~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/locking/osq_lock.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #include <linux/percpu.h>
  2 #include <linux/sched.h>
  3 #include <linux/osq_lock.h>
  4 
  5 /*
  6  * An MCS like lock especially tailored for optimistic spinning for sleeping
  7  * lock implementations (mutex, rwsem, etc).
  8  *
  9  * Using a single mcs node per CPU is safe because sleeping locks should not be
 10  * called from interrupt context and we have preemption disabled while
 11  * spinning.
 12  */
 13 static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
 14 
 15 /*
 16  * We use the value 0 to represent "no CPU", thus the encoded value
 17  * will be the CPU number incremented by 1.
 18  */
 19 static inline int encode_cpu(int cpu_nr)
 20 {
 21         return cpu_nr + 1;
 22 }
 23 
 24 static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
 25 {
 26         int cpu_nr = encoded_cpu_val - 1;
 27 
 28         return per_cpu_ptr(&osq_node, cpu_nr);
 29 }
 30 
 31 /*
 32  * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
 33  * Can return NULL in case we were the last queued and we updated @lock instead.
 34  */
 35 static inline struct optimistic_spin_node *
 36 osq_wait_next(struct optimistic_spin_queue *lock,
 37               struct optimistic_spin_node *node,
 38               struct optimistic_spin_node *prev)
 39 {
 40         struct optimistic_spin_node *next = NULL;
 41         int curr = encode_cpu(smp_processor_id());
 42         int old;
 43 
 44         /*
 45          * If there is a prev node in queue, then the 'old' value will be
 46          * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
 47          * we're currently last in queue, then the queue will then become empty.
 48          */
 49         old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
 50 
 51         for (;;) {
 52                 if (atomic_read(&lock->tail) == curr &&
 53                     atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
 54                         /*
 55                          * We were the last queued, we moved @lock back. @prev
 56                          * will now observe @lock and will complete its
 57                          * unlock()/unqueue().
 58                          */
 59                         break;
 60                 }
 61 
 62                 /*
 63                  * We must xchg() the @node->next value, because if we were to
 64                  * leave it in, a concurrent unlock()/unqueue() from
 65                  * @node->next might complete Step-A and think its @prev is
 66                  * still valid.
 67                  *
 68                  * If the concurrent unlock()/unqueue() wins the race, we'll
 69                  * wait for either @lock to point to us, through its Step-B, or
 70                  * wait for a new @node->next from its Step-C.
 71                  */
 72                 if (node->next) {
 73                         next = xchg(&node->next, NULL);
 74                         if (next)
 75                                 break;
 76                 }
 77 
 78                 cpu_relax_lowlatency();
 79         }
 80 
 81         return next;
 82 }
 83 
 84 bool osq_lock(struct optimistic_spin_queue *lock)
 85 {
 86         struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
 87         struct optimistic_spin_node *prev, *next;
 88         int curr = encode_cpu(smp_processor_id());
 89         int old;
 90 
 91         node->locked = 0;
 92         node->next = NULL;
 93         node->cpu = curr;
 94 
 95         /*
 96          * We need both ACQUIRE (pairs with corresponding RELEASE in
 97          * unlock() uncontended, or fastpath) and RELEASE (to publish
 98          * the node fields we just initialised) semantics when updating
 99          * the lock tail.
100          */
101         old = atomic_xchg(&lock->tail, curr);
102         if (old == OSQ_UNLOCKED_VAL)
103                 return true;
104 
105         prev = decode_cpu(old);
106         node->prev = prev;
107         WRITE_ONCE(prev->next, node);
108 
109         /*
110          * Normally @prev is untouchable after the above store; because at that
111          * moment unlock can proceed and wipe the node element from stack.
112          *
113          * However, since our nodes are static per-cpu storage, we're
114          * guaranteed their existence -- this allows us to apply
115          * cmpxchg in an attempt to undo our queueing.
116          */
117 
118         while (!READ_ONCE(node->locked)) {
119                 /*
120                  * If we need to reschedule bail... so we can block.
121                  */
122                 if (need_resched())
123                         goto unqueue;
124 
125                 cpu_relax_lowlatency();
126         }
127         return true;
128 
129 unqueue:
130         /*
131          * Step - A  -- stabilize @prev
132          *
133          * Undo our @prev->next assignment; this will make @prev's
134          * unlock()/unqueue() wait for a next pointer since @lock points to us
135          * (or later).
136          */
137 
138         for (;;) {
139                 if (prev->next == node &&
140                     cmpxchg(&prev->next, node, NULL) == node)
141                         break;
142 
143                 /*
144                  * We can only fail the cmpxchg() racing against an unlock(),
145                  * in which case we should observe @node->locked becomming
146                  * true.
147                  */
148                 if (smp_load_acquire(&node->locked))
149                         return true;
150 
151                 cpu_relax_lowlatency();
152 
153                 /*
154                  * Or we race against a concurrent unqueue()'s step-B, in which
155                  * case its step-C will write us a new @node->prev pointer.
156                  */
157                 prev = READ_ONCE(node->prev);
158         }
159 
160         /*
161          * Step - B -- stabilize @next
162          *
163          * Similar to unlock(), wait for @node->next or move @lock from @node
164          * back to @prev.
165          */
166 
167         next = osq_wait_next(lock, node, prev);
168         if (!next)
169                 return false;
170 
171         /*
172          * Step - C -- unlink
173          *
174          * @prev is stable because its still waiting for a new @prev->next
175          * pointer, @next is stable because our @node->next pointer is NULL and
176          * it will wait in Step-A.
177          */
178 
179         WRITE_ONCE(next->prev, prev);
180         WRITE_ONCE(prev->next, next);
181 
182         return false;
183 }
184 
185 void osq_unlock(struct optimistic_spin_queue *lock)
186 {
187         struct optimistic_spin_node *node, *next;
188         int curr = encode_cpu(smp_processor_id());
189 
190         /*
191          * Fast path for the uncontended case.
192          */
193         if (likely(atomic_cmpxchg_release(&lock->tail, curr,
194                                           OSQ_UNLOCKED_VAL) == curr))
195                 return;
196 
197         /*
198          * Second most likely case.
199          */
200         node = this_cpu_ptr(&osq_node);
201         next = xchg(&node->next, NULL);
202         if (next) {
203                 WRITE_ONCE(next->locked, 1);
204                 return;
205         }
206 
207         next = osq_wait_next(lock, node, NULL);
208         if (next)
209                 WRITE_ONCE(next->locked, 1);
210 }
211 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp