1 /* 2 * Generic hugetlb support. 3 * (C) Nadia Yvette Chambers, April 2004 4 */ 5 #include <linux/list.h> 6 #include <linux/init.h> 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/sysctl.h> 11 #include <linux/highmem.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/nodemask.h> 14 #include <linux/pagemap.h> 15 #include <linux/mempolicy.h> 16 #include <linux/cpuset.h> 17 #include <linux/mutex.h> 18 #include <linux/bootmem.h> 19 #include <linux/sysfs.h> 20 #include <linux/slab.h> 21 #include <linux/rmap.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/page-isolation.h> 25 26 #include <asm/page.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 30 #include <linux/io.h> 31 #include <linux/hugetlb.h> 32 #include <linux/hugetlb_cgroup.h> 33 #include <linux/node.h> 34 #include "internal.h" 35 36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; 37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER; 38 unsigned long hugepages_treat_as_movable; 39 40 int hugetlb_max_hstate __read_mostly; 41 unsigned int default_hstate_idx; 42 struct hstate hstates[HUGE_MAX_HSTATE]; 43 44 __initdata LIST_HEAD(huge_boot_pages); 45 46 /* for command line parsing */ 47 static struct hstate * __initdata parsed_hstate; 48 static unsigned long __initdata default_hstate_max_huge_pages; 49 static unsigned long __initdata default_hstate_size; 50 51 /* 52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages 53 */ 54 DEFINE_SPINLOCK(hugetlb_lock); 55 56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) 57 { 58 bool free = (spool->count == 0) && (spool->used_hpages == 0); 59 60 spin_unlock(&spool->lock); 61 62 /* If no pages are used, and no other handles to the subpool 63 * remain, free the subpool the subpool remain */ 64 if (free) 65 kfree(spool); 66 } 67 68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) 69 { 70 struct hugepage_subpool *spool; 71 72 spool = kmalloc(sizeof(*spool), GFP_KERNEL); 73 if (!spool) 74 return NULL; 75 76 spin_lock_init(&spool->lock); 77 spool->count = 1; 78 spool->max_hpages = nr_blocks; 79 spool->used_hpages = 0; 80 81 return spool; 82 } 83 84 void hugepage_put_subpool(struct hugepage_subpool *spool) 85 { 86 spin_lock(&spool->lock); 87 BUG_ON(!spool->count); 88 spool->count--; 89 unlock_or_release_subpool(spool); 90 } 91 92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, 93 long delta) 94 { 95 int ret = 0; 96 97 if (!spool) 98 return 0; 99 100 spin_lock(&spool->lock); 101 if ((spool->used_hpages + delta) <= spool->max_hpages) { 102 spool->used_hpages += delta; 103 } else { 104 ret = -ENOMEM; 105 } 106 spin_unlock(&spool->lock); 107 108 return ret; 109 } 110 111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, 112 long delta) 113 { 114 if (!spool) 115 return; 116 117 spin_lock(&spool->lock); 118 spool->used_hpages -= delta; 119 /* If hugetlbfs_put_super couldn't free spool due to 120 * an outstanding quota reference, free it now. */ 121 unlock_or_release_subpool(spool); 122 } 123 124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode) 125 { 126 return HUGETLBFS_SB(inode->i_sb)->spool; 127 } 128 129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 130 { 131 return subpool_inode(file_inode(vma->vm_file)); 132 } 133 134 /* 135 * Region tracking -- allows tracking of reservations and instantiated pages 136 * across the pages in a mapping. 137 * 138 * The region data structures are protected by a combination of the mmap_sem 139 * and the hugetlb_instantion_mutex. To access or modify a region the caller 140 * must either hold the mmap_sem for write, or the mmap_sem for read and 141 * the hugetlb_instantiation mutex: 142 * 143 * down_write(&mm->mmap_sem); 144 * or 145 * down_read(&mm->mmap_sem); 146 * mutex_lock(&hugetlb_instantiation_mutex); 147 */ 148 struct file_region { 149 struct list_head link; 150 long from; 151 long to; 152 }; 153 154 static long region_add(struct list_head *head, long f, long t) 155 { 156 struct file_region *rg, *nrg, *trg; 157 158 /* Locate the region we are either in or before. */ 159 list_for_each_entry(rg, head, link) 160 if (f <= rg->to) 161 break; 162 163 /* Round our left edge to the current segment if it encloses us. */ 164 if (f > rg->from) 165 f = rg->from; 166 167 /* Check for and consume any regions we now overlap with. */ 168 nrg = rg; 169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 170 if (&rg->link == head) 171 break; 172 if (rg->from > t) 173 break; 174 175 /* If this area reaches higher then extend our area to 176 * include it completely. If this is not the first area 177 * which we intend to reuse, free it. */ 178 if (rg->to > t) 179 t = rg->to; 180 if (rg != nrg) { 181 list_del(&rg->link); 182 kfree(rg); 183 } 184 } 185 nrg->from = f; 186 nrg->to = t; 187 return 0; 188 } 189 190 static long region_chg(struct list_head *head, long f, long t) 191 { 192 struct file_region *rg, *nrg; 193 long chg = 0; 194 195 /* Locate the region we are before or in. */ 196 list_for_each_entry(rg, head, link) 197 if (f <= rg->to) 198 break; 199 200 /* If we are below the current region then a new region is required. 201 * Subtle, allocate a new region at the position but make it zero 202 * size such that we can guarantee to record the reservation. */ 203 if (&rg->link == head || t < rg->from) { 204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 205 if (!nrg) 206 return -ENOMEM; 207 nrg->from = f; 208 nrg->to = f; 209 INIT_LIST_HEAD(&nrg->link); 210 list_add(&nrg->link, rg->link.prev); 211 212 return t - f; 213 } 214 215 /* Round our left edge to the current segment if it encloses us. */ 216 if (f > rg->from) 217 f = rg->from; 218 chg = t - f; 219 220 /* Check for and consume any regions we now overlap with. */ 221 list_for_each_entry(rg, rg->link.prev, link) { 222 if (&rg->link == head) 223 break; 224 if (rg->from > t) 225 return chg; 226 227 /* We overlap with this area, if it extends further than 228 * us then we must extend ourselves. Account for its 229 * existing reservation. */ 230 if (rg->to > t) { 231 chg += rg->to - t; 232 t = rg->to; 233 } 234 chg -= rg->to - rg->from; 235 } 236 return chg; 237 } 238 239 static long region_truncate(struct list_head *head, long end) 240 { 241 struct file_region *rg, *trg; 242 long chg = 0; 243 244 /* Locate the region we are either in or before. */ 245 list_for_each_entry(rg, head, link) 246 if (end <= rg->to) 247 break; 248 if (&rg->link == head) 249 return 0; 250 251 /* If we are in the middle of a region then adjust it. */ 252 if (end > rg->from) { 253 chg = rg->to - end; 254 rg->to = end; 255 rg = list_entry(rg->link.next, typeof(*rg), link); 256 } 257 258 /* Drop any remaining regions. */ 259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) { 260 if (&rg->link == head) 261 break; 262 chg += rg->to - rg->from; 263 list_del(&rg->link); 264 kfree(rg); 265 } 266 return chg; 267 } 268 269 static long region_count(struct list_head *head, long f, long t) 270 { 271 struct file_region *rg; 272 long chg = 0; 273 274 /* Locate each segment we overlap with, and count that overlap. */ 275 list_for_each_entry(rg, head, link) { 276 long seg_from; 277 long seg_to; 278 279 if (rg->to <= f) 280 continue; 281 if (rg->from >= t) 282 break; 283 284 seg_from = max(rg->from, f); 285 seg_to = min(rg->to, t); 286 287 chg += seg_to - seg_from; 288 } 289 290 return chg; 291 } 292 293 /* 294 * Convert the address within this vma to the page offset within 295 * the mapping, in pagecache page units; huge pages here. 296 */ 297 static pgoff_t vma_hugecache_offset(struct hstate *h, 298 struct vm_area_struct *vma, unsigned long address) 299 { 300 return ((address - vma->vm_start) >> huge_page_shift(h)) + 301 (vma->vm_pgoff >> huge_page_order(h)); 302 } 303 304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 305 unsigned long address) 306 { 307 return vma_hugecache_offset(hstate_vma(vma), vma, address); 308 } 309 310 /* 311 * Return the size of the pages allocated when backing a VMA. In the majority 312 * cases this will be same size as used by the page table entries. 313 */ 314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 315 { 316 struct hstate *hstate; 317 318 if (!is_vm_hugetlb_page(vma)) 319 return PAGE_SIZE; 320 321 hstate = hstate_vma(vma); 322 323 return 1UL << (hstate->order + PAGE_SHIFT); 324 } 325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 326 327 /* 328 * Return the page size being used by the MMU to back a VMA. In the majority 329 * of cases, the page size used by the kernel matches the MMU size. On 330 * architectures where it differs, an architecture-specific version of this 331 * function is required. 332 */ 333 #ifndef vma_mmu_pagesize 334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 335 { 336 return vma_kernel_pagesize(vma); 337 } 338 #endif 339 340 /* 341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 342 * bits of the reservation map pointer, which are always clear due to 343 * alignment. 344 */ 345 #define HPAGE_RESV_OWNER (1UL << 0) 346 #define HPAGE_RESV_UNMAPPED (1UL << 1) 347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 348 349 /* 350 * These helpers are used to track how many pages are reserved for 351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 352 * is guaranteed to have their future faults succeed. 353 * 354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(), 355 * the reserve counters are updated with the hugetlb_lock held. It is safe 356 * to reset the VMA at fork() time as it is not in use yet and there is no 357 * chance of the global counters getting corrupted as a result of the values. 358 * 359 * The private mapping reservation is represented in a subtly different 360 * manner to a shared mapping. A shared mapping has a region map associated 361 * with the underlying file, this region map represents the backing file 362 * pages which have ever had a reservation assigned which this persists even 363 * after the page is instantiated. A private mapping has a region map 364 * associated with the original mmap which is attached to all VMAs which 365 * reference it, this region map represents those offsets which have consumed 366 * reservation ie. where pages have been instantiated. 367 */ 368 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 369 { 370 return (unsigned long)vma->vm_private_data; 371 } 372 373 static void set_vma_private_data(struct vm_area_struct *vma, 374 unsigned long value) 375 { 376 vma->vm_private_data = (void *)value; 377 } 378 379 struct resv_map { 380 struct kref refs; 381 struct list_head regions; 382 }; 383 384 static struct resv_map *resv_map_alloc(void) 385 { 386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 387 if (!resv_map) 388 return NULL; 389 390 kref_init(&resv_map->refs); 391 INIT_LIST_HEAD(&resv_map->regions); 392 393 return resv_map; 394 } 395 396 static void resv_map_release(struct kref *ref) 397 { 398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 399 400 /* Clear out any active regions before we release the map. */ 401 region_truncate(&resv_map->regions, 0); 402 kfree(resv_map); 403 } 404 405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 406 { 407 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 408 if (!(vma->vm_flags & VM_MAYSHARE)) 409 return (struct resv_map *)(get_vma_private_data(vma) & 410 ~HPAGE_RESV_MASK); 411 return NULL; 412 } 413 414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) 415 { 416 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 418 419 set_vma_private_data(vma, (get_vma_private_data(vma) & 420 HPAGE_RESV_MASK) | (unsigned long)map); 421 } 422 423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 424 { 425 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); 427 428 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 429 } 430 431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 432 { 433 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 434 435 return (get_vma_private_data(vma) & flag) != 0; 436 } 437 438 /* Decrement the reserved pages in the hugepage pool by one */ 439 static void decrement_hugepage_resv_vma(struct hstate *h, 440 struct vm_area_struct *vma) 441 { 442 if (vma->vm_flags & VM_NORESERVE) 443 return; 444 445 if (vma->vm_flags & VM_MAYSHARE) { 446 /* Shared mappings always use reserves */ 447 h->resv_huge_pages--; 448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 449 /* 450 * Only the process that called mmap() has reserves for 451 * private mappings. 452 */ 453 h->resv_huge_pages--; 454 } 455 } 456 457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ 458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma) 459 { 460 VM_BUG_ON(!is_vm_hugetlb_page(vma)); 461 if (!(vma->vm_flags & VM_MAYSHARE)) 462 vma->vm_private_data = (void *)0; 463 } 464 465 /* Returns true if the VMA has associated reserve pages */ 466 static int vma_has_reserves(struct vm_area_struct *vma) 467 { 468 if (vma->vm_flags & VM_MAYSHARE) 469 return 1; 470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 471 return 1; 472 return 0; 473 } 474 475 static void copy_gigantic_page(struct page *dst, struct page *src) 476 { 477 int i; 478 struct hstate *h = page_hstate(src); 479 struct page *dst_base = dst; 480 struct page *src_base = src; 481 482 for (i = 0; i < pages_per_huge_page(h); ) { 483 cond_resched(); 484 copy_highpage(dst, src); 485 486 i++; 487 dst = mem_map_next(dst, dst_base, i); 488 src = mem_map_next(src, src_base, i); 489 } 490 } 491 492 void copy_huge_page(struct page *dst, struct page *src) 493 { 494 int i; 495 struct hstate *h = page_hstate(src); 496 497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { 498 copy_gigantic_page(dst, src); 499 return; 500 } 501 502 might_sleep(); 503 for (i = 0; i < pages_per_huge_page(h); i++) { 504 cond_resched(); 505 copy_highpage(dst + i, src + i); 506 } 507 } 508 509 static void enqueue_huge_page(struct hstate *h, struct page *page) 510 { 511 int nid = page_to_nid(page); 512 list_move(&page->lru, &h->hugepage_freelists[nid]); 513 h->free_huge_pages++; 514 h->free_huge_pages_node[nid]++; 515 } 516 517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid) 518 { 519 struct page *page; 520 521 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) 522 if (!is_migrate_isolate_page(page)) 523 break; 524 /* 525 * if 'non-isolated free hugepage' not found on the list, 526 * the allocation fails. 527 */ 528 if (&h->hugepage_freelists[nid] == &page->lru) 529 return NULL; 530 list_move(&page->lru, &h->hugepage_activelist); 531 set_page_refcounted(page); 532 h->free_huge_pages--; 533 h->free_huge_pages_node[nid]--; 534 return page; 535 } 536 537 static struct page *dequeue_huge_page_vma(struct hstate *h, 538 struct vm_area_struct *vma, 539 unsigned long address, int avoid_reserve) 540 { 541 struct page *page = NULL; 542 struct mempolicy *mpol; 543 nodemask_t *nodemask; 544 struct zonelist *zonelist; 545 struct zone *zone; 546 struct zoneref *z; 547 unsigned int cpuset_mems_cookie; 548 549 retry_cpuset: 550 cpuset_mems_cookie = get_mems_allowed(); 551 zonelist = huge_zonelist(vma, address, 552 htlb_alloc_mask, &mpol, &nodemask); 553 /* 554 * A child process with MAP_PRIVATE mappings created by their parent 555 * have no page reserves. This check ensures that reservations are 556 * not "stolen". The child may still get SIGKILLed 557 */ 558 if (!vma_has_reserves(vma) && 559 h->free_huge_pages - h->resv_huge_pages == 0) 560 goto err; 561 562 /* If reserves cannot be used, ensure enough pages are in the pool */ 563 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) 564 goto err; 565 566 for_each_zone_zonelist_nodemask(zone, z, zonelist, 567 MAX_NR_ZONES - 1, nodemask) { 568 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { 569 page = dequeue_huge_page_node(h, zone_to_nid(zone)); 570 if (page) { 571 if (!avoid_reserve) 572 decrement_hugepage_resv_vma(h, vma); 573 break; 574 } 575 } 576 } 577 578 mpol_cond_put(mpol); 579 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 580 goto retry_cpuset; 581 return page; 582 583 err: 584 mpol_cond_put(mpol); 585 return NULL; 586 } 587 588 static void update_and_free_page(struct hstate *h, struct page *page) 589 { 590 int i; 591 592 VM_BUG_ON(h->order >= MAX_ORDER); 593 594 h->nr_huge_pages--; 595 h->nr_huge_pages_node[page_to_nid(page)]--; 596 for (i = 0; i < pages_per_huge_page(h); i++) { 597 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 598 1 << PG_referenced | 1 << PG_dirty | 599 1 << PG_active | 1 << PG_reserved | 600 1 << PG_private | 1 << PG_writeback); 601 } 602 VM_BUG_ON(hugetlb_cgroup_from_page(page)); 603 set_compound_page_dtor(page, NULL); 604 set_page_refcounted(page); 605 arch_release_hugepage(page); 606 __free_pages(page, huge_page_order(h)); 607 } 608 609 struct hstate *size_to_hstate(unsigned long size) 610 { 611 struct hstate *h; 612 613 for_each_hstate(h) { 614 if (huge_page_size(h) == size) 615 return h; 616 } 617 return NULL; 618 } 619 620 static void free_huge_page(struct page *page) 621 { 622 /* 623 * Can't pass hstate in here because it is called from the 624 * compound page destructor. 625 */ 626 struct hstate *h = page_hstate(page); 627 int nid = page_to_nid(page); 628 struct hugepage_subpool *spool = 629 (struct hugepage_subpool *)page_private(page); 630 631 set_page_private(page, 0); 632 page->mapping = NULL; 633 BUG_ON(page_count(page)); 634 BUG_ON(page_mapcount(page)); 635 636 spin_lock(&hugetlb_lock); 637 hugetlb_cgroup_uncharge_page(hstate_index(h), 638 pages_per_huge_page(h), page); 639 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { 640 /* remove the page from active list */ 641 list_del(&page->lru); 642 update_and_free_page(h, page); 643 h->surplus_huge_pages--; 644 h->surplus_huge_pages_node[nid]--; 645 } else { 646 arch_clear_hugepage_flags(page); 647 enqueue_huge_page(h, page); 648 } 649 spin_unlock(&hugetlb_lock); 650 hugepage_subpool_put_pages(spool, 1); 651 } 652 653 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) 654 { 655 INIT_LIST_HEAD(&page->lru); 656 set_compound_page_dtor(page, free_huge_page); 657 spin_lock(&hugetlb_lock); 658 set_hugetlb_cgroup(page, NULL); 659 h->nr_huge_pages++; 660 h->nr_huge_pages_node[nid]++; 661 spin_unlock(&hugetlb_lock); 662 put_page(page); /* free it into the hugepage allocator */ 663 } 664 665 static void prep_compound_gigantic_page(struct page *page, unsigned long order) 666 { 667 int i; 668 int nr_pages = 1 << order; 669 struct page *p = page + 1; 670 671 /* we rely on prep_new_huge_page to set the destructor */ 672 set_compound_order(page, order); 673 __SetPageHead(page); 674 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 675 __SetPageTail(p); 676 set_page_count(p, 0); 677 p->first_page = page; 678 } 679 } 680 681 /* 682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or 683 * transparent huge pages. See the PageTransHuge() documentation for more 684 * details. 685 */ 686 int PageHuge(struct page *page) 687 { 688 compound_page_dtor *dtor; 689 690 if (!PageCompound(page)) 691 return 0; 692 693 page = compound_head(page); 694 dtor = get_compound_page_dtor(page); 695 696 return dtor == free_huge_page; 697 } 698 EXPORT_SYMBOL_GPL(PageHuge); 699 700 /* 701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for 702 * normal or transparent huge pages. 703 */ 704 int PageHeadHuge(struct page *page_head) 705 { 706 compound_page_dtor *dtor; 707 708 if (!PageHead(page_head)) 709 return 0; 710 711 dtor = get_compound_page_dtor(page_head); 712 713 return dtor == free_huge_page; 714 } 715 EXPORT_SYMBOL_GPL(PageHeadHuge); 716 717 pgoff_t __basepage_index(struct page *page) 718 { 719 struct page *page_head = compound_head(page); 720 pgoff_t index = page_index(page_head); 721 unsigned long compound_idx; 722 723 if (!PageHuge(page_head)) 724 return page_index(page); 725 726 if (compound_order(page_head) >= MAX_ORDER) 727 compound_idx = page_to_pfn(page) - page_to_pfn(page_head); 728 else 729 compound_idx = page - page_head; 730 731 return (index << compound_order(page_head)) + compound_idx; 732 } 733 734 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) 735 { 736 struct page *page; 737 738 if (h->order >= MAX_ORDER) 739 return NULL; 740 741 page = alloc_pages_exact_node(nid, 742 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 743 __GFP_REPEAT|__GFP_NOWARN, 744 huge_page_order(h)); 745 if (page) { 746 if (arch_prepare_hugepage(page)) { 747 __free_pages(page, huge_page_order(h)); 748 return NULL; 749 } 750 prep_new_huge_page(h, page, nid); 751 } 752 753 return page; 754 } 755 756 /* 757 * common helper functions for hstate_next_node_to_{alloc|free}. 758 * We may have allocated or freed a huge page based on a different 759 * nodes_allowed previously, so h->next_node_to_{alloc|free} might 760 * be outside of *nodes_allowed. Ensure that we use an allowed 761 * node for alloc or free. 762 */ 763 static int next_node_allowed(int nid, nodemask_t *nodes_allowed) 764 { 765 nid = next_node(nid, *nodes_allowed); 766 if (nid == MAX_NUMNODES) 767 nid = first_node(*nodes_allowed); 768 VM_BUG_ON(nid >= MAX_NUMNODES); 769 770 return nid; 771 } 772 773 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) 774 { 775 if (!node_isset(nid, *nodes_allowed)) 776 nid = next_node_allowed(nid, nodes_allowed); 777 return nid; 778 } 779 780 /* 781 * returns the previously saved node ["this node"] from which to 782 * allocate a persistent huge page for the pool and advance the 783 * next node from which to allocate, handling wrap at end of node 784 * mask. 785 */ 786 static int hstate_next_node_to_alloc(struct hstate *h, 787 nodemask_t *nodes_allowed) 788 { 789 int nid; 790 791 VM_BUG_ON(!nodes_allowed); 792 793 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); 794 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); 795 796 return nid; 797 } 798 799 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) 800 { 801 struct page *page; 802 int start_nid; 803 int next_nid; 804 int ret = 0; 805 806 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 807 next_nid = start_nid; 808 809 do { 810 page = alloc_fresh_huge_page_node(h, next_nid); 811 if (page) { 812 ret = 1; 813 break; 814 } 815 next_nid = hstate_next_node_to_alloc(h, nodes_allowed); 816 } while (next_nid != start_nid); 817 818 if (ret) 819 count_vm_event(HTLB_BUDDY_PGALLOC); 820 else 821 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 822 823 return ret; 824 } 825 826 /* 827 * helper for free_pool_huge_page() - return the previously saved 828 * node ["this node"] from which to free a huge page. Advance the 829 * next node id whether or not we find a free huge page to free so 830 * that the next attempt to free addresses the next node. 831 */ 832 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) 833 { 834 int nid; 835 836 VM_BUG_ON(!nodes_allowed); 837 838 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); 839 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); 840 841 return nid; 842 } 843 844 /* 845 * Free huge page from pool from next node to free. 846 * Attempt to keep persistent huge pages more or less 847 * balanced over allowed nodes. 848 * Called with hugetlb_lock locked. 849 */ 850 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, 851 bool acct_surplus) 852 { 853 int start_nid; 854 int next_nid; 855 int ret = 0; 856 857 start_nid = hstate_next_node_to_free(h, nodes_allowed); 858 next_nid = start_nid; 859 860 do { 861 /* 862 * If we're returning unused surplus pages, only examine 863 * nodes with surplus pages. 864 */ 865 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && 866 !list_empty(&h->hugepage_freelists[next_nid])) { 867 struct page *page = 868 list_entry(h->hugepage_freelists[next_nid].next, 869 struct page, lru); 870 list_del(&page->lru); 871 h->free_huge_pages--; 872 h->free_huge_pages_node[next_nid]--; 873 if (acct_surplus) { 874 h->surplus_huge_pages--; 875 h->surplus_huge_pages_node[next_nid]--; 876 } 877 update_and_free_page(h, page); 878 ret = 1; 879 break; 880 } 881 next_nid = hstate_next_node_to_free(h, nodes_allowed); 882 } while (next_nid != start_nid); 883 884 return ret; 885 } 886 887 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) 888 { 889 struct page *page; 890 unsigned int r_nid; 891 892 if (h->order >= MAX_ORDER) 893 return NULL; 894 895 /* 896 * Assume we will successfully allocate the surplus page to 897 * prevent racing processes from causing the surplus to exceed 898 * overcommit 899 * 900 * This however introduces a different race, where a process B 901 * tries to grow the static hugepage pool while alloc_pages() is 902 * called by process A. B will only examine the per-node 903 * counters in determining if surplus huge pages can be 904 * converted to normal huge pages in adjust_pool_surplus(). A 905 * won't be able to increment the per-node counter, until the 906 * lock is dropped by B, but B doesn't drop hugetlb_lock until 907 * no more huge pages can be converted from surplus to normal 908 * state (and doesn't try to convert again). Thus, we have a 909 * case where a surplus huge page exists, the pool is grown, and 910 * the surplus huge page still exists after, even though it 911 * should just have been converted to a normal huge page. This 912 * does not leak memory, though, as the hugepage will be freed 913 * once it is out of use. It also does not allow the counters to 914 * go out of whack in adjust_pool_surplus() as we don't modify 915 * the node values until we've gotten the hugepage and only the 916 * per-node value is checked there. 917 */ 918 spin_lock(&hugetlb_lock); 919 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 920 spin_unlock(&hugetlb_lock); 921 return NULL; 922 } else { 923 h->nr_huge_pages++; 924 h->surplus_huge_pages++; 925 } 926 spin_unlock(&hugetlb_lock); 927 928 if (nid == NUMA_NO_NODE) 929 page = alloc_pages(htlb_alloc_mask|__GFP_COMP| 930 __GFP_REPEAT|__GFP_NOWARN, 931 huge_page_order(h)); 932 else 933 page = alloc_pages_exact_node(nid, 934 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| 935 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); 936 937 if (page && arch_prepare_hugepage(page)) { 938 __free_pages(page, huge_page_order(h)); 939 page = NULL; 940 } 941 942 spin_lock(&hugetlb_lock); 943 if (page) { 944 INIT_LIST_HEAD(&page->lru); 945 r_nid = page_to_nid(page); 946 set_compound_page_dtor(page, free_huge_page); 947 set_hugetlb_cgroup(page, NULL); 948 /* 949 * We incremented the global counters already 950 */ 951 h->nr_huge_pages_node[r_nid]++; 952 h->surplus_huge_pages_node[r_nid]++; 953 __count_vm_event(HTLB_BUDDY_PGALLOC); 954 } else { 955 h->nr_huge_pages--; 956 h->surplus_huge_pages--; 957 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 958 } 959 spin_unlock(&hugetlb_lock); 960 961 return page; 962 } 963 964 /* 965 * This allocation function is useful in the context where vma is irrelevant. 966 * E.g. soft-offlining uses this function because it only cares physical 967 * address of error page. 968 */ 969 struct page *alloc_huge_page_node(struct hstate *h, int nid) 970 { 971 struct page *page; 972 973 spin_lock(&hugetlb_lock); 974 page = dequeue_huge_page_node(h, nid); 975 spin_unlock(&hugetlb_lock); 976 977 if (!page) 978 page = alloc_buddy_huge_page(h, nid); 979 980 return page; 981 } 982 983 /* 984 * Increase the hugetlb pool such that it can accommodate a reservation 985 * of size 'delta'. 986 */ 987 static int gather_surplus_pages(struct hstate *h, int delta) 988 { 989 struct list_head surplus_list; 990 struct page *page, *tmp; 991 int ret, i; 992 int needed, allocated; 993 bool alloc_ok = true; 994 995 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 996 if (needed <= 0) { 997 h->resv_huge_pages += delta; 998 return 0; 999 } 1000 1001 allocated = 0; 1002 INIT_LIST_HEAD(&surplus_list); 1003 1004 ret = -ENOMEM; 1005 retry: 1006 spin_unlock(&hugetlb_lock); 1007 for (i = 0; i < needed; i++) { 1008 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1009 if (!page) { 1010 alloc_ok = false; 1011 break; 1012 } 1013 list_add(&page->lru, &surplus_list); 1014 } 1015 allocated += i; 1016 1017 /* 1018 * After retaking hugetlb_lock, we need to recalculate 'needed' 1019 * because either resv_huge_pages or free_huge_pages may have changed. 1020 */ 1021 spin_lock(&hugetlb_lock); 1022 needed = (h->resv_huge_pages + delta) - 1023 (h->free_huge_pages + allocated); 1024 if (needed > 0) { 1025 if (alloc_ok) 1026 goto retry; 1027 /* 1028 * We were not able to allocate enough pages to 1029 * satisfy the entire reservation so we free what 1030 * we've allocated so far. 1031 */ 1032 goto free; 1033 } 1034 /* 1035 * The surplus_list now contains _at_least_ the number of extra pages 1036 * needed to accommodate the reservation. Add the appropriate number 1037 * of pages to the hugetlb pool and free the extras back to the buddy 1038 * allocator. Commit the entire reservation here to prevent another 1039 * process from stealing the pages as they are added to the pool but 1040 * before they are reserved. 1041 */ 1042 needed += allocated; 1043 h->resv_huge_pages += delta; 1044 ret = 0; 1045 1046 /* Free the needed pages to the hugetlb pool */ 1047 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1048 if ((--needed) < 0) 1049 break; 1050 /* 1051 * This page is now managed by the hugetlb allocator and has 1052 * no users -- drop the buddy allocator's reference. 1053 */ 1054 put_page_testzero(page); 1055 VM_BUG_ON(page_count(page)); 1056 enqueue_huge_page(h, page); 1057 } 1058 free: 1059 spin_unlock(&hugetlb_lock); 1060 1061 /* Free unnecessary surplus pages to the buddy allocator */ 1062 if (!list_empty(&surplus_list)) { 1063 list_for_each_entry_safe(page, tmp, &surplus_list, lru) { 1064 put_page(page); 1065 } 1066 } 1067 spin_lock(&hugetlb_lock); 1068 1069 return ret; 1070 } 1071 1072 /* 1073 * This routine has two main purposes: 1074 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 1075 * in unused_resv_pages. This corresponds to the prior adjustments made 1076 * to the associated reservation map. 1077 * 2) Free any unused surplus pages that may have been allocated to satisfy 1078 * the reservation. As many as unused_resv_pages may be freed. 1079 * 1080 * Called with hugetlb_lock held. However, the lock could be dropped (and 1081 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock, 1082 * we must make sure nobody else can claim pages we are in the process of 1083 * freeing. Do this by ensuring resv_huge_page always is greater than the 1084 * number of huge pages we plan to free when dropping the lock. 1085 */ 1086 static void return_unused_surplus_pages(struct hstate *h, 1087 unsigned long unused_resv_pages) 1088 { 1089 unsigned long nr_pages; 1090 1091 /* Cannot return gigantic pages currently */ 1092 if (h->order >= MAX_ORDER) 1093 goto out; 1094 1095 /* 1096 * Part (or even all) of the reservation could have been backed 1097 * by pre-allocated pages. Only free surplus pages. 1098 */ 1099 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 1100 1101 /* 1102 * We want to release as many surplus pages as possible, spread 1103 * evenly across all nodes with memory. Iterate across these nodes 1104 * until we can no longer free unreserved surplus pages. This occurs 1105 * when the nodes with surplus pages have no free pages. 1106 * free_pool_huge_page() will balance the the freed pages across the 1107 * on-line nodes with memory and will handle the hstate accounting. 1108 * 1109 * Note that we decrement resv_huge_pages as we free the pages. If 1110 * we drop the lock, resv_huge_pages will still be sufficiently large 1111 * to cover subsequent pages we may free. 1112 */ 1113 while (nr_pages--) { 1114 h->resv_huge_pages--; 1115 unused_resv_pages--; 1116 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) 1117 goto out; 1118 cond_resched_lock(&hugetlb_lock); 1119 } 1120 1121 out: 1122 /* Fully uncommit the reservation */ 1123 h->resv_huge_pages -= unused_resv_pages; 1124 } 1125 1126 /* 1127 * Determine if the huge page at addr within the vma has an associated 1128 * reservation. Where it does not we will need to logically increase 1129 * reservation and actually increase subpool usage before an allocation 1130 * can occur. Where any new reservation would be required the 1131 * reservation change is prepared, but not committed. Once the page 1132 * has been allocated from the subpool and instantiated the change should 1133 * be committed via vma_commit_reservation. No action is required on 1134 * failure. 1135 */ 1136 static long vma_needs_reservation(struct hstate *h, 1137 struct vm_area_struct *vma, unsigned long addr) 1138 { 1139 struct address_space *mapping = vma->vm_file->f_mapping; 1140 struct inode *inode = mapping->host; 1141 1142 if (vma->vm_flags & VM_MAYSHARE) { 1143 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1144 return region_chg(&inode->i_mapping->private_list, 1145 idx, idx + 1); 1146 1147 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1148 return 1; 1149 1150 } else { 1151 long err; 1152 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1153 struct resv_map *reservations = vma_resv_map(vma); 1154 1155 err = region_chg(&reservations->regions, idx, idx + 1); 1156 if (err < 0) 1157 return err; 1158 return 0; 1159 } 1160 } 1161 static void vma_commit_reservation(struct hstate *h, 1162 struct vm_area_struct *vma, unsigned long addr) 1163 { 1164 struct address_space *mapping = vma->vm_file->f_mapping; 1165 struct inode *inode = mapping->host; 1166 1167 if (vma->vm_flags & VM_MAYSHARE) { 1168 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1169 region_add(&inode->i_mapping->private_list, idx, idx + 1); 1170 1171 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1172 pgoff_t idx = vma_hugecache_offset(h, vma, addr); 1173 struct resv_map *reservations = vma_resv_map(vma); 1174 1175 /* Mark this page used in the map. */ 1176 region_add(&reservations->regions, idx, idx + 1); 1177 } 1178 } 1179 1180 static struct page *alloc_huge_page(struct vm_area_struct *vma, 1181 unsigned long addr, int avoid_reserve) 1182 { 1183 struct hugepage_subpool *spool = subpool_vma(vma); 1184 struct hstate *h = hstate_vma(vma); 1185 struct page *page; 1186 long chg; 1187 int ret, idx; 1188 struct hugetlb_cgroup *h_cg; 1189 1190 idx = hstate_index(h); 1191 /* 1192 * Processes that did not create the mapping will have no 1193 * reserves and will not have accounted against subpool 1194 * limit. Check that the subpool limit can be made before 1195 * satisfying the allocation MAP_NORESERVE mappings may also 1196 * need pages and subpool limit allocated allocated if no reserve 1197 * mapping overlaps. 1198 */ 1199 chg = vma_needs_reservation(h, vma, addr); 1200 if (chg < 0) 1201 return ERR_PTR(-ENOMEM); 1202 if (chg) 1203 if (hugepage_subpool_get_pages(spool, chg)) 1204 return ERR_PTR(-ENOSPC); 1205 1206 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 1207 if (ret) { 1208 hugepage_subpool_put_pages(spool, chg); 1209 return ERR_PTR(-ENOSPC); 1210 } 1211 spin_lock(&hugetlb_lock); 1212 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); 1213 if (page) { 1214 /* update page cgroup details */ 1215 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), 1216 h_cg, page); 1217 spin_unlock(&hugetlb_lock); 1218 } else { 1219 spin_unlock(&hugetlb_lock); 1220 page = alloc_buddy_huge_page(h, NUMA_NO_NODE); 1221 if (!page) { 1222 hugetlb_cgroup_uncharge_cgroup(idx, 1223 pages_per_huge_page(h), 1224 h_cg); 1225 hugepage_subpool_put_pages(spool, chg); 1226 return ERR_PTR(-ENOSPC); 1227 } 1228 spin_lock(&hugetlb_lock); 1229 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), 1230 h_cg, page); 1231 list_move(&page->lru, &h->hugepage_activelist); 1232 spin_unlock(&hugetlb_lock); 1233 } 1234 1235 set_page_private(page, (unsigned long)spool); 1236 1237 vma_commit_reservation(h, vma, addr); 1238 return page; 1239 } 1240 1241 int __weak alloc_bootmem_huge_page(struct hstate *h) 1242 { 1243 struct huge_bootmem_page *m; 1244 int nr_nodes = nodes_weight(node_states[N_MEMORY]); 1245 1246 while (nr_nodes) { 1247 void *addr; 1248 1249 addr = __alloc_bootmem_node_nopanic( 1250 NODE_DATA(hstate_next_node_to_alloc(h, 1251 &node_states[N_MEMORY])), 1252 huge_page_size(h), huge_page_size(h), 0); 1253 1254 if (addr) { 1255 /* 1256 * Use the beginning of the huge page to store the 1257 * huge_bootmem_page struct (until gather_bootmem 1258 * puts them into the mem_map). 1259 */ 1260 m = addr; 1261 goto found; 1262 } 1263 nr_nodes--; 1264 } 1265 return 0; 1266 1267 found: 1268 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); 1269 /* Put them into a private list first because mem_map is not up yet */ 1270 list_add(&m->list, &huge_boot_pages); 1271 m->hstate = h; 1272 return 1; 1273 } 1274 1275 static void prep_compound_huge_page(struct page *page, int order) 1276 { 1277 if (unlikely(order > (MAX_ORDER - 1))) 1278 prep_compound_gigantic_page(page, order); 1279 else 1280 prep_compound_page(page, order); 1281 } 1282 1283 /* Put bootmem huge pages into the standard lists after mem_map is up */ 1284 static void __init gather_bootmem_prealloc(void) 1285 { 1286 struct huge_bootmem_page *m; 1287 1288 list_for_each_entry(m, &huge_boot_pages, list) { 1289 struct hstate *h = m->hstate; 1290 struct page *page; 1291 1292 #ifdef CONFIG_HIGHMEM 1293 page = pfn_to_page(m->phys >> PAGE_SHIFT); 1294 free_bootmem_late((unsigned long)m, 1295 sizeof(struct huge_bootmem_page)); 1296 #else 1297 page = virt_to_page(m); 1298 #endif 1299 __ClearPageReserved(page); 1300 WARN_ON(page_count(page) != 1); 1301 prep_compound_huge_page(page, h->order); 1302 prep_new_huge_page(h, page, page_to_nid(page)); 1303 /* 1304 * If we had gigantic hugepages allocated at boot time, we need 1305 * to restore the 'stolen' pages to totalram_pages in order to 1306 * fix confusing memory reports from free(1) and another 1307 * side-effects, like CommitLimit going negative. 1308 */ 1309 if (h->order > (MAX_ORDER - 1)) 1310 totalram_pages += 1 << h->order; 1311 } 1312 } 1313 1314 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 1315 { 1316 unsigned long i; 1317 1318 for (i = 0; i < h->max_huge_pages; ++i) { 1319 if (h->order >= MAX_ORDER) { 1320 if (!alloc_bootmem_huge_page(h)) 1321 break; 1322 } else if (!alloc_fresh_huge_page(h, 1323 &node_states[N_MEMORY])) 1324 break; 1325 } 1326 h->max_huge_pages = i; 1327 } 1328 1329 static void __init hugetlb_init_hstates(void) 1330 { 1331 struct hstate *h; 1332 1333 for_each_hstate(h) { 1334 /* oversize hugepages were init'ed in early boot */ 1335 if (h->order < MAX_ORDER) 1336 hugetlb_hstate_alloc_pages(h); 1337 } 1338 } 1339 1340 static char * __init memfmt(char *buf, unsigned long n) 1341 { 1342 if (n >= (1UL << 30)) 1343 sprintf(buf, "%lu GB", n >> 30); 1344 else if (n >= (1UL << 20)) 1345 sprintf(buf, "%lu MB", n >> 20); 1346 else 1347 sprintf(buf, "%lu KB", n >> 10); 1348 return buf; 1349 } 1350 1351 static void __init report_hugepages(void) 1352 { 1353 struct hstate *h; 1354 1355 for_each_hstate(h) { 1356 char buf[32]; 1357 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", 1358 memfmt(buf, huge_page_size(h)), 1359 h->free_huge_pages); 1360 } 1361 } 1362 1363 #ifdef CONFIG_HIGHMEM 1364 static void try_to_free_low(struct hstate *h, unsigned long count, 1365 nodemask_t *nodes_allowed) 1366 { 1367 int i; 1368 1369 if (h->order >= MAX_ORDER) 1370 return; 1371 1372 for_each_node_mask(i, *nodes_allowed) { 1373 struct page *page, *next; 1374 struct list_head *freel = &h->hugepage_freelists[i]; 1375 list_for_each_entry_safe(page, next, freel, lru) { 1376 if (count >= h->nr_huge_pages) 1377 return; 1378 if (PageHighMem(page)) 1379 continue; 1380 list_del(&page->lru); 1381 update_and_free_page(h, page); 1382 h->free_huge_pages--; 1383 h->free_huge_pages_node[page_to_nid(page)]--; 1384 } 1385 } 1386 } 1387 #else 1388 static inline void try_to_free_low(struct hstate *h, unsigned long count, 1389 nodemask_t *nodes_allowed) 1390 { 1391 } 1392 #endif 1393 1394 /* 1395 * Increment or decrement surplus_huge_pages. Keep node-specific counters 1396 * balanced by operating on them in a round-robin fashion. 1397 * Returns 1 if an adjustment was made. 1398 */ 1399 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 1400 int delta) 1401 { 1402 int start_nid, next_nid; 1403 int ret = 0; 1404 1405 VM_BUG_ON(delta != -1 && delta != 1); 1406 1407 if (delta < 0) 1408 start_nid = hstate_next_node_to_alloc(h, nodes_allowed); 1409 else 1410 start_nid = hstate_next_node_to_free(h, nodes_allowed); 1411 next_nid = start_nid; 1412 1413 do { 1414 int nid = next_nid; 1415 if (delta < 0) { 1416 /* 1417 * To shrink on this node, there must be a surplus page 1418 */ 1419 if (!h->surplus_huge_pages_node[nid]) { 1420 next_nid = hstate_next_node_to_alloc(h, 1421 nodes_allowed); 1422 continue; 1423 } 1424 } 1425 if (delta > 0) { 1426 /* 1427 * Surplus cannot exceed the total number of pages 1428 */ 1429 if (h->surplus_huge_pages_node[nid] >= 1430 h->nr_huge_pages_node[nid]) { 1431 next_nid = hstate_next_node_to_free(h, 1432 nodes_allowed); 1433 continue; 1434 } 1435 } 1436 1437 h->surplus_huge_pages += delta; 1438 h->surplus_huge_pages_node[nid] += delta; 1439 ret = 1; 1440 break; 1441 } while (next_nid != start_nid); 1442 1443 return ret; 1444 } 1445 1446 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 1447 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, 1448 nodemask_t *nodes_allowed) 1449 { 1450 unsigned long min_count, ret; 1451 1452 if (h->order >= MAX_ORDER) 1453 return h->max_huge_pages; 1454 1455 /* 1456 * Increase the pool size 1457 * First take pages out of surplus state. Then make up the 1458 * remaining difference by allocating fresh huge pages. 1459 * 1460 * We might race with alloc_buddy_huge_page() here and be unable 1461 * to convert a surplus huge page to a normal huge page. That is 1462 * not critical, though, it just means the overall size of the 1463 * pool might be one hugepage larger than it needs to be, but 1464 * within all the constraints specified by the sysctls. 1465 */ 1466 spin_lock(&hugetlb_lock); 1467 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 1468 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 1469 break; 1470 } 1471 1472 while (count > persistent_huge_pages(h)) { 1473 /* 1474 * If this allocation races such that we no longer need the 1475 * page, free_huge_page will handle it by freeing the page 1476 * and reducing the surplus. 1477 */ 1478 spin_unlock(&hugetlb_lock); 1479 ret = alloc_fresh_huge_page(h, nodes_allowed); 1480 spin_lock(&hugetlb_lock); 1481 if (!ret) 1482 goto out; 1483 1484 /* Bail for signals. Probably ctrl-c from user */ 1485 if (signal_pending(current)) 1486 goto out; 1487 } 1488 1489 /* 1490 * Decrease the pool size 1491 * First return free pages to the buddy allocator (being careful 1492 * to keep enough around to satisfy reservations). Then place 1493 * pages into surplus state as needed so the pool will shrink 1494 * to the desired size as pages become free. 1495 * 1496 * By placing pages into the surplus state independent of the 1497 * overcommit value, we are allowing the surplus pool size to 1498 * exceed overcommit. There are few sane options here. Since 1499 * alloc_buddy_huge_page() is checking the global counter, 1500 * though, we'll note that we're not allowed to exceed surplus 1501 * and won't grow the pool anywhere else. Not until one of the 1502 * sysctls are changed, or the surplus pages go out of use. 1503 */ 1504 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; 1505 min_count = max(count, min_count); 1506 try_to_free_low(h, min_count, nodes_allowed); 1507 while (min_count < persistent_huge_pages(h)) { 1508 if (!free_pool_huge_page(h, nodes_allowed, 0)) 1509 break; 1510 cond_resched_lock(&hugetlb_lock); 1511 } 1512 while (count < persistent_huge_pages(h)) { 1513 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 1514 break; 1515 } 1516 out: 1517 ret = persistent_huge_pages(h); 1518 spin_unlock(&hugetlb_lock); 1519 return ret; 1520 } 1521 1522 #define HSTATE_ATTR_RO(_name) \ 1523 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 1524 1525 #define HSTATE_ATTR(_name) \ 1526 static struct kobj_attribute _name##_attr = \ 1527 __ATTR(_name, 0644, _name##_show, _name##_store) 1528 1529 static struct kobject *hugepages_kobj; 1530 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1531 1532 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); 1533 1534 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) 1535 { 1536 int i; 1537 1538 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1539 if (hstate_kobjs[i] == kobj) { 1540 if (nidp) 1541 *nidp = NUMA_NO_NODE; 1542 return &hstates[i]; 1543 } 1544 1545 return kobj_to_node_hstate(kobj, nidp); 1546 } 1547 1548 static ssize_t nr_hugepages_show_common(struct kobject *kobj, 1549 struct kobj_attribute *attr, char *buf) 1550 { 1551 struct hstate *h; 1552 unsigned long nr_huge_pages; 1553 int nid; 1554 1555 h = kobj_to_hstate(kobj, &nid); 1556 if (nid == NUMA_NO_NODE) 1557 nr_huge_pages = h->nr_huge_pages; 1558 else 1559 nr_huge_pages = h->nr_huge_pages_node[nid]; 1560 1561 return sprintf(buf, "%lu\n", nr_huge_pages); 1562 } 1563 1564 static ssize_t nr_hugepages_store_common(bool obey_mempolicy, 1565 struct kobject *kobj, struct kobj_attribute *attr, 1566 const char *buf, size_t len) 1567 { 1568 int err; 1569 int nid; 1570 unsigned long count; 1571 struct hstate *h; 1572 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); 1573 1574 err = strict_strtoul(buf, 10, &count); 1575 if (err) 1576 goto out; 1577 1578 h = kobj_to_hstate(kobj, &nid); 1579 if (h->order >= MAX_ORDER) { 1580 err = -EINVAL; 1581 goto out; 1582 } 1583 1584 if (nid == NUMA_NO_NODE) { 1585 /* 1586 * global hstate attribute 1587 */ 1588 if (!(obey_mempolicy && 1589 init_nodemask_of_mempolicy(nodes_allowed))) { 1590 NODEMASK_FREE(nodes_allowed); 1591 nodes_allowed = &node_states[N_MEMORY]; 1592 } 1593 } else if (nodes_allowed) { 1594 /* 1595 * per node hstate attribute: adjust count to global, 1596 * but restrict alloc/free to the specified node. 1597 */ 1598 count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; 1599 init_nodemask_of_node(nodes_allowed, nid); 1600 } else 1601 nodes_allowed = &node_states[N_MEMORY]; 1602 1603 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); 1604 1605 if (nodes_allowed != &node_states[N_MEMORY]) 1606 NODEMASK_FREE(nodes_allowed); 1607 1608 return len; 1609 out: 1610 NODEMASK_FREE(nodes_allowed); 1611 return err; 1612 } 1613 1614 static ssize_t nr_hugepages_show(struct kobject *kobj, 1615 struct kobj_attribute *attr, char *buf) 1616 { 1617 return nr_hugepages_show_common(kobj, attr, buf); 1618 } 1619 1620 static ssize_t nr_hugepages_store(struct kobject *kobj, 1621 struct kobj_attribute *attr, const char *buf, size_t len) 1622 { 1623 return nr_hugepages_store_common(false, kobj, attr, buf, len); 1624 } 1625 HSTATE_ATTR(nr_hugepages); 1626 1627 #ifdef CONFIG_NUMA 1628 1629 /* 1630 * hstate attribute for optionally mempolicy-based constraint on persistent 1631 * huge page alloc/free. 1632 */ 1633 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, 1634 struct kobj_attribute *attr, char *buf) 1635 { 1636 return nr_hugepages_show_common(kobj, attr, buf); 1637 } 1638 1639 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, 1640 struct kobj_attribute *attr, const char *buf, size_t len) 1641 { 1642 return nr_hugepages_store_common(true, kobj, attr, buf, len); 1643 } 1644 HSTATE_ATTR(nr_hugepages_mempolicy); 1645 #endif 1646 1647 1648 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, 1649 struct kobj_attribute *attr, char *buf) 1650 { 1651 struct hstate *h = kobj_to_hstate(kobj, NULL); 1652 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); 1653 } 1654 1655 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, 1656 struct kobj_attribute *attr, const char *buf, size_t count) 1657 { 1658 int err; 1659 unsigned long input; 1660 struct hstate *h = kobj_to_hstate(kobj, NULL); 1661 1662 if (h->order >= MAX_ORDER) 1663 return -EINVAL; 1664 1665 err = strict_strtoul(buf, 10, &input); 1666 if (err) 1667 return err; 1668 1669 spin_lock(&hugetlb_lock); 1670 h->nr_overcommit_huge_pages = input; 1671 spin_unlock(&hugetlb_lock); 1672 1673 return count; 1674 } 1675 HSTATE_ATTR(nr_overcommit_hugepages); 1676 1677 static ssize_t free_hugepages_show(struct kobject *kobj, 1678 struct kobj_attribute *attr, char *buf) 1679 { 1680 struct hstate *h; 1681 unsigned long free_huge_pages; 1682 int nid; 1683 1684 h = kobj_to_hstate(kobj, &nid); 1685 if (nid == NUMA_NO_NODE) 1686 free_huge_pages = h->free_huge_pages; 1687 else 1688 free_huge_pages = h->free_huge_pages_node[nid]; 1689 1690 return sprintf(buf, "%lu\n", free_huge_pages); 1691 } 1692 HSTATE_ATTR_RO(free_hugepages); 1693 1694 static ssize_t resv_hugepages_show(struct kobject *kobj, 1695 struct kobj_attribute *attr, char *buf) 1696 { 1697 struct hstate *h = kobj_to_hstate(kobj, NULL); 1698 return sprintf(buf, "%lu\n", h->resv_huge_pages); 1699 } 1700 HSTATE_ATTR_RO(resv_hugepages); 1701 1702 static ssize_t surplus_hugepages_show(struct kobject *kobj, 1703 struct kobj_attribute *attr, char *buf) 1704 { 1705 struct hstate *h; 1706 unsigned long surplus_huge_pages; 1707 int nid; 1708 1709 h = kobj_to_hstate(kobj, &nid); 1710 if (nid == NUMA_NO_NODE) 1711 surplus_huge_pages = h->surplus_huge_pages; 1712 else 1713 surplus_huge_pages = h->surplus_huge_pages_node[nid]; 1714 1715 return sprintf(buf, "%lu\n", surplus_huge_pages); 1716 } 1717 HSTATE_ATTR_RO(surplus_hugepages); 1718 1719 static struct attribute *hstate_attrs[] = { 1720 &nr_hugepages_attr.attr, 1721 &nr_overcommit_hugepages_attr.attr, 1722 &free_hugepages_attr.attr, 1723 &resv_hugepages_attr.attr, 1724 &surplus_hugepages_attr.attr, 1725 #ifdef CONFIG_NUMA 1726 &nr_hugepages_mempolicy_attr.attr, 1727 #endif 1728 NULL, 1729 }; 1730 1731 static struct attribute_group hstate_attr_group = { 1732 .attrs = hstate_attrs, 1733 }; 1734 1735 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, 1736 struct kobject **hstate_kobjs, 1737 struct attribute_group *hstate_attr_group) 1738 { 1739 int retval; 1740 int hi = hstate_index(h); 1741 1742 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); 1743 if (!hstate_kobjs[hi]) 1744 return -ENOMEM; 1745 1746 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); 1747 if (retval) 1748 kobject_put(hstate_kobjs[hi]); 1749 1750 return retval; 1751 } 1752 1753 static void __init hugetlb_sysfs_init(void) 1754 { 1755 struct hstate *h; 1756 int err; 1757 1758 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); 1759 if (!hugepages_kobj) 1760 return; 1761 1762 for_each_hstate(h) { 1763 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, 1764 hstate_kobjs, &hstate_attr_group); 1765 if (err) 1766 pr_err("Hugetlb: Unable to add hstate %s", h->name); 1767 } 1768 } 1769 1770 #ifdef CONFIG_NUMA 1771 1772 /* 1773 * node_hstate/s - associate per node hstate attributes, via their kobjects, 1774 * with node devices in node_devices[] using a parallel array. The array 1775 * index of a node device or _hstate == node id. 1776 * This is here to avoid any static dependency of the node device driver, in 1777 * the base kernel, on the hugetlb module. 1778 */ 1779 struct node_hstate { 1780 struct kobject *hugepages_kobj; 1781 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; 1782 }; 1783 struct node_hstate node_hstates[MAX_NUMNODES]; 1784 1785 /* 1786 * A subset of global hstate attributes for node devices 1787 */ 1788 static struct attribute *per_node_hstate_attrs[] = { 1789 &nr_hugepages_attr.attr, 1790 &free_hugepages_attr.attr, 1791 &surplus_hugepages_attr.attr, 1792 NULL, 1793 }; 1794 1795 static struct attribute_group per_node_hstate_attr_group = { 1796 .attrs = per_node_hstate_attrs, 1797 }; 1798 1799 /* 1800 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. 1801 * Returns node id via non-NULL nidp. 1802 */ 1803 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1804 { 1805 int nid; 1806 1807 for (nid = 0; nid < nr_node_ids; nid++) { 1808 struct node_hstate *nhs = &node_hstates[nid]; 1809 int i; 1810 for (i = 0; i < HUGE_MAX_HSTATE; i++) 1811 if (nhs->hstate_kobjs[i] == kobj) { 1812 if (nidp) 1813 *nidp = nid; 1814 return &hstates[i]; 1815 } 1816 } 1817 1818 BUG(); 1819 return NULL; 1820 } 1821 1822 /* 1823 * Unregister hstate attributes from a single node device. 1824 * No-op if no hstate attributes attached. 1825 */ 1826 static void hugetlb_unregister_node(struct node *node) 1827 { 1828 struct hstate *h; 1829 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1830 1831 if (!nhs->hugepages_kobj) 1832 return; /* no hstate attributes */ 1833 1834 for_each_hstate(h) { 1835 int idx = hstate_index(h); 1836 if (nhs->hstate_kobjs[idx]) { 1837 kobject_put(nhs->hstate_kobjs[idx]); 1838 nhs->hstate_kobjs[idx] = NULL; 1839 } 1840 } 1841 1842 kobject_put(nhs->hugepages_kobj); 1843 nhs->hugepages_kobj = NULL; 1844 } 1845 1846 /* 1847 * hugetlb module exit: unregister hstate attributes from node devices 1848 * that have them. 1849 */ 1850 static void hugetlb_unregister_all_nodes(void) 1851 { 1852 int nid; 1853 1854 /* 1855 * disable node device registrations. 1856 */ 1857 register_hugetlbfs_with_node(NULL, NULL); 1858 1859 /* 1860 * remove hstate attributes from any nodes that have them. 1861 */ 1862 for (nid = 0; nid < nr_node_ids; nid++) 1863 hugetlb_unregister_node(node_devices[nid]); 1864 } 1865 1866 /* 1867 * Register hstate attributes for a single node device. 1868 * No-op if attributes already registered. 1869 */ 1870 static void hugetlb_register_node(struct node *node) 1871 { 1872 struct hstate *h; 1873 struct node_hstate *nhs = &node_hstates[node->dev.id]; 1874 int err; 1875 1876 if (nhs->hugepages_kobj) 1877 return; /* already allocated */ 1878 1879 nhs->hugepages_kobj = kobject_create_and_add("hugepages", 1880 &node->dev.kobj); 1881 if (!nhs->hugepages_kobj) 1882 return; 1883 1884 for_each_hstate(h) { 1885 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, 1886 nhs->hstate_kobjs, 1887 &per_node_hstate_attr_group); 1888 if (err) { 1889 pr_err("Hugetlb: Unable to add hstate %s for node %d\n", 1890 h->name, node->dev.id); 1891 hugetlb_unregister_node(node); 1892 break; 1893 } 1894 } 1895 } 1896 1897 /* 1898 * hugetlb init time: register hstate attributes for all registered node 1899 * devices of nodes that have memory. All on-line nodes should have 1900 * registered their associated device by this time. 1901 */ 1902 static void hugetlb_register_all_nodes(void) 1903 { 1904 int nid; 1905 1906 for_each_node_state(nid, N_MEMORY) { 1907 struct node *node = node_devices[nid]; 1908 if (node->dev.id == nid) 1909 hugetlb_register_node(node); 1910 } 1911 1912 /* 1913 * Let the node device driver know we're here so it can 1914 * [un]register hstate attributes on node hotplug. 1915 */ 1916 register_hugetlbfs_with_node(hugetlb_register_node, 1917 hugetlb_unregister_node); 1918 } 1919 #else /* !CONFIG_NUMA */ 1920 1921 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) 1922 { 1923 BUG(); 1924 if (nidp) 1925 *nidp = -1; 1926 return NULL; 1927 } 1928 1929 static void hugetlb_unregister_all_nodes(void) { } 1930 1931 static void hugetlb_register_all_nodes(void) { } 1932 1933 #endif 1934 1935 static void __exit hugetlb_exit(void) 1936 { 1937 struct hstate *h; 1938 1939 hugetlb_unregister_all_nodes(); 1940 1941 for_each_hstate(h) { 1942 kobject_put(hstate_kobjs[hstate_index(h)]); 1943 } 1944 1945 kobject_put(hugepages_kobj); 1946 } 1947 module_exit(hugetlb_exit); 1948 1949 static int __init hugetlb_init(void) 1950 { 1951 /* Some platform decide whether they support huge pages at boot 1952 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when 1953 * there is no such support 1954 */ 1955 if (HPAGE_SHIFT == 0) 1956 return 0; 1957 1958 if (!size_to_hstate(default_hstate_size)) { 1959 default_hstate_size = HPAGE_SIZE; 1960 if (!size_to_hstate(default_hstate_size)) 1961 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 1962 } 1963 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); 1964 if (default_hstate_max_huge_pages) 1965 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 1966 1967 hugetlb_init_hstates(); 1968 gather_bootmem_prealloc(); 1969 report_hugepages(); 1970 1971 hugetlb_sysfs_init(); 1972 hugetlb_register_all_nodes(); 1973 hugetlb_cgroup_file_init(); 1974 1975 return 0; 1976 } 1977 module_init(hugetlb_init); 1978 1979 /* Should be called on processing a hugepagesz=... option */ 1980 void __init hugetlb_add_hstate(unsigned order) 1981 { 1982 struct hstate *h; 1983 unsigned long i; 1984 1985 if (size_to_hstate(PAGE_SIZE << order)) { 1986 pr_warning("hugepagesz= specified twice, ignoring\n"); 1987 return; 1988 } 1989 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 1990 BUG_ON(order == 0); 1991 h = &hstates[hugetlb_max_hstate++]; 1992 h->order = order; 1993 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); 1994 h->nr_huge_pages = 0; 1995 h->free_huge_pages = 0; 1996 for (i = 0; i < MAX_NUMNODES; ++i) 1997 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 1998 INIT_LIST_HEAD(&h->hugepage_activelist); 1999 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); 2000 h->next_nid_to_free = first_node(node_states[N_MEMORY]); 2001 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 2002 huge_page_size(h)/1024); 2003 2004 parsed_hstate = h; 2005 } 2006 2007 static int __init hugetlb_nrpages_setup(char *s) 2008 { 2009 unsigned long *mhp; 2010 static unsigned long *last_mhp; 2011 2012 /* 2013 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, 2014 * so this hugepages= parameter goes to the "default hstate". 2015 */ 2016 if (!hugetlb_max_hstate) 2017 mhp = &default_hstate_max_huge_pages; 2018 else 2019 mhp = &parsed_hstate->max_huge_pages; 2020 2021 if (mhp == last_mhp) { 2022 pr_warning("hugepages= specified twice without " 2023 "interleaving hugepagesz=, ignoring\n"); 2024 return 1; 2025 } 2026 2027 if (sscanf(s, "%lu", mhp) <= 0) 2028 *mhp = 0; 2029 2030 /* 2031 * Global state is always initialized later in hugetlb_init. 2032 * But we need to allocate >= MAX_ORDER hstates here early to still 2033 * use the bootmem allocator. 2034 */ 2035 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) 2036 hugetlb_hstate_alloc_pages(parsed_hstate); 2037 2038 last_mhp = mhp; 2039 2040 return 1; 2041 } 2042 __setup("hugepages=", hugetlb_nrpages_setup); 2043 2044 static int __init hugetlb_default_setup(char *s) 2045 { 2046 default_hstate_size = memparse(s, &s); 2047 return 1; 2048 } 2049 __setup("default_hugepagesz=", hugetlb_default_setup); 2050 2051 static unsigned int cpuset_mems_nr(unsigned int *array) 2052 { 2053 int node; 2054 unsigned int nr = 0; 2055 2056 for_each_node_mask(node, cpuset_current_mems_allowed) 2057 nr += array[node]; 2058 2059 return nr; 2060 } 2061 2062 #ifdef CONFIG_SYSCTL 2063 static int hugetlb_sysctl_handler_common(bool obey_mempolicy, 2064 struct ctl_table *table, int write, 2065 void __user *buffer, size_t *length, loff_t *ppos) 2066 { 2067 struct hstate *h = &default_hstate; 2068 unsigned long tmp; 2069 int ret; 2070 2071 tmp = h->max_huge_pages; 2072 2073 if (write && h->order >= MAX_ORDER) 2074 return -EINVAL; 2075 2076 table->data = &tmp; 2077 table->maxlen = sizeof(unsigned long); 2078 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2079 if (ret) 2080 goto out; 2081 2082 if (write) { 2083 NODEMASK_ALLOC(nodemask_t, nodes_allowed, 2084 GFP_KERNEL | __GFP_NORETRY); 2085 if (!(obey_mempolicy && 2086 init_nodemask_of_mempolicy(nodes_allowed))) { 2087 NODEMASK_FREE(nodes_allowed); 2088 nodes_allowed = &node_states[N_MEMORY]; 2089 } 2090 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); 2091 2092 if (nodes_allowed != &node_states[N_MEMORY]) 2093 NODEMASK_FREE(nodes_allowed); 2094 } 2095 out: 2096 return ret; 2097 } 2098 2099 int hugetlb_sysctl_handler(struct ctl_table *table, int write, 2100 void __user *buffer, size_t *length, loff_t *ppos) 2101 { 2102 2103 return hugetlb_sysctl_handler_common(false, table, write, 2104 buffer, length, ppos); 2105 } 2106 2107 #ifdef CONFIG_NUMA 2108 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, 2109 void __user *buffer, size_t *length, loff_t *ppos) 2110 { 2111 return hugetlb_sysctl_handler_common(true, table, write, 2112 buffer, length, ppos); 2113 } 2114 #endif /* CONFIG_NUMA */ 2115 2116 int hugetlb_treat_movable_handler(struct ctl_table *table, int write, 2117 void __user *buffer, 2118 size_t *length, loff_t *ppos) 2119 { 2120 proc_dointvec(table, write, buffer, length, ppos); 2121 if (hugepages_treat_as_movable) 2122 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; 2123 else 2124 htlb_alloc_mask = GFP_HIGHUSER; 2125 return 0; 2126 } 2127 2128 int hugetlb_overcommit_handler(struct ctl_table *table, int write, 2129 void __user *buffer, 2130 size_t *length, loff_t *ppos) 2131 { 2132 struct hstate *h = &default_hstate; 2133 unsigned long tmp; 2134 int ret; 2135 2136 tmp = h->nr_overcommit_huge_pages; 2137 2138 if (write && h->order >= MAX_ORDER) 2139 return -EINVAL; 2140 2141 table->data = &tmp; 2142 table->maxlen = sizeof(unsigned long); 2143 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); 2144 if (ret) 2145 goto out; 2146 2147 if (write) { 2148 spin_lock(&hugetlb_lock); 2149 h->nr_overcommit_huge_pages = tmp; 2150 spin_unlock(&hugetlb_lock); 2151 } 2152 out: 2153 return ret; 2154 } 2155 2156 #endif /* CONFIG_SYSCTL */ 2157 2158 void hugetlb_report_meminfo(struct seq_file *m) 2159 { 2160 struct hstate *h = &default_hstate; 2161 seq_printf(m, 2162 "HugePages_Total: %5lu\n" 2163 "HugePages_Free: %5lu\n" 2164 "HugePages_Rsvd: %5lu\n" 2165 "HugePages_Surp: %5lu\n" 2166 "Hugepagesize: %8lu kB\n", 2167 h->nr_huge_pages, 2168 h->free_huge_pages, 2169 h->resv_huge_pages, 2170 h->surplus_huge_pages, 2171 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2172 } 2173 2174 int hugetlb_report_node_meminfo(int nid, char *buf) 2175 { 2176 struct hstate *h = &default_hstate; 2177 return sprintf(buf, 2178 "Node %d HugePages_Total: %5u\n" 2179 "Node %d HugePages_Free: %5u\n" 2180 "Node %d HugePages_Surp: %5u\n", 2181 nid, h->nr_huge_pages_node[nid], 2182 nid, h->free_huge_pages_node[nid], 2183 nid, h->surplus_huge_pages_node[nid]); 2184 } 2185 2186 void hugetlb_show_meminfo(void) 2187 { 2188 struct hstate *h; 2189 int nid; 2190 2191 for_each_node_state(nid, N_MEMORY) 2192 for_each_hstate(h) 2193 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 2194 nid, 2195 h->nr_huge_pages_node[nid], 2196 h->free_huge_pages_node[nid], 2197 h->surplus_huge_pages_node[nid], 2198 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); 2199 } 2200 2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 2202 unsigned long hugetlb_total_pages(void) 2203 { 2204 struct hstate *h; 2205 unsigned long nr_total_pages = 0; 2206 2207 for_each_hstate(h) 2208 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 2209 return nr_total_pages; 2210 } 2211 2212 static int hugetlb_acct_memory(struct hstate *h, long delta) 2213 { 2214 int ret = -ENOMEM; 2215 2216 spin_lock(&hugetlb_lock); 2217 /* 2218 * When cpuset is configured, it breaks the strict hugetlb page 2219 * reservation as the accounting is done on a global variable. Such 2220 * reservation is completely rubbish in the presence of cpuset because 2221 * the reservation is not checked against page availability for the 2222 * current cpuset. Application can still potentially OOM'ed by kernel 2223 * with lack of free htlb page in cpuset that the task is in. 2224 * Attempt to enforce strict accounting with cpuset is almost 2225 * impossible (or too ugly) because cpuset is too fluid that 2226 * task or memory node can be dynamically moved between cpusets. 2227 * 2228 * The change of semantics for shared hugetlb mapping with cpuset is 2229 * undesirable. However, in order to preserve some of the semantics, 2230 * we fall back to check against current free page availability as 2231 * a best attempt and hopefully to minimize the impact of changing 2232 * semantics that cpuset has. 2233 */ 2234 if (delta > 0) { 2235 if (gather_surplus_pages(h, delta) < 0) 2236 goto out; 2237 2238 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { 2239 return_unused_surplus_pages(h, delta); 2240 goto out; 2241 } 2242 } 2243 2244 ret = 0; 2245 if (delta < 0) 2246 return_unused_surplus_pages(h, (unsigned long) -delta); 2247 2248 out: 2249 spin_unlock(&hugetlb_lock); 2250 return ret; 2251 } 2252 2253 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 2254 { 2255 struct resv_map *reservations = vma_resv_map(vma); 2256 2257 /* 2258 * This new VMA should share its siblings reservation map if present. 2259 * The VMA will only ever have a valid reservation map pointer where 2260 * it is being copied for another still existing VMA. As that VMA 2261 * has a reference to the reservation map it cannot disappear until 2262 * after this open call completes. It is therefore safe to take a 2263 * new reference here without additional locking. 2264 */ 2265 if (reservations) 2266 kref_get(&reservations->refs); 2267 } 2268 2269 static void resv_map_put(struct vm_area_struct *vma) 2270 { 2271 struct resv_map *reservations = vma_resv_map(vma); 2272 2273 if (!reservations) 2274 return; 2275 kref_put(&reservations->refs, resv_map_release); 2276 } 2277 2278 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 2279 { 2280 struct hstate *h = hstate_vma(vma); 2281 struct resv_map *reservations = vma_resv_map(vma); 2282 struct hugepage_subpool *spool = subpool_vma(vma); 2283 unsigned long reserve; 2284 unsigned long start; 2285 unsigned long end; 2286 2287 if (reservations) { 2288 start = vma_hugecache_offset(h, vma, vma->vm_start); 2289 end = vma_hugecache_offset(h, vma, vma->vm_end); 2290 2291 reserve = (end - start) - 2292 region_count(&reservations->regions, start, end); 2293 2294 resv_map_put(vma); 2295 2296 if (reserve) { 2297 hugetlb_acct_memory(h, -reserve); 2298 hugepage_subpool_put_pages(spool, reserve); 2299 } 2300 } 2301 } 2302 2303 /* 2304 * We cannot handle pagefaults against hugetlb pages at all. They cause 2305 * handle_mm_fault() to try to instantiate regular-sized pages in the 2306 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get 2307 * this far. 2308 */ 2309 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2310 { 2311 BUG(); 2312 return 0; 2313 } 2314 2315 const struct vm_operations_struct hugetlb_vm_ops = { 2316 .fault = hugetlb_vm_op_fault, 2317 .open = hugetlb_vm_op_open, 2318 .close = hugetlb_vm_op_close, 2319 }; 2320 2321 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, 2322 int writable) 2323 { 2324 pte_t entry; 2325 2326 if (writable) { 2327 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, 2328 vma->vm_page_prot))); 2329 } else { 2330 entry = huge_pte_wrprotect(mk_huge_pte(page, 2331 vma->vm_page_prot)); 2332 } 2333 entry = pte_mkyoung(entry); 2334 entry = pte_mkhuge(entry); 2335 entry = arch_make_huge_pte(entry, vma, page, writable); 2336 2337 return entry; 2338 } 2339 2340 static void set_huge_ptep_writable(struct vm_area_struct *vma, 2341 unsigned long address, pte_t *ptep) 2342 { 2343 pte_t entry; 2344 2345 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); 2346 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 2347 update_mmu_cache(vma, address, ptep); 2348 } 2349 2350 static int is_hugetlb_entry_migration(pte_t pte) 2351 { 2352 swp_entry_t swp; 2353 2354 if (huge_pte_none(pte) || pte_present(pte)) 2355 return 0; 2356 swp = pte_to_swp_entry(pte); 2357 if (non_swap_entry(swp) && is_migration_entry(swp)) 2358 return 1; 2359 else 2360 return 0; 2361 } 2362 2363 static int is_hugetlb_entry_hwpoisoned(pte_t pte) 2364 { 2365 swp_entry_t swp; 2366 2367 if (huge_pte_none(pte) || pte_present(pte)) 2368 return 0; 2369 swp = pte_to_swp_entry(pte); 2370 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) 2371 return 1; 2372 else 2373 return 0; 2374 } 2375 2376 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 2377 struct vm_area_struct *vma) 2378 { 2379 pte_t *src_pte, *dst_pte, entry; 2380 struct page *ptepage; 2381 unsigned long addr; 2382 int cow; 2383 struct hstate *h = hstate_vma(vma); 2384 unsigned long sz = huge_page_size(h); 2385 2386 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 2387 2388 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { 2389 src_pte = huge_pte_offset(src, addr); 2390 if (!src_pte) 2391 continue; 2392 dst_pte = huge_pte_alloc(dst, addr, sz); 2393 if (!dst_pte) 2394 goto nomem; 2395 2396 /* If the pagetables are shared don't copy or take references */ 2397 if (dst_pte == src_pte) 2398 continue; 2399 2400 spin_lock(&dst->page_table_lock); 2401 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); 2402 entry = huge_ptep_get(src_pte); 2403 if (huge_pte_none(entry)) { /* skip none entry */ 2404 ; 2405 } else if (unlikely(is_hugetlb_entry_migration(entry) || 2406 is_hugetlb_entry_hwpoisoned(entry))) { 2407 swp_entry_t swp_entry = pte_to_swp_entry(entry); 2408 2409 if (is_write_migration_entry(swp_entry) && cow) { 2410 /* 2411 * COW mappings require pages in both 2412 * parent and child to be set to read. 2413 */ 2414 make_migration_entry_read(&swp_entry); 2415 entry = swp_entry_to_pte(swp_entry); 2416 set_huge_pte_at(src, addr, src_pte, entry); 2417 } 2418 set_huge_pte_at(dst, addr, dst_pte, entry); 2419 } else { 2420 if (cow) 2421 huge_ptep_set_wrprotect(src, addr, src_pte); 2422 entry = huge_ptep_get(src_pte); 2423 ptepage = pte_page(entry); 2424 get_page(ptepage); 2425 page_dup_rmap(ptepage); 2426 set_huge_pte_at(dst, addr, dst_pte, entry); 2427 } 2428 spin_unlock(&src->page_table_lock); 2429 spin_unlock(&dst->page_table_lock); 2430 } 2431 return 0; 2432 2433 nomem: 2434 return -ENOMEM; 2435 } 2436 2437 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 2438 unsigned long start, unsigned long end, 2439 struct page *ref_page) 2440 { 2441 int force_flush = 0; 2442 struct mm_struct *mm = vma->vm_mm; 2443 unsigned long address; 2444 pte_t *ptep; 2445 pte_t pte; 2446 struct page *page; 2447 struct hstate *h = hstate_vma(vma); 2448 unsigned long sz = huge_page_size(h); 2449 const unsigned long mmun_start = start; /* For mmu_notifiers */ 2450 const unsigned long mmun_end = end; /* For mmu_notifiers */ 2451 2452 WARN_ON(!is_vm_hugetlb_page(vma)); 2453 BUG_ON(start & ~huge_page_mask(h)); 2454 BUG_ON(end & ~huge_page_mask(h)); 2455 2456 tlb_start_vma(tlb, vma); 2457 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2458 again: 2459 spin_lock(&mm->page_table_lock); 2460 for (address = start; address < end; address += sz) { 2461 ptep = huge_pte_offset(mm, address); 2462 if (!ptep) 2463 continue; 2464 2465 if (huge_pmd_unshare(mm, &address, ptep)) 2466 continue; 2467 2468 pte = huge_ptep_get(ptep); 2469 if (huge_pte_none(pte)) 2470 continue; 2471 2472 /* 2473 * Migrating hugepage or HWPoisoned hugepage is already 2474 * unmapped and its refcount is dropped, so just clear pte here. 2475 */ 2476 if (unlikely(!pte_present(pte))) { 2477 huge_pte_clear(mm, address, ptep); 2478 continue; 2479 } 2480 2481 page = pte_page(pte); 2482 /* 2483 * If a reference page is supplied, it is because a specific 2484 * page is being unmapped, not a range. Ensure the page we 2485 * are about to unmap is the actual page of interest. 2486 */ 2487 if (ref_page) { 2488 if (page != ref_page) 2489 continue; 2490 2491 /* 2492 * Mark the VMA as having unmapped its page so that 2493 * future faults in this VMA will fail rather than 2494 * looking like data was lost 2495 */ 2496 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 2497 } 2498 2499 pte = huge_ptep_get_and_clear(mm, address, ptep); 2500 tlb_remove_tlb_entry(tlb, ptep, address); 2501 if (huge_pte_dirty(pte)) 2502 set_page_dirty(page); 2503 2504 page_remove_rmap(page); 2505 force_flush = !__tlb_remove_page(tlb, page); 2506 if (force_flush) 2507 break; 2508 /* Bail out after unmapping reference page if supplied */ 2509 if (ref_page) 2510 break; 2511 } 2512 spin_unlock(&mm->page_table_lock); 2513 /* 2514 * mmu_gather ran out of room to batch pages, we break out of 2515 * the PTE lock to avoid doing the potential expensive TLB invalidate 2516 * and page-free while holding it. 2517 */ 2518 if (force_flush) { 2519 force_flush = 0; 2520 tlb_flush_mmu(tlb); 2521 if (address < end && !ref_page) 2522 goto again; 2523 } 2524 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2525 tlb_end_vma(tlb, vma); 2526 } 2527 2528 void __unmap_hugepage_range_final(struct mmu_gather *tlb, 2529 struct vm_area_struct *vma, unsigned long start, 2530 unsigned long end, struct page *ref_page) 2531 { 2532 __unmap_hugepage_range(tlb, vma, start, end, ref_page); 2533 2534 /* 2535 * Clear this flag so that x86's huge_pmd_share page_table_shareable 2536 * test will fail on a vma being torn down, and not grab a page table 2537 * on its way out. We're lucky that the flag has such an appropriate 2538 * name, and can in fact be safely cleared here. We could clear it 2539 * before the __unmap_hugepage_range above, but all that's necessary 2540 * is to clear it before releasing the i_mmap_mutex. This works 2541 * because in the context this is called, the VMA is about to be 2542 * destroyed and the i_mmap_mutex is held. 2543 */ 2544 vma->vm_flags &= ~VM_MAYSHARE; 2545 } 2546 2547 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 2548 unsigned long end, struct page *ref_page) 2549 { 2550 struct mm_struct *mm; 2551 struct mmu_gather tlb; 2552 2553 mm = vma->vm_mm; 2554 2555 tlb_gather_mmu(&tlb, mm, start, end); 2556 __unmap_hugepage_range(&tlb, vma, start, end, ref_page); 2557 tlb_finish_mmu(&tlb, start, end); 2558 } 2559 2560 /* 2561 * This is called when the original mapper is failing to COW a MAP_PRIVATE 2562 * mappping it owns the reserve page for. The intention is to unmap the page 2563 * from other VMAs and let the children be SIGKILLed if they are faulting the 2564 * same region. 2565 */ 2566 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 2567 struct page *page, unsigned long address) 2568 { 2569 struct hstate *h = hstate_vma(vma); 2570 struct vm_area_struct *iter_vma; 2571 struct address_space *mapping; 2572 pgoff_t pgoff; 2573 2574 /* 2575 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 2576 * from page cache lookup which is in HPAGE_SIZE units. 2577 */ 2578 address = address & huge_page_mask(h); 2579 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 2580 vma->vm_pgoff; 2581 mapping = file_inode(vma->vm_file)->i_mapping; 2582 2583 /* 2584 * Take the mapping lock for the duration of the table walk. As 2585 * this mapping should be shared between all the VMAs, 2586 * __unmap_hugepage_range() is called as the lock is already held 2587 */ 2588 mutex_lock(&mapping->i_mmap_mutex); 2589 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 2590 /* Do not unmap the current VMA */ 2591 if (iter_vma == vma) 2592 continue; 2593 2594 /* 2595 * Shared VMAs have their own reserves and do not affect 2596 * MAP_PRIVATE accounting but it is possible that a shared 2597 * VMA is using the same page so check and skip such VMAs. 2598 */ 2599 if (iter_vma->vm_flags & VM_MAYSHARE) 2600 continue; 2601 2602 /* 2603 * Unmap the page from other VMAs without their own reserves. 2604 * They get marked to be SIGKILLed if they fault in these 2605 * areas. This is because a future no-page fault on this VMA 2606 * could insert a zeroed page instead of the data existing 2607 * from the time of fork. This would look like data corruption 2608 */ 2609 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 2610 unmap_hugepage_range(iter_vma, address, 2611 address + huge_page_size(h), page); 2612 } 2613 mutex_unlock(&mapping->i_mmap_mutex); 2614 2615 return 1; 2616 } 2617 2618 /* 2619 * Hugetlb_cow() should be called with page lock of the original hugepage held. 2620 * Called with hugetlb_instantiation_mutex held and pte_page locked so we 2621 * cannot race with other handlers or page migration. 2622 * Keep the pte_same checks anyway to make transition from the mutex easier. 2623 */ 2624 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, 2625 unsigned long address, pte_t *ptep, pte_t pte, 2626 struct page *pagecache_page) 2627 { 2628 struct hstate *h = hstate_vma(vma); 2629 struct page *old_page, *new_page; 2630 int avoidcopy; 2631 int outside_reserve = 0; 2632 unsigned long mmun_start; /* For mmu_notifiers */ 2633 unsigned long mmun_end; /* For mmu_notifiers */ 2634 2635 old_page = pte_page(pte); 2636 2637 retry_avoidcopy: 2638 /* If no-one else is actually using this page, avoid the copy 2639 * and just make the page writable */ 2640 avoidcopy = (page_mapcount(old_page) == 1); 2641 if (avoidcopy) { 2642 if (PageAnon(old_page)) 2643 page_move_anon_rmap(old_page, vma, address); 2644 set_huge_ptep_writable(vma, address, ptep); 2645 return 0; 2646 } 2647 2648 /* 2649 * If the process that created a MAP_PRIVATE mapping is about to 2650 * perform a COW due to a shared page count, attempt to satisfy 2651 * the allocation without using the existing reserves. The pagecache 2652 * page is used to determine if the reserve at this address was 2653 * consumed or not. If reserves were used, a partial faulted mapping 2654 * at the time of fork() could consume its reserves on COW instead 2655 * of the full address range. 2656 */ 2657 if (!(vma->vm_flags & VM_MAYSHARE) && 2658 is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 2659 old_page != pagecache_page) 2660 outside_reserve = 1; 2661 2662 page_cache_get(old_page); 2663 2664 /* Drop page_table_lock as buddy allocator may be called */ 2665 spin_unlock(&mm->page_table_lock); 2666 new_page = alloc_huge_page(vma, address, outside_reserve); 2667 2668 if (IS_ERR(new_page)) { 2669 long err = PTR_ERR(new_page); 2670 page_cache_release(old_page); 2671 2672 /* 2673 * If a process owning a MAP_PRIVATE mapping fails to COW, 2674 * it is due to references held by a child and an insufficient 2675 * huge page pool. To guarantee the original mappers 2676 * reliability, unmap the page from child processes. The child 2677 * may get SIGKILLed if it later faults. 2678 */ 2679 if (outside_reserve) { 2680 BUG_ON(huge_pte_none(pte)); 2681 if (unmap_ref_private(mm, vma, old_page, address)) { 2682 BUG_ON(huge_pte_none(pte)); 2683 spin_lock(&mm->page_table_lock); 2684 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2685 if (likely(pte_same(huge_ptep_get(ptep), pte))) 2686 goto retry_avoidcopy; 2687 /* 2688 * race occurs while re-acquiring page_table_lock, and 2689 * our job is done. 2690 */ 2691 return 0; 2692 } 2693 WARN_ON_ONCE(1); 2694 } 2695 2696 /* Caller expects lock to be held */ 2697 spin_lock(&mm->page_table_lock); 2698 if (err == -ENOMEM) 2699 return VM_FAULT_OOM; 2700 else 2701 return VM_FAULT_SIGBUS; 2702 } 2703 2704 /* 2705 * When the original hugepage is shared one, it does not have 2706 * anon_vma prepared. 2707 */ 2708 if (unlikely(anon_vma_prepare(vma))) { 2709 page_cache_release(new_page); 2710 page_cache_release(old_page); 2711 /* Caller expects lock to be held */ 2712 spin_lock(&mm->page_table_lock); 2713 return VM_FAULT_OOM; 2714 } 2715 2716 copy_user_huge_page(new_page, old_page, address, vma, 2717 pages_per_huge_page(h)); 2718 __SetPageUptodate(new_page); 2719 2720 mmun_start = address & huge_page_mask(h); 2721 mmun_end = mmun_start + huge_page_size(h); 2722 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2723 /* 2724 * Retake the page_table_lock to check for racing updates 2725 * before the page tables are altered 2726 */ 2727 spin_lock(&mm->page_table_lock); 2728 ptep = huge_pte_offset(mm, address & huge_page_mask(h)); 2729 if (likely(pte_same(huge_ptep_get(ptep), pte))) { 2730 /* Break COW */ 2731 huge_ptep_clear_flush(vma, address, ptep); 2732 set_huge_pte_at(mm, address, ptep, 2733 make_huge_pte(vma, new_page, 1)); 2734 page_remove_rmap(old_page); 2735 hugepage_add_new_anon_rmap(new_page, vma, address); 2736 /* Make the old page be freed below */ 2737 new_page = old_page; 2738 } 2739 spin_unlock(&mm->page_table_lock); 2740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2741 /* Caller expects lock to be held */ 2742 spin_lock(&mm->page_table_lock); 2743 page_cache_release(new_page); 2744 page_cache_release(old_page); 2745 return 0; 2746 } 2747 2748 /* Return the pagecache page at a given address within a VMA */ 2749 static struct page *hugetlbfs_pagecache_page(struct hstate *h, 2750 struct vm_area_struct *vma, unsigned long address) 2751 { 2752 struct address_space *mapping; 2753 pgoff_t idx; 2754 2755 mapping = vma->vm_file->f_mapping; 2756 idx = vma_hugecache_offset(h, vma, address); 2757 2758 return find_lock_page(mapping, idx); 2759 } 2760 2761 /* 2762 * Return whether there is a pagecache page to back given address within VMA. 2763 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. 2764 */ 2765 static bool hugetlbfs_pagecache_present(struct hstate *h, 2766 struct vm_area_struct *vma, unsigned long address) 2767 { 2768 struct address_space *mapping; 2769 pgoff_t idx; 2770 struct page *page; 2771 2772 mapping = vma->vm_file->f_mapping; 2773 idx = vma_hugecache_offset(h, vma, address); 2774 2775 page = find_get_page(mapping, idx); 2776 if (page) 2777 put_page(page); 2778 return page != NULL; 2779 } 2780 2781 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2782 unsigned long address, pte_t *ptep, unsigned int flags) 2783 { 2784 struct hstate *h = hstate_vma(vma); 2785 int ret = VM_FAULT_SIGBUS; 2786 int anon_rmap = 0; 2787 pgoff_t idx; 2788 unsigned long size; 2789 struct page *page; 2790 struct address_space *mapping; 2791 pte_t new_pte; 2792 2793 /* 2794 * Currently, we are forced to kill the process in the event the 2795 * original mapper has unmapped pages from the child due to a failed 2796 * COW. Warn that such a situation has occurred as it may not be obvious 2797 */ 2798 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 2799 pr_warning("PID %d killed due to inadequate hugepage pool\n", 2800 current->pid); 2801 return ret; 2802 } 2803 2804 mapping = vma->vm_file->f_mapping; 2805 idx = vma_hugecache_offset(h, vma, address); 2806 2807 /* 2808 * Use page lock to guard against racing truncation 2809 * before we get page_table_lock. 2810 */ 2811 retry: 2812 page = find_lock_page(mapping, idx); 2813 if (!page) { 2814 size = i_size_read(mapping->host) >> huge_page_shift(h); 2815 if (idx >= size) 2816 goto out; 2817 page = alloc_huge_page(vma, address, 0); 2818 if (IS_ERR(page)) { 2819 ret = PTR_ERR(page); 2820 if (ret == -ENOMEM) 2821 ret = VM_FAULT_OOM; 2822 else 2823 ret = VM_FAULT_SIGBUS; 2824 goto out; 2825 } 2826 clear_huge_page(page, address, pages_per_huge_page(h)); 2827 __SetPageUptodate(page); 2828 2829 if (vma->vm_flags & VM_MAYSHARE) { 2830 int err; 2831 struct inode *inode = mapping->host; 2832 2833 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); 2834 if (err) { 2835 put_page(page); 2836 if (err == -EEXIST) 2837 goto retry; 2838 goto out; 2839 } 2840 2841 spin_lock(&inode->i_lock); 2842 inode->i_blocks += blocks_per_huge_page(h); 2843 spin_unlock(&inode->i_lock); 2844 } else { 2845 lock_page(page); 2846 if (unlikely(anon_vma_prepare(vma))) { 2847 ret = VM_FAULT_OOM; 2848 goto backout_unlocked; 2849 } 2850 anon_rmap = 1; 2851 } 2852 } else { 2853 /* 2854 * If memory error occurs between mmap() and fault, some process 2855 * don't have hwpoisoned swap entry for errored virtual address. 2856 * So we need to block hugepage fault by PG_hwpoison bit check. 2857 */ 2858 if (unlikely(PageHWPoison(page))) { 2859 ret = VM_FAULT_HWPOISON | 2860 VM_FAULT_SET_HINDEX(hstate_index(h)); 2861 goto backout_unlocked; 2862 } 2863 } 2864 2865 /* 2866 * If we are going to COW a private mapping later, we examine the 2867 * pending reservations for this page now. This will ensure that 2868 * any allocations necessary to record that reservation occur outside 2869 * the spinlock. 2870 */ 2871 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 2872 if (vma_needs_reservation(h, vma, address) < 0) { 2873 ret = VM_FAULT_OOM; 2874 goto backout_unlocked; 2875 } 2876 2877 spin_lock(&mm->page_table_lock); 2878 size = i_size_read(mapping->host) >> huge_page_shift(h); 2879 if (idx >= size) 2880 goto backout; 2881 2882 ret = 0; 2883 if (!huge_pte_none(huge_ptep_get(ptep))) 2884 goto backout; 2885 2886 if (anon_rmap) 2887 hugepage_add_new_anon_rmap(page, vma, address); 2888 else 2889 page_dup_rmap(page); 2890 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) 2891 && (vma->vm_flags & VM_SHARED))); 2892 set_huge_pte_at(mm, address, ptep, new_pte); 2893 2894 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 2895 /* Optimization, do the COW without a second fault */ 2896 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); 2897 } 2898 2899 spin_unlock(&mm->page_table_lock); 2900 unlock_page(page); 2901 out: 2902 return ret; 2903 2904 backout: 2905 spin_unlock(&mm->page_table_lock); 2906 backout_unlocked: 2907 unlock_page(page); 2908 put_page(page); 2909 goto out; 2910 } 2911 2912 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2913 unsigned long address, unsigned int flags) 2914 { 2915 pte_t *ptep; 2916 pte_t entry; 2917 int ret; 2918 struct page *page = NULL; 2919 struct page *pagecache_page = NULL; 2920 static DEFINE_MUTEX(hugetlb_instantiation_mutex); 2921 struct hstate *h = hstate_vma(vma); 2922 2923 address &= huge_page_mask(h); 2924 2925 ptep = huge_pte_offset(mm, address); 2926 if (ptep) { 2927 entry = huge_ptep_get(ptep); 2928 if (unlikely(is_hugetlb_entry_migration(entry))) { 2929 migration_entry_wait_huge(mm, ptep); 2930 return 0; 2931 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) 2932 return VM_FAULT_HWPOISON_LARGE | 2933 VM_FAULT_SET_HINDEX(hstate_index(h)); 2934 } 2935 2936 ptep = huge_pte_alloc(mm, address, huge_page_size(h)); 2937 if (!ptep) 2938 return VM_FAULT_OOM; 2939 2940 /* 2941 * Serialize hugepage allocation and instantiation, so that we don't 2942 * get spurious allocation failures if two CPUs race to instantiate 2943 * the same page in the page cache. 2944 */ 2945 mutex_lock(&hugetlb_instantiation_mutex); 2946 entry = huge_ptep_get(ptep); 2947 if (huge_pte_none(entry)) { 2948 ret = hugetlb_no_page(mm, vma, address, ptep, flags); 2949 goto out_mutex; 2950 } 2951 2952 ret = 0; 2953 2954 /* 2955 * If we are going to COW the mapping later, we examine the pending 2956 * reservations for this page now. This will ensure that any 2957 * allocations necessary to record that reservation occur outside the 2958 * spinlock. For private mappings, we also lookup the pagecache 2959 * page now as it is used to determine if a reservation has been 2960 * consumed. 2961 */ 2962 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { 2963 if (vma_needs_reservation(h, vma, address) < 0) { 2964 ret = VM_FAULT_OOM; 2965 goto out_mutex; 2966 } 2967 2968 if (!(vma->vm_flags & VM_MAYSHARE)) 2969 pagecache_page = hugetlbfs_pagecache_page(h, 2970 vma, address); 2971 } 2972 2973 /* 2974 * hugetlb_cow() requires page locks of pte_page(entry) and 2975 * pagecache_page, so here we need take the former one 2976 * when page != pagecache_page or !pagecache_page. 2977 * Note that locking order is always pagecache_page -> page, 2978 * so no worry about deadlock. 2979 */ 2980 page = pte_page(entry); 2981 get_page(page); 2982 if (page != pagecache_page) 2983 lock_page(page); 2984 2985 spin_lock(&mm->page_table_lock); 2986 /* Check for a racing update before calling hugetlb_cow */ 2987 if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) 2988 goto out_page_table_lock; 2989 2990 2991 if (flags & FAULT_FLAG_WRITE) { 2992 if (!huge_pte_write(entry)) { 2993 ret = hugetlb_cow(mm, vma, address, ptep, entry, 2994 pagecache_page); 2995 goto out_page_table_lock; 2996 } 2997 entry = huge_pte_mkdirty(entry); 2998 } 2999 entry = pte_mkyoung(entry); 3000 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 3001 flags & FAULT_FLAG_WRITE)) 3002 update_mmu_cache(vma, address, ptep); 3003 3004 out_page_table_lock: 3005 spin_unlock(&mm->page_table_lock); 3006 3007 if (pagecache_page) { 3008 unlock_page(pagecache_page); 3009 put_page(pagecache_page); 3010 } 3011 if (page != pagecache_page) 3012 unlock_page(page); 3013 put_page(page); 3014 3015 out_mutex: 3016 mutex_unlock(&hugetlb_instantiation_mutex); 3017 3018 return ret; 3019 } 3020 3021 /* Can be overriden by architectures */ 3022 __attribute__((weak)) struct page * 3023 follow_huge_pud(struct mm_struct *mm, unsigned long address, 3024 pud_t *pud, int write) 3025 { 3026 BUG(); 3027 return NULL; 3028 } 3029 3030 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, 3031 struct page **pages, struct vm_area_struct **vmas, 3032 unsigned long *position, unsigned long *nr_pages, 3033 long i, unsigned int flags) 3034 { 3035 unsigned long pfn_offset; 3036 unsigned long vaddr = *position; 3037 unsigned long remainder = *nr_pages; 3038 struct hstate *h = hstate_vma(vma); 3039 3040 spin_lock(&mm->page_table_lock); 3041 while (vaddr < vma->vm_end && remainder) { 3042 pte_t *pte; 3043 int absent; 3044 struct page *page; 3045 3046 /* 3047 * Some archs (sparc64, sh*) have multiple pte_ts to 3048 * each hugepage. We have to make sure we get the 3049 * first, for the page indexing below to work. 3050 */ 3051 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); 3052 absent = !pte || huge_pte_none(huge_ptep_get(pte)); 3053 3054 /* 3055 * When coredumping, it suits get_dump_page if we just return 3056 * an error where there's an empty slot with no huge pagecache 3057 * to back it. This way, we avoid allocating a hugepage, and 3058 * the sparse dumpfile avoids allocating disk blocks, but its 3059 * huge holes still show up with zeroes where they need to be. 3060 */ 3061 if (absent && (flags & FOLL_DUMP) && 3062 !hugetlbfs_pagecache_present(h, vma, vaddr)) { 3063 remainder = 0; 3064 break; 3065 } 3066 3067 /* 3068 * We need call hugetlb_fault for both hugepages under migration 3069 * (in which case hugetlb_fault waits for the migration,) and 3070 * hwpoisoned hugepages (in which case we need to prevent the 3071 * caller from accessing to them.) In order to do this, we use 3072 * here is_swap_pte instead of is_hugetlb_entry_migration and 3073 * is_hugetlb_entry_hwpoisoned. This is because it simply covers 3074 * both cases, and because we can't follow correct pages 3075 * directly from any kind of swap entries. 3076 */ 3077 if (absent || is_swap_pte(huge_ptep_get(pte)) || 3078 ((flags & FOLL_WRITE) && 3079 !huge_pte_write(huge_ptep_get(pte)))) { 3080 int ret; 3081 3082 spin_unlock(&mm->page_table_lock); 3083 ret = hugetlb_fault(mm, vma, vaddr, 3084 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); 3085 spin_lock(&mm->page_table_lock); 3086 if (!(ret & VM_FAULT_ERROR)) 3087 continue; 3088 3089 remainder = 0; 3090 break; 3091 } 3092 3093 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; 3094 page = pte_page(huge_ptep_get(pte)); 3095 same_page: 3096 if (pages) { 3097 pages[i] = mem_map_offset(page, pfn_offset); 3098 get_page(pages[i]); 3099 } 3100 3101 if (vmas) 3102 vmas[i] = vma; 3103 3104 vaddr += PAGE_SIZE; 3105 ++pfn_offset; 3106 --remainder; 3107 ++i; 3108 if (vaddr < vma->vm_end && remainder && 3109 pfn_offset < pages_per_huge_page(h)) { 3110 /* 3111 * We use pfn_offset to avoid touching the pageframes 3112 * of this compound page. 3113 */ 3114 goto same_page; 3115 } 3116 } 3117 spin_unlock(&mm->page_table_lock); 3118 *nr_pages = remainder; 3119 *position = vaddr; 3120 3121 return i ? i : -EFAULT; 3122 } 3123 3124 unsigned long hugetlb_change_protection(struct vm_area_struct *vma, 3125 unsigned long address, unsigned long end, pgprot_t newprot) 3126 { 3127 struct mm_struct *mm = vma->vm_mm; 3128 unsigned long start = address; 3129 pte_t *ptep; 3130 pte_t pte; 3131 struct hstate *h = hstate_vma(vma); 3132 unsigned long pages = 0; 3133 3134 BUG_ON(address >= end); 3135 flush_cache_range(vma, address, end); 3136 3137 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 3138 spin_lock(&mm->page_table_lock); 3139 for (; address < end; address += huge_page_size(h)) { 3140 ptep = huge_pte_offset(mm, address); 3141 if (!ptep) 3142 continue; 3143 if (huge_pmd_unshare(mm, &address, ptep)) { 3144 pages++; 3145 continue; 3146 } 3147 if (!huge_pte_none(huge_ptep_get(ptep))) { 3148 pte = huge_ptep_get_and_clear(mm, address, ptep); 3149 pte = pte_mkhuge(huge_pte_modify(pte, newprot)); 3150 pte = arch_make_huge_pte(pte, vma, NULL, 0); 3151 set_huge_pte_at(mm, address, ptep, pte); 3152 pages++; 3153 } 3154 } 3155 spin_unlock(&mm->page_table_lock); 3156 /* 3157 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare 3158 * may have cleared our pud entry and done put_page on the page table: 3159 * once we release i_mmap_mutex, another task can do the final put_page 3160 * and that page table be reused and filled with junk. 3161 */ 3162 flush_tlb_range(vma, start, end); 3163 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 3164 3165 return pages << h->order; 3166 } 3167 3168 int hugetlb_reserve_pages(struct inode *inode, 3169 long from, long to, 3170 struct vm_area_struct *vma, 3171 vm_flags_t vm_flags) 3172 { 3173 long ret, chg; 3174 struct hstate *h = hstate_inode(inode); 3175 struct hugepage_subpool *spool = subpool_inode(inode); 3176 3177 /* 3178 * Only apply hugepage reservation if asked. At fault time, an 3179 * attempt will be made for VM_NORESERVE to allocate a page 3180 * without using reserves 3181 */ 3182 if (vm_flags & VM_NORESERVE) 3183 return 0; 3184 3185 /* 3186 * Shared mappings base their reservation on the number of pages that 3187 * are already allocated on behalf of the file. Private mappings need 3188 * to reserve the full area even if read-only as mprotect() may be 3189 * called to make the mapping read-write. Assume !vma is a shm mapping 3190 */ 3191 if (!vma || vma->vm_flags & VM_MAYSHARE) 3192 chg = region_chg(&inode->i_mapping->private_list, from, to); 3193 else { 3194 struct resv_map *resv_map = resv_map_alloc(); 3195 if (!resv_map) 3196 return -ENOMEM; 3197 3198 chg = to - from; 3199 3200 set_vma_resv_map(vma, resv_map); 3201 set_vma_resv_flags(vma, HPAGE_RESV_OWNER); 3202 } 3203 3204 if (chg < 0) { 3205 ret = chg; 3206 goto out_err; 3207 } 3208 3209 /* There must be enough pages in the subpool for the mapping */ 3210 if (hugepage_subpool_get_pages(spool, chg)) { 3211 ret = -ENOSPC; 3212 goto out_err; 3213 } 3214 3215 /* 3216 * Check enough hugepages are available for the reservation. 3217 * Hand the pages back to the subpool if there are not 3218 */ 3219 ret = hugetlb_acct_memory(h, chg); 3220 if (ret < 0) { 3221 hugepage_subpool_put_pages(spool, chg); 3222 goto out_err; 3223 } 3224 3225 /* 3226 * Account for the reservations made. Shared mappings record regions 3227 * that have reservations as they are shared by multiple VMAs. 3228 * When the last VMA disappears, the region map says how much 3229 * the reservation was and the page cache tells how much of 3230 * the reservation was consumed. Private mappings are per-VMA and 3231 * only the consumed reservations are tracked. When the VMA 3232 * disappears, the original reservation is the VMA size and the 3233 * consumed reservations are stored in the map. Hence, nothing 3234 * else has to be done for private mappings here 3235 */ 3236 if (!vma || vma->vm_flags & VM_MAYSHARE) 3237 region_add(&inode->i_mapping->private_list, from, to); 3238 return 0; 3239 out_err: 3240 if (vma) 3241 resv_map_put(vma); 3242 return ret; 3243 } 3244 3245 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) 3246 { 3247 struct hstate *h = hstate_inode(inode); 3248 long chg = region_truncate(&inode->i_mapping->private_list, offset); 3249 struct hugepage_subpool *spool = subpool_inode(inode); 3250 3251 spin_lock(&inode->i_lock); 3252 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 3253 spin_unlock(&inode->i_lock); 3254 3255 hugepage_subpool_put_pages(spool, (chg - freed)); 3256 hugetlb_acct_memory(h, -(chg - freed)); 3257 } 3258 3259 #ifdef CONFIG_MEMORY_FAILURE 3260 3261 /* Should be called in hugetlb_lock */ 3262 static int is_hugepage_on_freelist(struct page *hpage) 3263 { 3264 struct page *page; 3265 struct page *tmp; 3266 struct hstate *h = page_hstate(hpage); 3267 int nid = page_to_nid(hpage); 3268 3269 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) 3270 if (page == hpage) 3271 return 1; 3272 return 0; 3273 } 3274 3275 /* 3276 * This function is called from memory failure code. 3277 * Assume the caller holds page lock of the head page. 3278 */ 3279 int dequeue_hwpoisoned_huge_page(struct page *hpage) 3280 { 3281 struct hstate *h = page_hstate(hpage); 3282 int nid = page_to_nid(hpage); 3283 int ret = -EBUSY; 3284 3285 spin_lock(&hugetlb_lock); 3286 if (is_hugepage_on_freelist(hpage)) { 3287 /* 3288 * Hwpoisoned hugepage isn't linked to activelist or freelist, 3289 * but dangling hpage->lru can trigger list-debug warnings 3290 * (this happens when we call unpoison_memory() on it), 3291 * so let it point to itself with list_del_init(). 3292 */ 3293 list_del_init(&hpage->lru); 3294 set_page_refcounted(hpage); 3295 h->free_huge_pages--; 3296 h->free_huge_pages_node[nid]--; 3297 ret = 0; 3298 } 3299 spin_unlock(&hugetlb_lock); 3300 return ret; 3301 } 3302 #endif 3303
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.