~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/sys.c

Version: ~ [ linux-5.12-rc1 ] ~ [ linux-5.11.2 ] ~ [ linux-5.10.19 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.101 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.177 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.222 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.258 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.258 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/kernel/sys.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 #include <linux/export.h>
  9 #include <linux/mm.h>
 10 #include <linux/utsname.h>
 11 #include <linux/mman.h>
 12 #include <linux/reboot.h>
 13 #include <linux/prctl.h>
 14 #include <linux/highuid.h>
 15 #include <linux/fs.h>
 16 #include <linux/kmod.h>
 17 #include <linux/perf_event.h>
 18 #include <linux/resource.h>
 19 #include <linux/kernel.h>
 20 #include <linux/workqueue.h>
 21 #include <linux/capability.h>
 22 #include <linux/device.h>
 23 #include <linux/key.h>
 24 #include <linux/times.h>
 25 #include <linux/posix-timers.h>
 26 #include <linux/security.h>
 27 #include <linux/dcookies.h>
 28 #include <linux/suspend.h>
 29 #include <linux/tty.h>
 30 #include <linux/signal.h>
 31 #include <linux/cn_proc.h>
 32 #include <linux/getcpu.h>
 33 #include <linux/task_io_accounting_ops.h>
 34 #include <linux/seccomp.h>
 35 #include <linux/cpu.h>
 36 #include <linux/personality.h>
 37 #include <linux/ptrace.h>
 38 #include <linux/fs_struct.h>
 39 #include <linux/file.h>
 40 #include <linux/mount.h>
 41 #include <linux/gfp.h>
 42 #include <linux/syscore_ops.h>
 43 #include <linux/version.h>
 44 #include <linux/ctype.h>
 45 
 46 #include <linux/compat.h>
 47 #include <linux/syscalls.h>
 48 #include <linux/kprobes.h>
 49 #include <linux/user_namespace.h>
 50 #include <linux/binfmts.h>
 51 
 52 #include <linux/sched.h>
 53 #include <linux/sched/autogroup.h>
 54 #include <linux/sched/loadavg.h>
 55 #include <linux/sched/stat.h>
 56 #include <linux/sched/mm.h>
 57 #include <linux/sched/coredump.h>
 58 #include <linux/sched/task.h>
 59 #include <linux/sched/cputime.h>
 60 #include <linux/rcupdate.h>
 61 #include <linux/uidgid.h>
 62 #include <linux/cred.h>
 63 
 64 #include <linux/nospec.h>
 65 
 66 #include <linux/kmsg_dump.h>
 67 /* Move somewhere else to avoid recompiling? */
 68 #include <generated/utsrelease.h>
 69 
 70 #include <linux/uaccess.h>
 71 #include <asm/io.h>
 72 #include <asm/unistd.h>
 73 
 74 #include "uid16.h"
 75 
 76 #ifndef SET_UNALIGN_CTL
 77 # define SET_UNALIGN_CTL(a, b)  (-EINVAL)
 78 #endif
 79 #ifndef GET_UNALIGN_CTL
 80 # define GET_UNALIGN_CTL(a, b)  (-EINVAL)
 81 #endif
 82 #ifndef SET_FPEMU_CTL
 83 # define SET_FPEMU_CTL(a, b)    (-EINVAL)
 84 #endif
 85 #ifndef GET_FPEMU_CTL
 86 # define GET_FPEMU_CTL(a, b)    (-EINVAL)
 87 #endif
 88 #ifndef SET_FPEXC_CTL
 89 # define SET_FPEXC_CTL(a, b)    (-EINVAL)
 90 #endif
 91 #ifndef GET_FPEXC_CTL
 92 # define GET_FPEXC_CTL(a, b)    (-EINVAL)
 93 #endif
 94 #ifndef GET_ENDIAN
 95 # define GET_ENDIAN(a, b)       (-EINVAL)
 96 #endif
 97 #ifndef SET_ENDIAN
 98 # define SET_ENDIAN(a, b)       (-EINVAL)
 99 #endif
100 #ifndef GET_TSC_CTL
101 # define GET_TSC_CTL(a)         (-EINVAL)
102 #endif
103 #ifndef SET_TSC_CTL
104 # define SET_TSC_CTL(a)         (-EINVAL)
105 #endif
106 #ifndef MPX_ENABLE_MANAGEMENT
107 # define MPX_ENABLE_MANAGEMENT()        (-EINVAL)
108 #endif
109 #ifndef MPX_DISABLE_MANAGEMENT
110 # define MPX_DISABLE_MANAGEMENT()       (-EINVAL)
111 #endif
112 #ifndef GET_FP_MODE
113 # define GET_FP_MODE(a)         (-EINVAL)
114 #endif
115 #ifndef SET_FP_MODE
116 # define SET_FP_MODE(a,b)       (-EINVAL)
117 #endif
118 #ifndef SVE_SET_VL
119 # define SVE_SET_VL(a)          (-EINVAL)
120 #endif
121 #ifndef SVE_GET_VL
122 # define SVE_GET_VL()           (-EINVAL)
123 #endif
124 #ifndef PAC_RESET_KEYS
125 # define PAC_RESET_KEYS(a, b)   (-EINVAL)
126 #endif
127 
128 /*
129  * this is where the system-wide overflow UID and GID are defined, for
130  * architectures that now have 32-bit UID/GID but didn't in the past
131  */
132 
133 int overflowuid = DEFAULT_OVERFLOWUID;
134 int overflowgid = DEFAULT_OVERFLOWGID;
135 
136 EXPORT_SYMBOL(overflowuid);
137 EXPORT_SYMBOL(overflowgid);
138 
139 /*
140  * the same as above, but for filesystems which can only store a 16-bit
141  * UID and GID. as such, this is needed on all architectures
142  */
143 
144 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
145 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
146 
147 EXPORT_SYMBOL(fs_overflowuid);
148 EXPORT_SYMBOL(fs_overflowgid);
149 
150 /*
151  * Returns true if current's euid is same as p's uid or euid,
152  * or has CAP_SYS_NICE to p's user_ns.
153  *
154  * Called with rcu_read_lock, creds are safe
155  */
156 static bool set_one_prio_perm(struct task_struct *p)
157 {
158         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
159 
160         if (uid_eq(pcred->uid,  cred->euid) ||
161             uid_eq(pcred->euid, cred->euid))
162                 return true;
163         if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
164                 return true;
165         return false;
166 }
167 
168 /*
169  * set the priority of a task
170  * - the caller must hold the RCU read lock
171  */
172 static int set_one_prio(struct task_struct *p, int niceval, int error)
173 {
174         int no_nice;
175 
176         if (!set_one_prio_perm(p)) {
177                 error = -EPERM;
178                 goto out;
179         }
180         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
181                 error = -EACCES;
182                 goto out;
183         }
184         no_nice = security_task_setnice(p, niceval);
185         if (no_nice) {
186                 error = no_nice;
187                 goto out;
188         }
189         if (error == -ESRCH)
190                 error = 0;
191         set_user_nice(p, niceval);
192 out:
193         return error;
194 }
195 
196 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
197 {
198         struct task_struct *g, *p;
199         struct user_struct *user;
200         const struct cred *cred = current_cred();
201         int error = -EINVAL;
202         struct pid *pgrp;
203         kuid_t uid;
204 
205         if (which > PRIO_USER || which < PRIO_PROCESS)
206                 goto out;
207         if (!ccs_capable(CCS_SYS_NICE)) {
208                 error = -EPERM;
209                 goto out;
210         }
211 
212         /* normalize: avoid signed division (rounding problems) */
213         error = -ESRCH;
214         if (niceval < MIN_NICE)
215                 niceval = MIN_NICE;
216         if (niceval > MAX_NICE)
217                 niceval = MAX_NICE;
218 
219         rcu_read_lock();
220         read_lock(&tasklist_lock);
221         switch (which) {
222         case PRIO_PROCESS:
223                 if (who)
224                         p = find_task_by_vpid(who);
225                 else
226                         p = current;
227                 if (p)
228                         error = set_one_prio(p, niceval, error);
229                 break;
230         case PRIO_PGRP:
231                 if (who)
232                         pgrp = find_vpid(who);
233                 else
234                         pgrp = task_pgrp(current);
235                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
236                         error = set_one_prio(p, niceval, error);
237                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
238                 break;
239         case PRIO_USER:
240                 uid = make_kuid(cred->user_ns, who);
241                 user = cred->user;
242                 if (!who)
243                         uid = cred->uid;
244                 else if (!uid_eq(uid, cred->uid)) {
245                         user = find_user(uid);
246                         if (!user)
247                                 goto out_unlock;        /* No processes for this user */
248                 }
249                 do_each_thread(g, p) {
250                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
251                                 error = set_one_prio(p, niceval, error);
252                 } while_each_thread(g, p);
253                 if (!uid_eq(uid, cred->uid))
254                         free_uid(user);         /* For find_user() */
255                 break;
256         }
257 out_unlock:
258         read_unlock(&tasklist_lock);
259         rcu_read_unlock();
260 out:
261         return error;
262 }
263 
264 /*
265  * Ugh. To avoid negative return values, "getpriority()" will
266  * not return the normal nice-value, but a negated value that
267  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
268  * to stay compatible.
269  */
270 SYSCALL_DEFINE2(getpriority, int, which, int, who)
271 {
272         struct task_struct *g, *p;
273         struct user_struct *user;
274         const struct cred *cred = current_cred();
275         long niceval, retval = -ESRCH;
276         struct pid *pgrp;
277         kuid_t uid;
278 
279         if (which > PRIO_USER || which < PRIO_PROCESS)
280                 return -EINVAL;
281 
282         rcu_read_lock();
283         read_lock(&tasklist_lock);
284         switch (which) {
285         case PRIO_PROCESS:
286                 if (who)
287                         p = find_task_by_vpid(who);
288                 else
289                         p = current;
290                 if (p) {
291                         niceval = nice_to_rlimit(task_nice(p));
292                         if (niceval > retval)
293                                 retval = niceval;
294                 }
295                 break;
296         case PRIO_PGRP:
297                 if (who)
298                         pgrp = find_vpid(who);
299                 else
300                         pgrp = task_pgrp(current);
301                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
302                         niceval = nice_to_rlimit(task_nice(p));
303                         if (niceval > retval)
304                                 retval = niceval;
305                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
306                 break;
307         case PRIO_USER:
308                 uid = make_kuid(cred->user_ns, who);
309                 user = cred->user;
310                 if (!who)
311                         uid = cred->uid;
312                 else if (!uid_eq(uid, cred->uid)) {
313                         user = find_user(uid);
314                         if (!user)
315                                 goto out_unlock;        /* No processes for this user */
316                 }
317                 do_each_thread(g, p) {
318                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
319                                 niceval = nice_to_rlimit(task_nice(p));
320                                 if (niceval > retval)
321                                         retval = niceval;
322                         }
323                 } while_each_thread(g, p);
324                 if (!uid_eq(uid, cred->uid))
325                         free_uid(user);         /* for find_user() */
326                 break;
327         }
328 out_unlock:
329         read_unlock(&tasklist_lock);
330         rcu_read_unlock();
331 
332         return retval;
333 }
334 
335 /*
336  * Unprivileged users may change the real gid to the effective gid
337  * or vice versa.  (BSD-style)
338  *
339  * If you set the real gid at all, or set the effective gid to a value not
340  * equal to the real gid, then the saved gid is set to the new effective gid.
341  *
342  * This makes it possible for a setgid program to completely drop its
343  * privileges, which is often a useful assertion to make when you are doing
344  * a security audit over a program.
345  *
346  * The general idea is that a program which uses just setregid() will be
347  * 100% compatible with BSD.  A program which uses just setgid() will be
348  * 100% compatible with POSIX with saved IDs.
349  *
350  * SMP: There are not races, the GIDs are checked only by filesystem
351  *      operations (as far as semantic preservation is concerned).
352  */
353 #ifdef CONFIG_MULTIUSER
354 long __sys_setregid(gid_t rgid, gid_t egid)
355 {
356         struct user_namespace *ns = current_user_ns();
357         const struct cred *old;
358         struct cred *new;
359         int retval;
360         kgid_t krgid, kegid;
361 
362         krgid = make_kgid(ns, rgid);
363         kegid = make_kgid(ns, egid);
364 
365         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
366                 return -EINVAL;
367         if ((egid != (gid_t) -1) && !gid_valid(kegid))
368                 return -EINVAL;
369 
370         new = prepare_creds();
371         if (!new)
372                 return -ENOMEM;
373         old = current_cred();
374 
375         retval = -EPERM;
376         if (rgid != (gid_t) -1) {
377                 if (gid_eq(old->gid, krgid) ||
378                     gid_eq(old->egid, krgid) ||
379                     ns_capable(old->user_ns, CAP_SETGID))
380                         new->gid = krgid;
381                 else
382                         goto error;
383         }
384         if (egid != (gid_t) -1) {
385                 if (gid_eq(old->gid, kegid) ||
386                     gid_eq(old->egid, kegid) ||
387                     gid_eq(old->sgid, kegid) ||
388                     ns_capable(old->user_ns, CAP_SETGID))
389                         new->egid = kegid;
390                 else
391                         goto error;
392         }
393 
394         if (rgid != (gid_t) -1 ||
395             (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
396                 new->sgid = new->egid;
397         new->fsgid = new->egid;
398 
399         return commit_creds(new);
400 
401 error:
402         abort_creds(new);
403         return retval;
404 }
405 
406 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
407 {
408         return __sys_setregid(rgid, egid);
409 }
410 
411 /*
412  * setgid() is implemented like SysV w/ SAVED_IDS
413  *
414  * SMP: Same implicit races as above.
415  */
416 long __sys_setgid(gid_t gid)
417 {
418         struct user_namespace *ns = current_user_ns();
419         const struct cred *old;
420         struct cred *new;
421         int retval;
422         kgid_t kgid;
423 
424         kgid = make_kgid(ns, gid);
425         if (!gid_valid(kgid))
426                 return -EINVAL;
427 
428         new = prepare_creds();
429         if (!new)
430                 return -ENOMEM;
431         old = current_cred();
432 
433         retval = -EPERM;
434         if (ns_capable(old->user_ns, CAP_SETGID))
435                 new->gid = new->egid = new->sgid = new->fsgid = kgid;
436         else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
437                 new->egid = new->fsgid = kgid;
438         else
439                 goto error;
440 
441         return commit_creds(new);
442 
443 error:
444         abort_creds(new);
445         return retval;
446 }
447 
448 SYSCALL_DEFINE1(setgid, gid_t, gid)
449 {
450         return __sys_setgid(gid);
451 }
452 
453 /*
454  * change the user struct in a credentials set to match the new UID
455  */
456 static int set_user(struct cred *new)
457 {
458         struct user_struct *new_user;
459 
460         new_user = alloc_uid(new->uid);
461         if (!new_user)
462                 return -EAGAIN;
463 
464         /*
465          * We don't fail in case of NPROC limit excess here because too many
466          * poorly written programs don't check set*uid() return code, assuming
467          * it never fails if called by root.  We may still enforce NPROC limit
468          * for programs doing set*uid()+execve() by harmlessly deferring the
469          * failure to the execve() stage.
470          */
471         if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
472                         new_user != INIT_USER)
473                 current->flags |= PF_NPROC_EXCEEDED;
474         else
475                 current->flags &= ~PF_NPROC_EXCEEDED;
476 
477         free_uid(new->user);
478         new->user = new_user;
479         return 0;
480 }
481 
482 /*
483  * Unprivileged users may change the real uid to the effective uid
484  * or vice versa.  (BSD-style)
485  *
486  * If you set the real uid at all, or set the effective uid to a value not
487  * equal to the real uid, then the saved uid is set to the new effective uid.
488  *
489  * This makes it possible for a setuid program to completely drop its
490  * privileges, which is often a useful assertion to make when you are doing
491  * a security audit over a program.
492  *
493  * The general idea is that a program which uses just setreuid() will be
494  * 100% compatible with BSD.  A program which uses just setuid() will be
495  * 100% compatible with POSIX with saved IDs.
496  */
497 long __sys_setreuid(uid_t ruid, uid_t euid)
498 {
499         struct user_namespace *ns = current_user_ns();
500         const struct cred *old;
501         struct cred *new;
502         int retval;
503         kuid_t kruid, keuid;
504 
505         kruid = make_kuid(ns, ruid);
506         keuid = make_kuid(ns, euid);
507 
508         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
509                 return -EINVAL;
510         if ((euid != (uid_t) -1) && !uid_valid(keuid))
511                 return -EINVAL;
512 
513         new = prepare_creds();
514         if (!new)
515                 return -ENOMEM;
516         old = current_cred();
517 
518         retval = -EPERM;
519         if (ruid != (uid_t) -1) {
520                 new->uid = kruid;
521                 if (!uid_eq(old->uid, kruid) &&
522                     !uid_eq(old->euid, kruid) &&
523                     !ns_capable_setid(old->user_ns, CAP_SETUID))
524                         goto error;
525         }
526 
527         if (euid != (uid_t) -1) {
528                 new->euid = keuid;
529                 if (!uid_eq(old->uid, keuid) &&
530                     !uid_eq(old->euid, keuid) &&
531                     !uid_eq(old->suid, keuid) &&
532                     !ns_capable_setid(old->user_ns, CAP_SETUID))
533                         goto error;
534         }
535 
536         if (!uid_eq(new->uid, old->uid)) {
537                 retval = set_user(new);
538                 if (retval < 0)
539                         goto error;
540         }
541         if (ruid != (uid_t) -1 ||
542             (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
543                 new->suid = new->euid;
544         new->fsuid = new->euid;
545 
546         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
547         if (retval < 0)
548                 goto error;
549 
550         return commit_creds(new);
551 
552 error:
553         abort_creds(new);
554         return retval;
555 }
556 
557 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
558 {
559         return __sys_setreuid(ruid, euid);
560 }
561 
562 /*
563  * setuid() is implemented like SysV with SAVED_IDS
564  *
565  * Note that SAVED_ID's is deficient in that a setuid root program
566  * like sendmail, for example, cannot set its uid to be a normal
567  * user and then switch back, because if you're root, setuid() sets
568  * the saved uid too.  If you don't like this, blame the bright people
569  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
570  * will allow a root program to temporarily drop privileges and be able to
571  * regain them by swapping the real and effective uid.
572  */
573 long __sys_setuid(uid_t uid)
574 {
575         struct user_namespace *ns = current_user_ns();
576         const struct cred *old;
577         struct cred *new;
578         int retval;
579         kuid_t kuid;
580 
581         kuid = make_kuid(ns, uid);
582         if (!uid_valid(kuid))
583                 return -EINVAL;
584 
585         new = prepare_creds();
586         if (!new)
587                 return -ENOMEM;
588         old = current_cred();
589 
590         retval = -EPERM;
591         if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
592                 new->suid = new->uid = kuid;
593                 if (!uid_eq(kuid, old->uid)) {
594                         retval = set_user(new);
595                         if (retval < 0)
596                                 goto error;
597                 }
598         } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
599                 goto error;
600         }
601 
602         new->fsuid = new->euid = kuid;
603 
604         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
605         if (retval < 0)
606                 goto error;
607 
608         return commit_creds(new);
609 
610 error:
611         abort_creds(new);
612         return retval;
613 }
614 
615 SYSCALL_DEFINE1(setuid, uid_t, uid)
616 {
617         return __sys_setuid(uid);
618 }
619 
620 
621 /*
622  * This function implements a generic ability to update ruid, euid,
623  * and suid.  This allows you to implement the 4.4 compatible seteuid().
624  */
625 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
626 {
627         struct user_namespace *ns = current_user_ns();
628         const struct cred *old;
629         struct cred *new;
630         int retval;
631         kuid_t kruid, keuid, ksuid;
632 
633         kruid = make_kuid(ns, ruid);
634         keuid = make_kuid(ns, euid);
635         ksuid = make_kuid(ns, suid);
636 
637         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
638                 return -EINVAL;
639 
640         if ((euid != (uid_t) -1) && !uid_valid(keuid))
641                 return -EINVAL;
642 
643         if ((suid != (uid_t) -1) && !uid_valid(ksuid))
644                 return -EINVAL;
645 
646         new = prepare_creds();
647         if (!new)
648                 return -ENOMEM;
649 
650         old = current_cred();
651 
652         retval = -EPERM;
653         if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
654                 if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
655                     !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
656                         goto error;
657                 if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
658                     !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
659                         goto error;
660                 if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
661                     !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
662                         goto error;
663         }
664 
665         if (ruid != (uid_t) -1) {
666                 new->uid = kruid;
667                 if (!uid_eq(kruid, old->uid)) {
668                         retval = set_user(new);
669                         if (retval < 0)
670                                 goto error;
671                 }
672         }
673         if (euid != (uid_t) -1)
674                 new->euid = keuid;
675         if (suid != (uid_t) -1)
676                 new->suid = ksuid;
677         new->fsuid = new->euid;
678 
679         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
680         if (retval < 0)
681                 goto error;
682 
683         return commit_creds(new);
684 
685 error:
686         abort_creds(new);
687         return retval;
688 }
689 
690 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
691 {
692         return __sys_setresuid(ruid, euid, suid);
693 }
694 
695 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
696 {
697         const struct cred *cred = current_cred();
698         int retval;
699         uid_t ruid, euid, suid;
700 
701         ruid = from_kuid_munged(cred->user_ns, cred->uid);
702         euid = from_kuid_munged(cred->user_ns, cred->euid);
703         suid = from_kuid_munged(cred->user_ns, cred->suid);
704 
705         retval = put_user(ruid, ruidp);
706         if (!retval) {
707                 retval = put_user(euid, euidp);
708                 if (!retval)
709                         return put_user(suid, suidp);
710         }
711         return retval;
712 }
713 
714 /*
715  * Same as above, but for rgid, egid, sgid.
716  */
717 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
718 {
719         struct user_namespace *ns = current_user_ns();
720         const struct cred *old;
721         struct cred *new;
722         int retval;
723         kgid_t krgid, kegid, ksgid;
724 
725         krgid = make_kgid(ns, rgid);
726         kegid = make_kgid(ns, egid);
727         ksgid = make_kgid(ns, sgid);
728 
729         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
730                 return -EINVAL;
731         if ((egid != (gid_t) -1) && !gid_valid(kegid))
732                 return -EINVAL;
733         if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
734                 return -EINVAL;
735 
736         new = prepare_creds();
737         if (!new)
738                 return -ENOMEM;
739         old = current_cred();
740 
741         retval = -EPERM;
742         if (!ns_capable(old->user_ns, CAP_SETGID)) {
743                 if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
744                     !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
745                         goto error;
746                 if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
747                     !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
748                         goto error;
749                 if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
750                     !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
751                         goto error;
752         }
753 
754         if (rgid != (gid_t) -1)
755                 new->gid = krgid;
756         if (egid != (gid_t) -1)
757                 new->egid = kegid;
758         if (sgid != (gid_t) -1)
759                 new->sgid = ksgid;
760         new->fsgid = new->egid;
761 
762         return commit_creds(new);
763 
764 error:
765         abort_creds(new);
766         return retval;
767 }
768 
769 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
770 {
771         return __sys_setresgid(rgid, egid, sgid);
772 }
773 
774 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
775 {
776         const struct cred *cred = current_cred();
777         int retval;
778         gid_t rgid, egid, sgid;
779 
780         rgid = from_kgid_munged(cred->user_ns, cred->gid);
781         egid = from_kgid_munged(cred->user_ns, cred->egid);
782         sgid = from_kgid_munged(cred->user_ns, cred->sgid);
783 
784         retval = put_user(rgid, rgidp);
785         if (!retval) {
786                 retval = put_user(egid, egidp);
787                 if (!retval)
788                         retval = put_user(sgid, sgidp);
789         }
790 
791         return retval;
792 }
793 
794 
795 /*
796  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
797  * is used for "access()" and for the NFS daemon (letting nfsd stay at
798  * whatever uid it wants to). It normally shadows "euid", except when
799  * explicitly set by setfsuid() or for access..
800  */
801 long __sys_setfsuid(uid_t uid)
802 {
803         const struct cred *old;
804         struct cred *new;
805         uid_t old_fsuid;
806         kuid_t kuid;
807 
808         old = current_cred();
809         old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
810 
811         kuid = make_kuid(old->user_ns, uid);
812         if (!uid_valid(kuid))
813                 return old_fsuid;
814 
815         new = prepare_creds();
816         if (!new)
817                 return old_fsuid;
818 
819         if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
820             uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
821             ns_capable_setid(old->user_ns, CAP_SETUID)) {
822                 if (!uid_eq(kuid, old->fsuid)) {
823                         new->fsuid = kuid;
824                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
825                                 goto change_okay;
826                 }
827         }
828 
829         abort_creds(new);
830         return old_fsuid;
831 
832 change_okay:
833         commit_creds(new);
834         return old_fsuid;
835 }
836 
837 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
838 {
839         return __sys_setfsuid(uid);
840 }
841 
842 /*
843  * Samma på svenska..
844  */
845 long __sys_setfsgid(gid_t gid)
846 {
847         const struct cred *old;
848         struct cred *new;
849         gid_t old_fsgid;
850         kgid_t kgid;
851 
852         old = current_cred();
853         old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
854 
855         kgid = make_kgid(old->user_ns, gid);
856         if (!gid_valid(kgid))
857                 return old_fsgid;
858 
859         new = prepare_creds();
860         if (!new)
861                 return old_fsgid;
862 
863         if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
864             gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
865             ns_capable(old->user_ns, CAP_SETGID)) {
866                 if (!gid_eq(kgid, old->fsgid)) {
867                         new->fsgid = kgid;
868                         goto change_okay;
869                 }
870         }
871 
872         abort_creds(new);
873         return old_fsgid;
874 
875 change_okay:
876         commit_creds(new);
877         return old_fsgid;
878 }
879 
880 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
881 {
882         return __sys_setfsgid(gid);
883 }
884 #endif /* CONFIG_MULTIUSER */
885 
886 /**
887  * sys_getpid - return the thread group id of the current process
888  *
889  * Note, despite the name, this returns the tgid not the pid.  The tgid and
890  * the pid are identical unless CLONE_THREAD was specified on clone() in
891  * which case the tgid is the same in all threads of the same group.
892  *
893  * This is SMP safe as current->tgid does not change.
894  */
895 SYSCALL_DEFINE0(getpid)
896 {
897         return task_tgid_vnr(current);
898 }
899 
900 /* Thread ID - the internal kernel "pid" */
901 SYSCALL_DEFINE0(gettid)
902 {
903         return task_pid_vnr(current);
904 }
905 
906 /*
907  * Accessing ->real_parent is not SMP-safe, it could
908  * change from under us. However, we can use a stale
909  * value of ->real_parent under rcu_read_lock(), see
910  * release_task()->call_rcu(delayed_put_task_struct).
911  */
912 SYSCALL_DEFINE0(getppid)
913 {
914         int pid;
915 
916         rcu_read_lock();
917         pid = task_tgid_vnr(rcu_dereference(current->real_parent));
918         rcu_read_unlock();
919 
920         return pid;
921 }
922 
923 SYSCALL_DEFINE0(getuid)
924 {
925         /* Only we change this so SMP safe */
926         return from_kuid_munged(current_user_ns(), current_uid());
927 }
928 
929 SYSCALL_DEFINE0(geteuid)
930 {
931         /* Only we change this so SMP safe */
932         return from_kuid_munged(current_user_ns(), current_euid());
933 }
934 
935 SYSCALL_DEFINE0(getgid)
936 {
937         /* Only we change this so SMP safe */
938         return from_kgid_munged(current_user_ns(), current_gid());
939 }
940 
941 SYSCALL_DEFINE0(getegid)
942 {
943         /* Only we change this so SMP safe */
944         return from_kgid_munged(current_user_ns(), current_egid());
945 }
946 
947 static void do_sys_times(struct tms *tms)
948 {
949         u64 tgutime, tgstime, cutime, cstime;
950 
951         thread_group_cputime_adjusted(current, &tgutime, &tgstime);
952         cutime = current->signal->cutime;
953         cstime = current->signal->cstime;
954         tms->tms_utime = nsec_to_clock_t(tgutime);
955         tms->tms_stime = nsec_to_clock_t(tgstime);
956         tms->tms_cutime = nsec_to_clock_t(cutime);
957         tms->tms_cstime = nsec_to_clock_t(cstime);
958 }
959 
960 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
961 {
962         if (tbuf) {
963                 struct tms tmp;
964 
965                 do_sys_times(&tmp);
966                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
967                         return -EFAULT;
968         }
969         force_successful_syscall_return();
970         return (long) jiffies_64_to_clock_t(get_jiffies_64());
971 }
972 
973 #ifdef CONFIG_COMPAT
974 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
975 {
976         return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
977 }
978 
979 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
980 {
981         if (tbuf) {
982                 struct tms tms;
983                 struct compat_tms tmp;
984 
985                 do_sys_times(&tms);
986                 /* Convert our struct tms to the compat version. */
987                 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
988                 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
989                 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
990                 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
991                 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
992                         return -EFAULT;
993         }
994         force_successful_syscall_return();
995         return compat_jiffies_to_clock_t(jiffies);
996 }
997 #endif
998 
999 /*
1000  * This needs some heavy checking ...
1001  * I just haven't the stomach for it. I also don't fully
1002  * understand sessions/pgrp etc. Let somebody who does explain it.
1003  *
1004  * OK, I think I have the protection semantics right.... this is really
1005  * only important on a multi-user system anyway, to make sure one user
1006  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1007  *
1008  * !PF_FORKNOEXEC check to conform completely to POSIX.
1009  */
1010 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1011 {
1012         struct task_struct *p;
1013         struct task_struct *group_leader = current->group_leader;
1014         struct pid *pgrp;
1015         int err;
1016 
1017         if (!pid)
1018                 pid = task_pid_vnr(group_leader);
1019         if (!pgid)
1020                 pgid = pid;
1021         if (pgid < 0)
1022                 return -EINVAL;
1023         rcu_read_lock();
1024 
1025         /* From this point forward we keep holding onto the tasklist lock
1026          * so that our parent does not change from under us. -DaveM
1027          */
1028         write_lock_irq(&tasklist_lock);
1029 
1030         err = -ESRCH;
1031         p = find_task_by_vpid(pid);
1032         if (!p)
1033                 goto out;
1034 
1035         err = -EINVAL;
1036         if (!thread_group_leader(p))
1037                 goto out;
1038 
1039         if (same_thread_group(p->real_parent, group_leader)) {
1040                 err = -EPERM;
1041                 if (task_session(p) != task_session(group_leader))
1042                         goto out;
1043                 err = -EACCES;
1044                 if (!(p->flags & PF_FORKNOEXEC))
1045                         goto out;
1046         } else {
1047                 err = -ESRCH;
1048                 if (p != group_leader)
1049                         goto out;
1050         }
1051 
1052         err = -EPERM;
1053         if (p->signal->leader)
1054                 goto out;
1055 
1056         pgrp = task_pid(p);
1057         if (pgid != pid) {
1058                 struct task_struct *g;
1059 
1060                 pgrp = find_vpid(pgid);
1061                 g = pid_task(pgrp, PIDTYPE_PGID);
1062                 if (!g || task_session(g) != task_session(group_leader))
1063                         goto out;
1064         }
1065 
1066         err = security_task_setpgid(p, pgid);
1067         if (err)
1068                 goto out;
1069 
1070         if (task_pgrp(p) != pgrp)
1071                 change_pid(p, PIDTYPE_PGID, pgrp);
1072 
1073         err = 0;
1074 out:
1075         /* All paths lead to here, thus we are safe. -DaveM */
1076         write_unlock_irq(&tasklist_lock);
1077         rcu_read_unlock();
1078         return err;
1079 }
1080 
1081 static int do_getpgid(pid_t pid)
1082 {
1083         struct task_struct *p;
1084         struct pid *grp;
1085         int retval;
1086 
1087         rcu_read_lock();
1088         if (!pid)
1089                 grp = task_pgrp(current);
1090         else {
1091                 retval = -ESRCH;
1092                 p = find_task_by_vpid(pid);
1093                 if (!p)
1094                         goto out;
1095                 grp = task_pgrp(p);
1096                 if (!grp)
1097                         goto out;
1098 
1099                 retval = security_task_getpgid(p);
1100                 if (retval)
1101                         goto out;
1102         }
1103         retval = pid_vnr(grp);
1104 out:
1105         rcu_read_unlock();
1106         return retval;
1107 }
1108 
1109 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1110 {
1111         return do_getpgid(pid);
1112 }
1113 
1114 #ifdef __ARCH_WANT_SYS_GETPGRP
1115 
1116 SYSCALL_DEFINE0(getpgrp)
1117 {
1118         return do_getpgid(0);
1119 }
1120 
1121 #endif
1122 
1123 SYSCALL_DEFINE1(getsid, pid_t, pid)
1124 {
1125         struct task_struct *p;
1126         struct pid *sid;
1127         int retval;
1128 
1129         rcu_read_lock();
1130         if (!pid)
1131                 sid = task_session(current);
1132         else {
1133                 retval = -ESRCH;
1134                 p = find_task_by_vpid(pid);
1135                 if (!p)
1136                         goto out;
1137                 sid = task_session(p);
1138                 if (!sid)
1139                         goto out;
1140 
1141                 retval = security_task_getsid(p);
1142                 if (retval)
1143                         goto out;
1144         }
1145         retval = pid_vnr(sid);
1146 out:
1147         rcu_read_unlock();
1148         return retval;
1149 }
1150 
1151 static void set_special_pids(struct pid *pid)
1152 {
1153         struct task_struct *curr = current->group_leader;
1154 
1155         if (task_session(curr) != pid)
1156                 change_pid(curr, PIDTYPE_SID, pid);
1157 
1158         if (task_pgrp(curr) != pid)
1159                 change_pid(curr, PIDTYPE_PGID, pid);
1160 }
1161 
1162 int ksys_setsid(void)
1163 {
1164         struct task_struct *group_leader = current->group_leader;
1165         struct pid *sid = task_pid(group_leader);
1166         pid_t session = pid_vnr(sid);
1167         int err = -EPERM;
1168 
1169         write_lock_irq(&tasklist_lock);
1170         /* Fail if I am already a session leader */
1171         if (group_leader->signal->leader)
1172                 goto out;
1173 
1174         /* Fail if a process group id already exists that equals the
1175          * proposed session id.
1176          */
1177         if (pid_task(sid, PIDTYPE_PGID))
1178                 goto out;
1179 
1180         group_leader->signal->leader = 1;
1181         set_special_pids(sid);
1182 
1183         proc_clear_tty(group_leader);
1184 
1185         err = session;
1186 out:
1187         write_unlock_irq(&tasklist_lock);
1188         if (err > 0) {
1189                 proc_sid_connector(group_leader);
1190                 sched_autogroup_create_attach(group_leader);
1191         }
1192         return err;
1193 }
1194 
1195 SYSCALL_DEFINE0(setsid)
1196 {
1197         return ksys_setsid();
1198 }
1199 
1200 DECLARE_RWSEM(uts_sem);
1201 
1202 #ifdef COMPAT_UTS_MACHINE
1203 #define override_architecture(name) \
1204         (personality(current->personality) == PER_LINUX32 && \
1205          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1206                       sizeof(COMPAT_UTS_MACHINE)))
1207 #else
1208 #define override_architecture(name)     0
1209 #endif
1210 
1211 /*
1212  * Work around broken programs that cannot handle "Linux 3.0".
1213  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1214  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1215  * 2.6.60.
1216  */
1217 static int override_release(char __user *release, size_t len)
1218 {
1219         int ret = 0;
1220 
1221         if (current->personality & UNAME26) {
1222                 const char *rest = UTS_RELEASE;
1223                 char buf[65] = { 0 };
1224                 int ndots = 0;
1225                 unsigned v;
1226                 size_t copy;
1227 
1228                 while (*rest) {
1229                         if (*rest == '.' && ++ndots >= 3)
1230                                 break;
1231                         if (!isdigit(*rest) && *rest != '.')
1232                                 break;
1233                         rest++;
1234                 }
1235                 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1236                 copy = clamp_t(size_t, len, 1, sizeof(buf));
1237                 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1238                 ret = copy_to_user(release, buf, copy + 1);
1239         }
1240         return ret;
1241 }
1242 
1243 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1244 {
1245         struct new_utsname tmp;
1246 
1247         down_read(&uts_sem);
1248         memcpy(&tmp, utsname(), sizeof(tmp));
1249         up_read(&uts_sem);
1250         if (copy_to_user(name, &tmp, sizeof(tmp)))
1251                 return -EFAULT;
1252 
1253         if (override_release(name->release, sizeof(name->release)))
1254                 return -EFAULT;
1255         if (override_architecture(name))
1256                 return -EFAULT;
1257         return 0;
1258 }
1259 
1260 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1261 /*
1262  * Old cruft
1263  */
1264 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1265 {
1266         struct old_utsname tmp;
1267 
1268         if (!name)
1269                 return -EFAULT;
1270 
1271         down_read(&uts_sem);
1272         memcpy(&tmp, utsname(), sizeof(tmp));
1273         up_read(&uts_sem);
1274         if (copy_to_user(name, &tmp, sizeof(tmp)))
1275                 return -EFAULT;
1276 
1277         if (override_release(name->release, sizeof(name->release)))
1278                 return -EFAULT;
1279         if (override_architecture(name))
1280                 return -EFAULT;
1281         return 0;
1282 }
1283 
1284 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1285 {
1286         struct oldold_utsname tmp = {};
1287 
1288         if (!name)
1289                 return -EFAULT;
1290 
1291         down_read(&uts_sem);
1292         memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1293         memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1294         memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1295         memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1296         memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1297         up_read(&uts_sem);
1298         if (copy_to_user(name, &tmp, sizeof(tmp)))
1299                 return -EFAULT;
1300 
1301         if (override_architecture(name))
1302                 return -EFAULT;
1303         if (override_release(name->release, sizeof(name->release)))
1304                 return -EFAULT;
1305         return 0;
1306 }
1307 #endif
1308 
1309 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1310 {
1311         int errno;
1312         char tmp[__NEW_UTS_LEN];
1313 
1314         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1315                 return -EPERM;
1316 
1317         if (len < 0 || len > __NEW_UTS_LEN)
1318                 return -EINVAL;
1319         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1320                 return -EPERM;
1321         errno = -EFAULT;
1322         if (!copy_from_user(tmp, name, len)) {
1323                 struct new_utsname *u;
1324 
1325                 down_write(&uts_sem);
1326                 u = utsname();
1327                 memcpy(u->nodename, tmp, len);
1328                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1329                 errno = 0;
1330                 uts_proc_notify(UTS_PROC_HOSTNAME);
1331                 up_write(&uts_sem);
1332         }
1333         return errno;
1334 }
1335 
1336 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1337 
1338 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1339 {
1340         int i;
1341         struct new_utsname *u;
1342         char tmp[__NEW_UTS_LEN + 1];
1343 
1344         if (len < 0)
1345                 return -EINVAL;
1346         down_read(&uts_sem);
1347         u = utsname();
1348         i = 1 + strlen(u->nodename);
1349         if (i > len)
1350                 i = len;
1351         memcpy(tmp, u->nodename, i);
1352         up_read(&uts_sem);
1353         if (copy_to_user(name, tmp, i))
1354                 return -EFAULT;
1355         return 0;
1356 }
1357 
1358 #endif
1359 
1360 /*
1361  * Only setdomainname; getdomainname can be implemented by calling
1362  * uname()
1363  */
1364 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1365 {
1366         int errno;
1367         char tmp[__NEW_UTS_LEN];
1368 
1369         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1370                 return -EPERM;
1371         if (len < 0 || len > __NEW_UTS_LEN)
1372                 return -EINVAL;
1373         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1374                 return -EPERM;
1375 
1376         errno = -EFAULT;
1377         if (!copy_from_user(tmp, name, len)) {
1378                 struct new_utsname *u;
1379 
1380                 down_write(&uts_sem);
1381                 u = utsname();
1382                 memcpy(u->domainname, tmp, len);
1383                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1384                 errno = 0;
1385                 uts_proc_notify(UTS_PROC_DOMAINNAME);
1386                 up_write(&uts_sem);
1387         }
1388         return errno;
1389 }
1390 
1391 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1392 {
1393         struct rlimit value;
1394         int ret;
1395 
1396         ret = do_prlimit(current, resource, NULL, &value);
1397         if (!ret)
1398                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1399 
1400         return ret;
1401 }
1402 
1403 #ifdef CONFIG_COMPAT
1404 
1405 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1406                        struct compat_rlimit __user *, rlim)
1407 {
1408         struct rlimit r;
1409         struct compat_rlimit r32;
1410 
1411         if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1412                 return -EFAULT;
1413 
1414         if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1415                 r.rlim_cur = RLIM_INFINITY;
1416         else
1417                 r.rlim_cur = r32.rlim_cur;
1418         if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1419                 r.rlim_max = RLIM_INFINITY;
1420         else
1421                 r.rlim_max = r32.rlim_max;
1422         return do_prlimit(current, resource, &r, NULL);
1423 }
1424 
1425 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1426                        struct compat_rlimit __user *, rlim)
1427 {
1428         struct rlimit r;
1429         int ret;
1430 
1431         ret = do_prlimit(current, resource, NULL, &r);
1432         if (!ret) {
1433                 struct compat_rlimit r32;
1434                 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1435                         r32.rlim_cur = COMPAT_RLIM_INFINITY;
1436                 else
1437                         r32.rlim_cur = r.rlim_cur;
1438                 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1439                         r32.rlim_max = COMPAT_RLIM_INFINITY;
1440                 else
1441                         r32.rlim_max = r.rlim_max;
1442 
1443                 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1444                         return -EFAULT;
1445         }
1446         return ret;
1447 }
1448 
1449 #endif
1450 
1451 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1452 
1453 /*
1454  *      Back compatibility for getrlimit. Needed for some apps.
1455  */
1456 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1457                 struct rlimit __user *, rlim)
1458 {
1459         struct rlimit x;
1460         if (resource >= RLIM_NLIMITS)
1461                 return -EINVAL;
1462 
1463         resource = array_index_nospec(resource, RLIM_NLIMITS);
1464         task_lock(current->group_leader);
1465         x = current->signal->rlim[resource];
1466         task_unlock(current->group_leader);
1467         if (x.rlim_cur > 0x7FFFFFFF)
1468                 x.rlim_cur = 0x7FFFFFFF;
1469         if (x.rlim_max > 0x7FFFFFFF)
1470                 x.rlim_max = 0x7FFFFFFF;
1471         return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1472 }
1473 
1474 #ifdef CONFIG_COMPAT
1475 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1476                        struct compat_rlimit __user *, rlim)
1477 {
1478         struct rlimit r;
1479 
1480         if (resource >= RLIM_NLIMITS)
1481                 return -EINVAL;
1482 
1483         resource = array_index_nospec(resource, RLIM_NLIMITS);
1484         task_lock(current->group_leader);
1485         r = current->signal->rlim[resource];
1486         task_unlock(current->group_leader);
1487         if (r.rlim_cur > 0x7FFFFFFF)
1488                 r.rlim_cur = 0x7FFFFFFF;
1489         if (r.rlim_max > 0x7FFFFFFF)
1490                 r.rlim_max = 0x7FFFFFFF;
1491 
1492         if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1493             put_user(r.rlim_max, &rlim->rlim_max))
1494                 return -EFAULT;
1495         return 0;
1496 }
1497 #endif
1498 
1499 #endif
1500 
1501 static inline bool rlim64_is_infinity(__u64 rlim64)
1502 {
1503 #if BITS_PER_LONG < 64
1504         return rlim64 >= ULONG_MAX;
1505 #else
1506         return rlim64 == RLIM64_INFINITY;
1507 #endif
1508 }
1509 
1510 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1511 {
1512         if (rlim->rlim_cur == RLIM_INFINITY)
1513                 rlim64->rlim_cur = RLIM64_INFINITY;
1514         else
1515                 rlim64->rlim_cur = rlim->rlim_cur;
1516         if (rlim->rlim_max == RLIM_INFINITY)
1517                 rlim64->rlim_max = RLIM64_INFINITY;
1518         else
1519                 rlim64->rlim_max = rlim->rlim_max;
1520 }
1521 
1522 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1523 {
1524         if (rlim64_is_infinity(rlim64->rlim_cur))
1525                 rlim->rlim_cur = RLIM_INFINITY;
1526         else
1527                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1528         if (rlim64_is_infinity(rlim64->rlim_max))
1529                 rlim->rlim_max = RLIM_INFINITY;
1530         else
1531                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1532 }
1533 
1534 /* make sure you are allowed to change @tsk limits before calling this */
1535 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1536                 struct rlimit *new_rlim, struct rlimit *old_rlim)
1537 {
1538         struct rlimit *rlim;
1539         int retval = 0;
1540 
1541         if (resource >= RLIM_NLIMITS)
1542                 return -EINVAL;
1543         if (new_rlim) {
1544                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1545                         return -EINVAL;
1546                 if (resource == RLIMIT_NOFILE &&
1547                                 new_rlim->rlim_max > sysctl_nr_open)
1548                         return -EPERM;
1549         }
1550 
1551         /* protect tsk->signal and tsk->sighand from disappearing */
1552         read_lock(&tasklist_lock);
1553         if (!tsk->sighand) {
1554                 retval = -ESRCH;
1555                 goto out;
1556         }
1557 
1558         rlim = tsk->signal->rlim + resource;
1559         task_lock(tsk->group_leader);
1560         if (new_rlim) {
1561                 /* Keep the capable check against init_user_ns until
1562                    cgroups can contain all limits */
1563                 if (new_rlim->rlim_max > rlim->rlim_max &&
1564                                 !capable(CAP_SYS_RESOURCE))
1565                         retval = -EPERM;
1566                 if (!retval)
1567                         retval = security_task_setrlimit(tsk, resource, new_rlim);
1568                 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1569                         /*
1570                          * The caller is asking for an immediate RLIMIT_CPU
1571                          * expiry.  But we use the zero value to mean "it was
1572                          * never set".  So let's cheat and make it one second
1573                          * instead
1574                          */
1575                         new_rlim->rlim_cur = 1;
1576                 }
1577         }
1578         if (!retval) {
1579                 if (old_rlim)
1580                         *old_rlim = *rlim;
1581                 if (new_rlim)
1582                         *rlim = *new_rlim;
1583         }
1584         task_unlock(tsk->group_leader);
1585 
1586         /*
1587          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1588          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1589          * very long-standing error, and fixing it now risks breakage of
1590          * applications, so we live with it
1591          */
1592          if (!retval && new_rlim && resource == RLIMIT_CPU &&
1593              new_rlim->rlim_cur != RLIM_INFINITY &&
1594              IS_ENABLED(CONFIG_POSIX_TIMERS))
1595                 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1596 out:
1597         read_unlock(&tasklist_lock);
1598         return retval;
1599 }
1600 
1601 /* rcu lock must be held */
1602 static int check_prlimit_permission(struct task_struct *task,
1603                                     unsigned int flags)
1604 {
1605         const struct cred *cred = current_cred(), *tcred;
1606         bool id_match;
1607 
1608         if (current == task)
1609                 return 0;
1610 
1611         tcred = __task_cred(task);
1612         id_match = (uid_eq(cred->uid, tcred->euid) &&
1613                     uid_eq(cred->uid, tcred->suid) &&
1614                     uid_eq(cred->uid, tcred->uid)  &&
1615                     gid_eq(cred->gid, tcred->egid) &&
1616                     gid_eq(cred->gid, tcred->sgid) &&
1617                     gid_eq(cred->gid, tcred->gid));
1618         if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1619                 return -EPERM;
1620 
1621         return security_task_prlimit(cred, tcred, flags);
1622 }
1623 
1624 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1625                 const struct rlimit64 __user *, new_rlim,
1626                 struct rlimit64 __user *, old_rlim)
1627 {
1628         struct rlimit64 old64, new64;
1629         struct rlimit old, new;
1630         struct task_struct *tsk;
1631         unsigned int checkflags = 0;
1632         int ret;
1633 
1634         if (old_rlim)
1635                 checkflags |= LSM_PRLIMIT_READ;
1636 
1637         if (new_rlim) {
1638                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1639                         return -EFAULT;
1640                 rlim64_to_rlim(&new64, &new);
1641                 checkflags |= LSM_PRLIMIT_WRITE;
1642         }
1643 
1644         rcu_read_lock();
1645         tsk = pid ? find_task_by_vpid(pid) : current;
1646         if (!tsk) {
1647                 rcu_read_unlock();
1648                 return -ESRCH;
1649         }
1650         ret = check_prlimit_permission(tsk, checkflags);
1651         if (ret) {
1652                 rcu_read_unlock();
1653                 return ret;
1654         }
1655         get_task_struct(tsk);
1656         rcu_read_unlock();
1657 
1658         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1659                         old_rlim ? &old : NULL);
1660 
1661         if (!ret && old_rlim) {
1662                 rlim_to_rlim64(&old, &old64);
1663                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1664                         ret = -EFAULT;
1665         }
1666 
1667         put_task_struct(tsk);
1668         return ret;
1669 }
1670 
1671 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1672 {
1673         struct rlimit new_rlim;
1674 
1675         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1676                 return -EFAULT;
1677         return do_prlimit(current, resource, &new_rlim, NULL);
1678 }
1679 
1680 /*
1681  * It would make sense to put struct rusage in the task_struct,
1682  * except that would make the task_struct be *really big*.  After
1683  * task_struct gets moved into malloc'ed memory, it would
1684  * make sense to do this.  It will make moving the rest of the information
1685  * a lot simpler!  (Which we're not doing right now because we're not
1686  * measuring them yet).
1687  *
1688  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1689  * races with threads incrementing their own counters.  But since word
1690  * reads are atomic, we either get new values or old values and we don't
1691  * care which for the sums.  We always take the siglock to protect reading
1692  * the c* fields from p->signal from races with exit.c updating those
1693  * fields when reaping, so a sample either gets all the additions of a
1694  * given child after it's reaped, or none so this sample is before reaping.
1695  *
1696  * Locking:
1697  * We need to take the siglock for CHILDEREN, SELF and BOTH
1698  * for  the cases current multithreaded, non-current single threaded
1699  * non-current multithreaded.  Thread traversal is now safe with
1700  * the siglock held.
1701  * Strictly speaking, we donot need to take the siglock if we are current and
1702  * single threaded,  as no one else can take our signal_struct away, no one
1703  * else can  reap the  children to update signal->c* counters, and no one else
1704  * can race with the signal-> fields. If we do not take any lock, the
1705  * signal-> fields could be read out of order while another thread was just
1706  * exiting. So we should  place a read memory barrier when we avoid the lock.
1707  * On the writer side,  write memory barrier is implied in  __exit_signal
1708  * as __exit_signal releases  the siglock spinlock after updating the signal->
1709  * fields. But we don't do this yet to keep things simple.
1710  *
1711  */
1712 
1713 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1714 {
1715         r->ru_nvcsw += t->nvcsw;
1716         r->ru_nivcsw += t->nivcsw;
1717         r->ru_minflt += t->min_flt;
1718         r->ru_majflt += t->maj_flt;
1719         r->ru_inblock += task_io_get_inblock(t);
1720         r->ru_oublock += task_io_get_oublock(t);
1721 }
1722 
1723 void getrusage(struct task_struct *p, int who, struct rusage *r)
1724 {
1725         struct task_struct *t;
1726         unsigned long flags;
1727         u64 tgutime, tgstime, utime, stime;
1728         unsigned long maxrss = 0;
1729 
1730         memset((char *)r, 0, sizeof (*r));
1731         utime = stime = 0;
1732 
1733         if (who == RUSAGE_THREAD) {
1734                 task_cputime_adjusted(current, &utime, &stime);
1735                 accumulate_thread_rusage(p, r);
1736                 maxrss = p->signal->maxrss;
1737                 goto out;
1738         }
1739 
1740         if (!lock_task_sighand(p, &flags))
1741                 return;
1742 
1743         switch (who) {
1744         case RUSAGE_BOTH:
1745         case RUSAGE_CHILDREN:
1746                 utime = p->signal->cutime;
1747                 stime = p->signal->cstime;
1748                 r->ru_nvcsw = p->signal->cnvcsw;
1749                 r->ru_nivcsw = p->signal->cnivcsw;
1750                 r->ru_minflt = p->signal->cmin_flt;
1751                 r->ru_majflt = p->signal->cmaj_flt;
1752                 r->ru_inblock = p->signal->cinblock;
1753                 r->ru_oublock = p->signal->coublock;
1754                 maxrss = p->signal->cmaxrss;
1755 
1756                 if (who == RUSAGE_CHILDREN)
1757                         break;
1758                 /* fall through */
1759 
1760         case RUSAGE_SELF:
1761                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1762                 utime += tgutime;
1763                 stime += tgstime;
1764                 r->ru_nvcsw += p->signal->nvcsw;
1765                 r->ru_nivcsw += p->signal->nivcsw;
1766                 r->ru_minflt += p->signal->min_flt;
1767                 r->ru_majflt += p->signal->maj_flt;
1768                 r->ru_inblock += p->signal->inblock;
1769                 r->ru_oublock += p->signal->oublock;
1770                 if (maxrss < p->signal->maxrss)
1771                         maxrss = p->signal->maxrss;
1772                 t = p;
1773                 do {
1774                         accumulate_thread_rusage(t, r);
1775                 } while_each_thread(p, t);
1776                 break;
1777 
1778         default:
1779                 BUG();
1780         }
1781         unlock_task_sighand(p, &flags);
1782 
1783 out:
1784         r->ru_utime = ns_to_timeval(utime);
1785         r->ru_stime = ns_to_timeval(stime);
1786 
1787         if (who != RUSAGE_CHILDREN) {
1788                 struct mm_struct *mm = get_task_mm(p);
1789 
1790                 if (mm) {
1791                         setmax_mm_hiwater_rss(&maxrss, mm);
1792                         mmput(mm);
1793                 }
1794         }
1795         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1796 }
1797 
1798 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1799 {
1800         struct rusage r;
1801 
1802         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1803             who != RUSAGE_THREAD)
1804                 return -EINVAL;
1805 
1806         getrusage(current, who, &r);
1807         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1808 }
1809 
1810 #ifdef CONFIG_COMPAT
1811 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1812 {
1813         struct rusage r;
1814 
1815         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1816             who != RUSAGE_THREAD)
1817                 return -EINVAL;
1818 
1819         getrusage(current, who, &r);
1820         return put_compat_rusage(&r, ru);
1821 }
1822 #endif
1823 
1824 SYSCALL_DEFINE1(umask, int, mask)
1825 {
1826         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1827         return mask;
1828 }
1829 
1830 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1831 {
1832         struct fd exe;
1833         struct file *old_exe, *exe_file;
1834         struct inode *inode;
1835         int err;
1836 
1837         exe = fdget(fd);
1838         if (!exe.file)
1839                 return -EBADF;
1840 
1841         inode = file_inode(exe.file);
1842 
1843         /*
1844          * Because the original mm->exe_file points to executable file, make
1845          * sure that this one is executable as well, to avoid breaking an
1846          * overall picture.
1847          */
1848         err = -EACCES;
1849         if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1850                 goto exit;
1851 
1852         err = inode_permission(inode, MAY_EXEC);
1853         if (err)
1854                 goto exit;
1855 
1856         /*
1857          * Forbid mm->exe_file change if old file still mapped.
1858          */
1859         exe_file = get_mm_exe_file(mm);
1860         err = -EBUSY;
1861         if (exe_file) {
1862                 struct vm_area_struct *vma;
1863 
1864                 down_read(&mm->mmap_sem);
1865                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1866                         if (!vma->vm_file)
1867                                 continue;
1868                         if (path_equal(&vma->vm_file->f_path,
1869                                        &exe_file->f_path))
1870                                 goto exit_err;
1871                 }
1872 
1873                 up_read(&mm->mmap_sem);
1874                 fput(exe_file);
1875         }
1876 
1877         err = 0;
1878         /* set the new file, lockless */
1879         get_file(exe.file);
1880         old_exe = xchg(&mm->exe_file, exe.file);
1881         if (old_exe)
1882                 fput(old_exe);
1883 exit:
1884         fdput(exe);
1885         return err;
1886 exit_err:
1887         up_read(&mm->mmap_sem);
1888         fput(exe_file);
1889         goto exit;
1890 }
1891 
1892 /*
1893  * Check arithmetic relations of passed addresses.
1894  *
1895  * WARNING: we don't require any capability here so be very careful
1896  * in what is allowed for modification from userspace.
1897  */
1898 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1899 {
1900         unsigned long mmap_max_addr = TASK_SIZE;
1901         int error = -EINVAL, i;
1902 
1903         static const unsigned char offsets[] = {
1904                 offsetof(struct prctl_mm_map, start_code),
1905                 offsetof(struct prctl_mm_map, end_code),
1906                 offsetof(struct prctl_mm_map, start_data),
1907                 offsetof(struct prctl_mm_map, end_data),
1908                 offsetof(struct prctl_mm_map, start_brk),
1909                 offsetof(struct prctl_mm_map, brk),
1910                 offsetof(struct prctl_mm_map, start_stack),
1911                 offsetof(struct prctl_mm_map, arg_start),
1912                 offsetof(struct prctl_mm_map, arg_end),
1913                 offsetof(struct prctl_mm_map, env_start),
1914                 offsetof(struct prctl_mm_map, env_end),
1915         };
1916 
1917         /*
1918          * Make sure the members are not somewhere outside
1919          * of allowed address space.
1920          */
1921         for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1922                 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1923 
1924                 if ((unsigned long)val >= mmap_max_addr ||
1925                     (unsigned long)val < mmap_min_addr)
1926                         goto out;
1927         }
1928 
1929         /*
1930          * Make sure the pairs are ordered.
1931          */
1932 #define __prctl_check_order(__m1, __op, __m2)                           \
1933         ((unsigned long)prctl_map->__m1 __op                            \
1934          (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1935         error  = __prctl_check_order(start_code, <, end_code);
1936         error |= __prctl_check_order(start_data,<=, end_data);
1937         error |= __prctl_check_order(start_brk, <=, brk);
1938         error |= __prctl_check_order(arg_start, <=, arg_end);
1939         error |= __prctl_check_order(env_start, <=, env_end);
1940         if (error)
1941                 goto out;
1942 #undef __prctl_check_order
1943 
1944         error = -EINVAL;
1945 
1946         /*
1947          * @brk should be after @end_data in traditional maps.
1948          */
1949         if (prctl_map->start_brk <= prctl_map->end_data ||
1950             prctl_map->brk <= prctl_map->end_data)
1951                 goto out;
1952 
1953         /*
1954          * Neither we should allow to override limits if they set.
1955          */
1956         if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1957                               prctl_map->start_brk, prctl_map->end_data,
1958                               prctl_map->start_data))
1959                         goto out;
1960 
1961         error = 0;
1962 out:
1963         return error;
1964 }
1965 
1966 #ifdef CONFIG_CHECKPOINT_RESTORE
1967 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1968 {
1969         struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1970         unsigned long user_auxv[AT_VECTOR_SIZE];
1971         struct mm_struct *mm = current->mm;
1972         int error;
1973 
1974         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1975         BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1976 
1977         if (opt == PR_SET_MM_MAP_SIZE)
1978                 return put_user((unsigned int)sizeof(prctl_map),
1979                                 (unsigned int __user *)addr);
1980 
1981         if (data_size != sizeof(prctl_map))
1982                 return -EINVAL;
1983 
1984         if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1985                 return -EFAULT;
1986 
1987         error = validate_prctl_map_addr(&prctl_map);
1988         if (error)
1989                 return error;
1990 
1991         if (prctl_map.auxv_size) {
1992                 /*
1993                  * Someone is trying to cheat the auxv vector.
1994                  */
1995                 if (!prctl_map.auxv ||
1996                                 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1997                         return -EINVAL;
1998 
1999                 memset(user_auxv, 0, sizeof(user_auxv));
2000                 if (copy_from_user(user_auxv,
2001                                    (const void __user *)prctl_map.auxv,
2002                                    prctl_map.auxv_size))
2003                         return -EFAULT;
2004 
2005                 /* Last entry must be AT_NULL as specification requires */
2006                 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2007                 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2008         }
2009 
2010         if (prctl_map.exe_fd != (u32)-1) {
2011                 /*
2012                  * Make sure the caller has the rights to
2013                  * change /proc/pid/exe link: only local sys admin should
2014                  * be allowed to.
2015                  */
2016                 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2017                         return -EINVAL;
2018 
2019                 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2020                 if (error)
2021                         return error;
2022         }
2023 
2024         /*
2025          * arg_lock protects concurent updates but we still need mmap_sem for
2026          * read to exclude races with sys_brk.
2027          */
2028         down_read(&mm->mmap_sem);
2029 
2030         /*
2031          * We don't validate if these members are pointing to
2032          * real present VMAs because application may have correspond
2033          * VMAs already unmapped and kernel uses these members for statistics
2034          * output in procfs mostly, except
2035          *
2036          *  - @start_brk/@brk which are used in do_brk but kernel lookups
2037          *    for VMAs when updating these memvers so anything wrong written
2038          *    here cause kernel to swear at userspace program but won't lead
2039          *    to any problem in kernel itself
2040          */
2041 
2042         spin_lock(&mm->arg_lock);
2043         mm->start_code  = prctl_map.start_code;
2044         mm->end_code    = prctl_map.end_code;
2045         mm->start_data  = prctl_map.start_data;
2046         mm->end_data    = prctl_map.end_data;
2047         mm->start_brk   = prctl_map.start_brk;
2048         mm->brk         = prctl_map.brk;
2049         mm->start_stack = prctl_map.start_stack;
2050         mm->arg_start   = prctl_map.arg_start;
2051         mm->arg_end     = prctl_map.arg_end;
2052         mm->env_start   = prctl_map.env_start;
2053         mm->env_end     = prctl_map.env_end;
2054         spin_unlock(&mm->arg_lock);
2055 
2056         /*
2057          * Note this update of @saved_auxv is lockless thus
2058          * if someone reads this member in procfs while we're
2059          * updating -- it may get partly updated results. It's
2060          * known and acceptable trade off: we leave it as is to
2061          * not introduce additional locks here making the kernel
2062          * more complex.
2063          */
2064         if (prctl_map.auxv_size)
2065                 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2066 
2067         up_read(&mm->mmap_sem);
2068         return 0;
2069 }
2070 #endif /* CONFIG_CHECKPOINT_RESTORE */
2071 
2072 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2073                           unsigned long len)
2074 {
2075         /*
2076          * This doesn't move the auxiliary vector itself since it's pinned to
2077          * mm_struct, but it permits filling the vector with new values.  It's
2078          * up to the caller to provide sane values here, otherwise userspace
2079          * tools which use this vector might be unhappy.
2080          */
2081         unsigned long user_auxv[AT_VECTOR_SIZE];
2082 
2083         if (len > sizeof(user_auxv))
2084                 return -EINVAL;
2085 
2086         if (copy_from_user(user_auxv, (const void __user *)addr, len))
2087                 return -EFAULT;
2088 
2089         /* Make sure the last entry is always AT_NULL */
2090         user_auxv[AT_VECTOR_SIZE - 2] = 0;
2091         user_auxv[AT_VECTOR_SIZE - 1] = 0;
2092 
2093         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2094 
2095         task_lock(current);
2096         memcpy(mm->saved_auxv, user_auxv, len);
2097         task_unlock(current);
2098 
2099         return 0;
2100 }
2101 
2102 static int prctl_set_mm(int opt, unsigned long addr,
2103                         unsigned long arg4, unsigned long arg5)
2104 {
2105         struct mm_struct *mm = current->mm;
2106         struct prctl_mm_map prctl_map = {
2107                 .auxv = NULL,
2108                 .auxv_size = 0,
2109                 .exe_fd = -1,
2110         };
2111         struct vm_area_struct *vma;
2112         int error;
2113 
2114         if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2115                               opt != PR_SET_MM_MAP &&
2116                               opt != PR_SET_MM_MAP_SIZE)))
2117                 return -EINVAL;
2118 
2119 #ifdef CONFIG_CHECKPOINT_RESTORE
2120         if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2121                 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2122 #endif
2123 
2124         if (!capable(CAP_SYS_RESOURCE))
2125                 return -EPERM;
2126 
2127         if (opt == PR_SET_MM_EXE_FILE)
2128                 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2129 
2130         if (opt == PR_SET_MM_AUXV)
2131                 return prctl_set_auxv(mm, addr, arg4);
2132 
2133         if (addr >= TASK_SIZE || addr < mmap_min_addr)
2134                 return -EINVAL;
2135 
2136         error = -EINVAL;
2137 
2138         /*
2139          * arg_lock protects concurent updates of arg boundaries, we need
2140          * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2141          * validation.
2142          */
2143         down_read(&mm->mmap_sem);
2144         vma = find_vma(mm, addr);
2145 
2146         spin_lock(&mm->arg_lock);
2147         prctl_map.start_code    = mm->start_code;
2148         prctl_map.end_code      = mm->end_code;
2149         prctl_map.start_data    = mm->start_data;
2150         prctl_map.end_data      = mm->end_data;
2151         prctl_map.start_brk     = mm->start_brk;
2152         prctl_map.brk           = mm->brk;
2153         prctl_map.start_stack   = mm->start_stack;
2154         prctl_map.arg_start     = mm->arg_start;
2155         prctl_map.arg_end       = mm->arg_end;
2156         prctl_map.env_start     = mm->env_start;
2157         prctl_map.env_end       = mm->env_end;
2158 
2159         switch (opt) {
2160         case PR_SET_MM_START_CODE:
2161                 prctl_map.start_code = addr;
2162                 break;
2163         case PR_SET_MM_END_CODE:
2164                 prctl_map.end_code = addr;
2165                 break;
2166         case PR_SET_MM_START_DATA:
2167                 prctl_map.start_data = addr;
2168                 break;
2169         case PR_SET_MM_END_DATA:
2170                 prctl_map.end_data = addr;
2171                 break;
2172         case PR_SET_MM_START_STACK:
2173                 prctl_map.start_stack = addr;
2174                 break;
2175         case PR_SET_MM_START_BRK:
2176                 prctl_map.start_brk = addr;
2177                 break;
2178         case PR_SET_MM_BRK:
2179                 prctl_map.brk = addr;
2180                 break;
2181         case PR_SET_MM_ARG_START:
2182                 prctl_map.arg_start = addr;
2183                 break;
2184         case PR_SET_MM_ARG_END:
2185                 prctl_map.arg_end = addr;
2186                 break;
2187         case PR_SET_MM_ENV_START:
2188                 prctl_map.env_start = addr;
2189                 break;
2190         case PR_SET_MM_ENV_END:
2191                 prctl_map.env_end = addr;
2192                 break;
2193         default:
2194                 goto out;
2195         }
2196 
2197         error = validate_prctl_map_addr(&prctl_map);
2198         if (error)
2199                 goto out;
2200 
2201         switch (opt) {
2202         /*
2203          * If command line arguments and environment
2204          * are placed somewhere else on stack, we can
2205          * set them up here, ARG_START/END to setup
2206          * command line argumets and ENV_START/END
2207          * for environment.
2208          */
2209         case PR_SET_MM_START_STACK:
2210         case PR_SET_MM_ARG_START:
2211         case PR_SET_MM_ARG_END:
2212         case PR_SET_MM_ENV_START:
2213         case PR_SET_MM_ENV_END:
2214                 if (!vma) {
2215                         error = -EFAULT;
2216                         goto out;
2217                 }
2218         }
2219 
2220         mm->start_code  = prctl_map.start_code;
2221         mm->end_code    = prctl_map.end_code;
2222         mm->start_data  = prctl_map.start_data;
2223         mm->end_data    = prctl_map.end_data;
2224         mm->start_brk   = prctl_map.start_brk;
2225         mm->brk         = prctl_map.brk;
2226         mm->start_stack = prctl_map.start_stack;
2227         mm->arg_start   = prctl_map.arg_start;
2228         mm->arg_end     = prctl_map.arg_end;
2229         mm->env_start   = prctl_map.env_start;
2230         mm->env_end     = prctl_map.env_end;
2231 
2232         error = 0;
2233 out:
2234         spin_unlock(&mm->arg_lock);
2235         up_read(&mm->mmap_sem);
2236         return error;
2237 }
2238 
2239 #ifdef CONFIG_CHECKPOINT_RESTORE
2240 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2241 {
2242         return put_user(me->clear_child_tid, tid_addr);
2243 }
2244 #else
2245 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2246 {
2247         return -EINVAL;
2248 }
2249 #endif
2250 
2251 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2252 {
2253         /*
2254          * If task has has_child_subreaper - all its decendants
2255          * already have these flag too and new decendants will
2256          * inherit it on fork, skip them.
2257          *
2258          * If we've found child_reaper - skip descendants in
2259          * it's subtree as they will never get out pidns.
2260          */
2261         if (p->signal->has_child_subreaper ||
2262             is_child_reaper(task_pid(p)))
2263                 return 0;
2264 
2265         p->signal->has_child_subreaper = 1;
2266         return 1;
2267 }
2268 
2269 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2270 {
2271         return -EINVAL;
2272 }
2273 
2274 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2275                                     unsigned long ctrl)
2276 {
2277         return -EINVAL;
2278 }
2279 
2280 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2281                 unsigned long, arg4, unsigned long, arg5)
2282 {
2283         struct task_struct *me = current;
2284         unsigned char comm[sizeof(me->comm)];
2285         long error;
2286 
2287         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2288         if (error != -ENOSYS)
2289                 return error;
2290 
2291         error = 0;
2292         switch (option) {
2293         case PR_SET_PDEATHSIG:
2294                 if (!valid_signal(arg2)) {
2295                         error = -EINVAL;
2296                         break;
2297                 }
2298                 me->pdeath_signal = arg2;
2299                 break;
2300         case PR_GET_PDEATHSIG:
2301                 error = put_user(me->pdeath_signal, (int __user *)arg2);
2302                 break;
2303         case PR_GET_DUMPABLE:
2304                 error = get_dumpable(me->mm);
2305                 break;
2306         case PR_SET_DUMPABLE:
2307                 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2308                         error = -EINVAL;
2309                         break;
2310                 }
2311                 set_dumpable(me->mm, arg2);
2312                 break;
2313 
2314         case PR_SET_UNALIGN:
2315                 error = SET_UNALIGN_CTL(me, arg2);
2316                 break;
2317         case PR_GET_UNALIGN:
2318                 error = GET_UNALIGN_CTL(me, arg2);
2319                 break;
2320         case PR_SET_FPEMU:
2321                 error = SET_FPEMU_CTL(me, arg2);
2322                 break;
2323         case PR_GET_FPEMU:
2324                 error = GET_FPEMU_CTL(me, arg2);
2325                 break;
2326         case PR_SET_FPEXC:
2327                 error = SET_FPEXC_CTL(me, arg2);
2328                 break;
2329         case PR_GET_FPEXC:
2330                 error = GET_FPEXC_CTL(me, arg2);
2331                 break;
2332         case PR_GET_TIMING:
2333                 error = PR_TIMING_STATISTICAL;
2334                 break;
2335         case PR_SET_TIMING:
2336                 if (arg2 != PR_TIMING_STATISTICAL)
2337                         error = -EINVAL;
2338                 break;
2339         case PR_SET_NAME:
2340                 comm[sizeof(me->comm) - 1] = 0;
2341                 if (strncpy_from_user(comm, (char __user *)arg2,
2342                                       sizeof(me->comm) - 1) < 0)
2343                         return -EFAULT;
2344                 set_task_comm(me, comm);
2345                 proc_comm_connector(me);
2346                 break;
2347         case PR_GET_NAME:
2348                 get_task_comm(comm, me);
2349                 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2350                         return -EFAULT;
2351                 break;
2352         case PR_GET_ENDIAN:
2353                 error = GET_ENDIAN(me, arg2);
2354                 break;
2355         case PR_SET_ENDIAN:
2356                 error = SET_ENDIAN(me, arg2);
2357                 break;
2358         case PR_GET_SECCOMP:
2359                 error = prctl_get_seccomp();
2360                 break;
2361         case PR_SET_SECCOMP:
2362                 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2363                 break;
2364         case PR_GET_TSC:
2365                 error = GET_TSC_CTL(arg2);
2366                 break;
2367         case PR_SET_TSC:
2368                 error = SET_TSC_CTL(arg2);
2369                 break;
2370         case PR_TASK_PERF_EVENTS_DISABLE:
2371                 error = perf_event_task_disable();
2372                 break;
2373         case PR_TASK_PERF_EVENTS_ENABLE:
2374                 error = perf_event_task_enable();
2375                 break;
2376         case PR_GET_TIMERSLACK:
2377                 if (current->timer_slack_ns > ULONG_MAX)
2378                         error = ULONG_MAX;
2379                 else
2380                         error = current->timer_slack_ns;
2381                 break;
2382         case PR_SET_TIMERSLACK:
2383                 if (arg2 <= 0)
2384                         current->timer_slack_ns =
2385                                         current->default_timer_slack_ns;
2386                 else
2387                         current->timer_slack_ns = arg2;
2388                 break;
2389         case PR_MCE_KILL:
2390                 if (arg4 | arg5)
2391                         return -EINVAL;
2392                 switch (arg2) {
2393                 case PR_MCE_KILL_CLEAR:
2394                         if (arg3 != 0)
2395                                 return -EINVAL;
2396                         current->flags &= ~PF_MCE_PROCESS;
2397                         break;
2398                 case PR_MCE_KILL_SET:
2399                         current->flags |= PF_MCE_PROCESS;
2400                         if (arg3 == PR_MCE_KILL_EARLY)
2401                                 current->flags |= PF_MCE_EARLY;
2402                         else if (arg3 == PR_MCE_KILL_LATE)
2403                                 current->flags &= ~PF_MCE_EARLY;
2404                         else if (arg3 == PR_MCE_KILL_DEFAULT)
2405                                 current->flags &=
2406                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2407                         else
2408                                 return -EINVAL;
2409                         break;
2410                 default:
2411                         return -EINVAL;
2412                 }
2413                 break;
2414         case PR_MCE_KILL_GET:
2415                 if (arg2 | arg3 | arg4 | arg5)
2416                         return -EINVAL;
2417                 if (current->flags & PF_MCE_PROCESS)
2418                         error = (current->flags & PF_MCE_EARLY) ?
2419                                 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2420                 else
2421                         error = PR_MCE_KILL_DEFAULT;
2422                 break;
2423         case PR_SET_MM:
2424                 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2425                 break;
2426         case PR_GET_TID_ADDRESS:
2427                 error = prctl_get_tid_address(me, (int __user **)arg2);
2428                 break;
2429         case PR_SET_CHILD_SUBREAPER:
2430                 me->signal->is_child_subreaper = !!arg2;
2431                 if (!arg2)
2432                         break;
2433 
2434                 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2435                 break;
2436         case PR_GET_CHILD_SUBREAPER:
2437                 error = put_user(me->signal->is_child_subreaper,
2438                                  (int __user *)arg2);
2439                 break;
2440         case PR_SET_NO_NEW_PRIVS:
2441                 if (arg2 != 1 || arg3 || arg4 || arg5)
2442                         return -EINVAL;
2443 
2444                 task_set_no_new_privs(current);
2445                 break;
2446         case PR_GET_NO_NEW_PRIVS:
2447                 if (arg2 || arg3 || arg4 || arg5)
2448                         return -EINVAL;
2449                 return task_no_new_privs(current) ? 1 : 0;
2450         case PR_GET_THP_DISABLE:
2451                 if (arg2 || arg3 || arg4 || arg5)
2452                         return -EINVAL;
2453                 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2454                 break;
2455         case PR_SET_THP_DISABLE:
2456                 if (arg3 || arg4 || arg5)
2457                         return -EINVAL;
2458                 if (down_write_killable(&me->mm->mmap_sem))
2459                         return -EINTR;
2460                 if (arg2)
2461                         set_bit(MMF_DISABLE_THP, &me->mm->flags);
2462                 else
2463                         clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2464                 up_write(&me->mm->mmap_sem);
2465                 break;
2466         case PR_MPX_ENABLE_MANAGEMENT:
2467                 if (arg2 || arg3 || arg4 || arg5)
2468                         return -EINVAL;
2469                 error = MPX_ENABLE_MANAGEMENT();
2470                 break;
2471         case PR_MPX_DISABLE_MANAGEMENT:
2472                 if (arg2 || arg3 || arg4 || arg5)
2473                         return -EINVAL;
2474                 error = MPX_DISABLE_MANAGEMENT();
2475                 break;
2476         case PR_SET_FP_MODE:
2477                 error = SET_FP_MODE(me, arg2);
2478                 break;
2479         case PR_GET_FP_MODE:
2480                 error = GET_FP_MODE(me);
2481                 break;
2482         case PR_SVE_SET_VL:
2483                 error = SVE_SET_VL(arg2);
2484                 break;
2485         case PR_SVE_GET_VL:
2486                 error = SVE_GET_VL();
2487                 break;
2488         case PR_GET_SPECULATION_CTRL:
2489                 if (arg3 || arg4 || arg5)
2490                         return -EINVAL;
2491                 error = arch_prctl_spec_ctrl_get(me, arg2);
2492                 break;
2493         case PR_SET_SPECULATION_CTRL:
2494                 if (arg4 || arg5)
2495                         return -EINVAL;
2496                 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2497                 break;
2498         case PR_PAC_RESET_KEYS:
2499                 if (arg3 || arg4 || arg5)
2500                         return -EINVAL;
2501                 error = PAC_RESET_KEYS(me, arg2);
2502                 break;
2503         default:
2504                 error = -EINVAL;
2505                 break;
2506         }
2507         return error;
2508 }
2509 
2510 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2511                 struct getcpu_cache __user *, unused)
2512 {
2513         int err = 0;
2514         int cpu = raw_smp_processor_id();
2515 
2516         if (cpup)
2517                 err |= put_user(cpu, cpup);
2518         if (nodep)
2519                 err |= put_user(cpu_to_node(cpu), nodep);
2520         return err ? -EFAULT : 0;
2521 }
2522 
2523 /**
2524  * do_sysinfo - fill in sysinfo struct
2525  * @info: pointer to buffer to fill
2526  */
2527 static int do_sysinfo(struct sysinfo *info)
2528 {
2529         unsigned long mem_total, sav_total;
2530         unsigned int mem_unit, bitcount;
2531         struct timespec64 tp;
2532 
2533         memset(info, 0, sizeof(struct sysinfo));
2534 
2535         ktime_get_boottime_ts64(&tp);
2536         info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2537 
2538         get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2539 
2540         info->procs = nr_threads;
2541 
2542         si_meminfo(info);
2543         si_swapinfo(info);
2544 
2545         /*
2546          * If the sum of all the available memory (i.e. ram + swap)
2547          * is less than can be stored in a 32 bit unsigned long then
2548          * we can be binary compatible with 2.2.x kernels.  If not,
2549          * well, in that case 2.2.x was broken anyways...
2550          *
2551          *  -Erik Andersen <andersee@debian.org>
2552          */
2553 
2554         mem_total = info->totalram + info->totalswap;
2555         if (mem_total < info->totalram || mem_total < info->totalswap)
2556                 goto out;
2557         bitcount = 0;
2558         mem_unit = info->mem_unit;
2559         while (mem_unit > 1) {
2560                 bitcount++;
2561                 mem_unit >>= 1;
2562                 sav_total = mem_total;
2563                 mem_total <<= 1;
2564                 if (mem_total < sav_total)
2565                         goto out;
2566         }
2567 
2568         /*
2569          * If mem_total did not overflow, multiply all memory values by
2570          * info->mem_unit and set it to 1.  This leaves things compatible
2571          * with 2.2.x, and also retains compatibility with earlier 2.4.x
2572          * kernels...
2573          */
2574 
2575         info->mem_unit = 1;
2576         info->totalram <<= bitcount;
2577         info->freeram <<= bitcount;
2578         info->sharedram <<= bitcount;
2579         info->bufferram <<= bitcount;
2580         info->totalswap <<= bitcount;
2581         info->freeswap <<= bitcount;
2582         info->totalhigh <<= bitcount;
2583         info->freehigh <<= bitcount;
2584 
2585 out:
2586         return 0;
2587 }
2588 
2589 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2590 {
2591         struct sysinfo val;
2592 
2593         do_sysinfo(&val);
2594 
2595         if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2596                 return -EFAULT;
2597 
2598         return 0;
2599 }
2600 
2601 #ifdef CONFIG_COMPAT
2602 struct compat_sysinfo {
2603         s32 uptime;
2604         u32 loads[3];
2605         u32 totalram;
2606         u32 freeram;
2607         u32 sharedram;
2608         u32 bufferram;
2609         u32 totalswap;
2610         u32 freeswap;
2611         u16 procs;
2612         u16 pad;
2613         u32 totalhigh;
2614         u32 freehigh;
2615         u32 mem_unit;
2616         char _f[20-2*sizeof(u32)-sizeof(int)];
2617 };
2618 
2619 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2620 {
2621         struct sysinfo s;
2622 
2623         do_sysinfo(&s);
2624 
2625         /* Check to see if any memory value is too large for 32-bit and scale
2626          *  down if needed
2627          */
2628         if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2629                 int bitcount = 0;
2630 
2631                 while (s.mem_unit < PAGE_SIZE) {
2632                         s.mem_unit <<= 1;
2633                         bitcount++;
2634                 }
2635 
2636                 s.totalram >>= bitcount;
2637                 s.freeram >>= bitcount;
2638                 s.sharedram >>= bitcount;
2639                 s.bufferram >>= bitcount;
2640                 s.totalswap >>= bitcount;
2641                 s.freeswap >>= bitcount;
2642                 s.totalhigh >>= bitcount;
2643                 s.freehigh >>= bitcount;
2644         }
2645 
2646         if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2647             __put_user(s.uptime, &info->uptime) ||
2648             __put_user(s.loads[0], &info->loads[0]) ||
2649             __put_user(s.loads[1], &info->loads[1]) ||
2650             __put_user(s.loads[2], &info->loads[2]) ||
2651             __put_user(s.totalram, &info->totalram) ||
2652             __put_user(s.freeram, &info->freeram) ||
2653             __put_user(s.sharedram, &info->sharedram) ||
2654             __put_user(s.bufferram, &info->bufferram) ||
2655             __put_user(s.totalswap, &info->totalswap) ||
2656             __put_user(s.freeswap, &info->freeswap) ||
2657             __put_user(s.procs, &info->procs) ||
2658             __put_user(s.totalhigh, &info->totalhigh) ||
2659             __put_user(s.freehigh, &info->freehigh) ||
2660             __put_user(s.mem_unit, &info->mem_unit))
2661                 return -EFAULT;
2662 
2663         return 0;
2664 }
2665 #endif /* CONFIG_COMPAT */
2666 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp