~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/sched/debug.c

Version: ~ [ linux-5.5-rc7 ] ~ [ linux-5.4.13 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.97 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.166 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.210 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.210 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.81 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * kernel/sched/debug.c
  3  *
  4  * Print the CFS rbtree and other debugging details
  5  *
  6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7  *
  8  * This program is free software; you can redistribute it and/or modify
  9  * it under the terms of the GNU General Public License version 2 as
 10  * published by the Free Software Foundation.
 11  */
 12 #include "sched.h"
 13 
 14 static DEFINE_SPINLOCK(sched_debug_lock);
 15 
 16 /*
 17  * This allows printing both to /proc/sched_debug and
 18  * to the console
 19  */
 20 #define SEQ_printf(m, x...)                     \
 21  do {                                           \
 22         if (m)                                  \
 23                 seq_printf(m, x);               \
 24         else                                    \
 25                 pr_cont(x);                     \
 26  } while (0)
 27 
 28 /*
 29  * Ease the printing of nsec fields:
 30  */
 31 static long long nsec_high(unsigned long long nsec)
 32 {
 33         if ((long long)nsec < 0) {
 34                 nsec = -nsec;
 35                 do_div(nsec, 1000000);
 36                 return -nsec;
 37         }
 38         do_div(nsec, 1000000);
 39 
 40         return nsec;
 41 }
 42 
 43 static unsigned long nsec_low(unsigned long long nsec)
 44 {
 45         if ((long long)nsec < 0)
 46                 nsec = -nsec;
 47 
 48         return do_div(nsec, 1000000);
 49 }
 50 
 51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 52 
 53 #define SCHED_FEAT(name, enabled)       \
 54         #name ,
 55 
 56 static const char * const sched_feat_names[] = {
 57 #include "features.h"
 58 };
 59 
 60 #undef SCHED_FEAT
 61 
 62 static int sched_feat_show(struct seq_file *m, void *v)
 63 {
 64         int i;
 65 
 66         for (i = 0; i < __SCHED_FEAT_NR; i++) {
 67                 if (!(sysctl_sched_features & (1UL << i)))
 68                         seq_puts(m, "NO_");
 69                 seq_printf(m, "%s ", sched_feat_names[i]);
 70         }
 71         seq_puts(m, "\n");
 72 
 73         return 0;
 74 }
 75 
 76 #ifdef HAVE_JUMP_LABEL
 77 
 78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
 79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
 80 
 81 #define SCHED_FEAT(name, enabled)       \
 82         jump_label_key__##enabled ,
 83 
 84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 85 #include "features.h"
 86 };
 87 
 88 #undef SCHED_FEAT
 89 
 90 static void sched_feat_disable(int i)
 91 {
 92         static_key_disable_cpuslocked(&sched_feat_keys[i]);
 93 }
 94 
 95 static void sched_feat_enable(int i)
 96 {
 97         static_key_enable_cpuslocked(&sched_feat_keys[i]);
 98 }
 99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* HAVE_JUMP_LABEL */
103 
104 static int sched_feat_set(char *cmp)
105 {
106         int i;
107         int neg = 0;
108 
109         if (strncmp(cmp, "NO_", 3) == 0) {
110                 neg = 1;
111                 cmp += 3;
112         }
113 
114         i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115         if (i < 0)
116                 return i;
117 
118         if (neg) {
119                 sysctl_sched_features &= ~(1UL << i);
120                 sched_feat_disable(i);
121         } else {
122                 sysctl_sched_features |= (1UL << i);
123                 sched_feat_enable(i);
124         }
125 
126         return 0;
127 }
128 
129 static ssize_t
130 sched_feat_write(struct file *filp, const char __user *ubuf,
131                 size_t cnt, loff_t *ppos)
132 {
133         char buf[64];
134         char *cmp;
135         int ret;
136         struct inode *inode;
137 
138         if (cnt > 63)
139                 cnt = 63;
140 
141         if (copy_from_user(&buf, ubuf, cnt))
142                 return -EFAULT;
143 
144         buf[cnt] = 0;
145         cmp = strstrip(buf);
146 
147         /* Ensure the static_key remains in a consistent state */
148         inode = file_inode(filp);
149         cpus_read_lock();
150         inode_lock(inode);
151         ret = sched_feat_set(cmp);
152         inode_unlock(inode);
153         cpus_read_unlock();
154         if (ret < 0)
155                 return ret;
156 
157         *ppos += cnt;
158 
159         return cnt;
160 }
161 
162 static int sched_feat_open(struct inode *inode, struct file *filp)
163 {
164         return single_open(filp, sched_feat_show, NULL);
165 }
166 
167 static const struct file_operations sched_feat_fops = {
168         .open           = sched_feat_open,
169         .write          = sched_feat_write,
170         .read           = seq_read,
171         .llseek         = seq_lseek,
172         .release        = single_release,
173 };
174 
175 __read_mostly bool sched_debug_enabled;
176 
177 static __init int sched_init_debug(void)
178 {
179         debugfs_create_file("sched_features", 0644, NULL, NULL,
180                         &sched_feat_fops);
181 
182         debugfs_create_bool("sched_debug", 0644, NULL,
183                         &sched_debug_enabled);
184 
185         return 0;
186 }
187 late_initcall(sched_init_debug);
188 
189 #ifdef CONFIG_SMP
190 
191 #ifdef CONFIG_SYSCTL
192 
193 static struct ctl_table sd_ctl_dir[] = {
194         {
195                 .procname       = "sched_domain",
196                 .mode           = 0555,
197         },
198         {}
199 };
200 
201 static struct ctl_table sd_ctl_root[] = {
202         {
203                 .procname       = "kernel",
204                 .mode           = 0555,
205                 .child          = sd_ctl_dir,
206         },
207         {}
208 };
209 
210 static struct ctl_table *sd_alloc_ctl_entry(int n)
211 {
212         struct ctl_table *entry =
213                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
214 
215         return entry;
216 }
217 
218 static void sd_free_ctl_entry(struct ctl_table **tablep)
219 {
220         struct ctl_table *entry;
221 
222         /*
223          * In the intermediate directories, both the child directory and
224          * procname are dynamically allocated and could fail but the mode
225          * will always be set. In the lowest directory the names are
226          * static strings and all have proc handlers.
227          */
228         for (entry = *tablep; entry->mode; entry++) {
229                 if (entry->child)
230                         sd_free_ctl_entry(&entry->child);
231                 if (entry->proc_handler == NULL)
232                         kfree(entry->procname);
233         }
234 
235         kfree(*tablep);
236         *tablep = NULL;
237 }
238 
239 static int min_load_idx = 0;
240 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
241 
242 static void
243 set_table_entry(struct ctl_table *entry,
244                 const char *procname, void *data, int maxlen,
245                 umode_t mode, proc_handler *proc_handler,
246                 bool load_idx)
247 {
248         entry->procname = procname;
249         entry->data = data;
250         entry->maxlen = maxlen;
251         entry->mode = mode;
252         entry->proc_handler = proc_handler;
253 
254         if (load_idx) {
255                 entry->extra1 = &min_load_idx;
256                 entry->extra2 = &max_load_idx;
257         }
258 }
259 
260 static struct ctl_table *
261 sd_alloc_ctl_domain_table(struct sched_domain *sd)
262 {
263         struct ctl_table *table = sd_alloc_ctl_entry(14);
264 
265         if (table == NULL)
266                 return NULL;
267 
268         set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
269         set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
270         set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
271         set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
272         set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
273         set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
274         set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
275         set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
276         set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
277         set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
278         set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
279         set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
280         set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
281         /* &table[13] is terminator */
282 
283         return table;
284 }
285 
286 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
287 {
288         struct ctl_table *entry, *table;
289         struct sched_domain *sd;
290         int domain_num = 0, i;
291         char buf[32];
292 
293         for_each_domain(cpu, sd)
294                 domain_num++;
295         entry = table = sd_alloc_ctl_entry(domain_num + 1);
296         if (table == NULL)
297                 return NULL;
298 
299         i = 0;
300         for_each_domain(cpu, sd) {
301                 snprintf(buf, 32, "domain%d", i);
302                 entry->procname = kstrdup(buf, GFP_KERNEL);
303                 entry->mode = 0555;
304                 entry->child = sd_alloc_ctl_domain_table(sd);
305                 entry++;
306                 i++;
307         }
308         return table;
309 }
310 
311 static cpumask_var_t            sd_sysctl_cpus;
312 static struct ctl_table_header  *sd_sysctl_header;
313 
314 void register_sched_domain_sysctl(void)
315 {
316         static struct ctl_table *cpu_entries;
317         static struct ctl_table **cpu_idx;
318         char buf[32];
319         int i;
320 
321         if (!cpu_entries) {
322                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
323                 if (!cpu_entries)
324                         return;
325 
326                 WARN_ON(sd_ctl_dir[0].child);
327                 sd_ctl_dir[0].child = cpu_entries;
328         }
329 
330         if (!cpu_idx) {
331                 struct ctl_table *e = cpu_entries;
332 
333                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
334                 if (!cpu_idx)
335                         return;
336 
337                 /* deal with sparse possible map */
338                 for_each_possible_cpu(i) {
339                         cpu_idx[i] = e;
340                         e++;
341                 }
342         }
343 
344         if (!cpumask_available(sd_sysctl_cpus)) {
345                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
346                         return;
347 
348                 /* init to possible to not have holes in @cpu_entries */
349                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
350         }
351 
352         for_each_cpu(i, sd_sysctl_cpus) {
353                 struct ctl_table *e = cpu_idx[i];
354 
355                 if (e->child)
356                         sd_free_ctl_entry(&e->child);
357 
358                 if (!e->procname) {
359                         snprintf(buf, 32, "cpu%d", i);
360                         e->procname = kstrdup(buf, GFP_KERNEL);
361                 }
362                 e->mode = 0555;
363                 e->child = sd_alloc_ctl_cpu_table(i);
364 
365                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
366         }
367 
368         WARN_ON(sd_sysctl_header);
369         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
370 }
371 
372 void dirty_sched_domain_sysctl(int cpu)
373 {
374         if (cpumask_available(sd_sysctl_cpus))
375                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
376 }
377 
378 /* may be called multiple times per register */
379 void unregister_sched_domain_sysctl(void)
380 {
381         unregister_sysctl_table(sd_sysctl_header);
382         sd_sysctl_header = NULL;
383 }
384 #endif /* CONFIG_SYSCTL */
385 #endif /* CONFIG_SMP */
386 
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
389 {
390         struct sched_entity *se = tg->se[cpu];
391 
392 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
393 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
394 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
395 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
396 
397         if (!se)
398                 return;
399 
400         PN(se->exec_start);
401         PN(se->vruntime);
402         PN(se->sum_exec_runtime);
403 
404         if (schedstat_enabled()) {
405                 PN_SCHEDSTAT(se->statistics.wait_start);
406                 PN_SCHEDSTAT(se->statistics.sleep_start);
407                 PN_SCHEDSTAT(se->statistics.block_start);
408                 PN_SCHEDSTAT(se->statistics.sleep_max);
409                 PN_SCHEDSTAT(se->statistics.block_max);
410                 PN_SCHEDSTAT(se->statistics.exec_max);
411                 PN_SCHEDSTAT(se->statistics.slice_max);
412                 PN_SCHEDSTAT(se->statistics.wait_max);
413                 PN_SCHEDSTAT(se->statistics.wait_sum);
414                 P_SCHEDSTAT(se->statistics.wait_count);
415         }
416 
417         P(se->load.weight);
418         P(se->runnable_weight);
419 #ifdef CONFIG_SMP
420         P(se->avg.load_avg);
421         P(se->avg.util_avg);
422         P(se->avg.runnable_load_avg);
423 #endif
424 
425 #undef PN_SCHEDSTAT
426 #undef PN
427 #undef P_SCHEDSTAT
428 #undef P
429 }
430 #endif
431 
432 #ifdef CONFIG_CGROUP_SCHED
433 static char group_path[PATH_MAX];
434 
435 static char *task_group_path(struct task_group *tg)
436 {
437         if (autogroup_path(tg, group_path, PATH_MAX))
438                 return group_path;
439 
440         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
441 
442         return group_path;
443 }
444 #endif
445 
446 static void
447 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
448 {
449         if (rq->curr == p)
450                 SEQ_printf(m, ">R");
451         else
452                 SEQ_printf(m, " %c", task_state_to_char(p));
453 
454         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
455                 p->comm, task_pid_nr(p),
456                 SPLIT_NS(p->se.vruntime),
457                 (long long)(p->nvcsw + p->nivcsw),
458                 p->prio);
459 
460         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
461                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
462                 SPLIT_NS(p->se.sum_exec_runtime),
463                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
464 
465 #ifdef CONFIG_NUMA_BALANCING
466         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
467 #endif
468 #ifdef CONFIG_CGROUP_SCHED
469         SEQ_printf(m, " %s", task_group_path(task_group(p)));
470 #endif
471 
472         SEQ_printf(m, "\n");
473 }
474 
475 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
476 {
477         struct task_struct *g, *p;
478 
479         SEQ_printf(m, "\n");
480         SEQ_printf(m, "runnable tasks:\n");
481         SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
482                    "     wait-time             sum-exec        sum-sleep\n");
483         SEQ_printf(m, "-------------------------------------------------------"
484                    "----------------------------------------------------\n");
485 
486         rcu_read_lock();
487         for_each_process_thread(g, p) {
488                 if (task_cpu(p) != rq_cpu)
489                         continue;
490 
491                 print_task(m, rq, p);
492         }
493         rcu_read_unlock();
494 }
495 
496 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
497 {
498         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
499                 spread, rq0_min_vruntime, spread0;
500         struct rq *rq = cpu_rq(cpu);
501         struct sched_entity *last;
502         unsigned long flags;
503 
504 #ifdef CONFIG_FAIR_GROUP_SCHED
505         SEQ_printf(m, "\n");
506         SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
507 #else
508         SEQ_printf(m, "\n");
509         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
510 #endif
511         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
512                         SPLIT_NS(cfs_rq->exec_clock));
513 
514         raw_spin_lock_irqsave(&rq->lock, flags);
515         if (rb_first_cached(&cfs_rq->tasks_timeline))
516                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
517         last = __pick_last_entity(cfs_rq);
518         if (last)
519                 max_vruntime = last->vruntime;
520         min_vruntime = cfs_rq->min_vruntime;
521         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
522         raw_spin_unlock_irqrestore(&rq->lock, flags);
523         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
524                         SPLIT_NS(MIN_vruntime));
525         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
526                         SPLIT_NS(min_vruntime));
527         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
528                         SPLIT_NS(max_vruntime));
529         spread = max_vruntime - MIN_vruntime;
530         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
531                         SPLIT_NS(spread));
532         spread0 = min_vruntime - rq0_min_vruntime;
533         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
534                         SPLIT_NS(spread0));
535         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
536                         cfs_rq->nr_spread_over);
537         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
538         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
539 #ifdef CONFIG_SMP
540         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
541         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
542                         cfs_rq->avg.load_avg);
543         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
544                         cfs_rq->avg.runnable_load_avg);
545         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
546                         cfs_rq->avg.util_avg);
547         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
548                         cfs_rq->avg.util_est.enqueued);
549         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
550                         cfs_rq->removed.load_avg);
551         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
552                         cfs_rq->removed.util_avg);
553         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
554                         cfs_rq->removed.runnable_sum);
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
557                         cfs_rq->tg_load_avg_contrib);
558         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
559                         atomic_long_read(&cfs_rq->tg->load_avg));
560 #endif
561 #endif
562 #ifdef CONFIG_CFS_BANDWIDTH
563         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
564                         cfs_rq->throttled);
565         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
566                         cfs_rq->throttle_count);
567 #endif
568 
569 #ifdef CONFIG_FAIR_GROUP_SCHED
570         print_cfs_group_stats(m, cpu, cfs_rq->tg);
571 #endif
572 }
573 
574 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
575 {
576 #ifdef CONFIG_RT_GROUP_SCHED
577         SEQ_printf(m, "\n");
578         SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
579 #else
580         SEQ_printf(m, "\n");
581         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
582 #endif
583 
584 #define P(x) \
585         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
586 #define PU(x) \
587         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
588 #define PN(x) \
589         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
590 
591         PU(rt_nr_running);
592 #ifdef CONFIG_SMP
593         PU(rt_nr_migratory);
594 #endif
595         P(rt_throttled);
596         PN(rt_time);
597         PN(rt_runtime);
598 
599 #undef PN
600 #undef PU
601 #undef P
602 }
603 
604 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
605 {
606         struct dl_bw *dl_bw;
607 
608         SEQ_printf(m, "\n");
609         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
610 
611 #define PU(x) \
612         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
613 
614         PU(dl_nr_running);
615 #ifdef CONFIG_SMP
616         PU(dl_nr_migratory);
617         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
618 #else
619         dl_bw = &dl_rq->dl_bw;
620 #endif
621         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
622         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
623 
624 #undef PU
625 }
626 
627 static void print_cpu(struct seq_file *m, int cpu)
628 {
629         struct rq *rq = cpu_rq(cpu);
630         unsigned long flags;
631 
632 #ifdef CONFIG_X86
633         {
634                 unsigned int freq = cpu_khz ? : 1;
635 
636                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
637                            cpu, freq / 1000, (freq % 1000));
638         }
639 #else
640         SEQ_printf(m, "cpu#%d\n", cpu);
641 #endif
642 
643 #define P(x)                                                            \
644 do {                                                                    \
645         if (sizeof(rq->x) == 4)                                         \
646                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
647         else                                                            \
648                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
649 } while (0)
650 
651 #define PN(x) \
652         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
653 
654         P(nr_running);
655         SEQ_printf(m, "  .%-30s: %lu\n", "load",
656                    rq->load.weight);
657         P(nr_switches);
658         P(nr_load_updates);
659         P(nr_uninterruptible);
660         PN(next_balance);
661         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
662         PN(clock);
663         PN(clock_task);
664         P(cpu_load[0]);
665         P(cpu_load[1]);
666         P(cpu_load[2]);
667         P(cpu_load[3]);
668         P(cpu_load[4]);
669 #undef P
670 #undef PN
671 
672 #ifdef CONFIG_SMP
673 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
674         P64(avg_idle);
675         P64(max_idle_balance_cost);
676 #undef P64
677 #endif
678 
679 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
680         if (schedstat_enabled()) {
681                 P(yld_count);
682                 P(sched_count);
683                 P(sched_goidle);
684                 P(ttwu_count);
685                 P(ttwu_local);
686         }
687 #undef P
688 
689         spin_lock_irqsave(&sched_debug_lock, flags);
690         print_cfs_stats(m, cpu);
691         print_rt_stats(m, cpu);
692         print_dl_stats(m, cpu);
693 
694         print_rq(m, rq, cpu);
695         spin_unlock_irqrestore(&sched_debug_lock, flags);
696         SEQ_printf(m, "\n");
697 }
698 
699 static const char *sched_tunable_scaling_names[] = {
700         "none",
701         "logaritmic",
702         "linear"
703 };
704 
705 static void sched_debug_header(struct seq_file *m)
706 {
707         u64 ktime, sched_clk, cpu_clk;
708         unsigned long flags;
709 
710         local_irq_save(flags);
711         ktime = ktime_to_ns(ktime_get());
712         sched_clk = sched_clock();
713         cpu_clk = local_clock();
714         local_irq_restore(flags);
715 
716         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
717                 init_utsname()->release,
718                 (int)strcspn(init_utsname()->version, " "),
719                 init_utsname()->version);
720 
721 #define P(x) \
722         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
723 #define PN(x) \
724         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
725         PN(ktime);
726         PN(sched_clk);
727         PN(cpu_clk);
728         P(jiffies);
729 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
730         P(sched_clock_stable());
731 #endif
732 #undef PN
733 #undef P
734 
735         SEQ_printf(m, "\n");
736         SEQ_printf(m, "sysctl_sched\n");
737 
738 #define P(x) \
739         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
740 #define PN(x) \
741         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
742         PN(sysctl_sched_latency);
743         PN(sysctl_sched_min_granularity);
744         PN(sysctl_sched_wakeup_granularity);
745         P(sysctl_sched_child_runs_first);
746         P(sysctl_sched_features);
747 #undef PN
748 #undef P
749 
750         SEQ_printf(m, "  .%-40s: %d (%s)\n",
751                 "sysctl_sched_tunable_scaling",
752                 sysctl_sched_tunable_scaling,
753                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
754         SEQ_printf(m, "\n");
755 }
756 
757 static int sched_debug_show(struct seq_file *m, void *v)
758 {
759         int cpu = (unsigned long)(v - 2);
760 
761         if (cpu != -1)
762                 print_cpu(m, cpu);
763         else
764                 sched_debug_header(m);
765 
766         return 0;
767 }
768 
769 void sysrq_sched_debug_show(void)
770 {
771         int cpu;
772 
773         sched_debug_header(NULL);
774         for_each_online_cpu(cpu)
775                 print_cpu(NULL, cpu);
776 
777 }
778 
779 /*
780  * This itererator needs some explanation.
781  * It returns 1 for the header position.
782  * This means 2 is CPU 0.
783  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
784  * to use cpumask_* to iterate over the CPUs.
785  */
786 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
787 {
788         unsigned long n = *offset;
789 
790         if (n == 0)
791                 return (void *) 1;
792 
793         n--;
794 
795         if (n > 0)
796                 n = cpumask_next(n - 1, cpu_online_mask);
797         else
798                 n = cpumask_first(cpu_online_mask);
799 
800         *offset = n + 1;
801 
802         if (n < nr_cpu_ids)
803                 return (void *)(unsigned long)(n + 2);
804 
805         return NULL;
806 }
807 
808 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
809 {
810         (*offset)++;
811         return sched_debug_start(file, offset);
812 }
813 
814 static void sched_debug_stop(struct seq_file *file, void *data)
815 {
816 }
817 
818 static const struct seq_operations sched_debug_sops = {
819         .start          = sched_debug_start,
820         .next           = sched_debug_next,
821         .stop           = sched_debug_stop,
822         .show           = sched_debug_show,
823 };
824 
825 static int __init init_sched_debug_procfs(void)
826 {
827         if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
828                 return -ENOMEM;
829         return 0;
830 }
831 
832 __initcall(init_sched_debug_procfs);
833 
834 #define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
835 #define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
836 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
837 #define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
838 
839 
840 #ifdef CONFIG_NUMA_BALANCING
841 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
842                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
843 {
844         SEQ_printf(m, "numa_faults node=%d ", node);
845         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
846         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
847 }
848 #endif
849 
850 
851 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
852 {
853 #ifdef CONFIG_NUMA_BALANCING
854         struct mempolicy *pol;
855 
856         if (p->mm)
857                 P(mm->numa_scan_seq);
858 
859         task_lock(p);
860         pol = p->mempolicy;
861         if (pol && !(pol->flags & MPOL_F_MORON))
862                 pol = NULL;
863         mpol_get(pol);
864         task_unlock(p);
865 
866         P(numa_pages_migrated);
867         P(numa_preferred_nid);
868         P(total_numa_faults);
869         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
870                         task_node(p), task_numa_group_id(p));
871         show_numa_stats(p, m);
872         mpol_put(pol);
873 #endif
874 }
875 
876 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
877                                                   struct seq_file *m)
878 {
879         unsigned long nr_switches;
880 
881         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
882                                                 get_nr_threads(p));
883         SEQ_printf(m,
884                 "---------------------------------------------------------"
885                 "----------\n");
886 #define __P(F) \
887         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
888 #define P(F) \
889         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
890 #define P_SCHEDSTAT(F) \
891         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
892 #define __PN(F) \
893         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
894 #define PN(F) \
895         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
896 #define PN_SCHEDSTAT(F) \
897         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
898 
899         PN(se.exec_start);
900         PN(se.vruntime);
901         PN(se.sum_exec_runtime);
902 
903         nr_switches = p->nvcsw + p->nivcsw;
904 
905         P(se.nr_migrations);
906 
907         if (schedstat_enabled()) {
908                 u64 avg_atom, avg_per_cpu;
909 
910                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
911                 PN_SCHEDSTAT(se.statistics.wait_start);
912                 PN_SCHEDSTAT(se.statistics.sleep_start);
913                 PN_SCHEDSTAT(se.statistics.block_start);
914                 PN_SCHEDSTAT(se.statistics.sleep_max);
915                 PN_SCHEDSTAT(se.statistics.block_max);
916                 PN_SCHEDSTAT(se.statistics.exec_max);
917                 PN_SCHEDSTAT(se.statistics.slice_max);
918                 PN_SCHEDSTAT(se.statistics.wait_max);
919                 PN_SCHEDSTAT(se.statistics.wait_sum);
920                 P_SCHEDSTAT(se.statistics.wait_count);
921                 PN_SCHEDSTAT(se.statistics.iowait_sum);
922                 P_SCHEDSTAT(se.statistics.iowait_count);
923                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
924                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
925                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
926                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
927                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
928                 P_SCHEDSTAT(se.statistics.nr_wakeups);
929                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
930                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
931                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
932                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
933                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
934                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
935                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
936                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
937 
938                 avg_atom = p->se.sum_exec_runtime;
939                 if (nr_switches)
940                         avg_atom = div64_ul(avg_atom, nr_switches);
941                 else
942                         avg_atom = -1LL;
943 
944                 avg_per_cpu = p->se.sum_exec_runtime;
945                 if (p->se.nr_migrations) {
946                         avg_per_cpu = div64_u64(avg_per_cpu,
947                                                 p->se.nr_migrations);
948                 } else {
949                         avg_per_cpu = -1LL;
950                 }
951 
952                 __PN(avg_atom);
953                 __PN(avg_per_cpu);
954         }
955 
956         __P(nr_switches);
957         SEQ_printf(m, "%-45s:%21Ld\n",
958                    "nr_voluntary_switches", (long long)p->nvcsw);
959         SEQ_printf(m, "%-45s:%21Ld\n",
960                    "nr_involuntary_switches", (long long)p->nivcsw);
961 
962         P(se.load.weight);
963         P(se.runnable_weight);
964 #ifdef CONFIG_SMP
965         P(se.avg.load_sum);
966         P(se.avg.runnable_load_sum);
967         P(se.avg.util_sum);
968         P(se.avg.load_avg);
969         P(se.avg.runnable_load_avg);
970         P(se.avg.util_avg);
971         P(se.avg.last_update_time);
972         P(se.avg.util_est.ewma);
973         P(se.avg.util_est.enqueued);
974 #endif
975         P(policy);
976         P(prio);
977         if (p->policy == SCHED_DEADLINE) {
978                 P(dl.runtime);
979                 P(dl.deadline);
980         }
981 #undef PN_SCHEDSTAT
982 #undef PN
983 #undef __PN
984 #undef P_SCHEDSTAT
985 #undef P
986 #undef __P
987 
988         {
989                 unsigned int this_cpu = raw_smp_processor_id();
990                 u64 t0, t1;
991 
992                 t0 = cpu_clock(this_cpu);
993                 t1 = cpu_clock(this_cpu);
994                 SEQ_printf(m, "%-45s:%21Ld\n",
995                            "clock-delta", (long long)(t1-t0));
996         }
997 
998         sched_show_numa(p, m);
999 }
1000 
1001 void proc_sched_set_task(struct task_struct *p)
1002 {
1003 #ifdef CONFIG_SCHEDSTATS
1004         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1005 #endif
1006 }
1007 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp