1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 if (vma_is_anonymous(vma)) 68 return __transparent_hugepage_enabled(vma); 69 if (vma_is_shmem(vma) && shmem_huge_enabled(vma)) 70 return __transparent_hugepage_enabled(vma); 71 72 return false; 73 } 74 75 static struct page *get_huge_zero_page(void) 76 { 77 struct page *zero_page; 78 retry: 79 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 80 return READ_ONCE(huge_zero_page); 81 82 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 83 HPAGE_PMD_ORDER); 84 if (!zero_page) { 85 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 86 return NULL; 87 } 88 count_vm_event(THP_ZERO_PAGE_ALLOC); 89 preempt_disable(); 90 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 91 preempt_enable(); 92 __free_pages(zero_page, compound_order(zero_page)); 93 goto retry; 94 } 95 96 /* We take additional reference here. It will be put back by shrinker */ 97 atomic_set(&huge_zero_refcount, 2); 98 preempt_enable(); 99 return READ_ONCE(huge_zero_page); 100 } 101 102 static void put_huge_zero_page(void) 103 { 104 /* 105 * Counter should never go to zero here. Only shrinker can put 106 * last reference. 107 */ 108 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 109 } 110 111 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 112 { 113 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 114 return READ_ONCE(huge_zero_page); 115 116 if (!get_huge_zero_page()) 117 return NULL; 118 119 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 120 put_huge_zero_page(); 121 122 return READ_ONCE(huge_zero_page); 123 } 124 125 void mm_put_huge_zero_page(struct mm_struct *mm) 126 { 127 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 128 put_huge_zero_page(); 129 } 130 131 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 132 struct shrink_control *sc) 133 { 134 /* we can free zero page only if last reference remains */ 135 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 136 } 137 138 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 139 struct shrink_control *sc) 140 { 141 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 142 struct page *zero_page = xchg(&huge_zero_page, NULL); 143 BUG_ON(zero_page == NULL); 144 __free_pages(zero_page, compound_order(zero_page)); 145 return HPAGE_PMD_NR; 146 } 147 148 return 0; 149 } 150 151 static struct shrinker huge_zero_page_shrinker = { 152 .count_objects = shrink_huge_zero_page_count, 153 .scan_objects = shrink_huge_zero_page_scan, 154 .seeks = DEFAULT_SEEKS, 155 }; 156 157 #ifdef CONFIG_SYSFS 158 static ssize_t enabled_show(struct kobject *kobj, 159 struct kobj_attribute *attr, char *buf) 160 { 161 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 162 return sprintf(buf, "[always] madvise never\n"); 163 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 164 return sprintf(buf, "always [madvise] never\n"); 165 else 166 return sprintf(buf, "always madvise [never]\n"); 167 } 168 169 static ssize_t enabled_store(struct kobject *kobj, 170 struct kobj_attribute *attr, 171 const char *buf, size_t count) 172 { 173 ssize_t ret = count; 174 175 if (!memcmp("always", buf, 176 min(sizeof("always")-1, count))) { 177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 178 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 179 } else if (!memcmp("madvise", buf, 180 min(sizeof("madvise")-1, count))) { 181 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 182 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 183 } else if (!memcmp("never", buf, 184 min(sizeof("never")-1, count))) { 185 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 187 } else 188 ret = -EINVAL; 189 190 if (ret > 0) { 191 int err = start_stop_khugepaged(); 192 if (err) 193 ret = err; 194 } 195 return ret; 196 } 197 static struct kobj_attribute enabled_attr = 198 __ATTR(enabled, 0644, enabled_show, enabled_store); 199 200 ssize_t single_hugepage_flag_show(struct kobject *kobj, 201 struct kobj_attribute *attr, char *buf, 202 enum transparent_hugepage_flag flag) 203 { 204 return sprintf(buf, "%d\n", 205 !!test_bit(flag, &transparent_hugepage_flags)); 206 } 207 208 ssize_t single_hugepage_flag_store(struct kobject *kobj, 209 struct kobj_attribute *attr, 210 const char *buf, size_t count, 211 enum transparent_hugepage_flag flag) 212 { 213 unsigned long value; 214 int ret; 215 216 ret = kstrtoul(buf, 10, &value); 217 if (ret < 0) 218 return ret; 219 if (value > 1) 220 return -EINVAL; 221 222 if (value) 223 set_bit(flag, &transparent_hugepage_flags); 224 else 225 clear_bit(flag, &transparent_hugepage_flags); 226 227 return count; 228 } 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 234 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 236 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 238 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 240 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 241 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 242 } 243 244 static ssize_t defrag_store(struct kobject *kobj, 245 struct kobj_attribute *attr, 246 const char *buf, size_t count) 247 { 248 if (!memcmp("always", buf, 249 min(sizeof("always")-1, count))) { 250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 253 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 254 } else if (!memcmp("defer+madvise", buf, 255 min(sizeof("defer+madvise")-1, count))) { 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 } else if (!memcmp("defer", buf, 261 min(sizeof("defer")-1, count))) { 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 265 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 266 } else if (!memcmp("madvise", buf, 267 min(sizeof("madvise")-1, count))) { 268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 271 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 272 } else if (!memcmp("never", buf, 273 min(sizeof("never")-1, count))) { 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 278 } else 279 return -EINVAL; 280 281 return count; 282 } 283 static struct kobj_attribute defrag_attr = 284 __ATTR(defrag, 0644, defrag_show, defrag_store); 285 286 static ssize_t use_zero_page_show(struct kobject *kobj, 287 struct kobj_attribute *attr, char *buf) 288 { 289 return single_hugepage_flag_show(kobj, attr, buf, 290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 291 } 292 static ssize_t use_zero_page_store(struct kobject *kobj, 293 struct kobj_attribute *attr, const char *buf, size_t count) 294 { 295 return single_hugepage_flag_store(kobj, attr, buf, count, 296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 297 } 298 static struct kobj_attribute use_zero_page_attr = 299 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 300 301 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 302 struct kobj_attribute *attr, char *buf) 303 { 304 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 305 } 306 static struct kobj_attribute hpage_pmd_size_attr = 307 __ATTR_RO(hpage_pmd_size); 308 309 #ifdef CONFIG_DEBUG_VM 310 static ssize_t debug_cow_show(struct kobject *kobj, 311 struct kobj_attribute *attr, char *buf) 312 { 313 return single_hugepage_flag_show(kobj, attr, buf, 314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 315 } 316 static ssize_t debug_cow_store(struct kobject *kobj, 317 struct kobj_attribute *attr, 318 const char *buf, size_t count) 319 { 320 return single_hugepage_flag_store(kobj, attr, buf, count, 321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 322 } 323 static struct kobj_attribute debug_cow_attr = 324 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 325 #endif /* CONFIG_DEBUG_VM */ 326 327 static struct attribute *hugepage_attr[] = { 328 &enabled_attr.attr, 329 &defrag_attr.attr, 330 &use_zero_page_attr.attr, 331 &hpage_pmd_size_attr.attr, 332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 333 &shmem_enabled_attr.attr, 334 #endif 335 #ifdef CONFIG_DEBUG_VM 336 &debug_cow_attr.attr, 337 #endif 338 NULL, 339 }; 340 341 static const struct attribute_group hugepage_attr_group = { 342 .attrs = hugepage_attr, 343 }; 344 345 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 346 { 347 int err; 348 349 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 350 if (unlikely(!*hugepage_kobj)) { 351 pr_err("failed to create transparent hugepage kobject\n"); 352 return -ENOMEM; 353 } 354 355 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 356 if (err) { 357 pr_err("failed to register transparent hugepage group\n"); 358 goto delete_obj; 359 } 360 361 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 362 if (err) { 363 pr_err("failed to register transparent hugepage group\n"); 364 goto remove_hp_group; 365 } 366 367 return 0; 368 369 remove_hp_group: 370 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 371 delete_obj: 372 kobject_put(*hugepage_kobj); 373 return err; 374 } 375 376 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 377 { 378 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 379 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 380 kobject_put(hugepage_kobj); 381 } 382 #else 383 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 384 { 385 return 0; 386 } 387 388 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 389 { 390 } 391 #endif /* CONFIG_SYSFS */ 392 393 static int __init hugepage_init(void) 394 { 395 int err; 396 struct kobject *hugepage_kobj; 397 398 if (!has_transparent_hugepage()) { 399 transparent_hugepage_flags = 0; 400 return -EINVAL; 401 } 402 403 /* 404 * hugepages can't be allocated by the buddy allocator 405 */ 406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 407 /* 408 * we use page->mapping and page->index in second tail page 409 * as list_head: assuming THP order >= 2 410 */ 411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 412 413 err = hugepage_init_sysfs(&hugepage_kobj); 414 if (err) 415 goto err_sysfs; 416 417 err = khugepaged_init(); 418 if (err) 419 goto err_slab; 420 421 err = register_shrinker(&huge_zero_page_shrinker); 422 if (err) 423 goto err_hzp_shrinker; 424 err = register_shrinker(&deferred_split_shrinker); 425 if (err) 426 goto err_split_shrinker; 427 428 /* 429 * By default disable transparent hugepages on smaller systems, 430 * where the extra memory used could hurt more than TLB overhead 431 * is likely to save. The admin can still enable it through /sys. 432 */ 433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 434 transparent_hugepage_flags = 0; 435 return 0; 436 } 437 438 err = start_stop_khugepaged(); 439 if (err) 440 goto err_khugepaged; 441 442 return 0; 443 err_khugepaged: 444 unregister_shrinker(&deferred_split_shrinker); 445 err_split_shrinker: 446 unregister_shrinker(&huge_zero_page_shrinker); 447 err_hzp_shrinker: 448 khugepaged_destroy(); 449 err_slab: 450 hugepage_exit_sysfs(hugepage_kobj); 451 err_sysfs: 452 return err; 453 } 454 subsys_initcall(hugepage_init); 455 456 static int __init setup_transparent_hugepage(char *str) 457 { 458 int ret = 0; 459 if (!str) 460 goto out; 461 if (!strcmp(str, "always")) { 462 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 463 &transparent_hugepage_flags); 464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 465 &transparent_hugepage_flags); 466 ret = 1; 467 } else if (!strcmp(str, "madvise")) { 468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 469 &transparent_hugepage_flags); 470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 471 &transparent_hugepage_flags); 472 ret = 1; 473 } else if (!strcmp(str, "never")) { 474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 475 &transparent_hugepage_flags); 476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 477 &transparent_hugepage_flags); 478 ret = 1; 479 } 480 out: 481 if (!ret) 482 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 483 return ret; 484 } 485 __setup("transparent_hugepage=", setup_transparent_hugepage); 486 487 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 488 { 489 if (likely(vma->vm_flags & VM_WRITE)) 490 pmd = pmd_mkwrite(pmd); 491 return pmd; 492 } 493 494 static inline struct list_head *page_deferred_list(struct page *page) 495 { 496 /* ->lru in the tail pages is occupied by compound_head. */ 497 return &page[2].deferred_list; 498 } 499 500 void prep_transhuge_page(struct page *page) 501 { 502 /* 503 * we use page->mapping and page->indexlru in second tail page 504 * as list_head: assuming THP order >= 2 505 */ 506 507 INIT_LIST_HEAD(page_deferred_list(page)); 508 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 509 } 510 511 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 512 loff_t off, unsigned long flags, unsigned long size) 513 { 514 unsigned long addr; 515 loff_t off_end = off + len; 516 loff_t off_align = round_up(off, size); 517 unsigned long len_pad; 518 519 if (off_end <= off_align || (off_end - off_align) < size) 520 return 0; 521 522 len_pad = len + size; 523 if (len_pad < len || (off + len_pad) < off) 524 return 0; 525 526 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 527 off >> PAGE_SHIFT, flags); 528 if (IS_ERR_VALUE(addr)) 529 return 0; 530 531 addr += (off - addr) & (size - 1); 532 return addr; 533 } 534 535 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 536 unsigned long len, unsigned long pgoff, unsigned long flags) 537 { 538 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 539 540 if (addr) 541 goto out; 542 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 543 goto out; 544 545 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 546 if (addr) 547 return addr; 548 549 out: 550 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 551 } 552 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 553 554 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 555 struct page *page, gfp_t gfp) 556 { 557 struct vm_area_struct *vma = vmf->vma; 558 struct mem_cgroup *memcg; 559 pgtable_t pgtable; 560 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 561 vm_fault_t ret = 0; 562 563 VM_BUG_ON_PAGE(!PageCompound(page), page); 564 565 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) { 566 put_page(page); 567 count_vm_event(THP_FAULT_FALLBACK); 568 return VM_FAULT_FALLBACK; 569 } 570 571 pgtable = pte_alloc_one(vma->vm_mm); 572 if (unlikely(!pgtable)) { 573 ret = VM_FAULT_OOM; 574 goto release; 575 } 576 577 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 578 /* 579 * The memory barrier inside __SetPageUptodate makes sure that 580 * clear_huge_page writes become visible before the set_pmd_at() 581 * write. 582 */ 583 __SetPageUptodate(page); 584 585 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 586 if (unlikely(!pmd_none(*vmf->pmd))) { 587 goto unlock_release; 588 } else { 589 pmd_t entry; 590 591 ret = check_stable_address_space(vma->vm_mm); 592 if (ret) 593 goto unlock_release; 594 595 /* Deliver the page fault to userland */ 596 if (userfaultfd_missing(vma)) { 597 vm_fault_t ret2; 598 599 spin_unlock(vmf->ptl); 600 mem_cgroup_cancel_charge(page, memcg, true); 601 put_page(page); 602 pte_free(vma->vm_mm, pgtable); 603 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 604 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 605 return ret2; 606 } 607 608 entry = mk_huge_pmd(page, vma->vm_page_prot); 609 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 610 page_add_new_anon_rmap(page, vma, haddr, true); 611 mem_cgroup_commit_charge(page, memcg, false, true); 612 lru_cache_add_active_or_unevictable(page, vma); 613 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 614 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 615 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 616 mm_inc_nr_ptes(vma->vm_mm); 617 spin_unlock(vmf->ptl); 618 count_vm_event(THP_FAULT_ALLOC); 619 } 620 621 return 0; 622 unlock_release: 623 spin_unlock(vmf->ptl); 624 release: 625 if (pgtable) 626 pte_free(vma->vm_mm, pgtable); 627 mem_cgroup_cancel_charge(page, memcg, true); 628 put_page(page); 629 return ret; 630 631 } 632 633 /* 634 * always: directly stall for all thp allocations 635 * defer: wake kswapd and fail if not immediately available 636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 637 * fail if not immediately available 638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 639 * available 640 * never: never stall for any thp allocation 641 */ 642 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 643 { 644 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 645 646 /* Always do synchronous compaction */ 647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 648 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 649 650 /* Kick kcompactd and fail quickly */ 651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 652 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 653 654 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 656 return GFP_TRANSHUGE_LIGHT | 657 (vma_madvised ? __GFP_DIRECT_RECLAIM : 658 __GFP_KSWAPD_RECLAIM); 659 660 /* Only do synchronous compaction if madvised */ 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 662 return GFP_TRANSHUGE_LIGHT | 663 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 664 665 return GFP_TRANSHUGE_LIGHT; 666 } 667 668 /* Caller must hold page table lock. */ 669 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 671 struct page *zero_page) 672 { 673 pmd_t entry; 674 if (!pmd_none(*pmd)) 675 return false; 676 entry = mk_pmd(zero_page, vma->vm_page_prot); 677 entry = pmd_mkhuge(entry); 678 if (pgtable) 679 pgtable_trans_huge_deposit(mm, pmd, pgtable); 680 set_pmd_at(mm, haddr, pmd, entry); 681 mm_inc_nr_ptes(mm); 682 return true; 683 } 684 685 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 686 { 687 struct vm_area_struct *vma = vmf->vma; 688 gfp_t gfp; 689 struct page *page; 690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 691 692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 693 return VM_FAULT_FALLBACK; 694 if (unlikely(anon_vma_prepare(vma))) 695 return VM_FAULT_OOM; 696 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 697 return VM_FAULT_OOM; 698 if (!(vmf->flags & FAULT_FLAG_WRITE) && 699 !mm_forbids_zeropage(vma->vm_mm) && 700 transparent_hugepage_use_zero_page()) { 701 pgtable_t pgtable; 702 struct page *zero_page; 703 bool set; 704 vm_fault_t ret; 705 pgtable = pte_alloc_one(vma->vm_mm); 706 if (unlikely(!pgtable)) 707 return VM_FAULT_OOM; 708 zero_page = mm_get_huge_zero_page(vma->vm_mm); 709 if (unlikely(!zero_page)) { 710 pte_free(vma->vm_mm, pgtable); 711 count_vm_event(THP_FAULT_FALLBACK); 712 return VM_FAULT_FALLBACK; 713 } 714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 715 ret = 0; 716 set = false; 717 if (pmd_none(*vmf->pmd)) { 718 ret = check_stable_address_space(vma->vm_mm); 719 if (ret) { 720 spin_unlock(vmf->ptl); 721 } else if (userfaultfd_missing(vma)) { 722 spin_unlock(vmf->ptl); 723 ret = handle_userfault(vmf, VM_UFFD_MISSING); 724 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 725 } else { 726 set_huge_zero_page(pgtable, vma->vm_mm, vma, 727 haddr, vmf->pmd, zero_page); 728 spin_unlock(vmf->ptl); 729 set = true; 730 } 731 } else 732 spin_unlock(vmf->ptl); 733 if (!set) 734 pte_free(vma->vm_mm, pgtable); 735 return ret; 736 } 737 gfp = alloc_hugepage_direct_gfpmask(vma); 738 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 739 if (unlikely(!page)) { 740 count_vm_event(THP_FAULT_FALLBACK); 741 return VM_FAULT_FALLBACK; 742 } 743 prep_transhuge_page(page); 744 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 745 } 746 747 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 749 pgtable_t pgtable) 750 { 751 struct mm_struct *mm = vma->vm_mm; 752 pmd_t entry; 753 spinlock_t *ptl; 754 755 ptl = pmd_lock(mm, pmd); 756 if (!pmd_none(*pmd)) { 757 if (write) { 758 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 759 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 760 goto out_unlock; 761 } 762 entry = pmd_mkyoung(*pmd); 763 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 764 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 765 update_mmu_cache_pmd(vma, addr, pmd); 766 } 767 768 goto out_unlock; 769 } 770 771 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 772 if (pfn_t_devmap(pfn)) 773 entry = pmd_mkdevmap(entry); 774 if (write) { 775 entry = pmd_mkyoung(pmd_mkdirty(entry)); 776 entry = maybe_pmd_mkwrite(entry, vma); 777 } 778 779 if (pgtable) { 780 pgtable_trans_huge_deposit(mm, pmd, pgtable); 781 mm_inc_nr_ptes(mm); 782 pgtable = NULL; 783 } 784 785 set_pmd_at(mm, addr, pmd, entry); 786 update_mmu_cache_pmd(vma, addr, pmd); 787 788 out_unlock: 789 spin_unlock(ptl); 790 if (pgtable) 791 pte_free(mm, pgtable); 792 } 793 794 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 795 { 796 unsigned long addr = vmf->address & PMD_MASK; 797 struct vm_area_struct *vma = vmf->vma; 798 pgprot_t pgprot = vma->vm_page_prot; 799 pgtable_t pgtable = NULL; 800 801 /* 802 * If we had pmd_special, we could avoid all these restrictions, 803 * but we need to be consistent with PTEs and architectures that 804 * can't support a 'special' bit. 805 */ 806 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 807 !pfn_t_devmap(pfn)); 808 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 809 (VM_PFNMAP|VM_MIXEDMAP)); 810 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 811 812 if (addr < vma->vm_start || addr >= vma->vm_end) 813 return VM_FAULT_SIGBUS; 814 815 if (arch_needs_pgtable_deposit()) { 816 pgtable = pte_alloc_one(vma->vm_mm); 817 if (!pgtable) 818 return VM_FAULT_OOM; 819 } 820 821 track_pfn_insert(vma, &pgprot, pfn); 822 823 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 824 return VM_FAULT_NOPAGE; 825 } 826 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 827 828 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 829 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 830 { 831 if (likely(vma->vm_flags & VM_WRITE)) 832 pud = pud_mkwrite(pud); 833 return pud; 834 } 835 836 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 837 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 838 { 839 struct mm_struct *mm = vma->vm_mm; 840 pud_t entry; 841 spinlock_t *ptl; 842 843 ptl = pud_lock(mm, pud); 844 if (!pud_none(*pud)) { 845 if (write) { 846 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 847 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 848 goto out_unlock; 849 } 850 entry = pud_mkyoung(*pud); 851 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 852 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 853 update_mmu_cache_pud(vma, addr, pud); 854 } 855 goto out_unlock; 856 } 857 858 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 859 if (pfn_t_devmap(pfn)) 860 entry = pud_mkdevmap(entry); 861 if (write) { 862 entry = pud_mkyoung(pud_mkdirty(entry)); 863 entry = maybe_pud_mkwrite(entry, vma); 864 } 865 set_pud_at(mm, addr, pud, entry); 866 update_mmu_cache_pud(vma, addr, pud); 867 868 out_unlock: 869 spin_unlock(ptl); 870 } 871 872 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 873 { 874 unsigned long addr = vmf->address & PUD_MASK; 875 struct vm_area_struct *vma = vmf->vma; 876 pgprot_t pgprot = vma->vm_page_prot; 877 878 /* 879 * If we had pud_special, we could avoid all these restrictions, 880 * but we need to be consistent with PTEs and architectures that 881 * can't support a 'special' bit. 882 */ 883 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 884 !pfn_t_devmap(pfn)); 885 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 886 (VM_PFNMAP|VM_MIXEDMAP)); 887 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 888 889 if (addr < vma->vm_start || addr >= vma->vm_end) 890 return VM_FAULT_SIGBUS; 891 892 track_pfn_insert(vma, &pgprot, pfn); 893 894 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 895 return VM_FAULT_NOPAGE; 896 } 897 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 898 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 899 900 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 901 pmd_t *pmd, int flags) 902 { 903 pmd_t _pmd; 904 905 _pmd = pmd_mkyoung(*pmd); 906 if (flags & FOLL_WRITE) 907 _pmd = pmd_mkdirty(_pmd); 908 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 909 pmd, _pmd, flags & FOLL_WRITE)) 910 update_mmu_cache_pmd(vma, addr, pmd); 911 } 912 913 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 914 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 915 { 916 unsigned long pfn = pmd_pfn(*pmd); 917 struct mm_struct *mm = vma->vm_mm; 918 struct page *page; 919 920 assert_spin_locked(pmd_lockptr(mm, pmd)); 921 922 /* 923 * When we COW a devmap PMD entry, we split it into PTEs, so we should 924 * not be in this function with `flags & FOLL_COW` set. 925 */ 926 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 927 928 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 929 return NULL; 930 931 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 932 /* pass */; 933 else 934 return NULL; 935 936 if (flags & FOLL_TOUCH) 937 touch_pmd(vma, addr, pmd, flags); 938 939 /* 940 * device mapped pages can only be returned if the 941 * caller will manage the page reference count. 942 */ 943 if (!(flags & FOLL_GET)) 944 return ERR_PTR(-EEXIST); 945 946 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 947 *pgmap = get_dev_pagemap(pfn, *pgmap); 948 if (!*pgmap) 949 return ERR_PTR(-EFAULT); 950 page = pfn_to_page(pfn); 951 get_page(page); 952 953 return page; 954 } 955 956 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 957 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 958 struct vm_area_struct *vma) 959 { 960 spinlock_t *dst_ptl, *src_ptl; 961 struct page *src_page; 962 pmd_t pmd; 963 pgtable_t pgtable = NULL; 964 int ret = -ENOMEM; 965 966 /* Skip if can be re-fill on fault */ 967 if (!vma_is_anonymous(vma)) 968 return 0; 969 970 pgtable = pte_alloc_one(dst_mm); 971 if (unlikely(!pgtable)) 972 goto out; 973 974 dst_ptl = pmd_lock(dst_mm, dst_pmd); 975 src_ptl = pmd_lockptr(src_mm, src_pmd); 976 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 977 978 ret = -EAGAIN; 979 pmd = *src_pmd; 980 981 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 982 if (unlikely(is_swap_pmd(pmd))) { 983 swp_entry_t entry = pmd_to_swp_entry(pmd); 984 985 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 986 if (is_write_migration_entry(entry)) { 987 make_migration_entry_read(&entry); 988 pmd = swp_entry_to_pmd(entry); 989 if (pmd_swp_soft_dirty(*src_pmd)) 990 pmd = pmd_swp_mksoft_dirty(pmd); 991 set_pmd_at(src_mm, addr, src_pmd, pmd); 992 } 993 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 994 mm_inc_nr_ptes(dst_mm); 995 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 996 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 997 ret = 0; 998 goto out_unlock; 999 } 1000 #endif 1001 1002 if (unlikely(!pmd_trans_huge(pmd))) { 1003 pte_free(dst_mm, pgtable); 1004 goto out_unlock; 1005 } 1006 /* 1007 * When page table lock is held, the huge zero pmd should not be 1008 * under splitting since we don't split the page itself, only pmd to 1009 * a page table. 1010 */ 1011 if (is_huge_zero_pmd(pmd)) { 1012 struct page *zero_page; 1013 /* 1014 * get_huge_zero_page() will never allocate a new page here, 1015 * since we already have a zero page to copy. It just takes a 1016 * reference. 1017 */ 1018 zero_page = mm_get_huge_zero_page(dst_mm); 1019 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1020 zero_page); 1021 ret = 0; 1022 goto out_unlock; 1023 } 1024 1025 src_page = pmd_page(pmd); 1026 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1027 get_page(src_page); 1028 page_dup_rmap(src_page, true); 1029 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1030 mm_inc_nr_ptes(dst_mm); 1031 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1032 1033 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1034 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1035 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1036 1037 ret = 0; 1038 out_unlock: 1039 spin_unlock(src_ptl); 1040 spin_unlock(dst_ptl); 1041 out: 1042 return ret; 1043 } 1044 1045 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1046 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1047 pud_t *pud, int flags) 1048 { 1049 pud_t _pud; 1050 1051 _pud = pud_mkyoung(*pud); 1052 if (flags & FOLL_WRITE) 1053 _pud = pud_mkdirty(_pud); 1054 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1055 pud, _pud, flags & FOLL_WRITE)) 1056 update_mmu_cache_pud(vma, addr, pud); 1057 } 1058 1059 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1060 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1061 { 1062 unsigned long pfn = pud_pfn(*pud); 1063 struct mm_struct *mm = vma->vm_mm; 1064 struct page *page; 1065 1066 assert_spin_locked(pud_lockptr(mm, pud)); 1067 1068 if (flags & FOLL_WRITE && !pud_write(*pud)) 1069 return NULL; 1070 1071 if (pud_present(*pud) && pud_devmap(*pud)) 1072 /* pass */; 1073 else 1074 return NULL; 1075 1076 if (flags & FOLL_TOUCH) 1077 touch_pud(vma, addr, pud, flags); 1078 1079 /* 1080 * device mapped pages can only be returned if the 1081 * caller will manage the page reference count. 1082 */ 1083 if (!(flags & FOLL_GET)) 1084 return ERR_PTR(-EEXIST); 1085 1086 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1087 *pgmap = get_dev_pagemap(pfn, *pgmap); 1088 if (!*pgmap) 1089 return ERR_PTR(-EFAULT); 1090 page = pfn_to_page(pfn); 1091 get_page(page); 1092 1093 return page; 1094 } 1095 1096 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1097 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1098 struct vm_area_struct *vma) 1099 { 1100 spinlock_t *dst_ptl, *src_ptl; 1101 pud_t pud; 1102 int ret; 1103 1104 dst_ptl = pud_lock(dst_mm, dst_pud); 1105 src_ptl = pud_lockptr(src_mm, src_pud); 1106 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1107 1108 ret = -EAGAIN; 1109 pud = *src_pud; 1110 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1111 goto out_unlock; 1112 1113 /* 1114 * When page table lock is held, the huge zero pud should not be 1115 * under splitting since we don't split the page itself, only pud to 1116 * a page table. 1117 */ 1118 if (is_huge_zero_pud(pud)) { 1119 /* No huge zero pud yet */ 1120 } 1121 1122 pudp_set_wrprotect(src_mm, addr, src_pud); 1123 pud = pud_mkold(pud_wrprotect(pud)); 1124 set_pud_at(dst_mm, addr, dst_pud, pud); 1125 1126 ret = 0; 1127 out_unlock: 1128 spin_unlock(src_ptl); 1129 spin_unlock(dst_ptl); 1130 return ret; 1131 } 1132 1133 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1134 { 1135 pud_t entry; 1136 unsigned long haddr; 1137 bool write = vmf->flags & FAULT_FLAG_WRITE; 1138 1139 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1140 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1141 goto unlock; 1142 1143 entry = pud_mkyoung(orig_pud); 1144 if (write) 1145 entry = pud_mkdirty(entry); 1146 haddr = vmf->address & HPAGE_PUD_MASK; 1147 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1148 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1149 1150 unlock: 1151 spin_unlock(vmf->ptl); 1152 } 1153 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1154 1155 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1156 { 1157 pmd_t entry; 1158 unsigned long haddr; 1159 bool write = vmf->flags & FAULT_FLAG_WRITE; 1160 1161 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1162 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1163 goto unlock; 1164 1165 entry = pmd_mkyoung(orig_pmd); 1166 if (write) 1167 entry = pmd_mkdirty(entry); 1168 haddr = vmf->address & HPAGE_PMD_MASK; 1169 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1170 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1171 1172 unlock: 1173 spin_unlock(vmf->ptl); 1174 } 1175 1176 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, 1177 pmd_t orig_pmd, struct page *page) 1178 { 1179 struct vm_area_struct *vma = vmf->vma; 1180 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1181 struct mem_cgroup *memcg; 1182 pgtable_t pgtable; 1183 pmd_t _pmd; 1184 int i; 1185 vm_fault_t ret = 0; 1186 struct page **pages; 1187 struct mmu_notifier_range range; 1188 1189 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *), 1190 GFP_KERNEL); 1191 if (unlikely(!pages)) { 1192 ret |= VM_FAULT_OOM; 1193 goto out; 1194 } 1195 1196 for (i = 0; i < HPAGE_PMD_NR; i++) { 1197 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1198 vmf->address, page_to_nid(page)); 1199 if (unlikely(!pages[i] || 1200 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm, 1201 GFP_KERNEL, &memcg, false))) { 1202 if (pages[i]) 1203 put_page(pages[i]); 1204 while (--i >= 0) { 1205 memcg = (void *)page_private(pages[i]); 1206 set_page_private(pages[i], 0); 1207 mem_cgroup_cancel_charge(pages[i], memcg, 1208 false); 1209 put_page(pages[i]); 1210 } 1211 kfree(pages); 1212 ret |= VM_FAULT_OOM; 1213 goto out; 1214 } 1215 set_page_private(pages[i], (unsigned long)memcg); 1216 } 1217 1218 for (i = 0; i < HPAGE_PMD_NR; i++) { 1219 copy_user_highpage(pages[i], page + i, 1220 haddr + PAGE_SIZE * i, vma); 1221 __SetPageUptodate(pages[i]); 1222 cond_resched(); 1223 } 1224 1225 mmu_notifier_range_init(&range, vma->vm_mm, haddr, 1226 haddr + HPAGE_PMD_SIZE); 1227 mmu_notifier_invalidate_range_start(&range); 1228 1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1230 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1231 goto out_free_pages; 1232 VM_BUG_ON_PAGE(!PageHead(page), page); 1233 1234 /* 1235 * Leave pmd empty until pte is filled note we must notify here as 1236 * concurrent CPU thread might write to new page before the call to 1237 * mmu_notifier_invalidate_range_end() happens which can lead to a 1238 * device seeing memory write in different order than CPU. 1239 * 1240 * See Documentation/vm/mmu_notifier.rst 1241 */ 1242 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1243 1244 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1245 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1246 1247 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1248 pte_t entry; 1249 entry = mk_pte(pages[i], vma->vm_page_prot); 1250 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1251 memcg = (void *)page_private(pages[i]); 1252 set_page_private(pages[i], 0); 1253 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1254 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1255 lru_cache_add_active_or_unevictable(pages[i], vma); 1256 vmf->pte = pte_offset_map(&_pmd, haddr); 1257 VM_BUG_ON(!pte_none(*vmf->pte)); 1258 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1259 pte_unmap(vmf->pte); 1260 } 1261 kfree(pages); 1262 1263 smp_wmb(); /* make pte visible before pmd */ 1264 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1265 page_remove_rmap(page, true); 1266 spin_unlock(vmf->ptl); 1267 1268 /* 1269 * No need to double call mmu_notifier->invalidate_range() callback as 1270 * the above pmdp_huge_clear_flush_notify() did already call it. 1271 */ 1272 mmu_notifier_invalidate_range_only_end(&range); 1273 1274 ret |= VM_FAULT_WRITE; 1275 put_page(page); 1276 1277 out: 1278 return ret; 1279 1280 out_free_pages: 1281 spin_unlock(vmf->ptl); 1282 mmu_notifier_invalidate_range_end(&range); 1283 for (i = 0; i < HPAGE_PMD_NR; i++) { 1284 memcg = (void *)page_private(pages[i]); 1285 set_page_private(pages[i], 0); 1286 mem_cgroup_cancel_charge(pages[i], memcg, false); 1287 put_page(pages[i]); 1288 } 1289 kfree(pages); 1290 goto out; 1291 } 1292 1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1294 { 1295 struct vm_area_struct *vma = vmf->vma; 1296 struct page *page = NULL, *new_page; 1297 struct mem_cgroup *memcg; 1298 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1299 struct mmu_notifier_range range; 1300 gfp_t huge_gfp; /* for allocation and charge */ 1301 vm_fault_t ret = 0; 1302 1303 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1304 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1305 if (is_huge_zero_pmd(orig_pmd)) 1306 goto alloc; 1307 spin_lock(vmf->ptl); 1308 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1309 goto out_unlock; 1310 1311 page = pmd_page(orig_pmd); 1312 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1313 /* 1314 * We can only reuse the page if nobody else maps the huge page or it's 1315 * part. 1316 */ 1317 if (!trylock_page(page)) { 1318 get_page(page); 1319 spin_unlock(vmf->ptl); 1320 lock_page(page); 1321 spin_lock(vmf->ptl); 1322 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1323 unlock_page(page); 1324 put_page(page); 1325 goto out_unlock; 1326 } 1327 put_page(page); 1328 } 1329 if (reuse_swap_page(page, NULL)) { 1330 pmd_t entry; 1331 entry = pmd_mkyoung(orig_pmd); 1332 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1333 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1334 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1335 ret |= VM_FAULT_WRITE; 1336 unlock_page(page); 1337 goto out_unlock; 1338 } 1339 unlock_page(page); 1340 get_page(page); 1341 spin_unlock(vmf->ptl); 1342 alloc: 1343 if (__transparent_hugepage_enabled(vma) && 1344 !transparent_hugepage_debug_cow()) { 1345 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1346 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1347 } else 1348 new_page = NULL; 1349 1350 if (likely(new_page)) { 1351 prep_transhuge_page(new_page); 1352 } else { 1353 if (!page) { 1354 split_huge_pmd(vma, vmf->pmd, vmf->address); 1355 ret |= VM_FAULT_FALLBACK; 1356 } else { 1357 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1358 if (ret & VM_FAULT_OOM) { 1359 split_huge_pmd(vma, vmf->pmd, vmf->address); 1360 ret |= VM_FAULT_FALLBACK; 1361 } 1362 put_page(page); 1363 } 1364 count_vm_event(THP_FAULT_FALLBACK); 1365 goto out; 1366 } 1367 1368 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm, 1369 huge_gfp, &memcg, true))) { 1370 put_page(new_page); 1371 split_huge_pmd(vma, vmf->pmd, vmf->address); 1372 if (page) 1373 put_page(page); 1374 ret |= VM_FAULT_FALLBACK; 1375 count_vm_event(THP_FAULT_FALLBACK); 1376 goto out; 1377 } 1378 1379 count_vm_event(THP_FAULT_ALLOC); 1380 1381 if (!page) 1382 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR); 1383 else 1384 copy_user_huge_page(new_page, page, vmf->address, 1385 vma, HPAGE_PMD_NR); 1386 __SetPageUptodate(new_page); 1387 1388 mmu_notifier_range_init(&range, vma->vm_mm, haddr, 1389 haddr + HPAGE_PMD_SIZE); 1390 mmu_notifier_invalidate_range_start(&range); 1391 1392 spin_lock(vmf->ptl); 1393 if (page) 1394 put_page(page); 1395 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1396 spin_unlock(vmf->ptl); 1397 mem_cgroup_cancel_charge(new_page, memcg, true); 1398 put_page(new_page); 1399 goto out_mn; 1400 } else { 1401 pmd_t entry; 1402 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1403 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1404 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1405 page_add_new_anon_rmap(new_page, vma, haddr, true); 1406 mem_cgroup_commit_charge(new_page, memcg, false, true); 1407 lru_cache_add_active_or_unevictable(new_page, vma); 1408 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1409 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1410 if (!page) { 1411 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1412 } else { 1413 VM_BUG_ON_PAGE(!PageHead(page), page); 1414 page_remove_rmap(page, true); 1415 put_page(page); 1416 } 1417 ret |= VM_FAULT_WRITE; 1418 } 1419 spin_unlock(vmf->ptl); 1420 out_mn: 1421 /* 1422 * No need to double call mmu_notifier->invalidate_range() callback as 1423 * the above pmdp_huge_clear_flush_notify() did already call it. 1424 */ 1425 mmu_notifier_invalidate_range_only_end(&range); 1426 out: 1427 return ret; 1428 out_unlock: 1429 spin_unlock(vmf->ptl); 1430 return ret; 1431 } 1432 1433 /* 1434 * FOLL_FORCE can write to even unwritable pmd's, but only 1435 * after we've gone through a COW cycle and they are dirty. 1436 */ 1437 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1438 { 1439 return pmd_write(pmd) || 1440 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1441 } 1442 1443 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1444 unsigned long addr, 1445 pmd_t *pmd, 1446 unsigned int flags) 1447 { 1448 struct mm_struct *mm = vma->vm_mm; 1449 struct page *page = NULL; 1450 1451 assert_spin_locked(pmd_lockptr(mm, pmd)); 1452 1453 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1454 goto out; 1455 1456 /* Avoid dumping huge zero page */ 1457 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1458 return ERR_PTR(-EFAULT); 1459 1460 /* Full NUMA hinting faults to serialise migration in fault paths */ 1461 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1462 goto out; 1463 1464 page = pmd_page(*pmd); 1465 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1466 if (flags & FOLL_TOUCH) 1467 touch_pmd(vma, addr, pmd, flags); 1468 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1469 /* 1470 * We don't mlock() pte-mapped THPs. This way we can avoid 1471 * leaking mlocked pages into non-VM_LOCKED VMAs. 1472 * 1473 * For anon THP: 1474 * 1475 * In most cases the pmd is the only mapping of the page as we 1476 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1477 * writable private mappings in populate_vma_page_range(). 1478 * 1479 * The only scenario when we have the page shared here is if we 1480 * mlocking read-only mapping shared over fork(). We skip 1481 * mlocking such pages. 1482 * 1483 * For file THP: 1484 * 1485 * We can expect PageDoubleMap() to be stable under page lock: 1486 * for file pages we set it in page_add_file_rmap(), which 1487 * requires page to be locked. 1488 */ 1489 1490 if (PageAnon(page) && compound_mapcount(page) != 1) 1491 goto skip_mlock; 1492 if (PageDoubleMap(page) || !page->mapping) 1493 goto skip_mlock; 1494 if (!trylock_page(page)) 1495 goto skip_mlock; 1496 lru_add_drain(); 1497 if (page->mapping && !PageDoubleMap(page)) 1498 mlock_vma_page(page); 1499 unlock_page(page); 1500 } 1501 skip_mlock: 1502 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1503 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1504 if (flags & FOLL_GET) 1505 get_page(page); 1506 1507 out: 1508 return page; 1509 } 1510 1511 /* NUMA hinting page fault entry point for trans huge pmds */ 1512 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1513 { 1514 struct vm_area_struct *vma = vmf->vma; 1515 struct anon_vma *anon_vma = NULL; 1516 struct page *page; 1517 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1518 int page_nid = -1, this_nid = numa_node_id(); 1519 int target_nid, last_cpupid = -1; 1520 bool page_locked; 1521 bool migrated = false; 1522 bool was_writable; 1523 int flags = 0; 1524 1525 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1526 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1527 goto out_unlock; 1528 1529 /* 1530 * If there are potential migrations, wait for completion and retry 1531 * without disrupting NUMA hinting information. Do not relock and 1532 * check_same as the page may no longer be mapped. 1533 */ 1534 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1535 page = pmd_page(*vmf->pmd); 1536 if (!get_page_unless_zero(page)) 1537 goto out_unlock; 1538 spin_unlock(vmf->ptl); 1539 put_and_wait_on_page_locked(page); 1540 goto out; 1541 } 1542 1543 page = pmd_page(pmd); 1544 BUG_ON(is_huge_zero_page(page)); 1545 page_nid = page_to_nid(page); 1546 last_cpupid = page_cpupid_last(page); 1547 count_vm_numa_event(NUMA_HINT_FAULTS); 1548 if (page_nid == this_nid) { 1549 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1550 flags |= TNF_FAULT_LOCAL; 1551 } 1552 1553 /* See similar comment in do_numa_page for explanation */ 1554 if (!pmd_savedwrite(pmd)) 1555 flags |= TNF_NO_GROUP; 1556 1557 /* 1558 * Acquire the page lock to serialise THP migrations but avoid dropping 1559 * page_table_lock if at all possible 1560 */ 1561 page_locked = trylock_page(page); 1562 target_nid = mpol_misplaced(page, vma, haddr); 1563 if (target_nid == -1) { 1564 /* If the page was locked, there are no parallel migrations */ 1565 if (page_locked) 1566 goto clear_pmdnuma; 1567 } 1568 1569 /* Migration could have started since the pmd_trans_migrating check */ 1570 if (!page_locked) { 1571 page_nid = -1; 1572 if (!get_page_unless_zero(page)) 1573 goto out_unlock; 1574 spin_unlock(vmf->ptl); 1575 put_and_wait_on_page_locked(page); 1576 goto out; 1577 } 1578 1579 /* 1580 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1581 * to serialises splits 1582 */ 1583 get_page(page); 1584 spin_unlock(vmf->ptl); 1585 anon_vma = page_lock_anon_vma_read(page); 1586 1587 /* Confirm the PMD did not change while page_table_lock was released */ 1588 spin_lock(vmf->ptl); 1589 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1590 unlock_page(page); 1591 put_page(page); 1592 page_nid = -1; 1593 goto out_unlock; 1594 } 1595 1596 /* Bail if we fail to protect against THP splits for any reason */ 1597 if (unlikely(!anon_vma)) { 1598 put_page(page); 1599 page_nid = -1; 1600 goto clear_pmdnuma; 1601 } 1602 1603 /* 1604 * Since we took the NUMA fault, we must have observed the !accessible 1605 * bit. Make sure all other CPUs agree with that, to avoid them 1606 * modifying the page we're about to migrate. 1607 * 1608 * Must be done under PTL such that we'll observe the relevant 1609 * inc_tlb_flush_pending(). 1610 * 1611 * We are not sure a pending tlb flush here is for a huge page 1612 * mapping or not. Hence use the tlb range variant 1613 */ 1614 if (mm_tlb_flush_pending(vma->vm_mm)) { 1615 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1616 /* 1617 * change_huge_pmd() released the pmd lock before 1618 * invalidating the secondary MMUs sharing the primary 1619 * MMU pagetables (with ->invalidate_range()). The 1620 * mmu_notifier_invalidate_range_end() (which 1621 * internally calls ->invalidate_range()) in 1622 * change_pmd_range() will run after us, so we can't 1623 * rely on it here and we need an explicit invalidate. 1624 */ 1625 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1626 haddr + HPAGE_PMD_SIZE); 1627 } 1628 1629 /* 1630 * Migrate the THP to the requested node, returns with page unlocked 1631 * and access rights restored. 1632 */ 1633 spin_unlock(vmf->ptl); 1634 1635 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1636 vmf->pmd, pmd, vmf->address, page, target_nid); 1637 if (migrated) { 1638 flags |= TNF_MIGRATED; 1639 page_nid = target_nid; 1640 } else 1641 flags |= TNF_MIGRATE_FAIL; 1642 1643 goto out; 1644 clear_pmdnuma: 1645 BUG_ON(!PageLocked(page)); 1646 was_writable = pmd_savedwrite(pmd); 1647 pmd = pmd_modify(pmd, vma->vm_page_prot); 1648 pmd = pmd_mkyoung(pmd); 1649 if (was_writable) 1650 pmd = pmd_mkwrite(pmd); 1651 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1652 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1653 unlock_page(page); 1654 out_unlock: 1655 spin_unlock(vmf->ptl); 1656 1657 out: 1658 if (anon_vma) 1659 page_unlock_anon_vma_read(anon_vma); 1660 1661 if (page_nid != -1) 1662 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1663 flags); 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * Return true if we do MADV_FREE successfully on entire pmd page. 1670 * Otherwise, return false. 1671 */ 1672 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1673 pmd_t *pmd, unsigned long addr, unsigned long next) 1674 { 1675 spinlock_t *ptl; 1676 pmd_t orig_pmd; 1677 struct page *page; 1678 struct mm_struct *mm = tlb->mm; 1679 bool ret = false; 1680 1681 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1682 1683 ptl = pmd_trans_huge_lock(pmd, vma); 1684 if (!ptl) 1685 goto out_unlocked; 1686 1687 orig_pmd = *pmd; 1688 if (is_huge_zero_pmd(orig_pmd)) 1689 goto out; 1690 1691 if (unlikely(!pmd_present(orig_pmd))) { 1692 VM_BUG_ON(thp_migration_supported() && 1693 !is_pmd_migration_entry(orig_pmd)); 1694 goto out; 1695 } 1696 1697 page = pmd_page(orig_pmd); 1698 /* 1699 * If other processes are mapping this page, we couldn't discard 1700 * the page unless they all do MADV_FREE so let's skip the page. 1701 */ 1702 if (page_mapcount(page) != 1) 1703 goto out; 1704 1705 if (!trylock_page(page)) 1706 goto out; 1707 1708 /* 1709 * If user want to discard part-pages of THP, split it so MADV_FREE 1710 * will deactivate only them. 1711 */ 1712 if (next - addr != HPAGE_PMD_SIZE) { 1713 get_page(page); 1714 spin_unlock(ptl); 1715 split_huge_page(page); 1716 unlock_page(page); 1717 put_page(page); 1718 goto out_unlocked; 1719 } 1720 1721 if (PageDirty(page)) 1722 ClearPageDirty(page); 1723 unlock_page(page); 1724 1725 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1726 pmdp_invalidate(vma, addr, pmd); 1727 orig_pmd = pmd_mkold(orig_pmd); 1728 orig_pmd = pmd_mkclean(orig_pmd); 1729 1730 set_pmd_at(mm, addr, pmd, orig_pmd); 1731 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1732 } 1733 1734 mark_page_lazyfree(page); 1735 ret = true; 1736 out: 1737 spin_unlock(ptl); 1738 out_unlocked: 1739 return ret; 1740 } 1741 1742 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1743 { 1744 pgtable_t pgtable; 1745 1746 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1747 pte_free(mm, pgtable); 1748 mm_dec_nr_ptes(mm); 1749 } 1750 1751 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1752 pmd_t *pmd, unsigned long addr) 1753 { 1754 pmd_t orig_pmd; 1755 spinlock_t *ptl; 1756 1757 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1758 1759 ptl = __pmd_trans_huge_lock(pmd, vma); 1760 if (!ptl) 1761 return 0; 1762 /* 1763 * For architectures like ppc64 we look at deposited pgtable 1764 * when calling pmdp_huge_get_and_clear. So do the 1765 * pgtable_trans_huge_withdraw after finishing pmdp related 1766 * operations. 1767 */ 1768 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1769 tlb->fullmm); 1770 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1771 if (vma_is_dax(vma)) { 1772 if (arch_needs_pgtable_deposit()) 1773 zap_deposited_table(tlb->mm, pmd); 1774 spin_unlock(ptl); 1775 if (is_huge_zero_pmd(orig_pmd)) 1776 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1777 } else if (is_huge_zero_pmd(orig_pmd)) { 1778 zap_deposited_table(tlb->mm, pmd); 1779 spin_unlock(ptl); 1780 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1781 } else { 1782 struct page *page = NULL; 1783 int flush_needed = 1; 1784 1785 if (pmd_present(orig_pmd)) { 1786 page = pmd_page(orig_pmd); 1787 page_remove_rmap(page, true); 1788 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1789 VM_BUG_ON_PAGE(!PageHead(page), page); 1790 } else if (thp_migration_supported()) { 1791 swp_entry_t entry; 1792 1793 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1794 entry = pmd_to_swp_entry(orig_pmd); 1795 page = pfn_to_page(swp_offset(entry)); 1796 flush_needed = 0; 1797 } else 1798 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1799 1800 if (PageAnon(page)) { 1801 zap_deposited_table(tlb->mm, pmd); 1802 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1803 } else { 1804 if (arch_needs_pgtable_deposit()) 1805 zap_deposited_table(tlb->mm, pmd); 1806 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1807 } 1808 1809 spin_unlock(ptl); 1810 if (flush_needed) 1811 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1812 } 1813 return 1; 1814 } 1815 1816 #ifndef pmd_move_must_withdraw 1817 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1818 spinlock_t *old_pmd_ptl, 1819 struct vm_area_struct *vma) 1820 { 1821 /* 1822 * With split pmd lock we also need to move preallocated 1823 * PTE page table if new_pmd is on different PMD page table. 1824 * 1825 * We also don't deposit and withdraw tables for file pages. 1826 */ 1827 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1828 } 1829 #endif 1830 1831 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1832 { 1833 #ifdef CONFIG_MEM_SOFT_DIRTY 1834 if (unlikely(is_pmd_migration_entry(pmd))) 1835 pmd = pmd_swp_mksoft_dirty(pmd); 1836 else if (pmd_present(pmd)) 1837 pmd = pmd_mksoft_dirty(pmd); 1838 #endif 1839 return pmd; 1840 } 1841 1842 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1843 unsigned long new_addr, unsigned long old_end, 1844 pmd_t *old_pmd, pmd_t *new_pmd) 1845 { 1846 spinlock_t *old_ptl, *new_ptl; 1847 pmd_t pmd; 1848 struct mm_struct *mm = vma->vm_mm; 1849 bool force_flush = false; 1850 1851 if ((old_addr & ~HPAGE_PMD_MASK) || 1852 (new_addr & ~HPAGE_PMD_MASK) || 1853 old_end - old_addr < HPAGE_PMD_SIZE) 1854 return false; 1855 1856 /* 1857 * The destination pmd shouldn't be established, free_pgtables() 1858 * should have release it. 1859 */ 1860 if (WARN_ON(!pmd_none(*new_pmd))) { 1861 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1862 return false; 1863 } 1864 1865 /* 1866 * We don't have to worry about the ordering of src and dst 1867 * ptlocks because exclusive mmap_sem prevents deadlock. 1868 */ 1869 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1870 if (old_ptl) { 1871 new_ptl = pmd_lockptr(mm, new_pmd); 1872 if (new_ptl != old_ptl) 1873 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1874 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1875 if (pmd_present(pmd)) 1876 force_flush = true; 1877 VM_BUG_ON(!pmd_none(*new_pmd)); 1878 1879 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1880 pgtable_t pgtable; 1881 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1882 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1883 } 1884 pmd = move_soft_dirty_pmd(pmd); 1885 set_pmd_at(mm, new_addr, new_pmd, pmd); 1886 if (force_flush) 1887 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1888 if (new_ptl != old_ptl) 1889 spin_unlock(new_ptl); 1890 spin_unlock(old_ptl); 1891 return true; 1892 } 1893 return false; 1894 } 1895 1896 /* 1897 * Returns 1898 * - 0 if PMD could not be locked 1899 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1900 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1901 */ 1902 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1903 unsigned long addr, pgprot_t newprot, int prot_numa) 1904 { 1905 struct mm_struct *mm = vma->vm_mm; 1906 spinlock_t *ptl; 1907 pmd_t entry; 1908 bool preserve_write; 1909 int ret; 1910 1911 ptl = __pmd_trans_huge_lock(pmd, vma); 1912 if (!ptl) 1913 return 0; 1914 1915 preserve_write = prot_numa && pmd_write(*pmd); 1916 ret = 1; 1917 1918 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1919 if (is_swap_pmd(*pmd)) { 1920 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1921 1922 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1923 if (is_write_migration_entry(entry)) { 1924 pmd_t newpmd; 1925 /* 1926 * A protection check is difficult so 1927 * just be safe and disable write 1928 */ 1929 make_migration_entry_read(&entry); 1930 newpmd = swp_entry_to_pmd(entry); 1931 if (pmd_swp_soft_dirty(*pmd)) 1932 newpmd = pmd_swp_mksoft_dirty(newpmd); 1933 set_pmd_at(mm, addr, pmd, newpmd); 1934 } 1935 goto unlock; 1936 } 1937 #endif 1938 1939 /* 1940 * Avoid trapping faults against the zero page. The read-only 1941 * data is likely to be read-cached on the local CPU and 1942 * local/remote hits to the zero page are not interesting. 1943 */ 1944 if (prot_numa && is_huge_zero_pmd(*pmd)) 1945 goto unlock; 1946 1947 if (prot_numa && pmd_protnone(*pmd)) 1948 goto unlock; 1949 1950 /* 1951 * In case prot_numa, we are under down_read(mmap_sem). It's critical 1952 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1953 * which is also under down_read(mmap_sem): 1954 * 1955 * CPU0: CPU1: 1956 * change_huge_pmd(prot_numa=1) 1957 * pmdp_huge_get_and_clear_notify() 1958 * madvise_dontneed() 1959 * zap_pmd_range() 1960 * pmd_trans_huge(*pmd) == 0 (without ptl) 1961 * // skip the pmd 1962 * set_pmd_at(); 1963 * // pmd is re-established 1964 * 1965 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1966 * which may break userspace. 1967 * 1968 * pmdp_invalidate() is required to make sure we don't miss 1969 * dirty/young flags set by hardware. 1970 */ 1971 entry = pmdp_invalidate(vma, addr, pmd); 1972 1973 entry = pmd_modify(entry, newprot); 1974 if (preserve_write) 1975 entry = pmd_mk_savedwrite(entry); 1976 ret = HPAGE_PMD_NR; 1977 set_pmd_at(mm, addr, pmd, entry); 1978 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1979 unlock: 1980 spin_unlock(ptl); 1981 return ret; 1982 } 1983 1984 /* 1985 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1986 * 1987 * Note that if it returns page table lock pointer, this routine returns without 1988 * unlocking page table lock. So callers must unlock it. 1989 */ 1990 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1991 { 1992 spinlock_t *ptl; 1993 ptl = pmd_lock(vma->vm_mm, pmd); 1994 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1995 pmd_devmap(*pmd))) 1996 return ptl; 1997 spin_unlock(ptl); 1998 return NULL; 1999 } 2000 2001 /* 2002 * Returns true if a given pud maps a thp, false otherwise. 2003 * 2004 * Note that if it returns true, this routine returns without unlocking page 2005 * table lock. So callers must unlock it. 2006 */ 2007 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2008 { 2009 spinlock_t *ptl; 2010 2011 ptl = pud_lock(vma->vm_mm, pud); 2012 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2013 return ptl; 2014 spin_unlock(ptl); 2015 return NULL; 2016 } 2017 2018 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2019 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2020 pud_t *pud, unsigned long addr) 2021 { 2022 pud_t orig_pud; 2023 spinlock_t *ptl; 2024 2025 ptl = __pud_trans_huge_lock(pud, vma); 2026 if (!ptl) 2027 return 0; 2028 /* 2029 * For architectures like ppc64 we look at deposited pgtable 2030 * when calling pudp_huge_get_and_clear. So do the 2031 * pgtable_trans_huge_withdraw after finishing pudp related 2032 * operations. 2033 */ 2034 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 2035 tlb->fullmm); 2036 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2037 if (vma_is_dax(vma)) { 2038 spin_unlock(ptl); 2039 /* No zero page support yet */ 2040 } else { 2041 /* No support for anonymous PUD pages yet */ 2042 BUG(); 2043 } 2044 return 1; 2045 } 2046 2047 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2048 unsigned long haddr) 2049 { 2050 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2051 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2052 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2053 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2054 2055 count_vm_event(THP_SPLIT_PUD); 2056 2057 pudp_huge_clear_flush_notify(vma, haddr, pud); 2058 } 2059 2060 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2061 unsigned long address) 2062 { 2063 spinlock_t *ptl; 2064 struct mmu_notifier_range range; 2065 2066 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK, 2067 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2068 mmu_notifier_invalidate_range_start(&range); 2069 ptl = pud_lock(vma->vm_mm, pud); 2070 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2071 goto out; 2072 __split_huge_pud_locked(vma, pud, range.start); 2073 2074 out: 2075 spin_unlock(ptl); 2076 /* 2077 * No need to double call mmu_notifier->invalidate_range() callback as 2078 * the above pudp_huge_clear_flush_notify() did already call it. 2079 */ 2080 mmu_notifier_invalidate_range_only_end(&range); 2081 } 2082 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2083 2084 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2085 unsigned long haddr, pmd_t *pmd) 2086 { 2087 struct mm_struct *mm = vma->vm_mm; 2088 pgtable_t pgtable; 2089 pmd_t _pmd; 2090 int i; 2091 2092 /* 2093 * Leave pmd empty until pte is filled note that it is fine to delay 2094 * notification until mmu_notifier_invalidate_range_end() as we are 2095 * replacing a zero pmd write protected page with a zero pte write 2096 * protected page. 2097 * 2098 * See Documentation/vm/mmu_notifier.rst 2099 */ 2100 pmdp_huge_clear_flush(vma, haddr, pmd); 2101 2102 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2103 pmd_populate(mm, &_pmd, pgtable); 2104 2105 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2106 pte_t *pte, entry; 2107 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2108 entry = pte_mkspecial(entry); 2109 pte = pte_offset_map(&_pmd, haddr); 2110 VM_BUG_ON(!pte_none(*pte)); 2111 set_pte_at(mm, haddr, pte, entry); 2112 pte_unmap(pte); 2113 } 2114 smp_wmb(); /* make pte visible before pmd */ 2115 pmd_populate(mm, pmd, pgtable); 2116 } 2117 2118 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2119 unsigned long haddr, bool freeze) 2120 { 2121 struct mm_struct *mm = vma->vm_mm; 2122 struct page *page; 2123 pgtable_t pgtable; 2124 pmd_t old_pmd, _pmd; 2125 bool young, write, soft_dirty, pmd_migration = false; 2126 unsigned long addr; 2127 int i; 2128 2129 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2130 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2131 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2132 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2133 && !pmd_devmap(*pmd)); 2134 2135 count_vm_event(THP_SPLIT_PMD); 2136 2137 if (!vma_is_anonymous(vma)) { 2138 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2139 /* 2140 * We are going to unmap this huge page. So 2141 * just go ahead and zap it 2142 */ 2143 if (arch_needs_pgtable_deposit()) 2144 zap_deposited_table(mm, pmd); 2145 if (vma_is_dax(vma)) 2146 return; 2147 page = pmd_page(_pmd); 2148 if (!PageDirty(page) && pmd_dirty(_pmd)) 2149 set_page_dirty(page); 2150 if (!PageReferenced(page) && pmd_young(_pmd)) 2151 SetPageReferenced(page); 2152 page_remove_rmap(page, true); 2153 put_page(page); 2154 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2155 return; 2156 } else if (is_huge_zero_pmd(*pmd)) { 2157 /* 2158 * FIXME: Do we want to invalidate secondary mmu by calling 2159 * mmu_notifier_invalidate_range() see comments below inside 2160 * __split_huge_pmd() ? 2161 * 2162 * We are going from a zero huge page write protected to zero 2163 * small page also write protected so it does not seems useful 2164 * to invalidate secondary mmu at this time. 2165 */ 2166 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2167 } 2168 2169 /* 2170 * Up to this point the pmd is present and huge and userland has the 2171 * whole access to the hugepage during the split (which happens in 2172 * place). If we overwrite the pmd with the not-huge version pointing 2173 * to the pte here (which of course we could if all CPUs were bug 2174 * free), userland could trigger a small page size TLB miss on the 2175 * small sized TLB while the hugepage TLB entry is still established in 2176 * the huge TLB. Some CPU doesn't like that. 2177 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2178 * 383 on page 93. Intel should be safe but is also warns that it's 2179 * only safe if the permission and cache attributes of the two entries 2180 * loaded in the two TLB is identical (which should be the case here). 2181 * But it is generally safer to never allow small and huge TLB entries 2182 * for the same virtual address to be loaded simultaneously. So instead 2183 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2184 * current pmd notpresent (atomically because here the pmd_trans_huge 2185 * must remain set at all times on the pmd until the split is complete 2186 * for this pmd), then we flush the SMP TLB and finally we write the 2187 * non-huge version of the pmd entry with pmd_populate. 2188 */ 2189 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2190 2191 pmd_migration = is_pmd_migration_entry(old_pmd); 2192 if (unlikely(pmd_migration)) { 2193 swp_entry_t entry; 2194 2195 entry = pmd_to_swp_entry(old_pmd); 2196 page = pfn_to_page(swp_offset(entry)); 2197 write = is_write_migration_entry(entry); 2198 young = false; 2199 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2200 } else { 2201 page = pmd_page(old_pmd); 2202 if (pmd_dirty(old_pmd)) 2203 SetPageDirty(page); 2204 write = pmd_write(old_pmd); 2205 young = pmd_young(old_pmd); 2206 soft_dirty = pmd_soft_dirty(old_pmd); 2207 } 2208 VM_BUG_ON_PAGE(!page_count(page), page); 2209 page_ref_add(page, HPAGE_PMD_NR - 1); 2210 2211 /* 2212 * Withdraw the table only after we mark the pmd entry invalid. 2213 * This's critical for some architectures (Power). 2214 */ 2215 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2216 pmd_populate(mm, &_pmd, pgtable); 2217 2218 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2219 pte_t entry, *pte; 2220 /* 2221 * Note that NUMA hinting access restrictions are not 2222 * transferred to avoid any possibility of altering 2223 * permissions across VMAs. 2224 */ 2225 if (freeze || pmd_migration) { 2226 swp_entry_t swp_entry; 2227 swp_entry = make_migration_entry(page + i, write); 2228 entry = swp_entry_to_pte(swp_entry); 2229 if (soft_dirty) 2230 entry = pte_swp_mksoft_dirty(entry); 2231 } else { 2232 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2233 entry = maybe_mkwrite(entry, vma); 2234 if (!write) 2235 entry = pte_wrprotect(entry); 2236 if (!young) 2237 entry = pte_mkold(entry); 2238 if (soft_dirty) 2239 entry = pte_mksoft_dirty(entry); 2240 } 2241 pte = pte_offset_map(&_pmd, addr); 2242 BUG_ON(!pte_none(*pte)); 2243 set_pte_at(mm, addr, pte, entry); 2244 atomic_inc(&page[i]._mapcount); 2245 pte_unmap(pte); 2246 } 2247 2248 /* 2249 * Set PG_double_map before dropping compound_mapcount to avoid 2250 * false-negative page_mapped(). 2251 */ 2252 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2253 for (i = 0; i < HPAGE_PMD_NR; i++) 2254 atomic_inc(&page[i]._mapcount); 2255 } 2256 2257 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2258 /* Last compound_mapcount is gone. */ 2259 __dec_node_page_state(page, NR_ANON_THPS); 2260 if (TestClearPageDoubleMap(page)) { 2261 /* No need in mapcount reference anymore */ 2262 for (i = 0; i < HPAGE_PMD_NR; i++) 2263 atomic_dec(&page[i]._mapcount); 2264 } 2265 } 2266 2267 smp_wmb(); /* make pte visible before pmd */ 2268 pmd_populate(mm, pmd, pgtable); 2269 2270 if (freeze) { 2271 for (i = 0; i < HPAGE_PMD_NR; i++) { 2272 page_remove_rmap(page + i, false); 2273 put_page(page + i); 2274 } 2275 } 2276 } 2277 2278 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2279 unsigned long address, bool freeze, struct page *page) 2280 { 2281 spinlock_t *ptl; 2282 struct mmu_notifier_range range; 2283 2284 mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK, 2285 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2286 mmu_notifier_invalidate_range_start(&range); 2287 ptl = pmd_lock(vma->vm_mm, pmd); 2288 2289 /* 2290 * If caller asks to setup a migration entries, we need a page to check 2291 * pmd against. Otherwise we can end up replacing wrong page. 2292 */ 2293 VM_BUG_ON(freeze && !page); 2294 if (page && page != pmd_page(*pmd)) 2295 goto out; 2296 2297 if (pmd_trans_huge(*pmd)) { 2298 page = pmd_page(*pmd); 2299 if (PageMlocked(page)) 2300 clear_page_mlock(page); 2301 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2302 goto out; 2303 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2304 out: 2305 spin_unlock(ptl); 2306 /* 2307 * No need to double call mmu_notifier->invalidate_range() callback. 2308 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2309 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2310 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2311 * fault will trigger a flush_notify before pointing to a new page 2312 * (it is fine if the secondary mmu keeps pointing to the old zero 2313 * page in the meantime) 2314 * 3) Split a huge pmd into pte pointing to the same page. No need 2315 * to invalidate secondary tlb entry they are all still valid. 2316 * any further changes to individual pte will notify. So no need 2317 * to call mmu_notifier->invalidate_range() 2318 */ 2319 mmu_notifier_invalidate_range_only_end(&range); 2320 } 2321 2322 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2323 bool freeze, struct page *page) 2324 { 2325 pgd_t *pgd; 2326 p4d_t *p4d; 2327 pud_t *pud; 2328 pmd_t *pmd; 2329 2330 pgd = pgd_offset(vma->vm_mm, address); 2331 if (!pgd_present(*pgd)) 2332 return; 2333 2334 p4d = p4d_offset(pgd, address); 2335 if (!p4d_present(*p4d)) 2336 return; 2337 2338 pud = pud_offset(p4d, address); 2339 if (!pud_present(*pud)) 2340 return; 2341 2342 pmd = pmd_offset(pud, address); 2343 2344 __split_huge_pmd(vma, pmd, address, freeze, page); 2345 } 2346 2347 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2348 unsigned long start, 2349 unsigned long end, 2350 long adjust_next) 2351 { 2352 /* 2353 * If the new start address isn't hpage aligned and it could 2354 * previously contain an hugepage: check if we need to split 2355 * an huge pmd. 2356 */ 2357 if (start & ~HPAGE_PMD_MASK && 2358 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2359 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2360 split_huge_pmd_address(vma, start, false, NULL); 2361 2362 /* 2363 * If the new end address isn't hpage aligned and it could 2364 * previously contain an hugepage: check if we need to split 2365 * an huge pmd. 2366 */ 2367 if (end & ~HPAGE_PMD_MASK && 2368 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2369 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2370 split_huge_pmd_address(vma, end, false, NULL); 2371 2372 /* 2373 * If we're also updating the vma->vm_next->vm_start, if the new 2374 * vm_next->vm_start isn't page aligned and it could previously 2375 * contain an hugepage: check if we need to split an huge pmd. 2376 */ 2377 if (adjust_next > 0) { 2378 struct vm_area_struct *next = vma->vm_next; 2379 unsigned long nstart = next->vm_start; 2380 nstart += adjust_next << PAGE_SHIFT; 2381 if (nstart & ~HPAGE_PMD_MASK && 2382 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2383 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2384 split_huge_pmd_address(next, nstart, false, NULL); 2385 } 2386 } 2387 2388 static void unmap_page(struct page *page) 2389 { 2390 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2391 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2392 bool unmap_success; 2393 2394 VM_BUG_ON_PAGE(!PageHead(page), page); 2395 2396 if (PageAnon(page)) 2397 ttu_flags |= TTU_SPLIT_FREEZE; 2398 2399 unmap_success = try_to_unmap(page, ttu_flags); 2400 VM_BUG_ON_PAGE(!unmap_success, page); 2401 } 2402 2403 static void remap_page(struct page *page) 2404 { 2405 int i; 2406 if (PageTransHuge(page)) { 2407 remove_migration_ptes(page, page, true); 2408 } else { 2409 for (i = 0; i < HPAGE_PMD_NR; i++) 2410 remove_migration_ptes(page + i, page + i, true); 2411 } 2412 } 2413 2414 static void __split_huge_page_tail(struct page *head, int tail, 2415 struct lruvec *lruvec, struct list_head *list) 2416 { 2417 struct page *page_tail = head + tail; 2418 2419 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2420 2421 /* 2422 * Clone page flags before unfreezing refcount. 2423 * 2424 * After successful get_page_unless_zero() might follow flags change, 2425 * for exmaple lock_page() which set PG_waiters. 2426 */ 2427 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2428 page_tail->flags |= (head->flags & 2429 ((1L << PG_referenced) | 2430 (1L << PG_swapbacked) | 2431 (1L << PG_swapcache) | 2432 (1L << PG_mlocked) | 2433 (1L << PG_uptodate) | 2434 (1L << PG_active) | 2435 (1L << PG_workingset) | 2436 (1L << PG_locked) | 2437 (1L << PG_unevictable) | 2438 (1L << PG_dirty))); 2439 2440 /* ->mapping in first tail page is compound_mapcount */ 2441 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2442 page_tail); 2443 page_tail->mapping = head->mapping; 2444 page_tail->index = head->index + tail; 2445 2446 /* Page flags must be visible before we make the page non-compound. */ 2447 smp_wmb(); 2448 2449 /* 2450 * Clear PageTail before unfreezing page refcount. 2451 * 2452 * After successful get_page_unless_zero() might follow put_page() 2453 * which needs correct compound_head(). 2454 */ 2455 clear_compound_head(page_tail); 2456 2457 /* Finally unfreeze refcount. Additional reference from page cache. */ 2458 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2459 PageSwapCache(head))); 2460 2461 if (page_is_young(head)) 2462 set_page_young(page_tail); 2463 if (page_is_idle(head)) 2464 set_page_idle(page_tail); 2465 2466 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2467 2468 /* 2469 * always add to the tail because some iterators expect new 2470 * pages to show after the currently processed elements - e.g. 2471 * migrate_pages 2472 */ 2473 lru_add_page_tail(head, page_tail, lruvec, list); 2474 } 2475 2476 static void __split_huge_page(struct page *page, struct list_head *list, 2477 pgoff_t end, unsigned long flags) 2478 { 2479 struct page *head = compound_head(page); 2480 struct zone *zone = page_zone(head); 2481 struct lruvec *lruvec; 2482 int i; 2483 2484 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2485 2486 /* complete memcg works before add pages to LRU */ 2487 mem_cgroup_split_huge_fixup(head); 2488 2489 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2490 __split_huge_page_tail(head, i, lruvec, list); 2491 /* Some pages can be beyond i_size: drop them from page cache */ 2492 if (head[i].index >= end) { 2493 ClearPageDirty(head + i); 2494 __delete_from_page_cache(head + i, NULL); 2495 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2496 shmem_uncharge(head->mapping->host, 1); 2497 put_page(head + i); 2498 } 2499 } 2500 2501 ClearPageCompound(head); 2502 /* See comment in __split_huge_page_tail() */ 2503 if (PageAnon(head)) { 2504 /* Additional pin to swap cache */ 2505 if (PageSwapCache(head)) 2506 page_ref_add(head, 2); 2507 else 2508 page_ref_inc(head); 2509 } else { 2510 /* Additional pin to page cache */ 2511 page_ref_add(head, 2); 2512 xa_unlock(&head->mapping->i_pages); 2513 } 2514 2515 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2516 2517 remap_page(head); 2518 2519 for (i = 0; i < HPAGE_PMD_NR; i++) { 2520 struct page *subpage = head + i; 2521 if (subpage == page) 2522 continue; 2523 unlock_page(subpage); 2524 2525 /* 2526 * Subpages may be freed if there wasn't any mapping 2527 * like if add_to_swap() is running on a lru page that 2528 * had its mapping zapped. And freeing these pages 2529 * requires taking the lru_lock so we do the put_page 2530 * of the tail pages after the split is complete. 2531 */ 2532 put_page(subpage); 2533 } 2534 } 2535 2536 int total_mapcount(struct page *page) 2537 { 2538 int i, compound, ret; 2539 2540 VM_BUG_ON_PAGE(PageTail(page), page); 2541 2542 if (likely(!PageCompound(page))) 2543 return atomic_read(&page->_mapcount) + 1; 2544 2545 compound = compound_mapcount(page); 2546 if (PageHuge(page)) 2547 return compound; 2548 ret = compound; 2549 for (i = 0; i < HPAGE_PMD_NR; i++) 2550 ret += atomic_read(&page[i]._mapcount) + 1; 2551 /* File pages has compound_mapcount included in _mapcount */ 2552 if (!PageAnon(page)) 2553 return ret - compound * HPAGE_PMD_NR; 2554 if (PageDoubleMap(page)) 2555 ret -= HPAGE_PMD_NR; 2556 return ret; 2557 } 2558 2559 /* 2560 * This calculates accurately how many mappings a transparent hugepage 2561 * has (unlike page_mapcount() which isn't fully accurate). This full 2562 * accuracy is primarily needed to know if copy-on-write faults can 2563 * reuse the page and change the mapping to read-write instead of 2564 * copying them. At the same time this returns the total_mapcount too. 2565 * 2566 * The function returns the highest mapcount any one of the subpages 2567 * has. If the return value is one, even if different processes are 2568 * mapping different subpages of the transparent hugepage, they can 2569 * all reuse it, because each process is reusing a different subpage. 2570 * 2571 * The total_mapcount is instead counting all virtual mappings of the 2572 * subpages. If the total_mapcount is equal to "one", it tells the 2573 * caller all mappings belong to the same "mm" and in turn the 2574 * anon_vma of the transparent hugepage can become the vma->anon_vma 2575 * local one as no other process may be mapping any of the subpages. 2576 * 2577 * It would be more accurate to replace page_mapcount() with 2578 * page_trans_huge_mapcount(), however we only use 2579 * page_trans_huge_mapcount() in the copy-on-write faults where we 2580 * need full accuracy to avoid breaking page pinning, because 2581 * page_trans_huge_mapcount() is slower than page_mapcount(). 2582 */ 2583 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2584 { 2585 int i, ret, _total_mapcount, mapcount; 2586 2587 /* hugetlbfs shouldn't call it */ 2588 VM_BUG_ON_PAGE(PageHuge(page), page); 2589 2590 if (likely(!PageTransCompound(page))) { 2591 mapcount = atomic_read(&page->_mapcount) + 1; 2592 if (total_mapcount) 2593 *total_mapcount = mapcount; 2594 return mapcount; 2595 } 2596 2597 page = compound_head(page); 2598 2599 _total_mapcount = ret = 0; 2600 for (i = 0; i < HPAGE_PMD_NR; i++) { 2601 mapcount = atomic_read(&page[i]._mapcount) + 1; 2602 ret = max(ret, mapcount); 2603 _total_mapcount += mapcount; 2604 } 2605 if (PageDoubleMap(page)) { 2606 ret -= 1; 2607 _total_mapcount -= HPAGE_PMD_NR; 2608 } 2609 mapcount = compound_mapcount(page); 2610 ret += mapcount; 2611 _total_mapcount += mapcount; 2612 if (total_mapcount) 2613 *total_mapcount = _total_mapcount; 2614 return ret; 2615 } 2616 2617 /* Racy check whether the huge page can be split */ 2618 bool can_split_huge_page(struct page *page, int *pextra_pins) 2619 { 2620 int extra_pins; 2621 2622 /* Additional pins from page cache */ 2623 if (PageAnon(page)) 2624 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2625 else 2626 extra_pins = HPAGE_PMD_NR; 2627 if (pextra_pins) 2628 *pextra_pins = extra_pins; 2629 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2630 } 2631 2632 /* 2633 * This function splits huge page into normal pages. @page can point to any 2634 * subpage of huge page to split. Split doesn't change the position of @page. 2635 * 2636 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2637 * The huge page must be locked. 2638 * 2639 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2640 * 2641 * Both head page and tail pages will inherit mapping, flags, and so on from 2642 * the hugepage. 2643 * 2644 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2645 * they are not mapped. 2646 * 2647 * Returns 0 if the hugepage is split successfully. 2648 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2649 * us. 2650 */ 2651 int split_huge_page_to_list(struct page *page, struct list_head *list) 2652 { 2653 struct page *head = compound_head(page); 2654 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2655 struct anon_vma *anon_vma = NULL; 2656 struct address_space *mapping = NULL; 2657 int count, mapcount, extra_pins, ret; 2658 bool mlocked; 2659 unsigned long flags; 2660 pgoff_t end; 2661 2662 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2663 VM_BUG_ON_PAGE(!PageLocked(page), page); 2664 VM_BUG_ON_PAGE(!PageCompound(page), page); 2665 2666 if (PageWriteback(page)) 2667 return -EBUSY; 2668 2669 if (PageAnon(head)) { 2670 /* 2671 * The caller does not necessarily hold an mmap_sem that would 2672 * prevent the anon_vma disappearing so we first we take a 2673 * reference to it and then lock the anon_vma for write. This 2674 * is similar to page_lock_anon_vma_read except the write lock 2675 * is taken to serialise against parallel split or collapse 2676 * operations. 2677 */ 2678 anon_vma = page_get_anon_vma(head); 2679 if (!anon_vma) { 2680 ret = -EBUSY; 2681 goto out; 2682 } 2683 end = -1; 2684 mapping = NULL; 2685 anon_vma_lock_write(anon_vma); 2686 } else { 2687 mapping = head->mapping; 2688 2689 /* Truncated ? */ 2690 if (!mapping) { 2691 ret = -EBUSY; 2692 goto out; 2693 } 2694 2695 anon_vma = NULL; 2696 i_mmap_lock_read(mapping); 2697 2698 /* 2699 *__split_huge_page() may need to trim off pages beyond EOF: 2700 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2701 * which cannot be nested inside the page tree lock. So note 2702 * end now: i_size itself may be changed at any moment, but 2703 * head page lock is good enough to serialize the trimming. 2704 */ 2705 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2706 } 2707 2708 /* 2709 * Racy check if we can split the page, before unmap_page() will 2710 * split PMDs 2711 */ 2712 if (!can_split_huge_page(head, &extra_pins)) { 2713 ret = -EBUSY; 2714 goto out_unlock; 2715 } 2716 2717 mlocked = PageMlocked(page); 2718 unmap_page(head); 2719 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2720 2721 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2722 if (mlocked) 2723 lru_add_drain(); 2724 2725 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2726 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2727 2728 if (mapping) { 2729 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2730 2731 /* 2732 * Check if the head page is present in page cache. 2733 * We assume all tail are present too, if head is there. 2734 */ 2735 xa_lock(&mapping->i_pages); 2736 if (xas_load(&xas) != head) 2737 goto fail; 2738 } 2739 2740 /* Prevent deferred_split_scan() touching ->_refcount */ 2741 spin_lock(&pgdata->split_queue_lock); 2742 count = page_count(head); 2743 mapcount = total_mapcount(head); 2744 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2745 if (!list_empty(page_deferred_list(head))) { 2746 pgdata->split_queue_len--; 2747 list_del(page_deferred_list(head)); 2748 } 2749 if (mapping) 2750 __dec_node_page_state(page, NR_SHMEM_THPS); 2751 spin_unlock(&pgdata->split_queue_lock); 2752 __split_huge_page(page, list, end, flags); 2753 if (PageSwapCache(head)) { 2754 swp_entry_t entry = { .val = page_private(head) }; 2755 2756 ret = split_swap_cluster(entry); 2757 } else 2758 ret = 0; 2759 } else { 2760 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2761 pr_alert("total_mapcount: %u, page_count(): %u\n", 2762 mapcount, count); 2763 if (PageTail(page)) 2764 dump_page(head, NULL); 2765 dump_page(page, "total_mapcount(head) > 0"); 2766 BUG(); 2767 } 2768 spin_unlock(&pgdata->split_queue_lock); 2769 fail: if (mapping) 2770 xa_unlock(&mapping->i_pages); 2771 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2772 remap_page(head); 2773 ret = -EBUSY; 2774 } 2775 2776 out_unlock: 2777 if (anon_vma) { 2778 anon_vma_unlock_write(anon_vma); 2779 put_anon_vma(anon_vma); 2780 } 2781 if (mapping) 2782 i_mmap_unlock_read(mapping); 2783 out: 2784 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2785 return ret; 2786 } 2787 2788 void free_transhuge_page(struct page *page) 2789 { 2790 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2791 unsigned long flags; 2792 2793 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2794 if (!list_empty(page_deferred_list(page))) { 2795 pgdata->split_queue_len--; 2796 list_del(page_deferred_list(page)); 2797 } 2798 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2799 free_compound_page(page); 2800 } 2801 2802 void deferred_split_huge_page(struct page *page) 2803 { 2804 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2805 unsigned long flags; 2806 2807 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2808 2809 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2810 if (list_empty(page_deferred_list(page))) { 2811 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2812 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2813 pgdata->split_queue_len++; 2814 } 2815 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2816 } 2817 2818 static unsigned long deferred_split_count(struct shrinker *shrink, 2819 struct shrink_control *sc) 2820 { 2821 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2822 return READ_ONCE(pgdata->split_queue_len); 2823 } 2824 2825 static unsigned long deferred_split_scan(struct shrinker *shrink, 2826 struct shrink_control *sc) 2827 { 2828 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2829 unsigned long flags; 2830 LIST_HEAD(list), *pos, *next; 2831 struct page *page; 2832 int split = 0; 2833 2834 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2835 /* Take pin on all head pages to avoid freeing them under us */ 2836 list_for_each_safe(pos, next, &pgdata->split_queue) { 2837 page = list_entry((void *)pos, struct page, mapping); 2838 page = compound_head(page); 2839 if (get_page_unless_zero(page)) { 2840 list_move(page_deferred_list(page), &list); 2841 } else { 2842 /* We lost race with put_compound_page() */ 2843 list_del_init(page_deferred_list(page)); 2844 pgdata->split_queue_len--; 2845 } 2846 if (!--sc->nr_to_scan) 2847 break; 2848 } 2849 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2850 2851 list_for_each_safe(pos, next, &list) { 2852 page = list_entry((void *)pos, struct page, mapping); 2853 if (!trylock_page(page)) 2854 goto next; 2855 /* split_huge_page() removes page from list on success */ 2856 if (!split_huge_page(page)) 2857 split++; 2858 unlock_page(page); 2859 next: 2860 put_page(page); 2861 } 2862 2863 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2864 list_splice_tail(&list, &pgdata->split_queue); 2865 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2866 2867 /* 2868 * Stop shrinker if we didn't split any page, but the queue is empty. 2869 * This can happen if pages were freed under us. 2870 */ 2871 if (!split && list_empty(&pgdata->split_queue)) 2872 return SHRINK_STOP; 2873 return split; 2874 } 2875 2876 static struct shrinker deferred_split_shrinker = { 2877 .count_objects = deferred_split_count, 2878 .scan_objects = deferred_split_scan, 2879 .seeks = DEFAULT_SEEKS, 2880 .flags = SHRINKER_NUMA_AWARE, 2881 }; 2882 2883 #ifdef CONFIG_DEBUG_FS 2884 static int split_huge_pages_set(void *data, u64 val) 2885 { 2886 struct zone *zone; 2887 struct page *page; 2888 unsigned long pfn, max_zone_pfn; 2889 unsigned long total = 0, split = 0; 2890 2891 if (val != 1) 2892 return -EINVAL; 2893 2894 for_each_populated_zone(zone) { 2895 max_zone_pfn = zone_end_pfn(zone); 2896 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2897 if (!pfn_valid(pfn)) 2898 continue; 2899 2900 page = pfn_to_page(pfn); 2901 if (!get_page_unless_zero(page)) 2902 continue; 2903 2904 if (zone != page_zone(page)) 2905 goto next; 2906 2907 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2908 goto next; 2909 2910 total++; 2911 lock_page(page); 2912 if (!split_huge_page(page)) 2913 split++; 2914 unlock_page(page); 2915 next: 2916 put_page(page); 2917 } 2918 } 2919 2920 pr_info("%lu of %lu THP split\n", split, total); 2921 2922 return 0; 2923 } 2924 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2925 "%llu\n"); 2926 2927 static int __init split_huge_pages_debugfs(void) 2928 { 2929 void *ret; 2930 2931 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2932 &split_huge_pages_fops); 2933 if (!ret) 2934 pr_warn("Failed to create split_huge_pages in debugfs"); 2935 return 0; 2936 } 2937 late_initcall(split_huge_pages_debugfs); 2938 #endif 2939 2940 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2941 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2942 struct page *page) 2943 { 2944 struct vm_area_struct *vma = pvmw->vma; 2945 struct mm_struct *mm = vma->vm_mm; 2946 unsigned long address = pvmw->address; 2947 pmd_t pmdval; 2948 swp_entry_t entry; 2949 pmd_t pmdswp; 2950 2951 if (!(pvmw->pmd && !pvmw->pte)) 2952 return; 2953 2954 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2955 pmdval = *pvmw->pmd; 2956 pmdp_invalidate(vma, address, pvmw->pmd); 2957 if (pmd_dirty(pmdval)) 2958 set_page_dirty(page); 2959 entry = make_migration_entry(page, pmd_write(pmdval)); 2960 pmdswp = swp_entry_to_pmd(entry); 2961 if (pmd_soft_dirty(pmdval)) 2962 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2963 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2964 page_remove_rmap(page, true); 2965 put_page(page); 2966 } 2967 2968 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2969 { 2970 struct vm_area_struct *vma = pvmw->vma; 2971 struct mm_struct *mm = vma->vm_mm; 2972 unsigned long address = pvmw->address; 2973 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2974 pmd_t pmde; 2975 swp_entry_t entry; 2976 2977 if (!(pvmw->pmd && !pvmw->pte)) 2978 return; 2979 2980 entry = pmd_to_swp_entry(*pvmw->pmd); 2981 get_page(new); 2982 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 2983 if (pmd_swp_soft_dirty(*pvmw->pmd)) 2984 pmde = pmd_mksoft_dirty(pmde); 2985 if (is_write_migration_entry(entry)) 2986 pmde = maybe_pmd_mkwrite(pmde, vma); 2987 2988 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 2989 if (PageAnon(new)) 2990 page_add_anon_rmap(new, vma, mmun_start, true); 2991 else 2992 page_add_file_rmap(new, true); 2993 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 2994 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 2995 mlock_vma_page(new); 2996 update_mmu_cache_pmd(vma, address, pvmw->pmd); 2997 } 2998 #endif 2999
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.