1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/rculist.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/mm.h> 26 #include <linux/jhash.h> 27 #include <linux/random.h> 28 #include <linux/rhashtable.h> 29 #include <linux/err.h> 30 #include <linux/export.h> 31 32 #define HASH_DEFAULT_SIZE 64UL 33 #define HASH_MIN_SIZE 4U 34 #define BUCKET_LOCKS_PER_CPU 32UL 35 36 union nested_table { 37 union nested_table __rcu *table; 38 struct rhash_head __rcu *bucket; 39 }; 40 41 static u32 head_hashfn(struct rhashtable *ht, 42 const struct bucket_table *tbl, 43 const struct rhash_head *he) 44 { 45 return rht_head_hashfn(ht, tbl, he, ht->p); 46 } 47 48 #ifdef CONFIG_PROVE_LOCKING 49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 50 51 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 52 { 53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 54 } 55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 56 57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 58 { 59 spinlock_t *lock = rht_bucket_lock(tbl, hash); 60 61 return (debug_locks) ? lockdep_is_held(lock) : 1; 62 } 63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 64 #else 65 #define ASSERT_RHT_MUTEX(HT) 66 #endif 67 68 static void nested_table_free(union nested_table *ntbl, unsigned int size) 69 { 70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 71 const unsigned int len = 1 << shift; 72 unsigned int i; 73 74 ntbl = rcu_dereference_raw(ntbl->table); 75 if (!ntbl) 76 return; 77 78 if (size > len) { 79 size >>= shift; 80 for (i = 0; i < len; i++) 81 nested_table_free(ntbl + i, size); 82 } 83 84 kfree(ntbl); 85 } 86 87 static void nested_bucket_table_free(const struct bucket_table *tbl) 88 { 89 unsigned int size = tbl->size >> tbl->nest; 90 unsigned int len = 1 << tbl->nest; 91 union nested_table *ntbl; 92 unsigned int i; 93 94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 95 96 for (i = 0; i < len; i++) 97 nested_table_free(ntbl + i, size); 98 99 kfree(ntbl); 100 } 101 102 static void bucket_table_free(const struct bucket_table *tbl) 103 { 104 if (tbl->nest) 105 nested_bucket_table_free(tbl); 106 107 free_bucket_spinlocks(tbl->locks); 108 kvfree(tbl); 109 } 110 111 static void bucket_table_free_rcu(struct rcu_head *head) 112 { 113 bucket_table_free(container_of(head, struct bucket_table, rcu)); 114 } 115 116 static union nested_table *nested_table_alloc(struct rhashtable *ht, 117 union nested_table __rcu **prev, 118 unsigned int shifted, 119 unsigned int nhash) 120 { 121 union nested_table *ntbl; 122 int i; 123 124 ntbl = rcu_dereference(*prev); 125 if (ntbl) 126 return ntbl; 127 128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); 129 130 if (ntbl && shifted) { 131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++) 132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht, 133 (i << shifted) | nhash); 134 } 135 136 rcu_assign_pointer(*prev, ntbl); 137 138 return ntbl; 139 } 140 141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 142 size_t nbuckets, 143 gfp_t gfp) 144 { 145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 146 struct bucket_table *tbl; 147 size_t size; 148 149 if (nbuckets < (1 << (shift + 1))) 150 return NULL; 151 152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 153 154 tbl = kzalloc(size, gfp); 155 if (!tbl) 156 return NULL; 157 158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 159 0, 0)) { 160 kfree(tbl); 161 return NULL; 162 } 163 164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 165 166 return tbl; 167 } 168 169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 170 size_t nbuckets, 171 gfp_t gfp) 172 { 173 struct bucket_table *tbl = NULL; 174 size_t size, max_locks; 175 int i; 176 177 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 178 if (gfp != GFP_KERNEL) 179 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY); 180 else 181 tbl = kvzalloc(size, gfp); 182 183 size = nbuckets; 184 185 if (tbl == NULL && gfp != GFP_KERNEL) { 186 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 187 nbuckets = 0; 188 } 189 if (tbl == NULL) 190 return NULL; 191 192 tbl->size = size; 193 194 max_locks = size >> 1; 195 if (tbl->nest) 196 max_locks = min_t(size_t, max_locks, 1U << tbl->nest); 197 198 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks, 199 ht->p.locks_mul, gfp) < 0) { 200 bucket_table_free(tbl); 201 return NULL; 202 } 203 204 INIT_LIST_HEAD(&tbl->walkers); 205 206 tbl->hash_rnd = get_random_u32(); 207 208 for (i = 0; i < nbuckets; i++) 209 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 210 211 return tbl; 212 } 213 214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 215 struct bucket_table *tbl) 216 { 217 struct bucket_table *new_tbl; 218 219 do { 220 new_tbl = tbl; 221 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 222 } while (tbl); 223 224 return new_tbl; 225 } 226 227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 228 { 229 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 230 struct bucket_table *new_tbl = rhashtable_last_table(ht, 231 rht_dereference_rcu(old_tbl->future_tbl, ht)); 232 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash); 233 int err = -EAGAIN; 234 struct rhash_head *head, *next, *entry; 235 spinlock_t *new_bucket_lock; 236 unsigned int new_hash; 237 238 if (new_tbl->nest) 239 goto out; 240 241 err = -ENOENT; 242 243 rht_for_each(entry, old_tbl, old_hash) { 244 err = 0; 245 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 246 247 if (rht_is_a_nulls(next)) 248 break; 249 250 pprev = &entry->next; 251 } 252 253 if (err) 254 goto out; 255 256 new_hash = head_hashfn(ht, new_tbl, entry); 257 258 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 259 260 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 261 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 262 new_tbl, new_hash); 263 264 RCU_INIT_POINTER(entry->next, head); 265 266 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 267 spin_unlock(new_bucket_lock); 268 269 rcu_assign_pointer(*pprev, next); 270 271 out: 272 return err; 273 } 274 275 static int rhashtable_rehash_chain(struct rhashtable *ht, 276 unsigned int old_hash) 277 { 278 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 279 spinlock_t *old_bucket_lock; 280 int err; 281 282 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 283 284 spin_lock_bh(old_bucket_lock); 285 while (!(err = rhashtable_rehash_one(ht, old_hash))) 286 ; 287 288 if (err == -ENOENT) { 289 old_tbl->rehash++; 290 err = 0; 291 } 292 spin_unlock_bh(old_bucket_lock); 293 294 return err; 295 } 296 297 static int rhashtable_rehash_attach(struct rhashtable *ht, 298 struct bucket_table *old_tbl, 299 struct bucket_table *new_tbl) 300 { 301 /* Protect future_tbl using the first bucket lock. */ 302 spin_lock_bh(old_tbl->locks); 303 304 /* Did somebody beat us to it? */ 305 if (rcu_access_pointer(old_tbl->future_tbl)) { 306 spin_unlock_bh(old_tbl->locks); 307 return -EEXIST; 308 } 309 310 /* Make insertions go into the new, empty table right away. Deletions 311 * and lookups will be attempted in both tables until we synchronize. 312 */ 313 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 314 315 spin_unlock_bh(old_tbl->locks); 316 317 return 0; 318 } 319 320 static int rhashtable_rehash_table(struct rhashtable *ht) 321 { 322 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 323 struct bucket_table *new_tbl; 324 struct rhashtable_walker *walker; 325 unsigned int old_hash; 326 int err; 327 328 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 329 if (!new_tbl) 330 return 0; 331 332 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 333 err = rhashtable_rehash_chain(ht, old_hash); 334 if (err) 335 return err; 336 } 337 338 /* Publish the new table pointer. */ 339 rcu_assign_pointer(ht->tbl, new_tbl); 340 341 spin_lock(&ht->lock); 342 list_for_each_entry(walker, &old_tbl->walkers, list) 343 walker->tbl = NULL; 344 spin_unlock(&ht->lock); 345 346 /* Wait for readers. All new readers will see the new 347 * table, and thus no references to the old table will 348 * remain. 349 */ 350 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 351 352 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 353 } 354 355 static int rhashtable_rehash_alloc(struct rhashtable *ht, 356 struct bucket_table *old_tbl, 357 unsigned int size) 358 { 359 struct bucket_table *new_tbl; 360 int err; 361 362 ASSERT_RHT_MUTEX(ht); 363 364 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 365 if (new_tbl == NULL) 366 return -ENOMEM; 367 368 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 369 if (err) 370 bucket_table_free(new_tbl); 371 372 return err; 373 } 374 375 /** 376 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 377 * @ht: the hash table to shrink 378 * 379 * This function shrinks the hash table to fit, i.e., the smallest 380 * size would not cause it to expand right away automatically. 381 * 382 * The caller must ensure that no concurrent resizing occurs by holding 383 * ht->mutex. 384 * 385 * The caller must ensure that no concurrent table mutations take place. 386 * It is however valid to have concurrent lookups if they are RCU protected. 387 * 388 * It is valid to have concurrent insertions and deletions protected by per 389 * bucket locks or concurrent RCU protected lookups and traversals. 390 */ 391 static int rhashtable_shrink(struct rhashtable *ht) 392 { 393 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 394 unsigned int nelems = atomic_read(&ht->nelems); 395 unsigned int size = 0; 396 397 if (nelems) 398 size = roundup_pow_of_two(nelems * 3 / 2); 399 if (size < ht->p.min_size) 400 size = ht->p.min_size; 401 402 if (old_tbl->size <= size) 403 return 0; 404 405 if (rht_dereference(old_tbl->future_tbl, ht)) 406 return -EEXIST; 407 408 return rhashtable_rehash_alloc(ht, old_tbl, size); 409 } 410 411 static void rht_deferred_worker(struct work_struct *work) 412 { 413 struct rhashtable *ht; 414 struct bucket_table *tbl; 415 int err = 0; 416 417 ht = container_of(work, struct rhashtable, run_work); 418 mutex_lock(&ht->mutex); 419 420 tbl = rht_dereference(ht->tbl, ht); 421 tbl = rhashtable_last_table(ht, tbl); 422 423 if (rht_grow_above_75(ht, tbl)) 424 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 425 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 426 err = rhashtable_shrink(ht); 427 else if (tbl->nest) 428 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 429 430 if (!err) 431 err = rhashtable_rehash_table(ht); 432 433 mutex_unlock(&ht->mutex); 434 435 if (err) 436 schedule_work(&ht->run_work); 437 } 438 439 static int rhashtable_insert_rehash(struct rhashtable *ht, 440 struct bucket_table *tbl) 441 { 442 struct bucket_table *old_tbl; 443 struct bucket_table *new_tbl; 444 unsigned int size; 445 int err; 446 447 old_tbl = rht_dereference_rcu(ht->tbl, ht); 448 449 size = tbl->size; 450 451 err = -EBUSY; 452 453 if (rht_grow_above_75(ht, tbl)) 454 size *= 2; 455 /* Do not schedule more than one rehash */ 456 else if (old_tbl != tbl) 457 goto fail; 458 459 err = -ENOMEM; 460 461 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC); 462 if (new_tbl == NULL) 463 goto fail; 464 465 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 466 if (err) { 467 bucket_table_free(new_tbl); 468 if (err == -EEXIST) 469 err = 0; 470 } else 471 schedule_work(&ht->run_work); 472 473 return err; 474 475 fail: 476 /* Do not fail the insert if someone else did a rehash. */ 477 if (likely(rcu_dereference_raw(tbl->future_tbl))) 478 return 0; 479 480 /* Schedule async rehash to retry allocation in process context. */ 481 if (err == -ENOMEM) 482 schedule_work(&ht->run_work); 483 484 return err; 485 } 486 487 static void *rhashtable_lookup_one(struct rhashtable *ht, 488 struct bucket_table *tbl, unsigned int hash, 489 const void *key, struct rhash_head *obj) 490 { 491 struct rhashtable_compare_arg arg = { 492 .ht = ht, 493 .key = key, 494 }; 495 struct rhash_head __rcu **pprev; 496 struct rhash_head *head; 497 int elasticity; 498 499 elasticity = RHT_ELASTICITY; 500 pprev = rht_bucket_var(tbl, hash); 501 rht_for_each_continue(head, *pprev, tbl, hash) { 502 struct rhlist_head *list; 503 struct rhlist_head *plist; 504 505 elasticity--; 506 if (!key || 507 (ht->p.obj_cmpfn ? 508 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 509 rhashtable_compare(&arg, rht_obj(ht, head)))) { 510 pprev = &head->next; 511 continue; 512 } 513 514 if (!ht->rhlist) 515 return rht_obj(ht, head); 516 517 list = container_of(obj, struct rhlist_head, rhead); 518 plist = container_of(head, struct rhlist_head, rhead); 519 520 RCU_INIT_POINTER(list->next, plist); 521 head = rht_dereference_bucket(head->next, tbl, hash); 522 RCU_INIT_POINTER(list->rhead.next, head); 523 rcu_assign_pointer(*pprev, obj); 524 525 return NULL; 526 } 527 528 if (elasticity <= 0) 529 return ERR_PTR(-EAGAIN); 530 531 return ERR_PTR(-ENOENT); 532 } 533 534 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht, 535 struct bucket_table *tbl, 536 unsigned int hash, 537 struct rhash_head *obj, 538 void *data) 539 { 540 struct rhash_head __rcu **pprev; 541 struct bucket_table *new_tbl; 542 struct rhash_head *head; 543 544 if (!IS_ERR_OR_NULL(data)) 545 return ERR_PTR(-EEXIST); 546 547 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 548 return ERR_CAST(data); 549 550 new_tbl = rcu_dereference(tbl->future_tbl); 551 if (new_tbl) 552 return new_tbl; 553 554 if (PTR_ERR(data) != -ENOENT) 555 return ERR_CAST(data); 556 557 if (unlikely(rht_grow_above_max(ht, tbl))) 558 return ERR_PTR(-E2BIG); 559 560 if (unlikely(rht_grow_above_100(ht, tbl))) 561 return ERR_PTR(-EAGAIN); 562 563 pprev = rht_bucket_insert(ht, tbl, hash); 564 if (!pprev) 565 return ERR_PTR(-ENOMEM); 566 567 head = rht_dereference_bucket(*pprev, tbl, hash); 568 569 RCU_INIT_POINTER(obj->next, head); 570 if (ht->rhlist) { 571 struct rhlist_head *list; 572 573 list = container_of(obj, struct rhlist_head, rhead); 574 RCU_INIT_POINTER(list->next, NULL); 575 } 576 577 rcu_assign_pointer(*pprev, obj); 578 579 atomic_inc(&ht->nelems); 580 if (rht_grow_above_75(ht, tbl)) 581 schedule_work(&ht->run_work); 582 583 return NULL; 584 } 585 586 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 587 struct rhash_head *obj) 588 { 589 struct bucket_table *new_tbl; 590 struct bucket_table *tbl; 591 unsigned int hash; 592 spinlock_t *lock; 593 void *data; 594 595 tbl = rcu_dereference(ht->tbl); 596 597 /* All insertions must grab the oldest table containing 598 * the hashed bucket that is yet to be rehashed. 599 */ 600 for (;;) { 601 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 602 lock = rht_bucket_lock(tbl, hash); 603 spin_lock_bh(lock); 604 605 if (tbl->rehash <= hash) 606 break; 607 608 spin_unlock_bh(lock); 609 tbl = rcu_dereference(tbl->future_tbl); 610 } 611 612 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 613 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 614 if (PTR_ERR(new_tbl) != -EEXIST) 615 data = ERR_CAST(new_tbl); 616 617 while (!IS_ERR_OR_NULL(new_tbl)) { 618 tbl = new_tbl; 619 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 620 spin_lock_nested(rht_bucket_lock(tbl, hash), 621 SINGLE_DEPTH_NESTING); 622 623 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 624 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 625 if (PTR_ERR(new_tbl) != -EEXIST) 626 data = ERR_CAST(new_tbl); 627 628 spin_unlock(rht_bucket_lock(tbl, hash)); 629 } 630 631 spin_unlock_bh(lock); 632 633 if (PTR_ERR(data) == -EAGAIN) 634 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 635 -EAGAIN); 636 637 return data; 638 } 639 640 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 641 struct rhash_head *obj) 642 { 643 void *data; 644 645 do { 646 rcu_read_lock(); 647 data = rhashtable_try_insert(ht, key, obj); 648 rcu_read_unlock(); 649 } while (PTR_ERR(data) == -EAGAIN); 650 651 return data; 652 } 653 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 654 655 /** 656 * rhashtable_walk_enter - Initialise an iterator 657 * @ht: Table to walk over 658 * @iter: Hash table Iterator 659 * 660 * This function prepares a hash table walk. 661 * 662 * Note that if you restart a walk after rhashtable_walk_stop you 663 * may see the same object twice. Also, you may miss objects if 664 * there are removals in between rhashtable_walk_stop and the next 665 * call to rhashtable_walk_start. 666 * 667 * For a completely stable walk you should construct your own data 668 * structure outside the hash table. 669 * 670 * This function may sleep so you must not call it from interrupt 671 * context or with spin locks held. 672 * 673 * You must call rhashtable_walk_exit after this function returns. 674 */ 675 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 676 { 677 iter->ht = ht; 678 iter->p = NULL; 679 iter->slot = 0; 680 iter->skip = 0; 681 iter->end_of_table = 0; 682 683 spin_lock(&ht->lock); 684 iter->walker.tbl = 685 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 686 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 687 spin_unlock(&ht->lock); 688 } 689 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 690 691 /** 692 * rhashtable_walk_exit - Free an iterator 693 * @iter: Hash table Iterator 694 * 695 * This function frees resources allocated by rhashtable_walk_init. 696 */ 697 void rhashtable_walk_exit(struct rhashtable_iter *iter) 698 { 699 spin_lock(&iter->ht->lock); 700 if (iter->walker.tbl) 701 list_del(&iter->walker.list); 702 spin_unlock(&iter->ht->lock); 703 } 704 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 705 706 /** 707 * rhashtable_walk_start_check - Start a hash table walk 708 * @iter: Hash table iterator 709 * 710 * Start a hash table walk at the current iterator position. Note that we take 711 * the RCU lock in all cases including when we return an error. So you must 712 * always call rhashtable_walk_stop to clean up. 713 * 714 * Returns zero if successful. 715 * 716 * Returns -EAGAIN if resize event occured. Note that the iterator 717 * will rewind back to the beginning and you may use it immediately 718 * by calling rhashtable_walk_next. 719 * 720 * rhashtable_walk_start is defined as an inline variant that returns 721 * void. This is preferred in cases where the caller would ignore 722 * resize events and always continue. 723 */ 724 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 725 __acquires(RCU) 726 { 727 struct rhashtable *ht = iter->ht; 728 729 rcu_read_lock(); 730 731 spin_lock(&ht->lock); 732 if (iter->walker.tbl) 733 list_del(&iter->walker.list); 734 spin_unlock(&ht->lock); 735 736 if (!iter->walker.tbl && !iter->end_of_table) { 737 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 738 return -EAGAIN; 739 } 740 741 return 0; 742 } 743 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 744 745 /** 746 * __rhashtable_walk_find_next - Find the next element in a table (or the first 747 * one in case of a new walk). 748 * 749 * @iter: Hash table iterator 750 * 751 * Returns the found object or NULL when the end of the table is reached. 752 * 753 * Returns -EAGAIN if resize event occurred. 754 */ 755 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 756 { 757 struct bucket_table *tbl = iter->walker.tbl; 758 struct rhlist_head *list = iter->list; 759 struct rhashtable *ht = iter->ht; 760 struct rhash_head *p = iter->p; 761 bool rhlist = ht->rhlist; 762 763 if (!tbl) 764 return NULL; 765 766 for (; iter->slot < tbl->size; iter->slot++) { 767 int skip = iter->skip; 768 769 rht_for_each_rcu(p, tbl, iter->slot) { 770 if (rhlist) { 771 list = container_of(p, struct rhlist_head, 772 rhead); 773 do { 774 if (!skip) 775 goto next; 776 skip--; 777 list = rcu_dereference(list->next); 778 } while (list); 779 780 continue; 781 } 782 if (!skip) 783 break; 784 skip--; 785 } 786 787 next: 788 if (!rht_is_a_nulls(p)) { 789 iter->skip++; 790 iter->p = p; 791 iter->list = list; 792 return rht_obj(ht, rhlist ? &list->rhead : p); 793 } 794 795 iter->skip = 0; 796 } 797 798 iter->p = NULL; 799 800 /* Ensure we see any new tables. */ 801 smp_rmb(); 802 803 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 804 if (iter->walker.tbl) { 805 iter->slot = 0; 806 iter->skip = 0; 807 return ERR_PTR(-EAGAIN); 808 } else { 809 iter->end_of_table = true; 810 } 811 812 return NULL; 813 } 814 815 /** 816 * rhashtable_walk_next - Return the next object and advance the iterator 817 * @iter: Hash table iterator 818 * 819 * Note that you must call rhashtable_walk_stop when you are finished 820 * with the walk. 821 * 822 * Returns the next object or NULL when the end of the table is reached. 823 * 824 * Returns -EAGAIN if resize event occurred. Note that the iterator 825 * will rewind back to the beginning and you may continue to use it. 826 */ 827 void *rhashtable_walk_next(struct rhashtable_iter *iter) 828 { 829 struct rhlist_head *list = iter->list; 830 struct rhashtable *ht = iter->ht; 831 struct rhash_head *p = iter->p; 832 bool rhlist = ht->rhlist; 833 834 if (p) { 835 if (!rhlist || !(list = rcu_dereference(list->next))) { 836 p = rcu_dereference(p->next); 837 list = container_of(p, struct rhlist_head, rhead); 838 } 839 if (!rht_is_a_nulls(p)) { 840 iter->skip++; 841 iter->p = p; 842 iter->list = list; 843 return rht_obj(ht, rhlist ? &list->rhead : p); 844 } 845 846 /* At the end of this slot, switch to next one and then find 847 * next entry from that point. 848 */ 849 iter->skip = 0; 850 iter->slot++; 851 } 852 853 return __rhashtable_walk_find_next(iter); 854 } 855 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 856 857 /** 858 * rhashtable_walk_peek - Return the next object but don't advance the iterator 859 * @iter: Hash table iterator 860 * 861 * Returns the next object or NULL when the end of the table is reached. 862 * 863 * Returns -EAGAIN if resize event occurred. Note that the iterator 864 * will rewind back to the beginning and you may continue to use it. 865 */ 866 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 867 { 868 struct rhlist_head *list = iter->list; 869 struct rhashtable *ht = iter->ht; 870 struct rhash_head *p = iter->p; 871 872 if (p) 873 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 874 875 /* No object found in current iter, find next one in the table. */ 876 877 if (iter->skip) { 878 /* A nonzero skip value points to the next entry in the table 879 * beyond that last one that was found. Decrement skip so 880 * we find the current value. __rhashtable_walk_find_next 881 * will restore the original value of skip assuming that 882 * the table hasn't changed. 883 */ 884 iter->skip--; 885 } 886 887 return __rhashtable_walk_find_next(iter); 888 } 889 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 890 891 /** 892 * rhashtable_walk_stop - Finish a hash table walk 893 * @iter: Hash table iterator 894 * 895 * Finish a hash table walk. Does not reset the iterator to the start of the 896 * hash table. 897 */ 898 void rhashtable_walk_stop(struct rhashtable_iter *iter) 899 __releases(RCU) 900 { 901 struct rhashtable *ht; 902 struct bucket_table *tbl = iter->walker.tbl; 903 904 if (!tbl) 905 goto out; 906 907 ht = iter->ht; 908 909 spin_lock(&ht->lock); 910 if (tbl->rehash < tbl->size) 911 list_add(&iter->walker.list, &tbl->walkers); 912 else 913 iter->walker.tbl = NULL; 914 spin_unlock(&ht->lock); 915 916 iter->p = NULL; 917 918 out: 919 rcu_read_unlock(); 920 } 921 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 922 923 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 924 { 925 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 926 (unsigned long)params->min_size); 927 } 928 929 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 930 { 931 return jhash2(key, length, seed); 932 } 933 934 /** 935 * rhashtable_init - initialize a new hash table 936 * @ht: hash table to be initialized 937 * @params: configuration parameters 938 * 939 * Initializes a new hash table based on the provided configuration 940 * parameters. A table can be configured either with a variable or 941 * fixed length key: 942 * 943 * Configuration Example 1: Fixed length keys 944 * struct test_obj { 945 * int key; 946 * void * my_member; 947 * struct rhash_head node; 948 * }; 949 * 950 * struct rhashtable_params params = { 951 * .head_offset = offsetof(struct test_obj, node), 952 * .key_offset = offsetof(struct test_obj, key), 953 * .key_len = sizeof(int), 954 * .hashfn = jhash, 955 * .nulls_base = (1U << RHT_BASE_SHIFT), 956 * }; 957 * 958 * Configuration Example 2: Variable length keys 959 * struct test_obj { 960 * [...] 961 * struct rhash_head node; 962 * }; 963 * 964 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 965 * { 966 * struct test_obj *obj = data; 967 * 968 * return [... hash ...]; 969 * } 970 * 971 * struct rhashtable_params params = { 972 * .head_offset = offsetof(struct test_obj, node), 973 * .hashfn = jhash, 974 * .obj_hashfn = my_hash_fn, 975 * }; 976 */ 977 int rhashtable_init(struct rhashtable *ht, 978 const struct rhashtable_params *params) 979 { 980 struct bucket_table *tbl; 981 size_t size; 982 983 size = HASH_DEFAULT_SIZE; 984 985 if ((!params->key_len && !params->obj_hashfn) || 986 (params->obj_hashfn && !params->obj_cmpfn)) 987 return -EINVAL; 988 989 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 990 return -EINVAL; 991 992 memset(ht, 0, sizeof(*ht)); 993 mutex_init(&ht->mutex); 994 spin_lock_init(&ht->lock); 995 memcpy(&ht->p, params, sizeof(*params)); 996 997 if (params->min_size) 998 ht->p.min_size = roundup_pow_of_two(params->min_size); 999 1000 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1001 ht->max_elems = 1u << 31; 1002 1003 if (params->max_size) { 1004 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1005 if (ht->p.max_size < ht->max_elems / 2) 1006 ht->max_elems = ht->p.max_size * 2; 1007 } 1008 1009 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1010 1011 if (params->nelem_hint) 1012 size = rounded_hashtable_size(&ht->p); 1013 1014 if (params->locks_mul) 1015 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 1016 else 1017 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 1018 1019 ht->key_len = ht->p.key_len; 1020 if (!params->hashfn) { 1021 ht->p.hashfn = jhash; 1022 1023 if (!(ht->key_len & (sizeof(u32) - 1))) { 1024 ht->key_len /= sizeof(u32); 1025 ht->p.hashfn = rhashtable_jhash2; 1026 } 1027 } 1028 1029 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1030 if (tbl == NULL) 1031 return -ENOMEM; 1032 1033 atomic_set(&ht->nelems, 0); 1034 1035 RCU_INIT_POINTER(ht->tbl, tbl); 1036 1037 INIT_WORK(&ht->run_work, rht_deferred_worker); 1038 1039 return 0; 1040 } 1041 EXPORT_SYMBOL_GPL(rhashtable_init); 1042 1043 /** 1044 * rhltable_init - initialize a new hash list table 1045 * @hlt: hash list table to be initialized 1046 * @params: configuration parameters 1047 * 1048 * Initializes a new hash list table. 1049 * 1050 * See documentation for rhashtable_init. 1051 */ 1052 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) 1053 { 1054 int err; 1055 1056 /* No rhlist NULLs marking for now. */ 1057 if (params->nulls_base) 1058 return -EINVAL; 1059 1060 err = rhashtable_init(&hlt->ht, params); 1061 hlt->ht.rhlist = true; 1062 return err; 1063 } 1064 EXPORT_SYMBOL_GPL(rhltable_init); 1065 1066 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1067 void (*free_fn)(void *ptr, void *arg), 1068 void *arg) 1069 { 1070 struct rhlist_head *list; 1071 1072 if (!ht->rhlist) { 1073 free_fn(rht_obj(ht, obj), arg); 1074 return; 1075 } 1076 1077 list = container_of(obj, struct rhlist_head, rhead); 1078 do { 1079 obj = &list->rhead; 1080 list = rht_dereference(list->next, ht); 1081 free_fn(rht_obj(ht, obj), arg); 1082 } while (list); 1083 } 1084 1085 /** 1086 * rhashtable_free_and_destroy - free elements and destroy hash table 1087 * @ht: the hash table to destroy 1088 * @free_fn: callback to release resources of element 1089 * @arg: pointer passed to free_fn 1090 * 1091 * Stops an eventual async resize. If defined, invokes free_fn for each 1092 * element to releasal resources. Please note that RCU protected 1093 * readers may still be accessing the elements. Releasing of resources 1094 * must occur in a compatible manner. Then frees the bucket array. 1095 * 1096 * This function will eventually sleep to wait for an async resize 1097 * to complete. The caller is responsible that no further write operations 1098 * occurs in parallel. 1099 */ 1100 void rhashtable_free_and_destroy(struct rhashtable *ht, 1101 void (*free_fn)(void *ptr, void *arg), 1102 void *arg) 1103 { 1104 struct bucket_table *tbl; 1105 unsigned int i; 1106 1107 cancel_work_sync(&ht->run_work); 1108 1109 mutex_lock(&ht->mutex); 1110 tbl = rht_dereference(ht->tbl, ht); 1111 if (free_fn) { 1112 for (i = 0; i < tbl->size; i++) { 1113 struct rhash_head *pos, *next; 1114 1115 for (pos = rht_dereference(*rht_bucket(tbl, i), ht), 1116 next = !rht_is_a_nulls(pos) ? 1117 rht_dereference(pos->next, ht) : NULL; 1118 !rht_is_a_nulls(pos); 1119 pos = next, 1120 next = !rht_is_a_nulls(pos) ? 1121 rht_dereference(pos->next, ht) : NULL) 1122 rhashtable_free_one(ht, pos, free_fn, arg); 1123 } 1124 } 1125 1126 bucket_table_free(tbl); 1127 mutex_unlock(&ht->mutex); 1128 } 1129 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1130 1131 void rhashtable_destroy(struct rhashtable *ht) 1132 { 1133 return rhashtable_free_and_destroy(ht, NULL, NULL); 1134 } 1135 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1136 1137 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl, 1138 unsigned int hash) 1139 { 1140 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1141 static struct rhash_head __rcu *rhnull = 1142 (struct rhash_head __rcu *)NULLS_MARKER(0); 1143 unsigned int index = hash & ((1 << tbl->nest) - 1); 1144 unsigned int size = tbl->size >> tbl->nest; 1145 unsigned int subhash = hash; 1146 union nested_table *ntbl; 1147 1148 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1149 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1150 subhash >>= tbl->nest; 1151 1152 while (ntbl && size > (1 << shift)) { 1153 index = subhash & ((1 << shift) - 1); 1154 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1155 tbl, hash); 1156 size >>= shift; 1157 subhash >>= shift; 1158 } 1159 1160 if (!ntbl) 1161 return &rhnull; 1162 1163 return &ntbl[subhash].bucket; 1164 1165 } 1166 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1167 1168 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht, 1169 struct bucket_table *tbl, 1170 unsigned int hash) 1171 { 1172 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1173 unsigned int index = hash & ((1 << tbl->nest) - 1); 1174 unsigned int size = tbl->size >> tbl->nest; 1175 union nested_table *ntbl; 1176 unsigned int shifted; 1177 unsigned int nhash; 1178 1179 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1180 hash >>= tbl->nest; 1181 nhash = index; 1182 shifted = tbl->nest; 1183 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1184 size <= (1 << shift) ? shifted : 0, nhash); 1185 1186 while (ntbl && size > (1 << shift)) { 1187 index = hash & ((1 << shift) - 1); 1188 size >>= shift; 1189 hash >>= shift; 1190 nhash |= index << shifted; 1191 shifted += shift; 1192 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1193 size <= (1 << shift) ? shifted : 0, 1194 nhash); 1195 } 1196 1197 if (!ntbl) 1198 return NULL; 1199 1200 return &ntbl[hash].bucket; 1201 1202 } 1203 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1204
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.