~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/sys.c

Version: ~ [ linux-5.12-rc7 ] ~ [ linux-5.11.13 ] ~ [ linux-5.10.29 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.111 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.186 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.230 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.266 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.266 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/kernel/sys.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  */
  7 
  8 #include <linux/export.h>
  9 #include <linux/mm.h>
 10 #include <linux/utsname.h>
 11 #include <linux/mman.h>
 12 #include <linux/reboot.h>
 13 #include <linux/prctl.h>
 14 #include <linux/highuid.h>
 15 #include <linux/fs.h>
 16 #include <linux/kmod.h>
 17 #include <linux/perf_event.h>
 18 #include <linux/resource.h>
 19 #include <linux/kernel.h>
 20 #include <linux/workqueue.h>
 21 #include <linux/capability.h>
 22 #include <linux/device.h>
 23 #include <linux/key.h>
 24 #include <linux/times.h>
 25 #include <linux/posix-timers.h>
 26 #include <linux/security.h>
 27 #include <linux/dcookies.h>
 28 #include <linux/suspend.h>
 29 #include <linux/tty.h>
 30 #include <linux/signal.h>
 31 #include <linux/cn_proc.h>
 32 #include <linux/getcpu.h>
 33 #include <linux/task_io_accounting_ops.h>
 34 #include <linux/seccomp.h>
 35 #include <linux/cpu.h>
 36 #include <linux/personality.h>
 37 #include <linux/ptrace.h>
 38 #include <linux/fs_struct.h>
 39 #include <linux/file.h>
 40 #include <linux/mount.h>
 41 #include <linux/gfp.h>
 42 #include <linux/syscore_ops.h>
 43 #include <linux/version.h>
 44 #include <linux/ctype.h>
 45 
 46 #include <linux/compat.h>
 47 #include <linux/syscalls.h>
 48 #include <linux/kprobes.h>
 49 #include <linux/user_namespace.h>
 50 #include <linux/time_namespace.h>
 51 #include <linux/binfmts.h>
 52 
 53 #include <linux/sched.h>
 54 #include <linux/sched/autogroup.h>
 55 #include <linux/sched/loadavg.h>
 56 #include <linux/sched/stat.h>
 57 #include <linux/sched/mm.h>
 58 #include <linux/sched/coredump.h>
 59 #include <linux/sched/task.h>
 60 #include <linux/sched/cputime.h>
 61 #include <linux/rcupdate.h>
 62 #include <linux/uidgid.h>
 63 #include <linux/cred.h>
 64 
 65 #include <linux/nospec.h>
 66 
 67 #include <linux/kmsg_dump.h>
 68 /* Move somewhere else to avoid recompiling? */
 69 #include <generated/utsrelease.h>
 70 
 71 #include <linux/uaccess.h>
 72 #include <asm/io.h>
 73 #include <asm/unistd.h>
 74 
 75 #include "uid16.h"
 76 
 77 #ifndef SET_UNALIGN_CTL
 78 # define SET_UNALIGN_CTL(a, b)  (-EINVAL)
 79 #endif
 80 #ifndef GET_UNALIGN_CTL
 81 # define GET_UNALIGN_CTL(a, b)  (-EINVAL)
 82 #endif
 83 #ifndef SET_FPEMU_CTL
 84 # define SET_FPEMU_CTL(a, b)    (-EINVAL)
 85 #endif
 86 #ifndef GET_FPEMU_CTL
 87 # define GET_FPEMU_CTL(a, b)    (-EINVAL)
 88 #endif
 89 #ifndef SET_FPEXC_CTL
 90 # define SET_FPEXC_CTL(a, b)    (-EINVAL)
 91 #endif
 92 #ifndef GET_FPEXC_CTL
 93 # define GET_FPEXC_CTL(a, b)    (-EINVAL)
 94 #endif
 95 #ifndef GET_ENDIAN
 96 # define GET_ENDIAN(a, b)       (-EINVAL)
 97 #endif
 98 #ifndef SET_ENDIAN
 99 # define SET_ENDIAN(a, b)       (-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a)         (-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a)         (-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a)         (-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b)       (-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a)          (-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL()           (-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b)   (-EINVAL)
121 #endif
122 #ifndef SET_TAGGED_ADDR_CTRL
123 # define SET_TAGGED_ADDR_CTRL(a)        (-EINVAL)
124 #endif
125 #ifndef GET_TAGGED_ADDR_CTRL
126 # define GET_TAGGED_ADDR_CTRL()         (-EINVAL)
127 #endif
128 
129 /*
130  * this is where the system-wide overflow UID and GID are defined, for
131  * architectures that now have 32-bit UID/GID but didn't in the past
132  */
133 
134 int overflowuid = DEFAULT_OVERFLOWUID;
135 int overflowgid = DEFAULT_OVERFLOWGID;
136 
137 EXPORT_SYMBOL(overflowuid);
138 EXPORT_SYMBOL(overflowgid);
139 
140 /*
141  * the same as above, but for filesystems which can only store a 16-bit
142  * UID and GID. as such, this is needed on all architectures
143  */
144 
145 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
146 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
147 
148 EXPORT_SYMBOL(fs_overflowuid);
149 EXPORT_SYMBOL(fs_overflowgid);
150 
151 /*
152  * Returns true if current's euid is same as p's uid or euid,
153  * or has CAP_SYS_NICE to p's user_ns.
154  *
155  * Called with rcu_read_lock, creds are safe
156  */
157 static bool set_one_prio_perm(struct task_struct *p)
158 {
159         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
160 
161         if (uid_eq(pcred->uid,  cred->euid) ||
162             uid_eq(pcred->euid, cred->euid))
163                 return true;
164         if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
165                 return true;
166         return false;
167 }
168 
169 /*
170  * set the priority of a task
171  * - the caller must hold the RCU read lock
172  */
173 static int set_one_prio(struct task_struct *p, int niceval, int error)
174 {
175         int no_nice;
176 
177         if (!set_one_prio_perm(p)) {
178                 error = -EPERM;
179                 goto out;
180         }
181         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
182                 error = -EACCES;
183                 goto out;
184         }
185         no_nice = security_task_setnice(p, niceval);
186         if (no_nice) {
187                 error = no_nice;
188                 goto out;
189         }
190         if (error == -ESRCH)
191                 error = 0;
192         set_user_nice(p, niceval);
193 out:
194         return error;
195 }
196 
197 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
198 {
199         struct task_struct *g, *p;
200         struct user_struct *user;
201         const struct cred *cred = current_cred();
202         int error = -EINVAL;
203         struct pid *pgrp;
204         kuid_t uid;
205 
206         if (which > PRIO_USER || which < PRIO_PROCESS)
207                 goto out;
208         if (!ccs_capable(CCS_SYS_NICE)) {
209                 error = -EPERM;
210                 goto out;
211         }
212 
213         /* normalize: avoid signed division (rounding problems) */
214         error = -ESRCH;
215         if (niceval < MIN_NICE)
216                 niceval = MIN_NICE;
217         if (niceval > MAX_NICE)
218                 niceval = MAX_NICE;
219 
220         rcu_read_lock();
221         read_lock(&tasklist_lock);
222         switch (which) {
223         case PRIO_PROCESS:
224                 if (who)
225                         p = find_task_by_vpid(who);
226                 else
227                         p = current;
228                 if (p)
229                         error = set_one_prio(p, niceval, error);
230                 break;
231         case PRIO_PGRP:
232                 if (who)
233                         pgrp = find_vpid(who);
234                 else
235                         pgrp = task_pgrp(current);
236                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
237                         error = set_one_prio(p, niceval, error);
238                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
239                 break;
240         case PRIO_USER:
241                 uid = make_kuid(cred->user_ns, who);
242                 user = cred->user;
243                 if (!who)
244                         uid = cred->uid;
245                 else if (!uid_eq(uid, cred->uid)) {
246                         user = find_user(uid);
247                         if (!user)
248                                 goto out_unlock;        /* No processes for this user */
249                 }
250                 do_each_thread(g, p) {
251                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
252                                 error = set_one_prio(p, niceval, error);
253                 } while_each_thread(g, p);
254                 if (!uid_eq(uid, cred->uid))
255                         free_uid(user);         /* For find_user() */
256                 break;
257         }
258 out_unlock:
259         read_unlock(&tasklist_lock);
260         rcu_read_unlock();
261 out:
262         return error;
263 }
264 
265 /*
266  * Ugh. To avoid negative return values, "getpriority()" will
267  * not return the normal nice-value, but a negated value that
268  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
269  * to stay compatible.
270  */
271 SYSCALL_DEFINE2(getpriority, int, which, int, who)
272 {
273         struct task_struct *g, *p;
274         struct user_struct *user;
275         const struct cred *cred = current_cred();
276         long niceval, retval = -ESRCH;
277         struct pid *pgrp;
278         kuid_t uid;
279 
280         if (which > PRIO_USER || which < PRIO_PROCESS)
281                 return -EINVAL;
282 
283         rcu_read_lock();
284         read_lock(&tasklist_lock);
285         switch (which) {
286         case PRIO_PROCESS:
287                 if (who)
288                         p = find_task_by_vpid(who);
289                 else
290                         p = current;
291                 if (p) {
292                         niceval = nice_to_rlimit(task_nice(p));
293                         if (niceval > retval)
294                                 retval = niceval;
295                 }
296                 break;
297         case PRIO_PGRP:
298                 if (who)
299                         pgrp = find_vpid(who);
300                 else
301                         pgrp = task_pgrp(current);
302                 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
303                         niceval = nice_to_rlimit(task_nice(p));
304                         if (niceval > retval)
305                                 retval = niceval;
306                 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
307                 break;
308         case PRIO_USER:
309                 uid = make_kuid(cred->user_ns, who);
310                 user = cred->user;
311                 if (!who)
312                         uid = cred->uid;
313                 else if (!uid_eq(uid, cred->uid)) {
314                         user = find_user(uid);
315                         if (!user)
316                                 goto out_unlock;        /* No processes for this user */
317                 }
318                 do_each_thread(g, p) {
319                         if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
320                                 niceval = nice_to_rlimit(task_nice(p));
321                                 if (niceval > retval)
322                                         retval = niceval;
323                         }
324                 } while_each_thread(g, p);
325                 if (!uid_eq(uid, cred->uid))
326                         free_uid(user);         /* for find_user() */
327                 break;
328         }
329 out_unlock:
330         read_unlock(&tasklist_lock);
331         rcu_read_unlock();
332 
333         return retval;
334 }
335 
336 /*
337  * Unprivileged users may change the real gid to the effective gid
338  * or vice versa.  (BSD-style)
339  *
340  * If you set the real gid at all, or set the effective gid to a value not
341  * equal to the real gid, then the saved gid is set to the new effective gid.
342  *
343  * This makes it possible for a setgid program to completely drop its
344  * privileges, which is often a useful assertion to make when you are doing
345  * a security audit over a program.
346  *
347  * The general idea is that a program which uses just setregid() will be
348  * 100% compatible with BSD.  A program which uses just setgid() will be
349  * 100% compatible with POSIX with saved IDs.
350  *
351  * SMP: There are not races, the GIDs are checked only by filesystem
352  *      operations (as far as semantic preservation is concerned).
353  */
354 #ifdef CONFIG_MULTIUSER
355 long __sys_setregid(gid_t rgid, gid_t egid)
356 {
357         struct user_namespace *ns = current_user_ns();
358         const struct cred *old;
359         struct cred *new;
360         int retval;
361         kgid_t krgid, kegid;
362 
363         krgid = make_kgid(ns, rgid);
364         kegid = make_kgid(ns, egid);
365 
366         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
367                 return -EINVAL;
368         if ((egid != (gid_t) -1) && !gid_valid(kegid))
369                 return -EINVAL;
370 
371         new = prepare_creds();
372         if (!new)
373                 return -ENOMEM;
374         old = current_cred();
375 
376         retval = -EPERM;
377         if (rgid != (gid_t) -1) {
378                 if (gid_eq(old->gid, krgid) ||
379                     gid_eq(old->egid, krgid) ||
380                     ns_capable(old->user_ns, CAP_SETGID))
381                         new->gid = krgid;
382                 else
383                         goto error;
384         }
385         if (egid != (gid_t) -1) {
386                 if (gid_eq(old->gid, kegid) ||
387                     gid_eq(old->egid, kegid) ||
388                     gid_eq(old->sgid, kegid) ||
389                     ns_capable(old->user_ns, CAP_SETGID))
390                         new->egid = kegid;
391                 else
392                         goto error;
393         }
394 
395         if (rgid != (gid_t) -1 ||
396             (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
397                 new->sgid = new->egid;
398         new->fsgid = new->egid;
399 
400         return commit_creds(new);
401 
402 error:
403         abort_creds(new);
404         return retval;
405 }
406 
407 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
408 {
409         return __sys_setregid(rgid, egid);
410 }
411 
412 /*
413  * setgid() is implemented like SysV w/ SAVED_IDS
414  *
415  * SMP: Same implicit races as above.
416  */
417 long __sys_setgid(gid_t gid)
418 {
419         struct user_namespace *ns = current_user_ns();
420         const struct cred *old;
421         struct cred *new;
422         int retval;
423         kgid_t kgid;
424 
425         kgid = make_kgid(ns, gid);
426         if (!gid_valid(kgid))
427                 return -EINVAL;
428 
429         new = prepare_creds();
430         if (!new)
431                 return -ENOMEM;
432         old = current_cred();
433 
434         retval = -EPERM;
435         if (ns_capable(old->user_ns, CAP_SETGID))
436                 new->gid = new->egid = new->sgid = new->fsgid = kgid;
437         else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
438                 new->egid = new->fsgid = kgid;
439         else
440                 goto error;
441 
442         return commit_creds(new);
443 
444 error:
445         abort_creds(new);
446         return retval;
447 }
448 
449 SYSCALL_DEFINE1(setgid, gid_t, gid)
450 {
451         return __sys_setgid(gid);
452 }
453 
454 /*
455  * change the user struct in a credentials set to match the new UID
456  */
457 static int set_user(struct cred *new)
458 {
459         struct user_struct *new_user;
460 
461         new_user = alloc_uid(new->uid);
462         if (!new_user)
463                 return -EAGAIN;
464 
465         /*
466          * We don't fail in case of NPROC limit excess here because too many
467          * poorly written programs don't check set*uid() return code, assuming
468          * it never fails if called by root.  We may still enforce NPROC limit
469          * for programs doing set*uid()+execve() by harmlessly deferring the
470          * failure to the execve() stage.
471          */
472         if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
473                         new_user != INIT_USER)
474                 current->flags |= PF_NPROC_EXCEEDED;
475         else
476                 current->flags &= ~PF_NPROC_EXCEEDED;
477 
478         free_uid(new->user);
479         new->user = new_user;
480         return 0;
481 }
482 
483 /*
484  * Unprivileged users may change the real uid to the effective uid
485  * or vice versa.  (BSD-style)
486  *
487  * If you set the real uid at all, or set the effective uid to a value not
488  * equal to the real uid, then the saved uid is set to the new effective uid.
489  *
490  * This makes it possible for a setuid program to completely drop its
491  * privileges, which is often a useful assertion to make when you are doing
492  * a security audit over a program.
493  *
494  * The general idea is that a program which uses just setreuid() will be
495  * 100% compatible with BSD.  A program which uses just setuid() will be
496  * 100% compatible with POSIX with saved IDs.
497  */
498 long __sys_setreuid(uid_t ruid, uid_t euid)
499 {
500         struct user_namespace *ns = current_user_ns();
501         const struct cred *old;
502         struct cred *new;
503         int retval;
504         kuid_t kruid, keuid;
505 
506         kruid = make_kuid(ns, ruid);
507         keuid = make_kuid(ns, euid);
508 
509         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
510                 return -EINVAL;
511         if ((euid != (uid_t) -1) && !uid_valid(keuid))
512                 return -EINVAL;
513 
514         new = prepare_creds();
515         if (!new)
516                 return -ENOMEM;
517         old = current_cred();
518 
519         retval = -EPERM;
520         if (ruid != (uid_t) -1) {
521                 new->uid = kruid;
522                 if (!uid_eq(old->uid, kruid) &&
523                     !uid_eq(old->euid, kruid) &&
524                     !ns_capable_setid(old->user_ns, CAP_SETUID))
525                         goto error;
526         }
527 
528         if (euid != (uid_t) -1) {
529                 new->euid = keuid;
530                 if (!uid_eq(old->uid, keuid) &&
531                     !uid_eq(old->euid, keuid) &&
532                     !uid_eq(old->suid, keuid) &&
533                     !ns_capable_setid(old->user_ns, CAP_SETUID))
534                         goto error;
535         }
536 
537         if (!uid_eq(new->uid, old->uid)) {
538                 retval = set_user(new);
539                 if (retval < 0)
540                         goto error;
541         }
542         if (ruid != (uid_t) -1 ||
543             (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
544                 new->suid = new->euid;
545         new->fsuid = new->euid;
546 
547         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
548         if (retval < 0)
549                 goto error;
550 
551         return commit_creds(new);
552 
553 error:
554         abort_creds(new);
555         return retval;
556 }
557 
558 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
559 {
560         return __sys_setreuid(ruid, euid);
561 }
562 
563 /*
564  * setuid() is implemented like SysV with SAVED_IDS
565  *
566  * Note that SAVED_ID's is deficient in that a setuid root program
567  * like sendmail, for example, cannot set its uid to be a normal
568  * user and then switch back, because if you're root, setuid() sets
569  * the saved uid too.  If you don't like this, blame the bright people
570  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
571  * will allow a root program to temporarily drop privileges and be able to
572  * regain them by swapping the real and effective uid.
573  */
574 long __sys_setuid(uid_t uid)
575 {
576         struct user_namespace *ns = current_user_ns();
577         const struct cred *old;
578         struct cred *new;
579         int retval;
580         kuid_t kuid;
581 
582         kuid = make_kuid(ns, uid);
583         if (!uid_valid(kuid))
584                 return -EINVAL;
585 
586         new = prepare_creds();
587         if (!new)
588                 return -ENOMEM;
589         old = current_cred();
590 
591         retval = -EPERM;
592         if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
593                 new->suid = new->uid = kuid;
594                 if (!uid_eq(kuid, old->uid)) {
595                         retval = set_user(new);
596                         if (retval < 0)
597                                 goto error;
598                 }
599         } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
600                 goto error;
601         }
602 
603         new->fsuid = new->euid = kuid;
604 
605         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
606         if (retval < 0)
607                 goto error;
608 
609         return commit_creds(new);
610 
611 error:
612         abort_creds(new);
613         return retval;
614 }
615 
616 SYSCALL_DEFINE1(setuid, uid_t, uid)
617 {
618         return __sys_setuid(uid);
619 }
620 
621 
622 /*
623  * This function implements a generic ability to update ruid, euid,
624  * and suid.  This allows you to implement the 4.4 compatible seteuid().
625  */
626 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
627 {
628         struct user_namespace *ns = current_user_ns();
629         const struct cred *old;
630         struct cred *new;
631         int retval;
632         kuid_t kruid, keuid, ksuid;
633 
634         kruid = make_kuid(ns, ruid);
635         keuid = make_kuid(ns, euid);
636         ksuid = make_kuid(ns, suid);
637 
638         if ((ruid != (uid_t) -1) && !uid_valid(kruid))
639                 return -EINVAL;
640 
641         if ((euid != (uid_t) -1) && !uid_valid(keuid))
642                 return -EINVAL;
643 
644         if ((suid != (uid_t) -1) && !uid_valid(ksuid))
645                 return -EINVAL;
646 
647         new = prepare_creds();
648         if (!new)
649                 return -ENOMEM;
650 
651         old = current_cred();
652 
653         retval = -EPERM;
654         if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
655                 if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
656                     !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
657                         goto error;
658                 if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
659                     !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
660                         goto error;
661                 if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
662                     !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
663                         goto error;
664         }
665 
666         if (ruid != (uid_t) -1) {
667                 new->uid = kruid;
668                 if (!uid_eq(kruid, old->uid)) {
669                         retval = set_user(new);
670                         if (retval < 0)
671                                 goto error;
672                 }
673         }
674         if (euid != (uid_t) -1)
675                 new->euid = keuid;
676         if (suid != (uid_t) -1)
677                 new->suid = ksuid;
678         new->fsuid = new->euid;
679 
680         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
681         if (retval < 0)
682                 goto error;
683 
684         return commit_creds(new);
685 
686 error:
687         abort_creds(new);
688         return retval;
689 }
690 
691 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
692 {
693         return __sys_setresuid(ruid, euid, suid);
694 }
695 
696 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
697 {
698         const struct cred *cred = current_cred();
699         int retval;
700         uid_t ruid, euid, suid;
701 
702         ruid = from_kuid_munged(cred->user_ns, cred->uid);
703         euid = from_kuid_munged(cred->user_ns, cred->euid);
704         suid = from_kuid_munged(cred->user_ns, cred->suid);
705 
706         retval = put_user(ruid, ruidp);
707         if (!retval) {
708                 retval = put_user(euid, euidp);
709                 if (!retval)
710                         return put_user(suid, suidp);
711         }
712         return retval;
713 }
714 
715 /*
716  * Same as above, but for rgid, egid, sgid.
717  */
718 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
719 {
720         struct user_namespace *ns = current_user_ns();
721         const struct cred *old;
722         struct cred *new;
723         int retval;
724         kgid_t krgid, kegid, ksgid;
725 
726         krgid = make_kgid(ns, rgid);
727         kegid = make_kgid(ns, egid);
728         ksgid = make_kgid(ns, sgid);
729 
730         if ((rgid != (gid_t) -1) && !gid_valid(krgid))
731                 return -EINVAL;
732         if ((egid != (gid_t) -1) && !gid_valid(kegid))
733                 return -EINVAL;
734         if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
735                 return -EINVAL;
736 
737         new = prepare_creds();
738         if (!new)
739                 return -ENOMEM;
740         old = current_cred();
741 
742         retval = -EPERM;
743         if (!ns_capable(old->user_ns, CAP_SETGID)) {
744                 if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
745                     !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
746                         goto error;
747                 if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
748                     !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
749                         goto error;
750                 if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
751                     !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
752                         goto error;
753         }
754 
755         if (rgid != (gid_t) -1)
756                 new->gid = krgid;
757         if (egid != (gid_t) -1)
758                 new->egid = kegid;
759         if (sgid != (gid_t) -1)
760                 new->sgid = ksgid;
761         new->fsgid = new->egid;
762 
763         return commit_creds(new);
764 
765 error:
766         abort_creds(new);
767         return retval;
768 }
769 
770 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
771 {
772         return __sys_setresgid(rgid, egid, sgid);
773 }
774 
775 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
776 {
777         const struct cred *cred = current_cred();
778         int retval;
779         gid_t rgid, egid, sgid;
780 
781         rgid = from_kgid_munged(cred->user_ns, cred->gid);
782         egid = from_kgid_munged(cred->user_ns, cred->egid);
783         sgid = from_kgid_munged(cred->user_ns, cred->sgid);
784 
785         retval = put_user(rgid, rgidp);
786         if (!retval) {
787                 retval = put_user(egid, egidp);
788                 if (!retval)
789                         retval = put_user(sgid, sgidp);
790         }
791 
792         return retval;
793 }
794 
795 
796 /*
797  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
798  * is used for "access()" and for the NFS daemon (letting nfsd stay at
799  * whatever uid it wants to). It normally shadows "euid", except when
800  * explicitly set by setfsuid() or for access..
801  */
802 long __sys_setfsuid(uid_t uid)
803 {
804         const struct cred *old;
805         struct cred *new;
806         uid_t old_fsuid;
807         kuid_t kuid;
808 
809         old = current_cred();
810         old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
811 
812         kuid = make_kuid(old->user_ns, uid);
813         if (!uid_valid(kuid))
814                 return old_fsuid;
815 
816         new = prepare_creds();
817         if (!new)
818                 return old_fsuid;
819 
820         if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
821             uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
822             ns_capable_setid(old->user_ns, CAP_SETUID)) {
823                 if (!uid_eq(kuid, old->fsuid)) {
824                         new->fsuid = kuid;
825                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
826                                 goto change_okay;
827                 }
828         }
829 
830         abort_creds(new);
831         return old_fsuid;
832 
833 change_okay:
834         commit_creds(new);
835         return old_fsuid;
836 }
837 
838 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
839 {
840         return __sys_setfsuid(uid);
841 }
842 
843 /*
844  * Samma på svenska..
845  */
846 long __sys_setfsgid(gid_t gid)
847 {
848         const struct cred *old;
849         struct cred *new;
850         gid_t old_fsgid;
851         kgid_t kgid;
852 
853         old = current_cred();
854         old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
855 
856         kgid = make_kgid(old->user_ns, gid);
857         if (!gid_valid(kgid))
858                 return old_fsgid;
859 
860         new = prepare_creds();
861         if (!new)
862                 return old_fsgid;
863 
864         if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
865             gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
866             ns_capable(old->user_ns, CAP_SETGID)) {
867                 if (!gid_eq(kgid, old->fsgid)) {
868                         new->fsgid = kgid;
869                         goto change_okay;
870                 }
871         }
872 
873         abort_creds(new);
874         return old_fsgid;
875 
876 change_okay:
877         commit_creds(new);
878         return old_fsgid;
879 }
880 
881 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
882 {
883         return __sys_setfsgid(gid);
884 }
885 #endif /* CONFIG_MULTIUSER */
886 
887 /**
888  * sys_getpid - return the thread group id of the current process
889  *
890  * Note, despite the name, this returns the tgid not the pid.  The tgid and
891  * the pid are identical unless CLONE_THREAD was specified on clone() in
892  * which case the tgid is the same in all threads of the same group.
893  *
894  * This is SMP safe as current->tgid does not change.
895  */
896 SYSCALL_DEFINE0(getpid)
897 {
898         return task_tgid_vnr(current);
899 }
900 
901 /* Thread ID - the internal kernel "pid" */
902 SYSCALL_DEFINE0(gettid)
903 {
904         return task_pid_vnr(current);
905 }
906 
907 /*
908  * Accessing ->real_parent is not SMP-safe, it could
909  * change from under us. However, we can use a stale
910  * value of ->real_parent under rcu_read_lock(), see
911  * release_task()->call_rcu(delayed_put_task_struct).
912  */
913 SYSCALL_DEFINE0(getppid)
914 {
915         int pid;
916 
917         rcu_read_lock();
918         pid = task_tgid_vnr(rcu_dereference(current->real_parent));
919         rcu_read_unlock();
920 
921         return pid;
922 }
923 
924 SYSCALL_DEFINE0(getuid)
925 {
926         /* Only we change this so SMP safe */
927         return from_kuid_munged(current_user_ns(), current_uid());
928 }
929 
930 SYSCALL_DEFINE0(geteuid)
931 {
932         /* Only we change this so SMP safe */
933         return from_kuid_munged(current_user_ns(), current_euid());
934 }
935 
936 SYSCALL_DEFINE0(getgid)
937 {
938         /* Only we change this so SMP safe */
939         return from_kgid_munged(current_user_ns(), current_gid());
940 }
941 
942 SYSCALL_DEFINE0(getegid)
943 {
944         /* Only we change this so SMP safe */
945         return from_kgid_munged(current_user_ns(), current_egid());
946 }
947 
948 static void do_sys_times(struct tms *tms)
949 {
950         u64 tgutime, tgstime, cutime, cstime;
951 
952         thread_group_cputime_adjusted(current, &tgutime, &tgstime);
953         cutime = current->signal->cutime;
954         cstime = current->signal->cstime;
955         tms->tms_utime = nsec_to_clock_t(tgutime);
956         tms->tms_stime = nsec_to_clock_t(tgstime);
957         tms->tms_cutime = nsec_to_clock_t(cutime);
958         tms->tms_cstime = nsec_to_clock_t(cstime);
959 }
960 
961 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
962 {
963         if (tbuf) {
964                 struct tms tmp;
965 
966                 do_sys_times(&tmp);
967                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
968                         return -EFAULT;
969         }
970         force_successful_syscall_return();
971         return (long) jiffies_64_to_clock_t(get_jiffies_64());
972 }
973 
974 #ifdef CONFIG_COMPAT
975 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
976 {
977         return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
978 }
979 
980 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
981 {
982         if (tbuf) {
983                 struct tms tms;
984                 struct compat_tms tmp;
985 
986                 do_sys_times(&tms);
987                 /* Convert our struct tms to the compat version. */
988                 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
989                 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
990                 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
991                 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
992                 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
993                         return -EFAULT;
994         }
995         force_successful_syscall_return();
996         return compat_jiffies_to_clock_t(jiffies);
997 }
998 #endif
999 
1000 /*
1001  * This needs some heavy checking ...
1002  * I just haven't the stomach for it. I also don't fully
1003  * understand sessions/pgrp etc. Let somebody who does explain it.
1004  *
1005  * OK, I think I have the protection semantics right.... this is really
1006  * only important on a multi-user system anyway, to make sure one user
1007  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1008  *
1009  * !PF_FORKNOEXEC check to conform completely to POSIX.
1010  */
1011 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1012 {
1013         struct task_struct *p;
1014         struct task_struct *group_leader = current->group_leader;
1015         struct pid *pgrp;
1016         int err;
1017 
1018         if (!pid)
1019                 pid = task_pid_vnr(group_leader);
1020         if (!pgid)
1021                 pgid = pid;
1022         if (pgid < 0)
1023                 return -EINVAL;
1024         rcu_read_lock();
1025 
1026         /* From this point forward we keep holding onto the tasklist lock
1027          * so that our parent does not change from under us. -DaveM
1028          */
1029         write_lock_irq(&tasklist_lock);
1030 
1031         err = -ESRCH;
1032         p = find_task_by_vpid(pid);
1033         if (!p)
1034                 goto out;
1035 
1036         err = -EINVAL;
1037         if (!thread_group_leader(p))
1038                 goto out;
1039 
1040         if (same_thread_group(p->real_parent, group_leader)) {
1041                 err = -EPERM;
1042                 if (task_session(p) != task_session(group_leader))
1043                         goto out;
1044                 err = -EACCES;
1045                 if (!(p->flags & PF_FORKNOEXEC))
1046                         goto out;
1047         } else {
1048                 err = -ESRCH;
1049                 if (p != group_leader)
1050                         goto out;
1051         }
1052 
1053         err = -EPERM;
1054         if (p->signal->leader)
1055                 goto out;
1056 
1057         pgrp = task_pid(p);
1058         if (pgid != pid) {
1059                 struct task_struct *g;
1060 
1061                 pgrp = find_vpid(pgid);
1062                 g = pid_task(pgrp, PIDTYPE_PGID);
1063                 if (!g || task_session(g) != task_session(group_leader))
1064                         goto out;
1065         }
1066 
1067         err = security_task_setpgid(p, pgid);
1068         if (err)
1069                 goto out;
1070 
1071         if (task_pgrp(p) != pgrp)
1072                 change_pid(p, PIDTYPE_PGID, pgrp);
1073 
1074         err = 0;
1075 out:
1076         /* All paths lead to here, thus we are safe. -DaveM */
1077         write_unlock_irq(&tasklist_lock);
1078         rcu_read_unlock();
1079         return err;
1080 }
1081 
1082 static int do_getpgid(pid_t pid)
1083 {
1084         struct task_struct *p;
1085         struct pid *grp;
1086         int retval;
1087 
1088         rcu_read_lock();
1089         if (!pid)
1090                 grp = task_pgrp(current);
1091         else {
1092                 retval = -ESRCH;
1093                 p = find_task_by_vpid(pid);
1094                 if (!p)
1095                         goto out;
1096                 grp = task_pgrp(p);
1097                 if (!grp)
1098                         goto out;
1099 
1100                 retval = security_task_getpgid(p);
1101                 if (retval)
1102                         goto out;
1103         }
1104         retval = pid_vnr(grp);
1105 out:
1106         rcu_read_unlock();
1107         return retval;
1108 }
1109 
1110 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1111 {
1112         return do_getpgid(pid);
1113 }
1114 
1115 #ifdef __ARCH_WANT_SYS_GETPGRP
1116 
1117 SYSCALL_DEFINE0(getpgrp)
1118 {
1119         return do_getpgid(0);
1120 }
1121 
1122 #endif
1123 
1124 SYSCALL_DEFINE1(getsid, pid_t, pid)
1125 {
1126         struct task_struct *p;
1127         struct pid *sid;
1128         int retval;
1129 
1130         rcu_read_lock();
1131         if (!pid)
1132                 sid = task_session(current);
1133         else {
1134                 retval = -ESRCH;
1135                 p = find_task_by_vpid(pid);
1136                 if (!p)
1137                         goto out;
1138                 sid = task_session(p);
1139                 if (!sid)
1140                         goto out;
1141 
1142                 retval = security_task_getsid(p);
1143                 if (retval)
1144                         goto out;
1145         }
1146         retval = pid_vnr(sid);
1147 out:
1148         rcu_read_unlock();
1149         return retval;
1150 }
1151 
1152 static void set_special_pids(struct pid *pid)
1153 {
1154         struct task_struct *curr = current->group_leader;
1155 
1156         if (task_session(curr) != pid)
1157                 change_pid(curr, PIDTYPE_SID, pid);
1158 
1159         if (task_pgrp(curr) != pid)
1160                 change_pid(curr, PIDTYPE_PGID, pid);
1161 }
1162 
1163 int ksys_setsid(void)
1164 {
1165         struct task_struct *group_leader = current->group_leader;
1166         struct pid *sid = task_pid(group_leader);
1167         pid_t session = pid_vnr(sid);
1168         int err = -EPERM;
1169 
1170         write_lock_irq(&tasklist_lock);
1171         /* Fail if I am already a session leader */
1172         if (group_leader->signal->leader)
1173                 goto out;
1174 
1175         /* Fail if a process group id already exists that equals the
1176          * proposed session id.
1177          */
1178         if (pid_task(sid, PIDTYPE_PGID))
1179                 goto out;
1180 
1181         group_leader->signal->leader = 1;
1182         set_special_pids(sid);
1183 
1184         proc_clear_tty(group_leader);
1185 
1186         err = session;
1187 out:
1188         write_unlock_irq(&tasklist_lock);
1189         if (err > 0) {
1190                 proc_sid_connector(group_leader);
1191                 sched_autogroup_create_attach(group_leader);
1192         }
1193         return err;
1194 }
1195 
1196 SYSCALL_DEFINE0(setsid)
1197 {
1198         return ksys_setsid();
1199 }
1200 
1201 DECLARE_RWSEM(uts_sem);
1202 
1203 #ifdef COMPAT_UTS_MACHINE
1204 #define override_architecture(name) \
1205         (personality(current->personality) == PER_LINUX32 && \
1206          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1207                       sizeof(COMPAT_UTS_MACHINE)))
1208 #else
1209 #define override_architecture(name)     0
1210 #endif
1211 
1212 /*
1213  * Work around broken programs that cannot handle "Linux 3.0".
1214  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1215  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1216  * 2.6.60.
1217  */
1218 static int override_release(char __user *release, size_t len)
1219 {
1220         int ret = 0;
1221 
1222         if (current->personality & UNAME26) {
1223                 const char *rest = UTS_RELEASE;
1224                 char buf[65] = { 0 };
1225                 int ndots = 0;
1226                 unsigned v;
1227                 size_t copy;
1228 
1229                 while (*rest) {
1230                         if (*rest == '.' && ++ndots >= 3)
1231                                 break;
1232                         if (!isdigit(*rest) && *rest != '.')
1233                                 break;
1234                         rest++;
1235                 }
1236                 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1237                 copy = clamp_t(size_t, len, 1, sizeof(buf));
1238                 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1239                 ret = copy_to_user(release, buf, copy + 1);
1240         }
1241         return ret;
1242 }
1243 
1244 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1245 {
1246         struct new_utsname tmp;
1247 
1248         down_read(&uts_sem);
1249         memcpy(&tmp, utsname(), sizeof(tmp));
1250         up_read(&uts_sem);
1251         if (copy_to_user(name, &tmp, sizeof(tmp)))
1252                 return -EFAULT;
1253 
1254         if (override_release(name->release, sizeof(name->release)))
1255                 return -EFAULT;
1256         if (override_architecture(name))
1257                 return -EFAULT;
1258         return 0;
1259 }
1260 
1261 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1262 /*
1263  * Old cruft
1264  */
1265 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1266 {
1267         struct old_utsname tmp;
1268 
1269         if (!name)
1270                 return -EFAULT;
1271 
1272         down_read(&uts_sem);
1273         memcpy(&tmp, utsname(), sizeof(tmp));
1274         up_read(&uts_sem);
1275         if (copy_to_user(name, &tmp, sizeof(tmp)))
1276                 return -EFAULT;
1277 
1278         if (override_release(name->release, sizeof(name->release)))
1279                 return -EFAULT;
1280         if (override_architecture(name))
1281                 return -EFAULT;
1282         return 0;
1283 }
1284 
1285 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1286 {
1287         struct oldold_utsname tmp;
1288 
1289         if (!name)
1290                 return -EFAULT;
1291 
1292         memset(&tmp, 0, sizeof(tmp));
1293 
1294         down_read(&uts_sem);
1295         memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1296         memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1297         memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1298         memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1299         memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1300         up_read(&uts_sem);
1301         if (copy_to_user(name, &tmp, sizeof(tmp)))
1302                 return -EFAULT;
1303 
1304         if (override_architecture(name))
1305                 return -EFAULT;
1306         if (override_release(name->release, sizeof(name->release)))
1307                 return -EFAULT;
1308         return 0;
1309 }
1310 #endif
1311 
1312 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1313 {
1314         int errno;
1315         char tmp[__NEW_UTS_LEN];
1316 
1317         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1318                 return -EPERM;
1319 
1320         if (len < 0 || len > __NEW_UTS_LEN)
1321                 return -EINVAL;
1322         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1323                 return -EPERM;
1324         errno = -EFAULT;
1325         if (!copy_from_user(tmp, name, len)) {
1326                 struct new_utsname *u;
1327 
1328                 down_write(&uts_sem);
1329                 u = utsname();
1330                 memcpy(u->nodename, tmp, len);
1331                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1332                 errno = 0;
1333                 uts_proc_notify(UTS_PROC_HOSTNAME);
1334                 up_write(&uts_sem);
1335         }
1336         return errno;
1337 }
1338 
1339 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1340 
1341 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1342 {
1343         int i;
1344         struct new_utsname *u;
1345         char tmp[__NEW_UTS_LEN + 1];
1346 
1347         if (len < 0)
1348                 return -EINVAL;
1349         down_read(&uts_sem);
1350         u = utsname();
1351         i = 1 + strlen(u->nodename);
1352         if (i > len)
1353                 i = len;
1354         memcpy(tmp, u->nodename, i);
1355         up_read(&uts_sem);
1356         if (copy_to_user(name, tmp, i))
1357                 return -EFAULT;
1358         return 0;
1359 }
1360 
1361 #endif
1362 
1363 /*
1364  * Only setdomainname; getdomainname can be implemented by calling
1365  * uname()
1366  */
1367 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1368 {
1369         int errno;
1370         char tmp[__NEW_UTS_LEN];
1371 
1372         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1373                 return -EPERM;
1374         if (len < 0 || len > __NEW_UTS_LEN)
1375                 return -EINVAL;
1376         if (!ccs_capable(CCS_SYS_SETHOSTNAME))
1377                 return -EPERM;
1378 
1379         errno = -EFAULT;
1380         if (!copy_from_user(tmp, name, len)) {
1381                 struct new_utsname *u;
1382 
1383                 down_write(&uts_sem);
1384                 u = utsname();
1385                 memcpy(u->domainname, tmp, len);
1386                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1387                 errno = 0;
1388                 uts_proc_notify(UTS_PROC_DOMAINNAME);
1389                 up_write(&uts_sem);
1390         }
1391         return errno;
1392 }
1393 
1394 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1395 {
1396         struct rlimit value;
1397         int ret;
1398 
1399         ret = do_prlimit(current, resource, NULL, &value);
1400         if (!ret)
1401                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1402 
1403         return ret;
1404 }
1405 
1406 #ifdef CONFIG_COMPAT
1407 
1408 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1409                        struct compat_rlimit __user *, rlim)
1410 {
1411         struct rlimit r;
1412         struct compat_rlimit r32;
1413 
1414         if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1415                 return -EFAULT;
1416 
1417         if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1418                 r.rlim_cur = RLIM_INFINITY;
1419         else
1420                 r.rlim_cur = r32.rlim_cur;
1421         if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1422                 r.rlim_max = RLIM_INFINITY;
1423         else
1424                 r.rlim_max = r32.rlim_max;
1425         return do_prlimit(current, resource, &r, NULL);
1426 }
1427 
1428 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1429                        struct compat_rlimit __user *, rlim)
1430 {
1431         struct rlimit r;
1432         int ret;
1433 
1434         ret = do_prlimit(current, resource, NULL, &r);
1435         if (!ret) {
1436                 struct compat_rlimit r32;
1437                 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1438                         r32.rlim_cur = COMPAT_RLIM_INFINITY;
1439                 else
1440                         r32.rlim_cur = r.rlim_cur;
1441                 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1442                         r32.rlim_max = COMPAT_RLIM_INFINITY;
1443                 else
1444                         r32.rlim_max = r.rlim_max;
1445 
1446                 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1447                         return -EFAULT;
1448         }
1449         return ret;
1450 }
1451 
1452 #endif
1453 
1454 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1455 
1456 /*
1457  *      Back compatibility for getrlimit. Needed for some apps.
1458  */
1459 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1460                 struct rlimit __user *, rlim)
1461 {
1462         struct rlimit x;
1463         if (resource >= RLIM_NLIMITS)
1464                 return -EINVAL;
1465 
1466         resource = array_index_nospec(resource, RLIM_NLIMITS);
1467         task_lock(current->group_leader);
1468         x = current->signal->rlim[resource];
1469         task_unlock(current->group_leader);
1470         if (x.rlim_cur > 0x7FFFFFFF)
1471                 x.rlim_cur = 0x7FFFFFFF;
1472         if (x.rlim_max > 0x7FFFFFFF)
1473                 x.rlim_max = 0x7FFFFFFF;
1474         return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1475 }
1476 
1477 #ifdef CONFIG_COMPAT
1478 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1479                        struct compat_rlimit __user *, rlim)
1480 {
1481         struct rlimit r;
1482 
1483         if (resource >= RLIM_NLIMITS)
1484                 return -EINVAL;
1485 
1486         resource = array_index_nospec(resource, RLIM_NLIMITS);
1487         task_lock(current->group_leader);
1488         r = current->signal->rlim[resource];
1489         task_unlock(current->group_leader);
1490         if (r.rlim_cur > 0x7FFFFFFF)
1491                 r.rlim_cur = 0x7FFFFFFF;
1492         if (r.rlim_max > 0x7FFFFFFF)
1493                 r.rlim_max = 0x7FFFFFFF;
1494 
1495         if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1496             put_user(r.rlim_max, &rlim->rlim_max))
1497                 return -EFAULT;
1498         return 0;
1499 }
1500 #endif
1501 
1502 #endif
1503 
1504 static inline bool rlim64_is_infinity(__u64 rlim64)
1505 {
1506 #if BITS_PER_LONG < 64
1507         return rlim64 >= ULONG_MAX;
1508 #else
1509         return rlim64 == RLIM64_INFINITY;
1510 #endif
1511 }
1512 
1513 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1514 {
1515         if (rlim->rlim_cur == RLIM_INFINITY)
1516                 rlim64->rlim_cur = RLIM64_INFINITY;
1517         else
1518                 rlim64->rlim_cur = rlim->rlim_cur;
1519         if (rlim->rlim_max == RLIM_INFINITY)
1520                 rlim64->rlim_max = RLIM64_INFINITY;
1521         else
1522                 rlim64->rlim_max = rlim->rlim_max;
1523 }
1524 
1525 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1526 {
1527         if (rlim64_is_infinity(rlim64->rlim_cur))
1528                 rlim->rlim_cur = RLIM_INFINITY;
1529         else
1530                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1531         if (rlim64_is_infinity(rlim64->rlim_max))
1532                 rlim->rlim_max = RLIM_INFINITY;
1533         else
1534                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1535 }
1536 
1537 /* make sure you are allowed to change @tsk limits before calling this */
1538 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1539                 struct rlimit *new_rlim, struct rlimit *old_rlim)
1540 {
1541         struct rlimit *rlim;
1542         int retval = 0;
1543 
1544         if (resource >= RLIM_NLIMITS)
1545                 return -EINVAL;
1546         if (new_rlim) {
1547                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1548                         return -EINVAL;
1549                 if (resource == RLIMIT_NOFILE &&
1550                                 new_rlim->rlim_max > sysctl_nr_open)
1551                         return -EPERM;
1552         }
1553 
1554         /* protect tsk->signal and tsk->sighand from disappearing */
1555         read_lock(&tasklist_lock);
1556         if (!tsk->sighand) {
1557                 retval = -ESRCH;
1558                 goto out;
1559         }
1560 
1561         rlim = tsk->signal->rlim + resource;
1562         task_lock(tsk->group_leader);
1563         if (new_rlim) {
1564                 /* Keep the capable check against init_user_ns until
1565                    cgroups can contain all limits */
1566                 if (new_rlim->rlim_max > rlim->rlim_max &&
1567                                 !capable(CAP_SYS_RESOURCE))
1568                         retval = -EPERM;
1569                 if (!retval)
1570                         retval = security_task_setrlimit(tsk, resource, new_rlim);
1571         }
1572         if (!retval) {
1573                 if (old_rlim)
1574                         *old_rlim = *rlim;
1575                 if (new_rlim)
1576                         *rlim = *new_rlim;
1577         }
1578         task_unlock(tsk->group_leader);
1579 
1580         /*
1581          * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1582          * infite. In case of RLIM_INFINITY the posix CPU timer code
1583          * ignores the rlimit.
1584          */
1585          if (!retval && new_rlim && resource == RLIMIT_CPU &&
1586              new_rlim->rlim_cur != RLIM_INFINITY &&
1587              IS_ENABLED(CONFIG_POSIX_TIMERS))
1588                 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1589 out:
1590         read_unlock(&tasklist_lock);
1591         return retval;
1592 }
1593 
1594 /* rcu lock must be held */
1595 static int check_prlimit_permission(struct task_struct *task,
1596                                     unsigned int flags)
1597 {
1598         const struct cred *cred = current_cred(), *tcred;
1599         bool id_match;
1600 
1601         if (current == task)
1602                 return 0;
1603 
1604         tcred = __task_cred(task);
1605         id_match = (uid_eq(cred->uid, tcred->euid) &&
1606                     uid_eq(cred->uid, tcred->suid) &&
1607                     uid_eq(cred->uid, tcred->uid)  &&
1608                     gid_eq(cred->gid, tcred->egid) &&
1609                     gid_eq(cred->gid, tcred->sgid) &&
1610                     gid_eq(cred->gid, tcred->gid));
1611         if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1612                 return -EPERM;
1613 
1614         return security_task_prlimit(cred, tcred, flags);
1615 }
1616 
1617 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1618                 const struct rlimit64 __user *, new_rlim,
1619                 struct rlimit64 __user *, old_rlim)
1620 {
1621         struct rlimit64 old64, new64;
1622         struct rlimit old, new;
1623         struct task_struct *tsk;
1624         unsigned int checkflags = 0;
1625         int ret;
1626 
1627         if (old_rlim)
1628                 checkflags |= LSM_PRLIMIT_READ;
1629 
1630         if (new_rlim) {
1631                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1632                         return -EFAULT;
1633                 rlim64_to_rlim(&new64, &new);
1634                 checkflags |= LSM_PRLIMIT_WRITE;
1635         }
1636 
1637         rcu_read_lock();
1638         tsk = pid ? find_task_by_vpid(pid) : current;
1639         if (!tsk) {
1640                 rcu_read_unlock();
1641                 return -ESRCH;
1642         }
1643         ret = check_prlimit_permission(tsk, checkflags);
1644         if (ret) {
1645                 rcu_read_unlock();
1646                 return ret;
1647         }
1648         get_task_struct(tsk);
1649         rcu_read_unlock();
1650 
1651         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1652                         old_rlim ? &old : NULL);
1653 
1654         if (!ret && old_rlim) {
1655                 rlim_to_rlim64(&old, &old64);
1656                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1657                         ret = -EFAULT;
1658         }
1659 
1660         put_task_struct(tsk);
1661         return ret;
1662 }
1663 
1664 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1665 {
1666         struct rlimit new_rlim;
1667 
1668         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1669                 return -EFAULT;
1670         return do_prlimit(current, resource, &new_rlim, NULL);
1671 }
1672 
1673 /*
1674  * It would make sense to put struct rusage in the task_struct,
1675  * except that would make the task_struct be *really big*.  After
1676  * task_struct gets moved into malloc'ed memory, it would
1677  * make sense to do this.  It will make moving the rest of the information
1678  * a lot simpler!  (Which we're not doing right now because we're not
1679  * measuring them yet).
1680  *
1681  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1682  * races with threads incrementing their own counters.  But since word
1683  * reads are atomic, we either get new values or old values and we don't
1684  * care which for the sums.  We always take the siglock to protect reading
1685  * the c* fields from p->signal from races with exit.c updating those
1686  * fields when reaping, so a sample either gets all the additions of a
1687  * given child after it's reaped, or none so this sample is before reaping.
1688  *
1689  * Locking:
1690  * We need to take the siglock for CHILDEREN, SELF and BOTH
1691  * for  the cases current multithreaded, non-current single threaded
1692  * non-current multithreaded.  Thread traversal is now safe with
1693  * the siglock held.
1694  * Strictly speaking, we donot need to take the siglock if we are current and
1695  * single threaded,  as no one else can take our signal_struct away, no one
1696  * else can  reap the  children to update signal->c* counters, and no one else
1697  * can race with the signal-> fields. If we do not take any lock, the
1698  * signal-> fields could be read out of order while another thread was just
1699  * exiting. So we should  place a read memory barrier when we avoid the lock.
1700  * On the writer side,  write memory barrier is implied in  __exit_signal
1701  * as __exit_signal releases  the siglock spinlock after updating the signal->
1702  * fields. But we don't do this yet to keep things simple.
1703  *
1704  */
1705 
1706 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1707 {
1708         r->ru_nvcsw += t->nvcsw;
1709         r->ru_nivcsw += t->nivcsw;
1710         r->ru_minflt += t->min_flt;
1711         r->ru_majflt += t->maj_flt;
1712         r->ru_inblock += task_io_get_inblock(t);
1713         r->ru_oublock += task_io_get_oublock(t);
1714 }
1715 
1716 void getrusage(struct task_struct *p, int who, struct rusage *r)
1717 {
1718         struct task_struct *t;
1719         unsigned long flags;
1720         u64 tgutime, tgstime, utime, stime;
1721         unsigned long maxrss = 0;
1722 
1723         memset((char *)r, 0, sizeof (*r));
1724         utime = stime = 0;
1725 
1726         if (who == RUSAGE_THREAD) {
1727                 task_cputime_adjusted(current, &utime, &stime);
1728                 accumulate_thread_rusage(p, r);
1729                 maxrss = p->signal->maxrss;
1730                 goto out;
1731         }
1732 
1733         if (!lock_task_sighand(p, &flags))
1734                 return;
1735 
1736         switch (who) {
1737         case RUSAGE_BOTH:
1738         case RUSAGE_CHILDREN:
1739                 utime = p->signal->cutime;
1740                 stime = p->signal->cstime;
1741                 r->ru_nvcsw = p->signal->cnvcsw;
1742                 r->ru_nivcsw = p->signal->cnivcsw;
1743                 r->ru_minflt = p->signal->cmin_flt;
1744                 r->ru_majflt = p->signal->cmaj_flt;
1745                 r->ru_inblock = p->signal->cinblock;
1746                 r->ru_oublock = p->signal->coublock;
1747                 maxrss = p->signal->cmaxrss;
1748 
1749                 if (who == RUSAGE_CHILDREN)
1750                         break;
1751                 /* fall through */
1752 
1753         case RUSAGE_SELF:
1754                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1755                 utime += tgutime;
1756                 stime += tgstime;
1757                 r->ru_nvcsw += p->signal->nvcsw;
1758                 r->ru_nivcsw += p->signal->nivcsw;
1759                 r->ru_minflt += p->signal->min_flt;
1760                 r->ru_majflt += p->signal->maj_flt;
1761                 r->ru_inblock += p->signal->inblock;
1762                 r->ru_oublock += p->signal->oublock;
1763                 if (maxrss < p->signal->maxrss)
1764                         maxrss = p->signal->maxrss;
1765                 t = p;
1766                 do {
1767                         accumulate_thread_rusage(t, r);
1768                 } while_each_thread(p, t);
1769                 break;
1770 
1771         default:
1772                 BUG();
1773         }
1774         unlock_task_sighand(p, &flags);
1775 
1776 out:
1777         r->ru_utime = ns_to_kernel_old_timeval(utime);
1778         r->ru_stime = ns_to_kernel_old_timeval(stime);
1779 
1780         if (who != RUSAGE_CHILDREN) {
1781                 struct mm_struct *mm = get_task_mm(p);
1782 
1783                 if (mm) {
1784                         setmax_mm_hiwater_rss(&maxrss, mm);
1785                         mmput(mm);
1786                 }
1787         }
1788         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1789 }
1790 
1791 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1792 {
1793         struct rusage r;
1794 
1795         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1796             who != RUSAGE_THREAD)
1797                 return -EINVAL;
1798 
1799         getrusage(current, who, &r);
1800         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1801 }
1802 
1803 #ifdef CONFIG_COMPAT
1804 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1805 {
1806         struct rusage r;
1807 
1808         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1809             who != RUSAGE_THREAD)
1810                 return -EINVAL;
1811 
1812         getrusage(current, who, &r);
1813         return put_compat_rusage(&r, ru);
1814 }
1815 #endif
1816 
1817 SYSCALL_DEFINE1(umask, int, mask)
1818 {
1819         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1820         return mask;
1821 }
1822 
1823 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1824 {
1825         struct fd exe;
1826         struct file *old_exe, *exe_file;
1827         struct inode *inode;
1828         int err;
1829 
1830         exe = fdget(fd);
1831         if (!exe.file)
1832                 return -EBADF;
1833 
1834         inode = file_inode(exe.file);
1835 
1836         /*
1837          * Because the original mm->exe_file points to executable file, make
1838          * sure that this one is executable as well, to avoid breaking an
1839          * overall picture.
1840          */
1841         err = -EACCES;
1842         if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1843                 goto exit;
1844 
1845         err = inode_permission(inode, MAY_EXEC);
1846         if (err)
1847                 goto exit;
1848 
1849         /*
1850          * Forbid mm->exe_file change if old file still mapped.
1851          */
1852         exe_file = get_mm_exe_file(mm);
1853         err = -EBUSY;
1854         if (exe_file) {
1855                 struct vm_area_struct *vma;
1856 
1857                 down_read(&mm->mmap_sem);
1858                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1859                         if (!vma->vm_file)
1860                                 continue;
1861                         if (path_equal(&vma->vm_file->f_path,
1862                                        &exe_file->f_path))
1863                                 goto exit_err;
1864                 }
1865 
1866                 up_read(&mm->mmap_sem);
1867                 fput(exe_file);
1868         }
1869 
1870         err = 0;
1871         /* set the new file, lockless */
1872         get_file(exe.file);
1873         old_exe = xchg(&mm->exe_file, exe.file);
1874         if (old_exe)
1875                 fput(old_exe);
1876 exit:
1877         fdput(exe);
1878         return err;
1879 exit_err:
1880         up_read(&mm->mmap_sem);
1881         fput(exe_file);
1882         goto exit;
1883 }
1884 
1885 /*
1886  * Check arithmetic relations of passed addresses.
1887  *
1888  * WARNING: we don't require any capability here so be very careful
1889  * in what is allowed for modification from userspace.
1890  */
1891 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1892 {
1893         unsigned long mmap_max_addr = TASK_SIZE;
1894         int error = -EINVAL, i;
1895 
1896         static const unsigned char offsets[] = {
1897                 offsetof(struct prctl_mm_map, start_code),
1898                 offsetof(struct prctl_mm_map, end_code),
1899                 offsetof(struct prctl_mm_map, start_data),
1900                 offsetof(struct prctl_mm_map, end_data),
1901                 offsetof(struct prctl_mm_map, start_brk),
1902                 offsetof(struct prctl_mm_map, brk),
1903                 offsetof(struct prctl_mm_map, start_stack),
1904                 offsetof(struct prctl_mm_map, arg_start),
1905                 offsetof(struct prctl_mm_map, arg_end),
1906                 offsetof(struct prctl_mm_map, env_start),
1907                 offsetof(struct prctl_mm_map, env_end),
1908         };
1909 
1910         /*
1911          * Make sure the members are not somewhere outside
1912          * of allowed address space.
1913          */
1914         for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1915                 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1916 
1917                 if ((unsigned long)val >= mmap_max_addr ||
1918                     (unsigned long)val < mmap_min_addr)
1919                         goto out;
1920         }
1921 
1922         /*
1923          * Make sure the pairs are ordered.
1924          */
1925 #define __prctl_check_order(__m1, __op, __m2)                           \
1926         ((unsigned long)prctl_map->__m1 __op                            \
1927          (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1928         error  = __prctl_check_order(start_code, <, end_code);
1929         error |= __prctl_check_order(start_data,<=, end_data);
1930         error |= __prctl_check_order(start_brk, <=, brk);
1931         error |= __prctl_check_order(arg_start, <=, arg_end);
1932         error |= __prctl_check_order(env_start, <=, env_end);
1933         if (error)
1934                 goto out;
1935 #undef __prctl_check_order
1936 
1937         error = -EINVAL;
1938 
1939         /*
1940          * @brk should be after @end_data in traditional maps.
1941          */
1942         if (prctl_map->start_brk <= prctl_map->end_data ||
1943             prctl_map->brk <= prctl_map->end_data)
1944                 goto out;
1945 
1946         /*
1947          * Neither we should allow to override limits if they set.
1948          */
1949         if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1950                               prctl_map->start_brk, prctl_map->end_data,
1951                               prctl_map->start_data))
1952                         goto out;
1953 
1954         error = 0;
1955 out:
1956         return error;
1957 }
1958 
1959 #ifdef CONFIG_CHECKPOINT_RESTORE
1960 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1961 {
1962         struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1963         unsigned long user_auxv[AT_VECTOR_SIZE];
1964         struct mm_struct *mm = current->mm;
1965         int error;
1966 
1967         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1968         BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1969 
1970         if (opt == PR_SET_MM_MAP_SIZE)
1971                 return put_user((unsigned int)sizeof(prctl_map),
1972                                 (unsigned int __user *)addr);
1973 
1974         if (data_size != sizeof(prctl_map))
1975                 return -EINVAL;
1976 
1977         if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1978                 return -EFAULT;
1979 
1980         error = validate_prctl_map_addr(&prctl_map);
1981         if (error)
1982                 return error;
1983 
1984         if (prctl_map.auxv_size) {
1985                 /*
1986                  * Someone is trying to cheat the auxv vector.
1987                  */
1988                 if (!prctl_map.auxv ||
1989                                 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1990                         return -EINVAL;
1991 
1992                 memset(user_auxv, 0, sizeof(user_auxv));
1993                 if (copy_from_user(user_auxv,
1994                                    (const void __user *)prctl_map.auxv,
1995                                    prctl_map.auxv_size))
1996                         return -EFAULT;
1997 
1998                 /* Last entry must be AT_NULL as specification requires */
1999                 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2000                 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2001         }
2002 
2003         if (prctl_map.exe_fd != (u32)-1) {
2004                 /*
2005                  * Make sure the caller has the rights to
2006                  * change /proc/pid/exe link: only local sys admin should
2007                  * be allowed to.
2008                  */
2009                 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2010                         return -EINVAL;
2011 
2012                 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2013                 if (error)
2014                         return error;
2015         }
2016 
2017         /*
2018          * arg_lock protects concurent updates but we still need mmap_sem for
2019          * read to exclude races with sys_brk.
2020          */
2021         down_read(&mm->mmap_sem);
2022 
2023         /*
2024          * We don't validate if these members are pointing to
2025          * real present VMAs because application may have correspond
2026          * VMAs already unmapped and kernel uses these members for statistics
2027          * output in procfs mostly, except
2028          *
2029          *  - @start_brk/@brk which are used in do_brk but kernel lookups
2030          *    for VMAs when updating these memvers so anything wrong written
2031          *    here cause kernel to swear at userspace program but won't lead
2032          *    to any problem in kernel itself
2033          */
2034 
2035         spin_lock(&mm->arg_lock);
2036         mm->start_code  = prctl_map.start_code;
2037         mm->end_code    = prctl_map.end_code;
2038         mm->start_data  = prctl_map.start_data;
2039         mm->end_data    = prctl_map.end_data;
2040         mm->start_brk   = prctl_map.start_brk;
2041         mm->brk         = prctl_map.brk;
2042         mm->start_stack = prctl_map.start_stack;
2043         mm->arg_start   = prctl_map.arg_start;
2044         mm->arg_end     = prctl_map.arg_end;
2045         mm->env_start   = prctl_map.env_start;
2046         mm->env_end     = prctl_map.env_end;
2047         spin_unlock(&mm->arg_lock);
2048 
2049         /*
2050          * Note this update of @saved_auxv is lockless thus
2051          * if someone reads this member in procfs while we're
2052          * updating -- it may get partly updated results. It's
2053          * known and acceptable trade off: we leave it as is to
2054          * not introduce additional locks here making the kernel
2055          * more complex.
2056          */
2057         if (prctl_map.auxv_size)
2058                 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2059 
2060         up_read(&mm->mmap_sem);
2061         return 0;
2062 }
2063 #endif /* CONFIG_CHECKPOINT_RESTORE */
2064 
2065 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2066                           unsigned long len)
2067 {
2068         /*
2069          * This doesn't move the auxiliary vector itself since it's pinned to
2070          * mm_struct, but it permits filling the vector with new values.  It's
2071          * up to the caller to provide sane values here, otherwise userspace
2072          * tools which use this vector might be unhappy.
2073          */
2074         unsigned long user_auxv[AT_VECTOR_SIZE];
2075 
2076         if (len > sizeof(user_auxv))
2077                 return -EINVAL;
2078 
2079         if (copy_from_user(user_auxv, (const void __user *)addr, len))
2080                 return -EFAULT;
2081 
2082         /* Make sure the last entry is always AT_NULL */
2083         user_auxv[AT_VECTOR_SIZE - 2] = 0;
2084         user_auxv[AT_VECTOR_SIZE - 1] = 0;
2085 
2086         BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2087 
2088         task_lock(current);
2089         memcpy(mm->saved_auxv, user_auxv, len);
2090         task_unlock(current);
2091 
2092         return 0;
2093 }
2094 
2095 static int prctl_set_mm(int opt, unsigned long addr,
2096                         unsigned long arg4, unsigned long arg5)
2097 {
2098         struct mm_struct *mm = current->mm;
2099         struct prctl_mm_map prctl_map = {
2100                 .auxv = NULL,
2101                 .auxv_size = 0,
2102                 .exe_fd = -1,
2103         };
2104         struct vm_area_struct *vma;
2105         int error;
2106 
2107         if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2108                               opt != PR_SET_MM_MAP &&
2109                               opt != PR_SET_MM_MAP_SIZE)))
2110                 return -EINVAL;
2111 
2112 #ifdef CONFIG_CHECKPOINT_RESTORE
2113         if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2114                 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2115 #endif
2116 
2117         if (!capable(CAP_SYS_RESOURCE))
2118                 return -EPERM;
2119 
2120         if (opt == PR_SET_MM_EXE_FILE)
2121                 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2122 
2123         if (opt == PR_SET_MM_AUXV)
2124                 return prctl_set_auxv(mm, addr, arg4);
2125 
2126         if (addr >= TASK_SIZE || addr < mmap_min_addr)
2127                 return -EINVAL;
2128 
2129         error = -EINVAL;
2130 
2131         /*
2132          * arg_lock protects concurent updates of arg boundaries, we need
2133          * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2134          * validation.
2135          */
2136         down_read(&mm->mmap_sem);
2137         vma = find_vma(mm, addr);
2138 
2139         spin_lock(&mm->arg_lock);
2140         prctl_map.start_code    = mm->start_code;
2141         prctl_map.end_code      = mm->end_code;
2142         prctl_map.start_data    = mm->start_data;
2143         prctl_map.end_data      = mm->end_data;
2144         prctl_map.start_brk     = mm->start_brk;
2145         prctl_map.brk           = mm->brk;
2146         prctl_map.start_stack   = mm->start_stack;
2147         prctl_map.arg_start     = mm->arg_start;
2148         prctl_map.arg_end       = mm->arg_end;
2149         prctl_map.env_start     = mm->env_start;
2150         prctl_map.env_end       = mm->env_end;
2151 
2152         switch (opt) {
2153         case PR_SET_MM_START_CODE:
2154                 prctl_map.start_code = addr;
2155                 break;
2156         case PR_SET_MM_END_CODE:
2157                 prctl_map.end_code = addr;
2158                 break;
2159         case PR_SET_MM_START_DATA:
2160                 prctl_map.start_data = addr;
2161                 break;
2162         case PR_SET_MM_END_DATA:
2163                 prctl_map.end_data = addr;
2164                 break;
2165         case PR_SET_MM_START_STACK:
2166                 prctl_map.start_stack = addr;
2167                 break;
2168         case PR_SET_MM_START_BRK:
2169                 prctl_map.start_brk = addr;
2170                 break;
2171         case PR_SET_MM_BRK:
2172                 prctl_map.brk = addr;
2173                 break;
2174         case PR_SET_MM_ARG_START:
2175                 prctl_map.arg_start = addr;
2176                 break;
2177         case PR_SET_MM_ARG_END:
2178                 prctl_map.arg_end = addr;
2179                 break;
2180         case PR_SET_MM_ENV_START:
2181                 prctl_map.env_start = addr;
2182                 break;
2183         case PR_SET_MM_ENV_END:
2184                 prctl_map.env_end = addr;
2185                 break;
2186         default:
2187                 goto out;
2188         }
2189 
2190         error = validate_prctl_map_addr(&prctl_map);
2191         if (error)
2192                 goto out;
2193 
2194         switch (opt) {
2195         /*
2196          * If command line arguments and environment
2197          * are placed somewhere else on stack, we can
2198          * set them up here, ARG_START/END to setup
2199          * command line argumets and ENV_START/END
2200          * for environment.
2201          */
2202         case PR_SET_MM_START_STACK:
2203         case PR_SET_MM_ARG_START:
2204         case PR_SET_MM_ARG_END:
2205         case PR_SET_MM_ENV_START:
2206         case PR_SET_MM_ENV_END:
2207                 if (!vma) {
2208                         error = -EFAULT;
2209                         goto out;
2210                 }
2211         }
2212 
2213         mm->start_code  = prctl_map.start_code;
2214         mm->end_code    = prctl_map.end_code;
2215         mm->start_data  = prctl_map.start_data;
2216         mm->end_data    = prctl_map.end_data;
2217         mm->start_brk   = prctl_map.start_brk;
2218         mm->brk         = prctl_map.brk;
2219         mm->start_stack = prctl_map.start_stack;
2220         mm->arg_start   = prctl_map.arg_start;
2221         mm->arg_end     = prctl_map.arg_end;
2222         mm->env_start   = prctl_map.env_start;
2223         mm->env_end     = prctl_map.env_end;
2224 
2225         error = 0;
2226 out:
2227         spin_unlock(&mm->arg_lock);
2228         up_read(&mm->mmap_sem);
2229         return error;
2230 }
2231 
2232 #ifdef CONFIG_CHECKPOINT_RESTORE
2233 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2234 {
2235         return put_user(me->clear_child_tid, tid_addr);
2236 }
2237 #else
2238 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2239 {
2240         return -EINVAL;
2241 }
2242 #endif
2243 
2244 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2245 {
2246         /*
2247          * If task has has_child_subreaper - all its decendants
2248          * already have these flag too and new decendants will
2249          * inherit it on fork, skip them.
2250          *
2251          * If we've found child_reaper - skip descendants in
2252          * it's subtree as they will never get out pidns.
2253          */
2254         if (p->signal->has_child_subreaper ||
2255             is_child_reaper(task_pid(p)))
2256                 return 0;
2257 
2258         p->signal->has_child_subreaper = 1;
2259         return 1;
2260 }
2261 
2262 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2263 {
2264         return -EINVAL;
2265 }
2266 
2267 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2268                                     unsigned long ctrl)
2269 {
2270         return -EINVAL;
2271 }
2272 
2273 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LESS_THROTTLE)
2274 
2275 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2276                 unsigned long, arg4, unsigned long, arg5)
2277 {
2278         struct task_struct *me = current;
2279         unsigned char comm[sizeof(me->comm)];
2280         long error;
2281 
2282         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2283         if (error != -ENOSYS)
2284                 return error;
2285 
2286         error = 0;
2287         switch (option) {
2288         case PR_SET_PDEATHSIG:
2289                 if (!valid_signal(arg2)) {
2290                         error = -EINVAL;
2291                         break;
2292                 }
2293                 me->pdeath_signal = arg2;
2294                 break;
2295         case PR_GET_PDEATHSIG:
2296                 error = put_user(me->pdeath_signal, (int __user *)arg2);
2297                 break;
2298         case PR_GET_DUMPABLE:
2299                 error = get_dumpable(me->mm);
2300                 break;
2301         case PR_SET_DUMPABLE:
2302                 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2303                         error = -EINVAL;
2304                         break;
2305                 }
2306                 set_dumpable(me->mm, arg2);
2307                 break;
2308 
2309         case PR_SET_UNALIGN:
2310                 error = SET_UNALIGN_CTL(me, arg2);
2311                 break;
2312         case PR_GET_UNALIGN:
2313                 error = GET_UNALIGN_CTL(me, arg2);
2314                 break;
2315         case PR_SET_FPEMU:
2316                 error = SET_FPEMU_CTL(me, arg2);
2317                 break;
2318         case PR_GET_FPEMU:
2319                 error = GET_FPEMU_CTL(me, arg2);
2320                 break;
2321         case PR_SET_FPEXC:
2322                 error = SET_FPEXC_CTL(me, arg2);
2323                 break;
2324         case PR_GET_FPEXC:
2325                 error = GET_FPEXC_CTL(me, arg2);
2326                 break;
2327         case PR_GET_TIMING:
2328                 error = PR_TIMING_STATISTICAL;
2329                 break;
2330         case PR_SET_TIMING:
2331                 if (arg2 != PR_TIMING_STATISTICAL)
2332                         error = -EINVAL;
2333                 break;
2334         case PR_SET_NAME:
2335                 comm[sizeof(me->comm) - 1] = 0;
2336                 if (strncpy_from_user(comm, (char __user *)arg2,
2337                                       sizeof(me->comm) - 1) < 0)
2338                         return -EFAULT;
2339                 set_task_comm(me, comm);
2340                 proc_comm_connector(me);
2341                 break;
2342         case PR_GET_NAME:
2343                 get_task_comm(comm, me);
2344                 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2345                         return -EFAULT;
2346                 break;
2347         case PR_GET_ENDIAN:
2348                 error = GET_ENDIAN(me, arg2);
2349                 break;
2350         case PR_SET_ENDIAN:
2351                 error = SET_ENDIAN(me, arg2);
2352                 break;
2353         case PR_GET_SECCOMP:
2354                 error = prctl_get_seccomp();
2355                 break;
2356         case PR_SET_SECCOMP:
2357                 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2358                 break;
2359         case PR_GET_TSC:
2360                 error = GET_TSC_CTL(arg2);
2361                 break;
2362         case PR_SET_TSC:
2363                 error = SET_TSC_CTL(arg2);
2364                 break;
2365         case PR_TASK_PERF_EVENTS_DISABLE:
2366                 error = perf_event_task_disable();
2367                 break;
2368         case PR_TASK_PERF_EVENTS_ENABLE:
2369                 error = perf_event_task_enable();
2370                 break;
2371         case PR_GET_TIMERSLACK:
2372                 if (current->timer_slack_ns > ULONG_MAX)
2373                         error = ULONG_MAX;
2374                 else
2375                         error = current->timer_slack_ns;
2376                 break;
2377         case PR_SET_TIMERSLACK:
2378                 if (arg2 <= 0)
2379                         current->timer_slack_ns =
2380                                         current->default_timer_slack_ns;
2381                 else
2382                         current->timer_slack_ns = arg2;
2383                 break;
2384         case PR_MCE_KILL:
2385                 if (arg4 | arg5)
2386                         return -EINVAL;
2387                 switch (arg2) {
2388                 case PR_MCE_KILL_CLEAR:
2389                         if (arg3 != 0)
2390                                 return -EINVAL;
2391                         current->flags &= ~PF_MCE_PROCESS;
2392                         break;
2393                 case PR_MCE_KILL_SET:
2394                         current->flags |= PF_MCE_PROCESS;
2395                         if (arg3 == PR_MCE_KILL_EARLY)
2396                                 current->flags |= PF_MCE_EARLY;
2397                         else if (arg3 == PR_MCE_KILL_LATE)
2398                                 current->flags &= ~PF_MCE_EARLY;
2399                         else if (arg3 == PR_MCE_KILL_DEFAULT)
2400                                 current->flags &=
2401                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2402                         else
2403                                 return -EINVAL;
2404                         break;
2405                 default:
2406                         return -EINVAL;
2407                 }
2408                 break;
2409         case PR_MCE_KILL_GET:
2410                 if (arg2 | arg3 | arg4 | arg5)
2411                         return -EINVAL;
2412                 if (current->flags & PF_MCE_PROCESS)
2413                         error = (current->flags & PF_MCE_EARLY) ?
2414                                 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2415                 else
2416                         error = PR_MCE_KILL_DEFAULT;
2417                 break;
2418         case PR_SET_MM:
2419                 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2420                 break;
2421         case PR_GET_TID_ADDRESS:
2422                 error = prctl_get_tid_address(me, (int __user **)arg2);
2423                 break;
2424         case PR_SET_CHILD_SUBREAPER:
2425                 me->signal->is_child_subreaper = !!arg2;
2426                 if (!arg2)
2427                         break;
2428 
2429                 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2430                 break;
2431         case PR_GET_CHILD_SUBREAPER:
2432                 error = put_user(me->signal->is_child_subreaper,
2433                                  (int __user *)arg2);
2434                 break;
2435         case PR_SET_NO_NEW_PRIVS:
2436                 if (arg2 != 1 || arg3 || arg4 || arg5)
2437                         return -EINVAL;
2438 
2439                 task_set_no_new_privs(current);
2440                 break;
2441         case PR_GET_NO_NEW_PRIVS:
2442                 if (arg2 || arg3 || arg4 || arg5)
2443                         return -EINVAL;
2444                 return task_no_new_privs(current) ? 1 : 0;
2445         case PR_GET_THP_DISABLE:
2446                 if (arg2 || arg3 || arg4 || arg5)
2447                         return -EINVAL;
2448                 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2449                 break;
2450         case PR_SET_THP_DISABLE:
2451                 if (arg3 || arg4 || arg5)
2452                         return -EINVAL;
2453                 if (down_write_killable(&me->mm->mmap_sem))
2454                         return -EINTR;
2455                 if (arg2)
2456                         set_bit(MMF_DISABLE_THP, &me->mm->flags);
2457                 else
2458                         clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2459                 up_write(&me->mm->mmap_sem);
2460                 break;
2461         case PR_MPX_ENABLE_MANAGEMENT:
2462         case PR_MPX_DISABLE_MANAGEMENT:
2463                 /* No longer implemented: */
2464                 return -EINVAL;
2465         case PR_SET_FP_MODE:
2466                 error = SET_FP_MODE(me, arg2);
2467                 break;
2468         case PR_GET_FP_MODE:
2469                 error = GET_FP_MODE(me);
2470                 break;
2471         case PR_SVE_SET_VL:
2472                 error = SVE_SET_VL(arg2);
2473                 break;
2474         case PR_SVE_GET_VL:
2475                 error = SVE_GET_VL();
2476                 break;
2477         case PR_GET_SPECULATION_CTRL:
2478                 if (arg3 || arg4 || arg5)
2479                         return -EINVAL;
2480                 error = arch_prctl_spec_ctrl_get(me, arg2);
2481                 break;
2482         case PR_SET_SPECULATION_CTRL:
2483                 if (arg4 || arg5)
2484                         return -EINVAL;
2485                 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2486                 break;
2487         case PR_PAC_RESET_KEYS:
2488                 if (arg3 || arg4 || arg5)
2489                         return -EINVAL;
2490                 error = PAC_RESET_KEYS(me, arg2);
2491                 break;
2492         case PR_SET_TAGGED_ADDR_CTRL:
2493                 if (arg3 || arg4 || arg5)
2494                         return -EINVAL;
2495                 error = SET_TAGGED_ADDR_CTRL(arg2);
2496                 break;
2497         case PR_GET_TAGGED_ADDR_CTRL:
2498                 if (arg2 || arg3 || arg4 || arg5)
2499                         return -EINVAL;
2500                 error = GET_TAGGED_ADDR_CTRL();
2501                 break;
2502         case PR_SET_IO_FLUSHER:
2503                 if (!capable(CAP_SYS_RESOURCE))
2504                         return -EPERM;
2505 
2506                 if (arg3 || arg4 || arg5)
2507                         return -EINVAL;
2508 
2509                 if (arg2 == 1)
2510                         current->flags |= PR_IO_FLUSHER;
2511                 else if (!arg2)
2512                         current->flags &= ~PR_IO_FLUSHER;
2513                 else
2514                         return -EINVAL;
2515                 break;
2516         case PR_GET_IO_FLUSHER:
2517                 if (!capable(CAP_SYS_RESOURCE))
2518                         return -EPERM;
2519 
2520                 if (arg2 || arg3 || arg4 || arg5)
2521                         return -EINVAL;
2522 
2523                 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2524                 break;
2525         default:
2526                 error = -EINVAL;
2527                 break;
2528         }
2529         return error;
2530 }
2531 
2532 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2533                 struct getcpu_cache __user *, unused)
2534 {
2535         int err = 0;
2536         int cpu = raw_smp_processor_id();
2537 
2538         if (cpup)
2539                 err |= put_user(cpu, cpup);
2540         if (nodep)
2541                 err |= put_user(cpu_to_node(cpu), nodep);
2542         return err ? -EFAULT : 0;
2543 }
2544 
2545 /**
2546  * do_sysinfo - fill in sysinfo struct
2547  * @info: pointer to buffer to fill
2548  */
2549 static int do_sysinfo(struct sysinfo *info)
2550 {
2551         unsigned long mem_total, sav_total;
2552         unsigned int mem_unit, bitcount;
2553         struct timespec64 tp;
2554 
2555         memset(info, 0, sizeof(struct sysinfo));
2556 
2557         ktime_get_boottime_ts64(&tp);
2558         timens_add_boottime(&tp);
2559         info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2560 
2561         get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2562 
2563         info->procs = nr_threads;
2564 
2565         si_meminfo(info);
2566         si_swapinfo(info);
2567 
2568         /*
2569          * If the sum of all the available memory (i.e. ram + swap)
2570          * is less than can be stored in a 32 bit unsigned long then
2571          * we can be binary compatible with 2.2.x kernels.  If not,
2572          * well, in that case 2.2.x was broken anyways...
2573          *
2574          *  -Erik Andersen <andersee@debian.org>
2575          */
2576 
2577         mem_total = info->totalram + info->totalswap;
2578         if (mem_total < info->totalram || mem_total < info->totalswap)
2579                 goto out;
2580         bitcount = 0;
2581         mem_unit = info->mem_unit;
2582         while (mem_unit > 1) {
2583                 bitcount++;
2584                 mem_unit >>= 1;
2585                 sav_total = mem_total;
2586                 mem_total <<= 1;
2587                 if (mem_total < sav_total)
2588                         goto out;
2589         }
2590 
2591         /*
2592          * If mem_total did not overflow, multiply all memory values by
2593          * info->mem_unit and set it to 1.  This leaves things compatible
2594          * with 2.2.x, and also retains compatibility with earlier 2.4.x
2595          * kernels...
2596          */
2597 
2598         info->mem_unit = 1;
2599         info->totalram <<= bitcount;
2600         info->freeram <<= bitcount;
2601         info->sharedram <<= bitcount;
2602         info->bufferram <<= bitcount;
2603         info->totalswap <<= bitcount;
2604         info->freeswap <<= bitcount;
2605         info->totalhigh <<= bitcount;
2606         info->freehigh <<= bitcount;
2607 
2608 out:
2609         return 0;
2610 }
2611 
2612 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2613 {
2614         struct sysinfo val;
2615 
2616         do_sysinfo(&val);
2617 
2618         if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2619                 return -EFAULT;
2620 
2621         return 0;
2622 }
2623 
2624 #ifdef CONFIG_COMPAT
2625 struct compat_sysinfo {
2626         s32 uptime;
2627         u32 loads[3];
2628         u32 totalram;
2629         u32 freeram;
2630         u32 sharedram;
2631         u32 bufferram;
2632         u32 totalswap;
2633         u32 freeswap;
2634         u16 procs;
2635         u16 pad;
2636         u32 totalhigh;
2637         u32 freehigh;
2638         u32 mem_unit;
2639         char _f[20-2*sizeof(u32)-sizeof(int)];
2640 };
2641 
2642 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2643 {
2644         struct sysinfo s;
2645 
2646         do_sysinfo(&s);
2647 
2648         /* Check to see if any memory value is too large for 32-bit and scale
2649          *  down if needed
2650          */
2651         if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2652                 int bitcount = 0;
2653 
2654                 while (s.mem_unit < PAGE_SIZE) {
2655                         s.mem_unit <<= 1;
2656                         bitcount++;
2657                 }
2658 
2659                 s.totalram >>= bitcount;
2660                 s.freeram >>= bitcount;
2661                 s.sharedram >>= bitcount;
2662                 s.bufferram >>= bitcount;
2663                 s.totalswap >>= bitcount;
2664                 s.freeswap >>= bitcount;
2665                 s.totalhigh >>= bitcount;
2666                 s.freehigh >>= bitcount;
2667         }
2668 
2669         if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2670             __put_user(s.uptime, &info->uptime) ||
2671             __put_user(s.loads[0], &info->loads[0]) ||
2672             __put_user(s.loads[1], &info->loads[1]) ||
2673             __put_user(s.loads[2], &info->loads[2]) ||
2674             __put_user(s.totalram, &info->totalram) ||
2675             __put_user(s.freeram, &info->freeram) ||
2676             __put_user(s.sharedram, &info->sharedram) ||
2677             __put_user(s.bufferram, &info->bufferram) ||
2678             __put_user(s.totalswap, &info->totalswap) ||
2679             __put_user(s.freeswap, &info->freeswap) ||
2680             __put_user(s.procs, &info->procs) ||
2681             __put_user(s.totalhigh, &info->totalhigh) ||
2682             __put_user(s.freehigh, &info->freehigh) ||
2683             __put_user(s.mem_unit, &info->mem_unit))
2684                 return -EFAULT;
2685 
2686         return 0;
2687 }
2688 #endif /* CONFIG_COMPAT */
2689 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp