval) 461 goto out; 462 } 463 /* a new mm has just been created */ 464 arch_dup_mmap(oldmm, mm); 465 retval = 0; 466 out: 467 up_write(&mm->mmap_sem); 468 flush_tlb_mm(oldmm); 469 up_write(&oldmm->mmap_sem); 470 uprobe_end_dup_mmap(); 471 return retval; 472 fail_nomem_anon_vma_fork: 473 mpol_put(vma_policy(tmp)); 474 fail_nomem_policy: 475 kmem_cache_free(vm_area_cachep, tmp); 476 fail_nomem: 477 retval = -ENOMEM; 478 vm_unacct_memory(charge); 479 goto out; 480 } 481 482 static inline int mm_alloc_pgd(struct mm_struct *mm) 483 { 484 mm->pgd = pgd_alloc(mm); 485 if (unlikely(!mm->pgd)) 486 return -ENOMEM; 487 return 0; 488 } 489 490 static inline void mm_free_pgd(struct mm_struct *mm) 491 { 492 pgd_free(mm, mm->pgd); 493 } 494 #else 495 #define dup_mmap(mm, oldmm) (0) 496 #define mm_alloc_pgd(mm) (0) 497 #define mm_free_pgd(mm) 498 #endif /* CONFIG_MMU */ 499 500 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 501 502 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 503 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 504 505 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 506 507 static int __init coredump_filter_setup(char *s) 508 { 509 default_dump_filter = 510 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 511 MMF_DUMP_FILTER_MASK; 512 return 1; 513 } 514 515 __setup("coredump_filter=", coredump_filter_setup); 516 517 #include <linux/init_task.h> 518 519 static void mm_init_aio(struct mm_struct *mm) 520 { 521 #ifdef CONFIG_AIO 522 spin_lock_init(&mm->ioctx_lock); 523 mm->ioctx_table = NULL; 524 #endif 525 } 526 527 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) 528 { 529 atomic_set(&mm->mm_users, 1); 530 atomic_set(&mm->mm_count, 1); 531 init_rwsem(&mm->mmap_sem); 532 INIT_LIST_HEAD(&mm->mmlist); 533 mm->flags = (current->mm) ? 534 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; 535 mm->core_state = NULL; 536 atomic_long_set(&mm->nr_ptes, 0); 537 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 538 spin_lock_init(&mm->page_table_lock); 539 mm_init_aio(mm); 540 mm_init_owner(mm, p); 541 clear_tlb_flush_pending(mm); 542 543 if (likely(!mm_alloc_pgd(mm))) { 544 mm->def_flags = 0; 545 mmu_notifier_mm_init(mm); 546 return mm; 547 } 548 549 free_mm(mm); 550 return NULL; 551 } 552 553 static void check_mm(struct mm_struct *mm) 554 { 555 int i; 556 557 for (i = 0; i < NR_MM_COUNTERS; i++) { 558 long x = atomic_long_read(&mm->rss_stat.count[i]); 559 560 if (unlikely(x)) 561 printk(KERN_ALERT "BUG: Bad rss-counter state " 562 "mm:%p idx:%d val:%ld\n", mm, i, x); 563 } 564 565 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 566 VM_BUG_ON(mm->pmd_huge_pte); 567 #endif 568 } 569 570 /* 571 * Allocate and initialize an mm_struct. 572 */ 573 struct mm_struct *mm_alloc(void) 574 { 575 struct mm_struct *mm; 576 577 mm = allocate_mm(); 578 if (!mm) 579 return NULL; 580 581 memset(mm, 0, sizeof(*mm)); 582 mm_init_cpumask(mm); 583 return mm_init(mm, current); 584 } 585 586 /* 587 * Called when the last reference to the mm 588 * is dropped: either by a lazy thread or by 589 * mmput. Free the page directory and the mm. 590 */ 591 void __mmdrop(struct mm_struct *mm) 592 { 593 BUG_ON(mm == &init_mm); 594 mm_free_pgd(mm); 595 destroy_context(mm); 596 mmu_notifier_mm_destroy(mm); 597 check_mm(mm); 598 free_mm(mm); 599 } 600 EXPORT_SYMBOL_GPL(__mmdrop); 601 602 /* 603 * Decrement the use count and release all resources for an mm. 604 */ 605 void mmput(struct mm_struct *mm) 606 { 607 might_sleep(); 608 609 if (atomic_dec_and_test(&mm->mm_users)) { 610 uprobe_clear_state(mm); 611 exit_aio(mm); 612 ksm_exit(mm); 613 khugepaged_exit(mm); /* must run before exit_mmap */ 614 exit_mmap(mm); 615 set_mm_exe_file(mm, NULL); 616 if (!list_empty(&mm->mmlist)) { 617 spin_lock(&mmlist_lock); 618 list_del(&mm->mmlist); 619 spin_unlock(&mmlist_lock); 620 } 621 if (mm->binfmt) 622 module_put(mm->binfmt->module); 623 mmdrop(mm); 624 } 625 } 626 EXPORT_SYMBOL_GPL(mmput); 627 628 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 629 { 630 if (new_exe_file) 631 get_file(new_exe_file); 632 if (mm->exe_file) 633 fput(mm->exe_file); 634 mm->exe_file = new_exe_file; 635 } 636 637 struct file *get_mm_exe_file(struct mm_struct *mm) 638 { 639 struct file *exe_file; 640 641 /* We need mmap_sem to protect against races with removal of exe_file */ 642 down_read(&mm->mmap_sem); 643 exe_file = mm->exe_file; 644 if (exe_file) 645 get_file(exe_file); 646 up_read(&mm->mmap_sem); 647 return exe_file; 648 } 649 650 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) 651 { 652 /* It's safe to write the exe_file pointer without exe_file_lock because 653 * this is called during fork when the task is not yet in /proc */ 654 newmm->exe_file = get_mm_exe_file(oldmm); 655 } 656 657 /** 658 * get_task_mm - acquire a reference to the task's mm 659 * 660 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 661 * this kernel workthread has transiently adopted a user mm with use_mm, 662 * to do its AIO) is not set and if so returns a reference to it, after 663 * bumping up the use count. User must release the mm via mmput() 664 * after use. Typically used by /proc and ptrace. 665 */ 666 struct mm_struct *get_task_mm(struct task_struct *task) 667 { 668 struct mm_struct *mm; 669 670 task_lock(task); 671 mm = task->mm; 672 if (mm) { 673 if (task->flags & PF_KTHREAD) 674 mm = NULL; 675 else 676 atomic_inc(&mm->mm_users); 677 } 678 task_unlock(task); 679 return mm; 680 } 681 EXPORT_SYMBOL_GPL(get_task_mm); 682 683 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 684 { 685 struct mm_struct *mm; 686 int err; 687 688 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 689 if (err) 690 return ERR_PTR(err); 691 692 mm = get_task_mm(task); 693 if (mm && mm != current->mm && 694 !ptrace_may_access(task, mode)) { 695 mmput(mm); 696 mm = ERR_PTR(-EACCES); 697 } 698 mutex_unlock(&task->signal->cred_guard_mutex); 699 700 return mm; 701 } 702 703 static void complete_vfork_done(struct task_struct *tsk) 704 { 705 struct completion *vfork; 706 707 task_lock(tsk); 708 vfork = tsk->vfork_done; 709 if (likely(vfork)) { 710 tsk->vfork_done = NULL; 711 complete(vfork); 712 } 713 task_unlock(tsk); 714 } 715 716 static int wait_for_vfork_done(struct task_struct *child, 717 struct completion *vfork) 718 { 719 int killed; 720 721 freezer_do_not_count(); 722 killed = wait_for_completion_killable(vfork); 723 freezer_count(); 724 725 if (killed) { 726 task_lock(child); 727 child->vfork_done = NULL; 728 task_unlock(child); 729 } 730 731 put_task_struct(child); 732 return killed; 733 } 734 735 /* Please note the differences between mmput and mm_release. 736 * mmput is called whenever we stop holding onto a mm_struct, 737 * error success whatever. 738 * 739 * mm_release is called after a mm_struct has been removed 740 * from the current process. 741 * 742 * This difference is important for error handling, when we 743 * only half set up a mm_struct for a new process and need to restore 744 * the old one. Because we mmput the new mm_struct before 745 * restoring the old one. . . 746 * Eric Biederman 10 January 1998 747 */ 748 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 749 { 750 /* Get rid of any futexes when releasing the mm */ 751 #ifdef CONFIG_FUTEX 752 if (unlikely(tsk->robust_list)) { 753 exit_robust_list(tsk); 754 tsk->robust_list = NULL; 755 } 756 #ifdef CONFIG_COMPAT 757 if (unlikely(tsk->compat_robust_list)) { 758 compat_exit_robust_list(tsk); 759 tsk->compat_robust_list = NULL; 760 } 761 #endif 762 if (unlikely(!list_empty(&tsk->pi_state_list))) 763 exit_pi_state_list(tsk); 764 #endif 765 766 uprobe_free_utask(tsk); 767 768 /* Get rid of any cached register state */ 769 deactivate_mm(tsk, mm); 770 771 /* 772 * If we're exiting normally, clear a user-space tid field if 773 * requested. We leave this alone when dying by signal, to leave 774 * the value intact in a core dump, and to save the unnecessary 775 * trouble, say, a killed vfork parent shouldn't touch this mm. 776 * Userland only wants this done for a sys_exit. 777 */ 778 if (tsk->clear_child_tid) { 779 if (!(tsk->flags & PF_SIGNALED) && 780 atomic_read(&mm->mm_users) > 1) { 781 /* 782 * We don't check the error code - if userspace has 783 * not set up a proper pointer then tough luck. 784 */ 785 put_user(0, tsk->clear_child_tid); 786 sys_futex(tsk->clear_child_tid, FUTEX_WAKE, 787 1, NULL, NULL, 0); 788 } 789 tsk->clear_child_tid = NULL; 790 } 791 792 /* 793 * All done, finally we can wake up parent and return this mm to him. 794 * Also kthread_stop() uses this completion for synchronization. 795 */ 796 if (tsk->vfork_done) 797 complete_vfork_done(tsk); 798 } 799 800 /* 801 * Allocate a new mm structure and copy contents from the 802 * mm structure of the passed in task structure. 803 */ 804 struct mm_struct *dup_mm(struct task_struct *tsk) 805 { 806 struct mm_struct *mm, *oldmm = current->mm; 807 int err; 808 809 if (!oldmm) 810 return NULL; 811 812 mm = allocate_mm(); 813 if (!mm) 814 goto fail_nomem; 815 816 memcpy(mm, oldmm, sizeof(*mm)); 817 mm_init_cpumask(mm); 818 819 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 820 mm->pmd_huge_pte = NULL; 821 #endif 822 if (!mm_init(mm, tsk)) 823 goto fail_nomem; 824 825 if (init_new_context(tsk, mm)) 826 goto fail_nocontext; 827 828 dup_mm_exe_file(oldmm, mm); 829 830 err = dup_mmap(mm, oldmm); 831 if (err) 832 goto free_pt; 833 834 mm->hiwater_rss = get_mm_rss(mm); 835 mm->hiwater_vm = mm->total_vm; 836 837 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 838 goto free_pt; 839 840 return mm; 841 842 free_pt: 843 /* don't put binfmt in mmput, we haven't got module yet */ 844 mm->binfmt = NULL; 845 mmput(mm); 846 847 fail_nomem: 848 return NULL; 849 850 fail_nocontext: 851 /* 852 * If init_new_context() failed, we cannot use mmput() to free the mm 853 * because it calls destroy_context() 854 */ 855 mm_free_pgd(mm); 856 free_mm(mm); 857 return NULL; 858 } 859 860 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 861 { 862 struct mm_struct *mm, *oldmm; 863 int retval; 864 865 tsk->min_flt = tsk->maj_flt = 0; 866 tsk->nvcsw = tsk->nivcsw = 0; 867 #ifdef CONFIG_DETECT_HUNG_TASK 868 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 869 #endif 870 871 tsk->mm = NULL; 872 tsk->active_mm = NULL; 873 874 /* 875 * Are we cloning a kernel thread? 876 * 877 * We need to steal a active VM for that.. 878 */ 879 oldmm = current->mm; 880 if (!oldmm) 881 return 0; 882 883 if (clone_flags & CLONE_VM) { 884 atomic_inc(&oldmm->mm_users); 885 mm = oldmm; 886 goto good_mm; 887 } 888 889 retval = -ENOMEM; 890 mm = dup_mm(tsk); 891 if (!mm) 892 goto fail_nomem; 893 894 good_mm: 895 tsk->mm = mm; 896 tsk->active_mm = mm; 897 return 0; 898 899 fail_nomem: 900 return retval; 901 } 902 903 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 904 { 905 struct fs_struct *fs = current->fs; 906 if (clone_flags & CLONE_FS) { 907 /* tsk->fs is already what we want */ 908 spin_lock(&fs->lock); 909 if (fs->in_exec) { 910 spin_unlock(&fs->lock); 911 return -EAGAIN; 912 } 913 fs->users++; 914 spin_unlock(&fs->lock); 915 return 0; 916 } 917 tsk->fs = copy_fs_struct(fs); 918 if (!tsk->fs) 919 return -ENOMEM; 920 return 0; 921 } 922 923 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 924 { 925 struct files_struct *oldf, *newf; 926 int error = 0; 927 928 /* 929 * A background process may not have any files ... 930 */ 931 oldf = current->files; 932 if (!oldf) 933 goto out; 934 935 if (clone_flags & CLONE_FILES) { 936 atomic_inc(&oldf->count); 937 goto out; 938 } 939 940 newf = dup_fd(oldf, &error); 941 if (!newf) 942 goto out; 943 944 tsk->files = newf; 945 error = 0; 946 out: 947 return error; 948 } 949 950 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 951 { 952 #ifdef CONFIG_BLOCK 953 struct io_context *ioc = current->io_context; 954 struct io_context *new_ioc; 955 956 if (!ioc) 957 return 0; 958 /* 959 * Share io context with parent, if CLONE_IO is set 960 */ 961 if (clone_flags & CLONE_IO) { 962 ioc_task_link(ioc); 963 tsk->io_context = ioc; 964 } else if (ioprio_valid(ioc->ioprio)) { 965 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 966 if (unlikely(!new_ioc)) 967 return -ENOMEM; 968 969 new_ioc->ioprio = ioc->ioprio; 970 put_io_context(new_ioc); 971 } 972 #endif 973 return 0; 974 } 975 976 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 977 { 978 struct sighand_struct *sig; 979 980 if (clone_flags & CLONE_SIGHAND) { 981 atomic_inc(¤t->sighand->count); 982 return 0; 983 } 984 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 985 rcu_assign_pointer(tsk->sighand, sig); 986 if (!sig) 987 return -ENOMEM; 988 atomic_set(&sig->count, 1); 989 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 990 return 0; 991 } 992 993 void __cleanup_sighand(struct sighand_struct *sighand) 994 { 995 if (atomic_dec_and_test(&sighand->count)) { 996 signalfd_cleanup(sighand); 997 kmem_cache_free(sighand_cachep, sighand); 998 } 999 } 1000 1001 1002 /* 1003 * Initialize POSIX timer handling for a thread group. 1004 */ 1005 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1006 { 1007 unsigned long cpu_limit; 1008 1009 /* Thread group counters. */ 1010 thread_group_cputime_init(sig); 1011 1012 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1013 if (cpu_limit != RLIM_INFINITY) { 1014 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); 1015 sig->cputimer.running = 1; 1016 } 1017 1018 /* The timer lists. */ 1019 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1020 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1021 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1022 } 1023 1024 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1025 { 1026 struct signal_struct *sig; 1027 1028 if (clone_flags & CLONE_THREAD) 1029 return 0; 1030 1031 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1032 tsk->signal = sig; 1033 if (!sig) 1034 return -ENOMEM; 1035 1036 sig->nr_threads = 1; 1037 atomic_set(&sig->live, 1); 1038 atomic_set(&sig->sigcnt, 1); 1039 init_waitqueue_head(&sig->wait_chldexit); 1040 sig->curr_target = tsk; 1041 init_sigpending(&sig->shared_pending); 1042 INIT_LIST_HEAD(&sig->posix_timers); 1043 1044 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1045 sig->real_timer.function = it_real_fn; 1046 1047 task_lock(current->group_leader); 1048 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1049 task_unlock(current->group_leader); 1050 1051 posix_cpu_timers_init_group(sig); 1052 1053 tty_audit_fork(sig); 1054 sched_autogroup_fork(sig); 1055 1056 #ifdef CONFIG_CGROUPS 1057 init_rwsem(&sig->group_rwsem); 1058 #endif 1059 1060 sig->oom_score_adj = current->signal->oom_score_adj; 1061 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1062 1063 sig->has_child_subreaper = current->signal->has_child_subreaper || 1064 current->signal->is_child_subreaper; 1065 1066 mutex_init(&sig->cred_guard_mutex); 1067 1068 return 0; 1069 } 1070 1071 static void copy_flags(unsigned long clone_flags, struct task_struct *p) 1072 { 1073 unsigned long new_flags = p->flags; 1074 1075 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); 1076 new_flags |= PF_FORKNOEXEC; 1077 p->flags = new_flags; 1078 } 1079 1080 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1081 { 1082 current->clear_child_tid = tidptr; 1083 1084 return task_pid_vnr(current); 1085 } 1086 1087 static void rt_mutex_init_task(struct task_struct *p) 1088 { 1089 raw_spin_lock_init(&p->pi_lock); 1090 #ifdef CONFIG_RT_MUTEXES 1091 plist_head_init(&p->pi_waiters); 1092 p->pi_blocked_on = NULL; 1093 #endif 1094 } 1095 1096 #ifdef CONFIG_MM_OWNER 1097 void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1098 { 1099 mm->owner = p; 1100 } 1101 #endif /* CONFIG_MM_OWNER */ 1102 1103 /* 1104 * Initialize POSIX timer handling for a single task. 1105 */ 1106 static void posix_cpu_timers_init(struct task_struct *tsk) 1107 { 1108 tsk->cputime_expires.prof_exp = 0; 1109 tsk->cputime_expires.virt_exp = 0; 1110 tsk->cputime_expires.sched_exp = 0; 1111 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1112 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1113 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1114 } 1115 1116 static inline void 1117 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1118 { 1119 task->pids[type].pid = pid; 1120 } 1121 1122 /* 1123 * This creates a new process as a copy of the old one, 1124 * but does not actually start it yet. 1125 * 1126 * It copies the registers, and all the appropriate 1127 * parts of the process environment (as per the clone 1128 * flags). The actual kick-off is left to the caller. 1129 */ 1130 static struct task_struct *copy_process(unsigned long clone_flags, 1131 unsigned long stack_start, 1132 unsigned long stack_size, 1133 int __user *child_tidptr, 1134 struct pid *pid, 1135 int trace) 1136 { 1137 int retval; 1138 struct task_struct *p; 1139 1140 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1141 return ERR_PTR(-EINVAL); 1142 1143 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1144 return ERR_PTR(-EINVAL); 1145 1146 /* 1147 * Thread groups must share signals as well, and detached threads 1148 * can only be started up within the thread group. 1149 */ 1150 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1151 return ERR_PTR(-EINVAL); 1152 1153 /* 1154 * Shared signal handlers imply shared VM. By way of the above, 1155 * thread groups also imply shared VM. Blocking this case allows 1156 * for various simplifications in other code. 1157 */ 1158 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1159 return ERR_PTR(-EINVAL); 1160 1161 /* 1162 * Siblings of global init remain as zombies on exit since they are 1163 * not reaped by their parent (swapper). To solve this and to avoid 1164 * multi-rooted process trees, prevent global and container-inits 1165 * from creating siblings. 1166 */ 1167 if ((clone_flags & CLONE_PARENT) && 1168 current->signal->flags & SIGNAL_UNKILLABLE) 1169 return ERR_PTR(-EINVAL); 1170 1171 /* 1172 * If the new process will be in a different pid or user namespace 1173 * do not allow it to share a thread group or signal handlers or 1174 * parent with the forking task. 1175 */ 1176 if (clone_flags & CLONE_SIGHAND) { 1177 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1178 (task_active_pid_ns(current) != 1179 current->nsproxy->pid_ns_for_children)) 1180 return ERR_PTR(-EINVAL); 1181 } 1182 1183 retval = security_task_create(clone_flags); 1184 if (retval) 1185 goto fork_out; 1186 1187 retval = -ENOMEM; 1188 p = dup_task_struct(current); 1189 if (!p) 1190 goto fork_out; 1191 1192 ftrace_graph_init_task(p); 1193 get_seccomp_filter(p); 1194 1195 rt_mutex_init_task(p); 1196 1197 #ifdef CONFIG_PROVE_LOCKING 1198 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1199 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1200 #endif 1201 retval = -EAGAIN; 1202 if (atomic_read(&p->real_cred->user->processes) >= 1203 task_rlimit(p, RLIMIT_NPROC)) { 1204 if (p->real_cred->user != INIT_USER && 1205 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1206 goto bad_fork_free; 1207 } 1208 current->flags &= ~PF_NPROC_EXCEEDED; 1209 1210 retval = copy_creds(p, clone_flags); 1211 if (retval < 0) 1212 goto bad_fork_free; 1213 1214 /* 1215 * If multiple threads are within copy_process(), then this check 1216 * triggers too late. This doesn't hurt, the check is only there 1217 * to stop root fork bombs. 1218 */ 1219 retval = -EAGAIN; 1220 if (nr_threads >= max_threads) 1221 goto bad_fork_cleanup_count; 1222 1223 if (!try_module_get(task_thread_info(p)->exec_domain->module)) 1224 goto bad_fork_cleanup_count; 1225 1226 p->did_exec = 0; 1227 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1228 copy_flags(clone_flags, p); 1229 INIT_LIST_HEAD(&p->children); 1230 INIT_LIST_HEAD(&p->sibling); 1231 rcu_copy_process(p); 1232 p->vfork_done = NULL; 1233 spin_lock_init(&p->alloc_lock); 1234 1235 init_sigpending(&p->pending); 1236 1237 p->utime = p->stime = p->gtime = 0; 1238 p->utimescaled = p->stimescaled = 0; 1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1240 p->prev_cputime.utime = p->prev_cputime.stime = 0; 1241 #endif 1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1243 seqlock_init(&p->vtime_seqlock); 1244 p->vtime_snap = 0; 1245 p->vtime_snap_whence = VTIME_SLEEPING; 1246 #endif 1247 1248 #if defined(SPLIT_RSS_COUNTING) 1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1250 #endif 1251 1252 p->default_timer_slack_ns = current->timer_slack_ns; 1253 1254 task_io_accounting_init(&p->ioac); 1255 acct_clear_integrals(p); 1256 1257 posix_cpu_timers_init(p); 1258 1259 do_posix_clock_monotonic_gettime(&p->start_time); 1260 p->real_start_time = p->start_time; 1261 monotonic_to_bootbased(&p->real_start_time); 1262 p->io_context = NULL; 1263 p->audit_context = NULL; 1264 if (clone_flags & CLONE_THREAD) 1265 threadgroup_change_begin(current); 1266 cgroup_fork(p); 1267 #ifdef CONFIG_NUMA 1268 p->mempolicy = mpol_dup(p->mempolicy); 1269 if (IS_ERR(p->mempolicy)) { 1270 retval = PTR_ERR(p->mempolicy); 1271 p->mempolicy = NULL; 1272 goto bad_fork_cleanup_cgroup; 1273 } 1274 mpol_fix_fork_child_flag(p); 1275 #endif 1276 #ifdef CONFIG_CPUSETS 1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1279 seqcount_init(&p->mems_allowed_seq); 1280 #endif 1281 #ifdef CONFIG_TRACE_IRQFLAGS 1282 p->irq_events = 0; 1283 p->hardirqs_enabled = 0; 1284 p->hardirq_enable_ip = 0; 1285 p->hardirq_enable_event = 0; 1286 p->hardirq_disable_ip = _THIS_IP_; 1287 p->hardirq_disable_event = 0; 1288 p->softirqs_enabled = 1; 1289 p->softirq_enable_ip = _THIS_IP_; 1290 p->softirq_enable_event = 0; 1291 p->softirq_disable_ip = 0; 1292 p->softirq_disable_event = 0; 1293 p->hardirq_context = 0; 1294 p->softirq_context = 0; 1295 #endif 1296 #ifdef CONFIG_LOCKDEP 1297 p->lockdep_depth = 0; /* no locks held yet */ 1298 p->curr_chain_key = 0; 1299 p->lockdep_recursion = 0; 1300 #endif 1301 1302 #ifdef CONFIG_DEBUG_MUTEXES 1303 p->blocked_on = NULL; /* not blocked yet */ 1304 #endif 1305 #ifdef CONFIG_MEMCG 1306 p->memcg_batch.do_batch = 0; 1307 p->memcg_batch.memcg = NULL; 1308 #endif 1309 #ifdef CONFIG_BCACHE 1310 p->sequential_io = 0; 1311 p->sequential_io_avg = 0; 1312 #endif 1313 1314 /* Perform scheduler related setup. Assign this task to a CPU. */ 1315 sched_fork(clone_flags, p); 1316 1317 retval = perf_event_init_task(p); 1318 if (retval) 1319 goto bad_fork_cleanup_policy; 1320 retval = audit_alloc(p); 1321 if (retval) 1322 goto bad_fork_cleanup_policy; 1323 retval = ccs_alloc_task_security(p); 1324 if (retval) 1325 goto bad_fork_cleanup_audit; 1326 /* copy all the process information */ 1327 retval = copy_semundo(clone_flags, p); 1328 if (retval) 1329 goto bad_fork_cleanup_audit; 1330 retval = copy_files(clone_flags, p); 1331 if (retval) 1332 goto bad_fork_cleanup_semundo; 1333 retval = copy_fs(clone_flags, p); 1334 if (retval) 1335 goto bad_fork_cleanup_files; 1336 retval = copy_sighand(clone_flags, p); 1337 if (retval) 1338 goto bad_fork_cleanup_fs; 1339 retval = copy_signal(clone_flags, p); 1340 if (retval) 1341 goto bad_fork_cleanup_sighand; 1342 retval = copy_mm(clone_flags, p); 1343 if (retval) 1344 goto bad_fork_cleanup_signal; 1345 retval = copy_namespaces(clone_flags, p); 1346 if (retval) 1347 goto bad_fork_cleanup_mm; 1348 retval = copy_io(clone_flags, p); 1349 if (retval) 1350 goto bad_fork_cleanup_namespaces; 1351 retval = copy_thread(clone_flags, stack_start, stack_size, p); 1352 if (retval) 1353 goto bad_fork_cleanup_io; 1354 1355 if (pid != &init_struct_pid) { 1356 retval = -ENOMEM; 1357 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 1358 if (!pid) 1359 goto bad_fork_cleanup_io; 1360 } 1361 1362 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1363 /* 1364 * Clear TID on mm_release()? 1365 */ 1366 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1367 #ifdef CONFIG_BLOCK 1368 p->plug = NULL; 1369 #endif 1370 #ifdef CONFIG_FUTEX 1371 p->robust_list = NULL; 1372 #ifdef CONFIG_COMPAT 1373 p->compat_robust_list = NULL; 1374 #endif 1375 INIT_LIST_HEAD(&p->pi_state_list); 1376 p->pi_state_cache = NULL; 1377 #endif 1378 /* 1379 * sigaltstack should be cleared when sharing the same VM 1380 */ 1381 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 1382 p->sas_ss_sp = p->sas_ss_size = 0; 1383 1384 /* 1385 * Syscall tracing and stepping should be turned off in the 1386 * child regardless of CLONE_PTRACE. 1387 */ 1388 user_disable_single_step(p); 1389 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 1390 #ifdef TIF_SYSCALL_EMU 1391 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 1392 #endif 1393 clear_all_latency_tracing(p); 1394 1395 /* ok, now we should be set up.. */ 1396 p->pid = pid_nr(pid); 1397 if (clone_flags & CLONE_THREAD) { 1398 p->exit_signal = -1; 1399 p->group_leader = current->group_leader; 1400 p->tgid = current->tgid; 1401 } else { 1402 if (clone_flags & CLONE_PARENT) 1403 p->exit_signal = current->group_leader->exit_signal; 1404 else 1405 p->exit_signal = (clone_flags & CSIGNAL); 1406 p->group_leader = p; 1407 p->tgid = p->pid; 1408 } 1409 1410 p->pdeath_signal = 0; 1411 p->exit_state = 0; 1412 1413 p->nr_dirtied = 0; 1414 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 1415 p->dirty_paused_when = 0; 1416 1417 INIT_LIST_HEAD(&p->thread_group); 1418 p->task_works = NULL; 1419 1420 /* 1421 * Make it visible to the rest of the system, but dont wake it up yet. 1422 * Need tasklist lock for parent etc handling! 1423 */ 1424 write_lock_irq(&tasklist_lock); 1425 1426 /* CLONE_PARENT re-uses the old parent */ 1427 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 1428 p->real_parent = current->real_parent; 1429 p->parent_exec_id = current->parent_exec_id; 1430 } else { 1431 p->real_parent = current; 1432 p->parent_exec_id = current->self_exec_id; 1433 } 1434 1435 spin_lock(¤t->sighand->siglock); 1436 1437 /* 1438 * Process group and session signals need to be delivered to just the 1439 * parent before the fork or both the parent and the child after the 1440 * fork. Restart if a signal comes in before we add the new process to 1441 * it's process group. 1442 * A fatal signal pending means that current will exit, so the new 1443 * thread can't slip out of an OOM kill (or normal SIGKILL). 1444 */ 1445 recalc_sigpending(); 1446 if (signal_pending(current)) { 1447 spin_unlock(¤t->sighand->siglock); 1448 write_unlock_irq(&tasklist_lock); 1449 retval = -ERESTARTNOINTR; 1450 goto bad_fork_free_pid; 1451 } 1452 1453 if (likely(p->pid)) { 1454 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 1455 1456 init_task_pid(p, PIDTYPE_PID, pid); 1457 if (thread_group_leader(p)) { 1458 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 1459 init_task_pid(p, PIDTYPE_SID, task_session(current)); 1460 1461 if (is_child_reaper(pid)) { 1462 ns_of_pid(pid)->child_reaper = p; 1463 p->signal->flags |= SIGNAL_UNKILLABLE; 1464 } 1465 1466 p->signal->leader_pid = pid; 1467 p->signal->tty = tty_kref_get(current->signal->tty); 1468 list_add_tail(&p->sibling, &p->real_parent->children); 1469 list_add_tail_rcu(&p->tasks, &init_task.tasks); 1470 attach_pid(p, PIDTYPE_PGID); 1471 attach_pid(p, PIDTYPE_SID); 1472 __this_cpu_inc(process_counts); 1473 } else { 1474 current->signal->nr_threads++; 1475 atomic_inc(¤t->signal->live); 1476 atomic_inc(¤t->signal->sigcnt); 1477 list_add_tail_rcu(&p->thread_group, 1478 &p->group_leader->thread_group); 1479 } 1480 attach_pid(p, PIDTYPE_PID); 1481 nr_threads++; 1482 } 1483 1484 total_forks++; 1485 spin_unlock(¤t->sighand->siglock); 1486 write_unlock_irq(&tasklist_lock); 1487 proc_fork_connector(p); 1488 cgroup_post_fork(p); 1489 if (clone_flags & CLONE_THREAD) 1490 threadgroup_change_end(current); 1491 perf_event_fork(p); 1492 1493 trace_task_newtask(p, clone_flags); 1494 uprobe_copy_process(p, clone_flags); 1495 1496 return p; 1497 1498 bad_fork_free_pid: 1499 if (pid != &init_struct_pid) 1500 free_pid(pid); 1501 bad_fork_cleanup_io: 1502 if (p->io_context) 1503 exit_io_context(p); 1504 bad_fork_cleanup_namespaces: 1505 exit_task_namespaces(p); 1506 bad_fork_cleanup_mm: 1507 if (p->mm) 1508 mmput(p->mm); 1509 bad_fork_cleanup_signal: 1510 if (!(clone_flags & CLONE_THREAD)) 1511 free_signal_struct(p->signal); 1512 bad_fork_cleanup_sighand: 1513 __cleanup_sighand(p->sighand); 1514 bad_fork_cleanup_fs: 1515 exit_fs(p); /* blocking */ 1516 bad_fork_cleanup_files: 1517 exit_files(p); /* blocking */ 1518 bad_fork_cleanup_semundo: 1519 exit_sem(p); 1520 bad_fork_cleanup_audit: 1521 audit_free(p); 1522 ccs_free_task_security(p); 1523 bad_fork_cleanup_policy: 1524 perf_event_free_task(p); 1525 #ifdef CONFIG_NUMA 1526 mpol_put(p->mempolicy); 1527 bad_fork_cleanup_cgroup: 1528 #endif 1529 if (clone_flags & CLONE_THREAD) 1530 threadgroup_change_end(current); 1531 cgroup_exit(p, 0); 1532 delayacct_tsk_free(p); 1533 module_put(task_thread_info(p)->exec_domain->module); 1534 bad_fork_cleanup_count: 1535 atomic_dec(&p->cred->user->processes); 1536 exit_creds(p); 1537 bad_fork_free: 1538 free_task(p); 1539 fork_out: 1540 return ERR_PTR(retval); 1541 } 1542 1543 static inline void init_idle_pids(struct pid_link *links) 1544 { 1545 enum pid_type type; 1546 1547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1548 INIT_HLIST_NODE(&links[type].node); /* not really needed */ 1549 links[type].pid = &init_struct_pid; 1550 } 1551 } 1552 1553 struct task_struct *fork_idle(int cpu) 1554 { 1555 struct task_struct *task; 1556 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); 1557 if (!IS_ERR(task)) { 1558 init_idle_pids(task->pids); 1559 init_idle(task, cpu); 1560 } 1561 1562 return task; 1563 } 1564 1565 /* 1566 * Ok, this is the main fork-routine. 1567 * 1568 * It copies the process, and if successful kick-starts 1569 * it and waits for it to finish using the VM if required. 1570 */ 1571 long do_fork(unsigned long clone_flags, 1572 unsigned long stack_start, 1573 unsigned long stack_size, 1574 int __user *parent_tidptr, 1575 int __user *child_tidptr) 1576 { 1577 struct task_struct *p; 1578 int trace = 0; 1579 long nr; 1580 1581 /* 1582 * Determine whether and which event to report to ptracer. When 1583 * called from kernel_thread or CLONE_UNTRACED is explicitly 1584 * requested, no event is reported; otherwise, report if the event 1585 * for the type of forking is enabled. 1586 */ 1587 if (!(clone_flags & CLONE_UNTRACED)) { 1588 if (clone_flags & CLONE_VFORK) 1589 trace = PTRACE_EVENT_VFORK; 1590 else if ((clone_flags & CSIGNAL) != SIGCHLD) 1591 trace = PTRACE_EVENT_CLONE; 1592 else 1593 trace = PTRACE_EVENT_FORK; 1594 1595 if (likely(!ptrace_event_enabled(current, trace))) 1596 trace = 0; 1597 } 1598 1599 p = copy_process(clone_flags, stack_start, stack_size, 1600 child_tidptr, NULL, trace); 1601 /* 1602 * Do this prior waking up the new thread - the thread pointer 1603 * might get invalid after that point, if the thread exits quickly. 1604 */ 1605 if (!IS_ERR(p)) { 1606 struct completion vfork; 1607 1608 trace_sched_process_fork(current, p); 1609 1610 nr = task_pid_vnr(p); 1611 1612 if (clone_flags & CLONE_PARENT_SETTID) 1613 put_user(nr, parent_tidptr); 1614 1615 if (clone_flags & CLONE_VFORK) { 1616 p->vfork_done = &vfork; 1617 init_completion(&vfork); 1618 get_task_struct(p); 1619 } 1620 1621 wake_up_new_task(p); 1622 1623 /* forking complete and child started to run, tell ptracer */ 1624 if (unlikely(trace)) 1625 ptrace_event(trace, nr); 1626 1627 if (clone_flags & CLONE_VFORK) { 1628 if (!wait_for_vfork_done(p, &vfork)) 1629 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); 1630 } 1631 } else { 1632 nr = PTR_ERR(p); 1633 } 1634 return nr; 1635 } 1636 1637 /* 1638 * Create a kernel thread. 1639 */ 1640 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 1641 { 1642 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 1643 (unsigned long)arg, NULL, NULL); 1644 } 1645 1646 #ifdef __ARCH_WANT_SYS_FORK 1647 SYSCALL_DEFINE0(fork) 1648 { 1649 #ifdef CONFIG_MMU 1650 return do_fork(SIGCHLD, 0, 0, NULL, NULL); 1651 #else 1652 /* can not support in nommu mode */ 1653 return(-EINVAL); 1654 #endif 1655 } 1656 #endif 1657 1658 #ifdef __ARCH_WANT_SYS_VFORK 1659 SYSCALL_DEFINE0(vfork) 1660 { 1661 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 1662 0, NULL, NULL); 1663 } 1664 #endif 1665 1666 #ifdef __ARCH_WANT_SYS_CLONE 1667 #ifdef CONFIG_CLONE_BACKWARDS 1668 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1669 int __user *, parent_tidptr, 1670 int, tls_val, 1671 int __user *, child_tidptr) 1672 #elif defined(CONFIG_CLONE_BACKWARDS2) 1673 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 1674 int __user *, parent_tidptr, 1675 int __user *, child_tidptr, 1676 int, tls_val) 1677 #elif defined(CONFIG_CLONE_BACKWARDS3) 1678 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 1679 int, stack_size, 1680 int __user *, parent_tidptr, 1681 int __user *, child_tidptr, 1682 int, tls_val) 1683 #else 1684 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 1685 int __user *, parent_tidptr, 1686 int __user *, child_tidptr, 1687 int, tls_val) 1688 #endif 1689 { 1690 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); 1691 } 1692 #endif 1693 1694 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 1695 #define ARCH_MIN_MMSTRUCT_ALIGN 0 1696 #endif 1697 1698 static void sighand_ctor(void *data) 1699 { 1700 struct sighand_struct *sighand = data; 1701 1702 spin_lock_init(&sighand->siglock); 1703 init_waitqueue_head(&sighand->signalfd_wqh); 1704 } 1705 1706 void __init proc_caches_init(void) 1707 { 1708 sighand_cachep = kmem_cache_create("sighand_cache", 1709 sizeof(struct sighand_struct), 0, 1710 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| 1711 SLAB_NOTRACK, sighand_ctor); 1712 signal_cachep = kmem_cache_create("signal_cache", 1713 sizeof(struct signal_struct), 0, 1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1715 files_cachep = kmem_cache_create("files_cache", 1716 sizeof(struct files_struct), 0, 1717 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1718 fs_cachep = kmem_cache_create("fs_cache", 1719 sizeof(struct fs_struct), 0, 1720 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1721 /* 1722 * FIXME! The "sizeof(struct mm_struct)" currently includes the 1723 * whole struct cpumask for the OFFSTACK case. We could change 1724 * this to *only* allocate as much of it as required by the 1725 * maximum number of CPU's we can ever have. The cpumask_allocation 1726 * is at the end of the structure, exactly for that reason. 1727 */ 1728 mm_cachep = kmem_cache_create("mm_struct", 1729 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, 1730 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); 1731 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); 1732 mmap_init(); 1733 nsproxy_cache_init(); 1734 } 1735 1736 /* 1737 * Check constraints on flags passed to the unshare system call. 1738 */ 1739 static int check_unshare_flags(unsigned long unshare_flags) 1740 { 1741 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 1742 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 1743 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 1744 CLONE_NEWUSER|CLONE_NEWPID)) 1745 return -EINVAL; 1746 /* 1747 * Not implemented, but pretend it works if there is nothing to 1748 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND 1749 * needs to unshare vm. 1750 */ 1751 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 1752 /* FIXME: get_task_mm() increments ->mm_users */ 1753 if (atomic_read(¤t->mm->mm_users) > 1) 1754 return -EINVAL; 1755 } 1756 1757 return 0; 1758 } 1759 1760 /* 1761 * Unshare the filesystem structure if it is being shared 1762 */ 1763 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 1764 { 1765 struct fs_struct *fs = current->fs; 1766 1767 if (!(unshare_flags & CLONE_FS) || !fs) 1768 return 0; 1769 1770 /* don't need lock here; in the worst case we'll do useless copy */ 1771 if (fs->users == 1) 1772 return 0; 1773 1774 *new_fsp = copy_fs_struct(fs); 1775 if (!*new_fsp) 1776 return -ENOMEM; 1777 1778 return 0; 1779 } 1780 1781 /* 1782 * Unshare file descriptor table if it is being shared 1783 */ 1784 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 1785 { 1786 struct files_struct *fd = current->files; 1787 int error = 0; 1788 1789 if ((unshare_flags & CLONE_FILES) && 1790 (fd && atomic_read(&fd->count) > 1)) { 1791 *new_fdp = dup_fd(fd, &error); 1792 if (!*new_fdp) 1793 return error; 1794 } 1795 1796 return 0; 1797 } 1798 1799 /* 1800 * unshare allows a process to 'unshare' part of the process 1801 * context which was originally shared using clone. copy_* 1802 * functions used by do_fork() cannot be used here directly 1803 * because they modify an inactive task_struct that is being 1804 * constructed. Here we are modifying the current, active, 1805 * task_struct. 1806 */ 1807 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 1808 { 1809 struct fs_struct *fs, *new_fs = NULL; 1810 struct files_struct *fd, *new_fd = NULL; 1811 struct cred *new_cred = NULL; 1812 struct nsproxy *new_nsproxy = NULL; 1813 int do_sysvsem = 0; 1814 int err; 1815 1816 /* 1817 * If unsharing a user namespace must also unshare the thread. 1818 */ 1819 if (unshare_flags & CLONE_NEWUSER) 1820 unshare_flags |= CLONE_THREAD | CLONE_FS; 1821 /* 1822 * If unsharing a thread from a thread group, must also unshare vm. 1823 */ 1824 if (unshare_flags & CLONE_THREAD) 1825 unshare_flags |= CLONE_VM; 1826 /* 1827 * If unsharing vm, must also unshare signal handlers. 1828 */ 1829 if (unshare_flags & CLONE_VM) 1830 unshare_flags |= CLONE_SIGHAND; 1831 /* 1832 * If unsharing namespace, must also unshare filesystem information. 1833 */ 1834 if (unshare_flags & CLONE_NEWNS) 1835 unshare_flags |= CLONE_FS; 1836 1837 err = check_unshare_flags(unshare_flags); 1838 if (err) 1839 goto bad_unshare_out; 1840 /* 1841 * CLONE_NEWIPC must also detach from the undolist: after switching 1842 * to a new ipc namespace, the semaphore arrays from the old 1843 * namespace are unreachable. 1844 */ 1845 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 1846 do_sysvsem = 1; 1847 err = unshare_fs(unshare_flags, &new_fs); 1848 if (err) 1849 goto bad_unshare_out; 1850 err = unshare_fd(unshare_flags, &new_fd); 1851 if (err) 1852 goto bad_unshare_cleanup_fs; 1853 err = unshare_userns(unshare_flags, &new_cred); 1854 if (err) 1855 goto bad_unshare_cleanup_fd; 1856 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 1857 new_cred, new_fs); 1858 if (err) 1859 goto bad_unshare_cleanup_cred; 1860 1861 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 1862 if (do_sysvsem) { 1863 /* 1864 * CLONE_SYSVSEM is equivalent to sys_exit(). 1865 */ 1866 exit_sem(current); 1867 } 1868 1869 if (new_nsproxy) 1870 switch_task_namespaces(current, new_nsproxy); 1871 1872 task_lock(current); 1873 1874 if (new_fs) { 1875 fs = current->fs; 1876 spin_lock(&fs->lock); 1877 current->fs = new_fs; 1878 if (--fs->users) 1879 new_fs = NULL; 1880 else 1881 new_fs = fs; 1882 spin_unlock(&fs->lock); 1883 } 1884 1885 if (new_fd) { 1886 fd = current->files; 1887 current->files = new_fd; 1888 new_fd = fd; 1889 } 1890 1891 task_unlock(current); 1892 1893 if (new_cred) { 1894 /* Install the new user namespace */ 1895 commit_creds(new_cred); 1896 new_cred = NULL; 1897 } 1898 } 1899 1900 bad_unshare_cleanup_cred: 1901 if (new_cred) 1902 put_cred(new_cred); 1903 bad_unshare_cleanup_fd: 1904 if (new_fd) 1905 put_files_struct(new_fd); 1906 1907 bad_unshare_cleanup_fs: 1908 if (new_fs) 1909 free_fs_struct(new_fs); 1910 1911 bad_unshare_out: 1912 return err; 1913 } 1914 1915 /* 1916 * Helper to unshare the files of the current task. 1917 * We don't want to expose copy_files internals to 1918 * the exec layer of the kernel. 1919 */ 1920 1921 int unshare_files(struct files_struct **displaced) 1922 { 1923 struct task_struct *task = current; 1924 struct files_struct *copy = NULL; 1925 int error; 1926 1927 error = unshare_fd(CLONE_FILES, ©); 1928 if (error || !copy) { 1929 *displaced = NULL; 1930 return error; 1931 } 1932 *displaced = task->files; 1933 task_lock(task); 1934 task->files = copy; 1935 task_unlock(task); 1936 return 0; 1937 } 1938
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.