~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memblock.c

Version: ~ [ linux-5.12-rc1 ] ~ [ linux-5.11.2 ] ~ [ linux-5.10.19 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.101 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.177 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.222 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.258 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.258 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Procedures for maintaining information about logical memory blocks.
  4  *
  5  * Peter Bergner, IBM Corp.     June 2001.
  6  * Copyright (C) 2001 Peter Bergner.
  7  */
  8 
  9 #include <linux/kernel.h>
 10 #include <linux/slab.h>
 11 #include <linux/init.h>
 12 #include <linux/bitops.h>
 13 #include <linux/poison.h>
 14 #include <linux/pfn.h>
 15 #include <linux/debugfs.h>
 16 #include <linux/kmemleak.h>
 17 #include <linux/seq_file.h>
 18 #include <linux/memblock.h>
 19 
 20 #include <asm/sections.h>
 21 #include <linux/io.h>
 22 
 23 #include "internal.h"
 24 
 25 #define INIT_MEMBLOCK_REGIONS                   128
 26 #define INIT_PHYSMEM_REGIONS                    4
 27 
 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
 29 # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
 30 #endif
 31 
 32 /**
 33  * DOC: memblock overview
 34  *
 35  * Memblock is a method of managing memory regions during the early
 36  * boot period when the usual kernel memory allocators are not up and
 37  * running.
 38  *
 39  * Memblock views the system memory as collections of contiguous
 40  * regions. There are several types of these collections:
 41  *
 42  * * ``memory`` - describes the physical memory available to the
 43  *   kernel; this may differ from the actual physical memory installed
 44  *   in the system, for instance when the memory is restricted with
 45  *   ``mem=`` command line parameter
 46  * * ``reserved`` - describes the regions that were allocated
 47  * * ``physmem`` - describes the actual physical memory available during
 48  *   boot regardless of the possible restrictions and memory hot(un)plug;
 49  *   the ``physmem`` type is only available on some architectures.
 50  *
 51  * Each region is represented by struct memblock_region that
 52  * defines the region extents, its attributes and NUMA node id on NUMA
 53  * systems. Every memory type is described by the struct memblock_type
 54  * which contains an array of memory regions along with
 55  * the allocator metadata. The "memory" and "reserved" types are nicely
 56  * wrapped with struct memblock. This structure is statically
 57  * initialized at build time. The region arrays are initially sized to
 58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
 59  * for "reserved". The region array for "physmem" is initially sized to
 60  * %INIT_PHYSMEM_REGIONS.
 61  * The memblock_allow_resize() enables automatic resizing of the region
 62  * arrays during addition of new regions. This feature should be used
 63  * with care so that memory allocated for the region array will not
 64  * overlap with areas that should be reserved, for example initrd.
 65  *
 66  * The early architecture setup should tell memblock what the physical
 67  * memory layout is by using memblock_add() or memblock_add_node()
 68  * functions. The first function does not assign the region to a NUMA
 69  * node and it is appropriate for UMA systems. Yet, it is possible to
 70  * use it on NUMA systems as well and assign the region to a NUMA node
 71  * later in the setup process using memblock_set_node(). The
 72  * memblock_add_node() performs such an assignment directly.
 73  *
 74  * Once memblock is setup the memory can be allocated using one of the
 75  * API variants:
 76  *
 77  * * memblock_phys_alloc*() - these functions return the **physical**
 78  *   address of the allocated memory
 79  * * memblock_alloc*() - these functions return the **virtual** address
 80  *   of the allocated memory.
 81  *
 82  * Note, that both API variants use implicit assumptions about allowed
 83  * memory ranges and the fallback methods. Consult the documentation
 84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
 85  * functions for more elaborate description.
 86  *
 87  * As the system boot progresses, the architecture specific mem_init()
 88  * function frees all the memory to the buddy page allocator.
 89  *
 90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
 91  * memblock data structures (except "physmem") will be discarded after the
 92  * system initialization completes.
 93  */
 94 
 95 #ifndef CONFIG_NEED_MULTIPLE_NODES
 96 struct pglist_data __refdata contig_page_data;
 97 EXPORT_SYMBOL(contig_page_data);
 98 #endif
 99 
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104 
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110 
111 struct memblock memblock __initdata_memblock = {
112         .memory.regions         = memblock_memory_init_regions,
113         .memory.cnt             = 1,    /* empty dummy entry */
114         .memory.max             = INIT_MEMBLOCK_REGIONS,
115         .memory.name            = "memory",
116 
117         .reserved.regions       = memblock_reserved_init_regions,
118         .reserved.cnt           = 1,    /* empty dummy entry */
119         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
120         .reserved.name          = "reserved",
121 
122         .bottom_up              = false,
123         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125 
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128         .regions                = memblock_physmem_init_regions,
129         .cnt                    = 1,    /* empty dummy entry */
130         .max                    = INIT_PHYSMEM_REGIONS,
131         .name                   = "physmem",
132 };
133 #endif
134 
135 /*
136  * keep a pointer to &memblock.memory in the text section to use it in
137  * __next_mem_range() and its helpers.
138  *  For architectures that do not keep memblock data after init, this
139  * pointer will be reset to NULL at memblock_discard()
140  */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142 
143 #define for_each_memblock_type(i, memblock_type, rgn)                   \
144         for (i = 0, rgn = &memblock_type->regions[0];                   \
145              i < memblock_type->cnt;                                    \
146              i++, rgn = &memblock_type->regions[i])
147 
148 #define memblock_dbg(fmt, ...)                                          \
149         do {                                                            \
150                 if (memblock_debug)                                     \
151                         pr_info(fmt, ##__VA_ARGS__);                    \
152         } while (0)
153 
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159 
160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164 
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168         return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170 
171 /*
172  * Address comparison utilities
173  */
174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175                                        phys_addr_t base2, phys_addr_t size2)
176 {
177         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179 
180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181                                         phys_addr_t base, phys_addr_t size)
182 {
183         unsigned long i;
184 
185         for (i = 0; i < type->cnt; i++)
186                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187                                            type->regions[i].size))
188                         break;
189         return i < type->cnt;
190 }
191 
192 /**
193  * __memblock_find_range_bottom_up - find free area utility in bottom-up
194  * @start: start of candidate range
195  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196  *       %MEMBLOCK_ALLOC_ACCESSIBLE
197  * @size: size of free area to find
198  * @align: alignment of free area to find
199  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
200  * @flags: pick from blocks based on memory attributes
201  *
202  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203  *
204  * Return:
205  * Found address on success, 0 on failure.
206  */
207 static phys_addr_t __init_memblock
208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
209                                 phys_addr_t size, phys_addr_t align, int nid,
210                                 enum memblock_flags flags)
211 {
212         phys_addr_t this_start, this_end, cand;
213         u64 i;
214 
215         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
216                 this_start = clamp(this_start, start, end);
217                 this_end = clamp(this_end, start, end);
218 
219                 cand = round_up(this_start, align);
220                 if (cand < this_end && this_end - cand >= size)
221                         return cand;
222         }
223 
224         return 0;
225 }
226 
227 /**
228  * __memblock_find_range_top_down - find free area utility, in top-down
229  * @start: start of candidate range
230  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231  *       %MEMBLOCK_ALLOC_ACCESSIBLE
232  * @size: size of free area to find
233  * @align: alignment of free area to find
234  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
235  * @flags: pick from blocks based on memory attributes
236  *
237  * Utility called from memblock_find_in_range_node(), find free area top-down.
238  *
239  * Return:
240  * Found address on success, 0 on failure.
241  */
242 static phys_addr_t __init_memblock
243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
244                                phys_addr_t size, phys_addr_t align, int nid,
245                                enum memblock_flags flags)
246 {
247         phys_addr_t this_start, this_end, cand;
248         u64 i;
249 
250         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251                                         NULL) {
252                 this_start = clamp(this_start, start, end);
253                 this_end = clamp(this_end, start, end);
254 
255                 if (this_end < size)
256                         continue;
257 
258                 cand = round_down(this_end - size, align);
259                 if (cand >= this_start)
260                         return cand;
261         }
262 
263         return 0;
264 }
265 
266 /**
267  * memblock_find_in_range_node - find free area in given range and node
268  * @size: size of free area to find
269  * @align: alignment of free area to find
270  * @start: start of candidate range
271  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272  *       %MEMBLOCK_ALLOC_ACCESSIBLE
273  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
274  * @flags: pick from blocks based on memory attributes
275  *
276  * Find @size free area aligned to @align in the specified range and node.
277  *
278  * Return:
279  * Found address on success, 0 on failure.
280  */
281 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
282                                         phys_addr_t align, phys_addr_t start,
283                                         phys_addr_t end, int nid,
284                                         enum memblock_flags flags)
285 {
286         /* pump up @end */
287         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
288             end == MEMBLOCK_ALLOC_KASAN)
289                 end = memblock.current_limit;
290 
291         /* avoid allocating the first page */
292         start = max_t(phys_addr_t, start, PAGE_SIZE);
293         end = max(start, end);
294 
295         if (memblock_bottom_up())
296                 return __memblock_find_range_bottom_up(start, end, size, align,
297                                                        nid, flags);
298         else
299                 return __memblock_find_range_top_down(start, end, size, align,
300                                                       nid, flags);
301 }
302 
303 /**
304  * memblock_find_in_range - find free area in given range
305  * @start: start of candidate range
306  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
307  *       %MEMBLOCK_ALLOC_ACCESSIBLE
308  * @size: size of free area to find
309  * @align: alignment of free area to find
310  *
311  * Find @size free area aligned to @align in the specified range.
312  *
313  * Return:
314  * Found address on success, 0 on failure.
315  */
316 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
317                                         phys_addr_t end, phys_addr_t size,
318                                         phys_addr_t align)
319 {
320         phys_addr_t ret;
321         enum memblock_flags flags = choose_memblock_flags();
322 
323 again:
324         ret = memblock_find_in_range_node(size, align, start, end,
325                                             NUMA_NO_NODE, flags);
326 
327         if (!ret && (flags & MEMBLOCK_MIRROR)) {
328                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
329                         &size);
330                 flags &= ~MEMBLOCK_MIRROR;
331                 goto again;
332         }
333 
334         return ret;
335 }
336 
337 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
338 {
339         type->total_size -= type->regions[r].size;
340         memmove(&type->regions[r], &type->regions[r + 1],
341                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
342         type->cnt--;
343 
344         /* Special case for empty arrays */
345         if (type->cnt == 0) {
346                 WARN_ON(type->total_size != 0);
347                 type->cnt = 1;
348                 type->regions[0].base = 0;
349                 type->regions[0].size = 0;
350                 type->regions[0].flags = 0;
351                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
352         }
353 }
354 
355 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
356 /**
357  * memblock_discard - discard memory and reserved arrays if they were allocated
358  */
359 void __init memblock_discard(void)
360 {
361         phys_addr_t addr, size;
362 
363         if (memblock.reserved.regions != memblock_reserved_init_regions) {
364                 addr = __pa(memblock.reserved.regions);
365                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
366                                   memblock.reserved.max);
367                 __memblock_free_late(addr, size);
368         }
369 
370         if (memblock.memory.regions != memblock_memory_init_regions) {
371                 addr = __pa(memblock.memory.regions);
372                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
373                                   memblock.memory.max);
374                 __memblock_free_late(addr, size);
375         }
376 
377         memblock_memory = NULL;
378 }
379 #endif
380 
381 /**
382  * memblock_double_array - double the size of the memblock regions array
383  * @type: memblock type of the regions array being doubled
384  * @new_area_start: starting address of memory range to avoid overlap with
385  * @new_area_size: size of memory range to avoid overlap with
386  *
387  * Double the size of the @type regions array. If memblock is being used to
388  * allocate memory for a new reserved regions array and there is a previously
389  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
390  * waiting to be reserved, ensure the memory used by the new array does
391  * not overlap.
392  *
393  * Return:
394  * 0 on success, -1 on failure.
395  */
396 static int __init_memblock memblock_double_array(struct memblock_type *type,
397                                                 phys_addr_t new_area_start,
398                                                 phys_addr_t new_area_size)
399 {
400         struct memblock_region *new_array, *old_array;
401         phys_addr_t old_alloc_size, new_alloc_size;
402         phys_addr_t old_size, new_size, addr, new_end;
403         int use_slab = slab_is_available();
404         int *in_slab;
405 
406         /* We don't allow resizing until we know about the reserved regions
407          * of memory that aren't suitable for allocation
408          */
409         if (!memblock_can_resize)
410                 return -1;
411 
412         /* Calculate new doubled size */
413         old_size = type->max * sizeof(struct memblock_region);
414         new_size = old_size << 1;
415         /*
416          * We need to allocated new one align to PAGE_SIZE,
417          *   so we can free them completely later.
418          */
419         old_alloc_size = PAGE_ALIGN(old_size);
420         new_alloc_size = PAGE_ALIGN(new_size);
421 
422         /* Retrieve the slab flag */
423         if (type == &memblock.memory)
424                 in_slab = &memblock_memory_in_slab;
425         else
426                 in_slab = &memblock_reserved_in_slab;
427 
428         /* Try to find some space for it */
429         if (use_slab) {
430                 new_array = kmalloc(new_size, GFP_KERNEL);
431                 addr = new_array ? __pa(new_array) : 0;
432         } else {
433                 /* only exclude range when trying to double reserved.regions */
434                 if (type != &memblock.reserved)
435                         new_area_start = new_area_size = 0;
436 
437                 addr = memblock_find_in_range(new_area_start + new_area_size,
438                                                 memblock.current_limit,
439                                                 new_alloc_size, PAGE_SIZE);
440                 if (!addr && new_area_size)
441                         addr = memblock_find_in_range(0,
442                                 min(new_area_start, memblock.current_limit),
443                                 new_alloc_size, PAGE_SIZE);
444 
445                 new_array = addr ? __va(addr) : NULL;
446         }
447         if (!addr) {
448                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
449                        type->name, type->max, type->max * 2);
450                 return -1;
451         }
452 
453         new_end = addr + new_size - 1;
454         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
455                         type->name, type->max * 2, &addr, &new_end);
456 
457         /*
458          * Found space, we now need to move the array over before we add the
459          * reserved region since it may be our reserved array itself that is
460          * full.
461          */
462         memcpy(new_array, type->regions, old_size);
463         memset(new_array + type->max, 0, old_size);
464         old_array = type->regions;
465         type->regions = new_array;
466         type->max <<= 1;
467 
468         /* Free old array. We needn't free it if the array is the static one */
469         if (*in_slab)
470                 kfree(old_array);
471         else if (old_array != memblock_memory_init_regions &&
472                  old_array != memblock_reserved_init_regions)
473                 memblock_free(__pa(old_array), old_alloc_size);
474 
475         /*
476          * Reserve the new array if that comes from the memblock.  Otherwise, we
477          * needn't do it
478          */
479         if (!use_slab)
480                 BUG_ON(memblock_reserve(addr, new_alloc_size));
481 
482         /* Update slab flag */
483         *in_slab = use_slab;
484 
485         return 0;
486 }
487 
488 /**
489  * memblock_merge_regions - merge neighboring compatible regions
490  * @type: memblock type to scan
491  *
492  * Scan @type and merge neighboring compatible regions.
493  */
494 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
495 {
496         int i = 0;
497 
498         /* cnt never goes below 1 */
499         while (i < type->cnt - 1) {
500                 struct memblock_region *this = &type->regions[i];
501                 struct memblock_region *next = &type->regions[i + 1];
502 
503                 if (this->base + this->size != next->base ||
504                     memblock_get_region_node(this) !=
505                     memblock_get_region_node(next) ||
506                     this->flags != next->flags) {
507                         BUG_ON(this->base + this->size > next->base);
508                         i++;
509                         continue;
510                 }
511 
512                 this->size += next->size;
513                 /* move forward from next + 1, index of which is i + 2 */
514                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
515                 type->cnt--;
516         }
517 }
518 
519 /**
520  * memblock_insert_region - insert new memblock region
521  * @type:       memblock type to insert into
522  * @idx:        index for the insertion point
523  * @base:       base address of the new region
524  * @size:       size of the new region
525  * @nid:        node id of the new region
526  * @flags:      flags of the new region
527  *
528  * Insert new memblock region [@base, @base + @size) into @type at @idx.
529  * @type must already have extra room to accommodate the new region.
530  */
531 static void __init_memblock memblock_insert_region(struct memblock_type *type,
532                                                    int idx, phys_addr_t base,
533                                                    phys_addr_t size,
534                                                    int nid,
535                                                    enum memblock_flags flags)
536 {
537         struct memblock_region *rgn = &type->regions[idx];
538 
539         BUG_ON(type->cnt >= type->max);
540         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
541         rgn->base = base;
542         rgn->size = size;
543         rgn->flags = flags;
544         memblock_set_region_node(rgn, nid);
545         type->cnt++;
546         type->total_size += size;
547 }
548 
549 /**
550  * memblock_add_range - add new memblock region
551  * @type: memblock type to add new region into
552  * @base: base address of the new region
553  * @size: size of the new region
554  * @nid: nid of the new region
555  * @flags: flags of the new region
556  *
557  * Add new memblock region [@base, @base + @size) into @type.  The new region
558  * is allowed to overlap with existing ones - overlaps don't affect already
559  * existing regions.  @type is guaranteed to be minimal (all neighbouring
560  * compatible regions are merged) after the addition.
561  *
562  * Return:
563  * 0 on success, -errno on failure.
564  */
565 static int __init_memblock memblock_add_range(struct memblock_type *type,
566                                 phys_addr_t base, phys_addr_t size,
567                                 int nid, enum memblock_flags flags)
568 {
569         bool insert = false;
570         phys_addr_t obase = base;
571         phys_addr_t end = base + memblock_cap_size(base, &size);
572         int idx, nr_new;
573         struct memblock_region *rgn;
574 
575         if (!size)
576                 return 0;
577 
578         /* special case for empty array */
579         if (type->regions[0].size == 0) {
580                 WARN_ON(type->cnt != 1 || type->total_size);
581                 type->regions[0].base = base;
582                 type->regions[0].size = size;
583                 type->regions[0].flags = flags;
584                 memblock_set_region_node(&type->regions[0], nid);
585                 type->total_size = size;
586                 return 0;
587         }
588 repeat:
589         /*
590          * The following is executed twice.  Once with %false @insert and
591          * then with %true.  The first counts the number of regions needed
592          * to accommodate the new area.  The second actually inserts them.
593          */
594         base = obase;
595         nr_new = 0;
596 
597         for_each_memblock_type(idx, type, rgn) {
598                 phys_addr_t rbase = rgn->base;
599                 phys_addr_t rend = rbase + rgn->size;
600 
601                 if (rbase >= end)
602                         break;
603                 if (rend <= base)
604                         continue;
605                 /*
606                  * @rgn overlaps.  If it separates the lower part of new
607                  * area, insert that portion.
608                  */
609                 if (rbase > base) {
610 #ifdef CONFIG_NEED_MULTIPLE_NODES
611                         WARN_ON(nid != memblock_get_region_node(rgn));
612 #endif
613                         WARN_ON(flags != rgn->flags);
614                         nr_new++;
615                         if (insert)
616                                 memblock_insert_region(type, idx++, base,
617                                                        rbase - base, nid,
618                                                        flags);
619                 }
620                 /* area below @rend is dealt with, forget about it */
621                 base = min(rend, end);
622         }
623 
624         /* insert the remaining portion */
625         if (base < end) {
626                 nr_new++;
627                 if (insert)
628                         memblock_insert_region(type, idx, base, end - base,
629                                                nid, flags);
630         }
631 
632         if (!nr_new)
633                 return 0;
634 
635         /*
636          * If this was the first round, resize array and repeat for actual
637          * insertions; otherwise, merge and return.
638          */
639         if (!insert) {
640                 while (type->cnt + nr_new > type->max)
641                         if (memblock_double_array(type, obase, size) < 0)
642                                 return -ENOMEM;
643                 insert = true;
644                 goto repeat;
645         } else {
646                 memblock_merge_regions(type);
647                 return 0;
648         }
649 }
650 
651 /**
652  * memblock_add_node - add new memblock region within a NUMA node
653  * @base: base address of the new region
654  * @size: size of the new region
655  * @nid: nid of the new region
656  *
657  * Add new memblock region [@base, @base + @size) to the "memory"
658  * type. See memblock_add_range() description for mode details
659  *
660  * Return:
661  * 0 on success, -errno on failure.
662  */
663 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
664                                        int nid)
665 {
666         return memblock_add_range(&memblock.memory, base, size, nid, 0);
667 }
668 
669 /**
670  * memblock_add - add new memblock region
671  * @base: base address of the new region
672  * @size: size of the new region
673  *
674  * Add new memblock region [@base, @base + @size) to the "memory"
675  * type. See memblock_add_range() description for mode details
676  *
677  * Return:
678  * 0 on success, -errno on failure.
679  */
680 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
681 {
682         phys_addr_t end = base + size - 1;
683 
684         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
685                      &base, &end, (void *)_RET_IP_);
686 
687         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
688 }
689 
690 /**
691  * memblock_isolate_range - isolate given range into disjoint memblocks
692  * @type: memblock type to isolate range for
693  * @base: base of range to isolate
694  * @size: size of range to isolate
695  * @start_rgn: out parameter for the start of isolated region
696  * @end_rgn: out parameter for the end of isolated region
697  *
698  * Walk @type and ensure that regions don't cross the boundaries defined by
699  * [@base, @base + @size).  Crossing regions are split at the boundaries,
700  * which may create at most two more regions.  The index of the first
701  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
702  *
703  * Return:
704  * 0 on success, -errno on failure.
705  */
706 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
707                                         phys_addr_t base, phys_addr_t size,
708                                         int *start_rgn, int *end_rgn)
709 {
710         phys_addr_t end = base + memblock_cap_size(base, &size);
711         int idx;
712         struct memblock_region *rgn;
713 
714         *start_rgn = *end_rgn = 0;
715 
716         if (!size)
717                 return 0;
718 
719         /* we'll create at most two more regions */
720         while (type->cnt + 2 > type->max)
721                 if (memblock_double_array(type, base, size) < 0)
722                         return -ENOMEM;
723 
724         for_each_memblock_type(idx, type, rgn) {
725                 phys_addr_t rbase = rgn->base;
726                 phys_addr_t rend = rbase + rgn->size;
727 
728                 if (rbase >= end)
729                         break;
730                 if (rend <= base)
731                         continue;
732 
733                 if (rbase < base) {
734                         /*
735                          * @rgn intersects from below.  Split and continue
736                          * to process the next region - the new top half.
737                          */
738                         rgn->base = base;
739                         rgn->size -= base - rbase;
740                         type->total_size -= base - rbase;
741                         memblock_insert_region(type, idx, rbase, base - rbase,
742                                                memblock_get_region_node(rgn),
743                                                rgn->flags);
744                 } else if (rend > end) {
745                         /*
746                          * @rgn intersects from above.  Split and redo the
747                          * current region - the new bottom half.
748                          */
749                         rgn->base = end;
750                         rgn->size -= end - rbase;
751                         type->total_size -= end - rbase;
752                         memblock_insert_region(type, idx--, rbase, end - rbase,
753                                                memblock_get_region_node(rgn),
754                                                rgn->flags);
755                 } else {
756                         /* @rgn is fully contained, record it */
757                         if (!*end_rgn)
758                                 *start_rgn = idx;
759                         *end_rgn = idx + 1;
760                 }
761         }
762 
763         return 0;
764 }
765 
766 static int __init_memblock memblock_remove_range(struct memblock_type *type,
767                                           phys_addr_t base, phys_addr_t size)
768 {
769         int start_rgn, end_rgn;
770         int i, ret;
771 
772         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
773         if (ret)
774                 return ret;
775 
776         for (i = end_rgn - 1; i >= start_rgn; i--)
777                 memblock_remove_region(type, i);
778         return 0;
779 }
780 
781 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
782 {
783         phys_addr_t end = base + size - 1;
784 
785         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
786                      &base, &end, (void *)_RET_IP_);
787 
788         return memblock_remove_range(&memblock.memory, base, size);
789 }
790 
791 /**
792  * memblock_free - free boot memory block
793  * @base: phys starting address of the  boot memory block
794  * @size: size of the boot memory block in bytes
795  *
796  * Free boot memory block previously allocated by memblock_alloc_xx() API.
797  * The freeing memory will not be released to the buddy allocator.
798  */
799 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
800 {
801         phys_addr_t end = base + size - 1;
802 
803         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
804                      &base, &end, (void *)_RET_IP_);
805 
806         kmemleak_free_part_phys(base, size);
807         return memblock_remove_range(&memblock.reserved, base, size);
808 }
809 
810 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
811 {
812         phys_addr_t end = base + size - 1;
813 
814         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815                      &base, &end, (void *)_RET_IP_);
816 
817         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
818 }
819 
820 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
821 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
822 {
823         phys_addr_t end = base + size - 1;
824 
825         memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
826                      &base, &end, (void *)_RET_IP_);
827 
828         return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
829 }
830 #endif
831 
832 /**
833  * memblock_setclr_flag - set or clear flag for a memory region
834  * @base: base address of the region
835  * @size: size of the region
836  * @set: set or clear the flag
837  * @flag: the flag to update
838  *
839  * This function isolates region [@base, @base + @size), and sets/clears flag
840  *
841  * Return: 0 on success, -errno on failure.
842  */
843 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
844                                 phys_addr_t size, int set, int flag)
845 {
846         struct memblock_type *type = &memblock.memory;
847         int i, ret, start_rgn, end_rgn;
848 
849         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
850         if (ret)
851                 return ret;
852 
853         for (i = start_rgn; i < end_rgn; i++) {
854                 struct memblock_region *r = &type->regions[i];
855 
856                 if (set)
857                         r->flags |= flag;
858                 else
859                         r->flags &= ~flag;
860         }
861 
862         memblock_merge_regions(type);
863         return 0;
864 }
865 
866 /**
867  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
868  * @base: the base phys addr of the region
869  * @size: the size of the region
870  *
871  * Return: 0 on success, -errno on failure.
872  */
873 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
874 {
875         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
876 }
877 
878 /**
879  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
880  * @base: the base phys addr of the region
881  * @size: the size of the region
882  *
883  * Return: 0 on success, -errno on failure.
884  */
885 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
886 {
887         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
888 }
889 
890 /**
891  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
892  * @base: the base phys addr of the region
893  * @size: the size of the region
894  *
895  * Return: 0 on success, -errno on failure.
896  */
897 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
898 {
899         system_has_some_mirror = true;
900 
901         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
902 }
903 
904 /**
905  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
906  * @base: the base phys addr of the region
907  * @size: the size of the region
908  *
909  * Return: 0 on success, -errno on failure.
910  */
911 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
912 {
913         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
914 }
915 
916 /**
917  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
918  * @base: the base phys addr of the region
919  * @size: the size of the region
920  *
921  * Return: 0 on success, -errno on failure.
922  */
923 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
924 {
925         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
926 }
927 
928 static bool should_skip_region(struct memblock_type *type,
929                                struct memblock_region *m,
930                                int nid, int flags)
931 {
932         int m_nid = memblock_get_region_node(m);
933 
934         /* we never skip regions when iterating memblock.reserved or physmem */
935         if (type != memblock_memory)
936                 return false;
937 
938         /* only memory regions are associated with nodes, check it */
939         if (nid != NUMA_NO_NODE && nid != m_nid)
940                 return true;
941 
942         /* skip hotpluggable memory regions if needed */
943         if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
944                 return true;
945 
946         /* if we want mirror memory skip non-mirror memory regions */
947         if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
948                 return true;
949 
950         /* skip nomap memory unless we were asked for it explicitly */
951         if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
952                 return true;
953 
954         return false;
955 }
956 
957 /**
958  * __next_mem_range - next function for for_each_free_mem_range() etc.
959  * @idx: pointer to u64 loop variable
960  * @nid: node selector, %NUMA_NO_NODE for all nodes
961  * @flags: pick from blocks based on memory attributes
962  * @type_a: pointer to memblock_type from where the range is taken
963  * @type_b: pointer to memblock_type which excludes memory from being taken
964  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
965  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
966  * @out_nid: ptr to int for nid of the range, can be %NULL
967  *
968  * Find the first area from *@idx which matches @nid, fill the out
969  * parameters, and update *@idx for the next iteration.  The lower 32bit of
970  * *@idx contains index into type_a and the upper 32bit indexes the
971  * areas before each region in type_b.  For example, if type_b regions
972  * look like the following,
973  *
974  *      0:[0-16), 1:[32-48), 2:[128-130)
975  *
976  * The upper 32bit indexes the following regions.
977  *
978  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
979  *
980  * As both region arrays are sorted, the function advances the two indices
981  * in lockstep and returns each intersection.
982  */
983 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
984                       struct memblock_type *type_a,
985                       struct memblock_type *type_b, phys_addr_t *out_start,
986                       phys_addr_t *out_end, int *out_nid)
987 {
988         int idx_a = *idx & 0xffffffff;
989         int idx_b = *idx >> 32;
990 
991         if (WARN_ONCE(nid == MAX_NUMNODES,
992         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993                 nid = NUMA_NO_NODE;
994 
995         for (; idx_a < type_a->cnt; idx_a++) {
996                 struct memblock_region *m = &type_a->regions[idx_a];
997 
998                 phys_addr_t m_start = m->base;
999                 phys_addr_t m_end = m->base + m->size;
1000                 int         m_nid = memblock_get_region_node(m);
1001 
1002                 if (should_skip_region(type_a, m, nid, flags))
1003                         continue;
1004 
1005                 if (!type_b) {
1006                         if (out_start)
1007                                 *out_start = m_start;
1008                         if (out_end)
1009                                 *out_end = m_end;
1010                         if (out_nid)
1011                                 *out_nid = m_nid;
1012                         idx_a++;
1013                         *idx = (u32)idx_a | (u64)idx_b << 32;
1014                         return;
1015                 }
1016 
1017                 /* scan areas before each reservation */
1018                 for (; idx_b < type_b->cnt + 1; idx_b++) {
1019                         struct memblock_region *r;
1020                         phys_addr_t r_start;
1021                         phys_addr_t r_end;
1022 
1023                         r = &type_b->regions[idx_b];
1024                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1025                         r_end = idx_b < type_b->cnt ?
1026                                 r->base : PHYS_ADDR_MAX;
1027 
1028                         /*
1029                          * if idx_b advanced past idx_a,
1030                          * break out to advance idx_a
1031                          */
1032                         if (r_start >= m_end)
1033                                 break;
1034                         /* if the two regions intersect, we're done */
1035                         if (m_start < r_end) {
1036                                 if (out_start)
1037                                         *out_start =
1038                                                 max(m_start, r_start);
1039                                 if (out_end)
1040                                         *out_end = min(m_end, r_end);
1041                                 if (out_nid)
1042                                         *out_nid = m_nid;
1043                                 /*
1044                                  * The region which ends first is
1045                                  * advanced for the next iteration.
1046                                  */
1047                                 if (m_end <= r_end)
1048                                         idx_a++;
1049                                 else
1050                                         idx_b++;
1051                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1052                                 return;
1053                         }
1054                 }
1055         }
1056 
1057         /* signal end of iteration */
1058         *idx = ULLONG_MAX;
1059 }
1060 
1061 /**
1062  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1063  *
1064  * @idx: pointer to u64 loop variable
1065  * @nid: node selector, %NUMA_NO_NODE for all nodes
1066  * @flags: pick from blocks based on memory attributes
1067  * @type_a: pointer to memblock_type from where the range is taken
1068  * @type_b: pointer to memblock_type which excludes memory from being taken
1069  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1070  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1071  * @out_nid: ptr to int for nid of the range, can be %NULL
1072  *
1073  * Finds the next range from type_a which is not marked as unsuitable
1074  * in type_b.
1075  *
1076  * Reverse of __next_mem_range().
1077  */
1078 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1079                                           enum memblock_flags flags,
1080                                           struct memblock_type *type_a,
1081                                           struct memblock_type *type_b,
1082                                           phys_addr_t *out_start,
1083                                           phys_addr_t *out_end, int *out_nid)
1084 {
1085         int idx_a = *idx & 0xffffffff;
1086         int idx_b = *idx >> 32;
1087 
1088         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1089                 nid = NUMA_NO_NODE;
1090 
1091         if (*idx == (u64)ULLONG_MAX) {
1092                 idx_a = type_a->cnt - 1;
1093                 if (type_b != NULL)
1094                         idx_b = type_b->cnt;
1095                 else
1096                         idx_b = 0;
1097         }
1098 
1099         for (; idx_a >= 0; idx_a--) {
1100                 struct memblock_region *m = &type_a->regions[idx_a];
1101 
1102                 phys_addr_t m_start = m->base;
1103                 phys_addr_t m_end = m->base + m->size;
1104                 int m_nid = memblock_get_region_node(m);
1105 
1106                 if (should_skip_region(type_a, m, nid, flags))
1107                         continue;
1108 
1109                 if (!type_b) {
1110                         if (out_start)
1111                                 *out_start = m_start;
1112                         if (out_end)
1113                                 *out_end = m_end;
1114                         if (out_nid)
1115                                 *out_nid = m_nid;
1116                         idx_a--;
1117                         *idx = (u32)idx_a | (u64)idx_b << 32;
1118                         return;
1119                 }
1120 
1121                 /* scan areas before each reservation */
1122                 for (; idx_b >= 0; idx_b--) {
1123                         struct memblock_region *r;
1124                         phys_addr_t r_start;
1125                         phys_addr_t r_end;
1126 
1127                         r = &type_b->regions[idx_b];
1128                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1129                         r_end = idx_b < type_b->cnt ?
1130                                 r->base : PHYS_ADDR_MAX;
1131                         /*
1132                          * if idx_b advanced past idx_a,
1133                          * break out to advance idx_a
1134                          */
1135 
1136                         if (r_end <= m_start)
1137                                 break;
1138                         /* if the two regions intersect, we're done */
1139                         if (m_end > r_start) {
1140                                 if (out_start)
1141                                         *out_start = max(m_start, r_start);
1142                                 if (out_end)
1143                                         *out_end = min(m_end, r_end);
1144                                 if (out_nid)
1145                                         *out_nid = m_nid;
1146                                 if (m_start >= r_start)
1147                                         idx_a--;
1148                                 else
1149                                         idx_b--;
1150                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1151                                 return;
1152                         }
1153                 }
1154         }
1155         /* signal end of iteration */
1156         *idx = ULLONG_MAX;
1157 }
1158 
1159 /*
1160  * Common iterator interface used to define for_each_mem_pfn_range().
1161  */
1162 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1163                                 unsigned long *out_start_pfn,
1164                                 unsigned long *out_end_pfn, int *out_nid)
1165 {
1166         struct memblock_type *type = &memblock.memory;
1167         struct memblock_region *r;
1168         int r_nid;
1169 
1170         while (++*idx < type->cnt) {
1171                 r = &type->regions[*idx];
1172                 r_nid = memblock_get_region_node(r);
1173 
1174                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1175                         continue;
1176                 if (nid == MAX_NUMNODES || nid == r_nid)
1177                         break;
1178         }
1179         if (*idx >= type->cnt) {
1180                 *idx = -1;
1181                 return;
1182         }
1183 
1184         if (out_start_pfn)
1185                 *out_start_pfn = PFN_UP(r->base);
1186         if (out_end_pfn)
1187                 *out_end_pfn = PFN_DOWN(r->base + r->size);
1188         if (out_nid)
1189                 *out_nid = r_nid;
1190 }
1191 
1192 /**
1193  * memblock_set_node - set node ID on memblock regions
1194  * @base: base of area to set node ID for
1195  * @size: size of area to set node ID for
1196  * @type: memblock type to set node ID for
1197  * @nid: node ID to set
1198  *
1199  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1200  * Regions which cross the area boundaries are split as necessary.
1201  *
1202  * Return:
1203  * 0 on success, -errno on failure.
1204  */
1205 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1206                                       struct memblock_type *type, int nid)
1207 {
1208 #ifdef CONFIG_NEED_MULTIPLE_NODES
1209         int start_rgn, end_rgn;
1210         int i, ret;
1211 
1212         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1213         if (ret)
1214                 return ret;
1215 
1216         for (i = start_rgn; i < end_rgn; i++)
1217                 memblock_set_region_node(&type->regions[i], nid);
1218 
1219         memblock_merge_regions(type);
1220 #endif
1221         return 0;
1222 }
1223 
1224 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1225 /**
1226  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1227  *
1228  * @idx: pointer to u64 loop variable
1229  * @zone: zone in which all of the memory blocks reside
1230  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1231  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1232  *
1233  * This function is meant to be a zone/pfn specific wrapper for the
1234  * for_each_mem_range type iterators. Specifically they are used in the
1235  * deferred memory init routines and as such we were duplicating much of
1236  * this logic throughout the code. So instead of having it in multiple
1237  * locations it seemed like it would make more sense to centralize this to
1238  * one new iterator that does everything they need.
1239  */
1240 void __init_memblock
1241 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1242                              unsigned long *out_spfn, unsigned long *out_epfn)
1243 {
1244         int zone_nid = zone_to_nid(zone);
1245         phys_addr_t spa, epa;
1246         int nid;
1247 
1248         __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1249                          &memblock.memory, &memblock.reserved,
1250                          &spa, &epa, &nid);
1251 
1252         while (*idx != U64_MAX) {
1253                 unsigned long epfn = PFN_DOWN(epa);
1254                 unsigned long spfn = PFN_UP(spa);
1255 
1256                 /*
1257                  * Verify the end is at least past the start of the zone and
1258                  * that we have at least one PFN to initialize.
1259                  */
1260                 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1261                         /* if we went too far just stop searching */
1262                         if (zone_end_pfn(zone) <= spfn) {
1263                                 *idx = U64_MAX;
1264                                 break;
1265                         }
1266 
1267                         if (out_spfn)
1268                                 *out_spfn = max(zone->zone_start_pfn, spfn);
1269                         if (out_epfn)
1270                                 *out_epfn = min(zone_end_pfn(zone), epfn);
1271 
1272                         return;
1273                 }
1274 
1275                 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1276                                  &memblock.memory, &memblock.reserved,
1277                                  &spa, &epa, &nid);
1278         }
1279 
1280         /* signal end of iteration */
1281         if (out_spfn)
1282                 *out_spfn = ULONG_MAX;
1283         if (out_epfn)
1284                 *out_epfn = 0;
1285 }
1286 
1287 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1288 
1289 /**
1290  * memblock_alloc_range_nid - allocate boot memory block
1291  * @size: size of memory block to be allocated in bytes
1292  * @align: alignment of the region and block's size
1293  * @start: the lower bound of the memory region to allocate (phys address)
1294  * @end: the upper bound of the memory region to allocate (phys address)
1295  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1296  * @exact_nid: control the allocation fall back to other nodes
1297  *
1298  * The allocation is performed from memory region limited by
1299  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1300  *
1301  * If the specified node can not hold the requested memory and @exact_nid
1302  * is false, the allocation falls back to any node in the system.
1303  *
1304  * For systems with memory mirroring, the allocation is attempted first
1305  * from the regions with mirroring enabled and then retried from any
1306  * memory region.
1307  *
1308  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1309  * allocated boot memory block, so that it is never reported as leaks.
1310  *
1311  * Return:
1312  * Physical address of allocated memory block on success, %0 on failure.
1313  */
1314 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1315                                         phys_addr_t align, phys_addr_t start,
1316                                         phys_addr_t end, int nid,
1317                                         bool exact_nid)
1318 {
1319         enum memblock_flags flags = choose_memblock_flags();
1320         phys_addr_t found;
1321 
1322         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1323                 nid = NUMA_NO_NODE;
1324 
1325         if (!align) {
1326                 /* Can't use WARNs this early in boot on powerpc */
1327                 dump_stack();
1328                 align = SMP_CACHE_BYTES;
1329         }
1330 
1331 again:
1332         found = memblock_find_in_range_node(size, align, start, end, nid,
1333                                             flags);
1334         if (found && !memblock_reserve(found, size))
1335                 goto done;
1336 
1337         if (nid != NUMA_NO_NODE && !exact_nid) {
1338                 found = memblock_find_in_range_node(size, align, start,
1339                                                     end, NUMA_NO_NODE,
1340                                                     flags);
1341                 if (found && !memblock_reserve(found, size))
1342                         goto done;
1343         }
1344 
1345         if (flags & MEMBLOCK_MIRROR) {
1346                 flags &= ~MEMBLOCK_MIRROR;
1347                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1348                         &size);
1349                 goto again;
1350         }
1351 
1352         return 0;
1353 
1354 done:
1355         /* Skip kmemleak for kasan_init() due to high volume. */
1356         if (end != MEMBLOCK_ALLOC_KASAN)
1357                 /*
1358                  * The min_count is set to 0 so that memblock allocated
1359                  * blocks are never reported as leaks. This is because many
1360                  * of these blocks are only referred via the physical
1361                  * address which is not looked up by kmemleak.
1362                  */
1363                 kmemleak_alloc_phys(found, size, 0, 0);
1364 
1365         return found;
1366 }
1367 
1368 /**
1369  * memblock_phys_alloc_range - allocate a memory block inside specified range
1370  * @size: size of memory block to be allocated in bytes
1371  * @align: alignment of the region and block's size
1372  * @start: the lower bound of the memory region to allocate (physical address)
1373  * @end: the upper bound of the memory region to allocate (physical address)
1374  *
1375  * Allocate @size bytes in the between @start and @end.
1376  *
1377  * Return: physical address of the allocated memory block on success,
1378  * %0 on failure.
1379  */
1380 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1381                                              phys_addr_t align,
1382                                              phys_addr_t start,
1383                                              phys_addr_t end)
1384 {
1385         memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1386                      __func__, (u64)size, (u64)align, &start, &end,
1387                      (void *)_RET_IP_);
1388         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1389                                         false);
1390 }
1391 
1392 /**
1393  * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1394  * @size: size of memory block to be allocated in bytes
1395  * @align: alignment of the region and block's size
1396  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1397  *
1398  * Allocates memory block from the specified NUMA node. If the node
1399  * has no available memory, attempts to allocated from any node in the
1400  * system.
1401  *
1402  * Return: physical address of the allocated memory block on success,
1403  * %0 on failure.
1404  */
1405 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1406 {
1407         return memblock_alloc_range_nid(size, align, 0,
1408                                         MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1409 }
1410 
1411 /**
1412  * memblock_alloc_internal - allocate boot memory block
1413  * @size: size of memory block to be allocated in bytes
1414  * @align: alignment of the region and block's size
1415  * @min_addr: the lower bound of the memory region to allocate (phys address)
1416  * @max_addr: the upper bound of the memory region to allocate (phys address)
1417  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1418  * @exact_nid: control the allocation fall back to other nodes
1419  *
1420  * Allocates memory block using memblock_alloc_range_nid() and
1421  * converts the returned physical address to virtual.
1422  *
1423  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1424  * will fall back to memory below @min_addr. Other constraints, such
1425  * as node and mirrored memory will be handled again in
1426  * memblock_alloc_range_nid().
1427  *
1428  * Return:
1429  * Virtual address of allocated memory block on success, NULL on failure.
1430  */
1431 static void * __init memblock_alloc_internal(
1432                                 phys_addr_t size, phys_addr_t align,
1433                                 phys_addr_t min_addr, phys_addr_t max_addr,
1434                                 int nid, bool exact_nid)
1435 {
1436         phys_addr_t alloc;
1437 
1438         /*
1439          * Detect any accidental use of these APIs after slab is ready, as at
1440          * this moment memblock may be deinitialized already and its
1441          * internal data may be destroyed (after execution of memblock_free_all)
1442          */
1443         if (WARN_ON_ONCE(slab_is_available()))
1444                 return kzalloc_node(size, GFP_NOWAIT, nid);
1445 
1446         if (max_addr > memblock.current_limit)
1447                 max_addr = memblock.current_limit;
1448 
1449         alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1450                                         exact_nid);
1451 
1452         /* retry allocation without lower limit */
1453         if (!alloc && min_addr)
1454                 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1455                                                 exact_nid);
1456 
1457         if (!alloc)
1458                 return NULL;
1459 
1460         return phys_to_virt(alloc);
1461 }
1462 
1463 /**
1464  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1465  * without zeroing memory
1466  * @size: size of memory block to be allocated in bytes
1467  * @align: alignment of the region and block's size
1468  * @min_addr: the lower bound of the memory region from where the allocation
1469  *        is preferred (phys address)
1470  * @max_addr: the upper bound of the memory region from where the allocation
1471  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472  *            allocate only from memory limited by memblock.current_limit value
1473  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1474  *
1475  * Public function, provides additional debug information (including caller
1476  * info), if enabled. Does not zero allocated memory.
1477  *
1478  * Return:
1479  * Virtual address of allocated memory block on success, NULL on failure.
1480  */
1481 void * __init memblock_alloc_exact_nid_raw(
1482                         phys_addr_t size, phys_addr_t align,
1483                         phys_addr_t min_addr, phys_addr_t max_addr,
1484                         int nid)
1485 {
1486         void *ptr;
1487 
1488         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1489                      __func__, (u64)size, (u64)align, nid, &min_addr,
1490                      &max_addr, (void *)_RET_IP_);
1491 
1492         ptr = memblock_alloc_internal(size, align,
1493                                            min_addr, max_addr, nid, true);
1494         if (ptr && size > 0)
1495                 page_init_poison(ptr, size);
1496 
1497         return ptr;
1498 }
1499 
1500 /**
1501  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1502  * memory and without panicking
1503  * @size: size of memory block to be allocated in bytes
1504  * @align: alignment of the region and block's size
1505  * @min_addr: the lower bound of the memory region from where the allocation
1506  *        is preferred (phys address)
1507  * @max_addr: the upper bound of the memory region from where the allocation
1508  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509  *            allocate only from memory limited by memblock.current_limit value
1510  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511  *
1512  * Public function, provides additional debug information (including caller
1513  * info), if enabled. Does not zero allocated memory, does not panic if request
1514  * cannot be satisfied.
1515  *
1516  * Return:
1517  * Virtual address of allocated memory block on success, NULL on failure.
1518  */
1519 void * __init memblock_alloc_try_nid_raw(
1520                         phys_addr_t size, phys_addr_t align,
1521                         phys_addr_t min_addr, phys_addr_t max_addr,
1522                         int nid)
1523 {
1524         void *ptr;
1525 
1526         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1527                      __func__, (u64)size, (u64)align, nid, &min_addr,
1528                      &max_addr, (void *)_RET_IP_);
1529 
1530         ptr = memblock_alloc_internal(size, align,
1531                                            min_addr, max_addr, nid, false);
1532         if (ptr && size > 0)
1533                 page_init_poison(ptr, size);
1534 
1535         return ptr;
1536 }
1537 
1538 /**
1539  * memblock_alloc_try_nid - allocate boot memory block
1540  * @size: size of memory block to be allocated in bytes
1541  * @align: alignment of the region and block's size
1542  * @min_addr: the lower bound of the memory region from where the allocation
1543  *        is preferred (phys address)
1544  * @max_addr: the upper bound of the memory region from where the allocation
1545  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546  *            allocate only from memory limited by memblock.current_limit value
1547  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548  *
1549  * Public function, provides additional debug information (including caller
1550  * info), if enabled. This function zeroes the allocated memory.
1551  *
1552  * Return:
1553  * Virtual address of allocated memory block on success, NULL on failure.
1554  */
1555 void * __init memblock_alloc_try_nid(
1556                         phys_addr_t size, phys_addr_t align,
1557                         phys_addr_t min_addr, phys_addr_t max_addr,
1558                         int nid)
1559 {
1560         void *ptr;
1561 
1562         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1563                      __func__, (u64)size, (u64)align, nid, &min_addr,
1564                      &max_addr, (void *)_RET_IP_);
1565         ptr = memblock_alloc_internal(size, align,
1566                                            min_addr, max_addr, nid, false);
1567         if (ptr)
1568                 memset(ptr, 0, size);
1569 
1570         return ptr;
1571 }
1572 
1573 /**
1574  * __memblock_free_late - free pages directly to buddy allocator
1575  * @base: phys starting address of the  boot memory block
1576  * @size: size of the boot memory block in bytes
1577  *
1578  * This is only useful when the memblock allocator has already been torn
1579  * down, but we are still initializing the system.  Pages are released directly
1580  * to the buddy allocator.
1581  */
1582 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1583 {
1584         phys_addr_t cursor, end;
1585 
1586         end = base + size - 1;
1587         memblock_dbg("%s: [%pa-%pa] %pS\n",
1588                      __func__, &base, &end, (void *)_RET_IP_);
1589         kmemleak_free_part_phys(base, size);
1590         cursor = PFN_UP(base);
1591         end = PFN_DOWN(base + size);
1592 
1593         for (; cursor < end; cursor++) {
1594                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1595                 totalram_pages_inc();
1596         }
1597 }
1598 
1599 /*
1600  * Remaining API functions
1601  */
1602 
1603 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1604 {
1605         return memblock.memory.total_size;
1606 }
1607 
1608 phys_addr_t __init_memblock memblock_reserved_size(void)
1609 {
1610         return memblock.reserved.total_size;
1611 }
1612 
1613 /* lowest address */
1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615 {
1616         return memblock.memory.regions[0].base;
1617 }
1618 
1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620 {
1621         int idx = memblock.memory.cnt - 1;
1622 
1623         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624 }
1625 
1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627 {
1628         phys_addr_t max_addr = PHYS_ADDR_MAX;
1629         struct memblock_region *r;
1630 
1631         /*
1632          * translate the memory @limit size into the max address within one of
1633          * the memory memblock regions, if the @limit exceeds the total size
1634          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635          */
1636         for_each_mem_region(r) {
1637                 if (limit <= r->size) {
1638                         max_addr = r->base + limit;
1639                         break;
1640                 }
1641                 limit -= r->size;
1642         }
1643 
1644         return max_addr;
1645 }
1646 
1647 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648 {
1649         phys_addr_t max_addr;
1650 
1651         if (!limit)
1652                 return;
1653 
1654         max_addr = __find_max_addr(limit);
1655 
1656         /* @limit exceeds the total size of the memory, do nothing */
1657         if (max_addr == PHYS_ADDR_MAX)
1658                 return;
1659 
1660         /* truncate both memory and reserved regions */
1661         memblock_remove_range(&memblock.memory, max_addr,
1662                               PHYS_ADDR_MAX);
1663         memblock_remove_range(&memblock.reserved, max_addr,
1664                               PHYS_ADDR_MAX);
1665 }
1666 
1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668 {
1669         int start_rgn, end_rgn;
1670         int i, ret;
1671 
1672         if (!size)
1673                 return;
1674 
1675         ret = memblock_isolate_range(&memblock.memory, base, size,
1676                                                 &start_rgn, &end_rgn);
1677         if (ret)
1678                 return;
1679 
1680         /* remove all the MAP regions */
1681         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683                         memblock_remove_region(&memblock.memory, i);
1684 
1685         for (i = start_rgn - 1; i >= 0; i--)
1686                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687                         memblock_remove_region(&memblock.memory, i);
1688 
1689         /* truncate the reserved regions */
1690         memblock_remove_range(&memblock.reserved, 0, base);
1691         memblock_remove_range(&memblock.reserved,
1692                         base + size, PHYS_ADDR_MAX);
1693 }
1694 
1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696 {
1697         phys_addr_t max_addr;
1698 
1699         if (!limit)
1700                 return;
1701 
1702         max_addr = __find_max_addr(limit);
1703 
1704         /* @limit exceeds the total size of the memory, do nothing */
1705         if (max_addr == PHYS_ADDR_MAX)
1706                 return;
1707 
1708         memblock_cap_memory_range(0, max_addr);
1709 }
1710 
1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712 {
1713         unsigned int left = 0, right = type->cnt;
1714 
1715         do {
1716                 unsigned int mid = (right + left) / 2;
1717 
1718                 if (addr < type->regions[mid].base)
1719                         right = mid;
1720                 else if (addr >= (type->regions[mid].base +
1721                                   type->regions[mid].size))
1722                         left = mid + 1;
1723                 else
1724                         return mid;
1725         } while (left < right);
1726         return -1;
1727 }
1728 
1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730 {
1731         return memblock_search(&memblock.reserved, addr) != -1;
1732 }
1733 
1734 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735 {
1736         return memblock_search(&memblock.memory, addr) != -1;
1737 }
1738 
1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740 {
1741         int i = memblock_search(&memblock.memory, addr);
1742 
1743         if (i == -1)
1744                 return false;
1745         return !memblock_is_nomap(&memblock.memory.regions[i]);
1746 }
1747 
1748 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1749                          unsigned long *start_pfn, unsigned long *end_pfn)
1750 {
1751         struct memblock_type *type = &memblock.memory;
1752         int mid = memblock_search(type, PFN_PHYS(pfn));
1753 
1754         if (mid == -1)
1755                 return -1;
1756 
1757         *start_pfn = PFN_DOWN(type->regions[mid].base);
1758         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1759 
1760         return memblock_get_region_node(&type->regions[mid]);
1761 }
1762 
1763 /**
1764  * memblock_is_region_memory - check if a region is a subset of memory
1765  * @base: base of region to check
1766  * @size: size of region to check
1767  *
1768  * Check if the region [@base, @base + @size) is a subset of a memory block.
1769  *
1770  * Return:
1771  * 0 if false, non-zero if true
1772  */
1773 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1774 {
1775         int idx = memblock_search(&memblock.memory, base);
1776         phys_addr_t end = base + memblock_cap_size(base, &size);
1777 
1778         if (idx == -1)
1779                 return false;
1780         return (memblock.memory.regions[idx].base +
1781                  memblock.memory.regions[idx].size) >= end;
1782 }
1783 
1784 /**
1785  * memblock_is_region_reserved - check if a region intersects reserved memory
1786  * @base: base of region to check
1787  * @size: size of region to check
1788  *
1789  * Check if the region [@base, @base + @size) intersects a reserved
1790  * memory block.
1791  *
1792  * Return:
1793  * True if they intersect, false if not.
1794  */
1795 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1796 {
1797         memblock_cap_size(base, &size);
1798         return memblock_overlaps_region(&memblock.reserved, base, size);
1799 }
1800 
1801 void __init_memblock memblock_trim_memory(phys_addr_t align)
1802 {
1803         phys_addr_t start, end, orig_start, orig_end;
1804         struct memblock_region *r;
1805 
1806         for_each_mem_region(r) {
1807                 orig_start = r->base;
1808                 orig_end = r->base + r->size;
1809                 start = round_up(orig_start, align);
1810                 end = round_down(orig_end, align);
1811 
1812                 if (start == orig_start && end == orig_end)
1813                         continue;
1814 
1815                 if (start < end) {
1816                         r->base = start;
1817                         r->size = end - start;
1818                 } else {
1819                         memblock_remove_region(&memblock.memory,
1820                                                r - memblock.memory.regions);
1821                         r--;
1822                 }
1823         }
1824 }
1825 
1826 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1827 {
1828         memblock.current_limit = limit;
1829 }
1830 
1831 phys_addr_t __init_memblock memblock_get_current_limit(void)
1832 {
1833         return memblock.current_limit;
1834 }
1835 
1836 static void __init_memblock memblock_dump(struct memblock_type *type)
1837 {
1838         phys_addr_t base, end, size;
1839         enum memblock_flags flags;
1840         int idx;
1841         struct memblock_region *rgn;
1842 
1843         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1844 
1845         for_each_memblock_type(idx, type, rgn) {
1846                 char nid_buf[32] = "";
1847 
1848                 base = rgn->base;
1849                 size = rgn->size;
1850                 end = base + size - 1;
1851                 flags = rgn->flags;
1852 #ifdef CONFIG_NEED_MULTIPLE_NODES
1853                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1854                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1855                                  memblock_get_region_node(rgn));
1856 #endif
1857                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1858                         type->name, idx, &base, &end, &size, nid_buf, flags);
1859         }
1860 }
1861 
1862 static void __init_memblock __memblock_dump_all(void)
1863 {
1864         pr_info("MEMBLOCK configuration:\n");
1865         pr_info(" memory size = %pa reserved size = %pa\n",
1866                 &memblock.memory.total_size,
1867                 &memblock.reserved.total_size);
1868 
1869         memblock_dump(&memblock.memory);
1870         memblock_dump(&memblock.reserved);
1871 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1872         memblock_dump(&physmem);
1873 #endif
1874 }
1875 
1876 void __init_memblock memblock_dump_all(void)
1877 {
1878         if (memblock_debug)
1879                 __memblock_dump_all();
1880 }
1881 
1882 void __init memblock_allow_resize(void)
1883 {
1884         memblock_can_resize = 1;
1885 }
1886 
1887 static int __init early_memblock(char *p)
1888 {
1889         if (p && strstr(p, "debug"))
1890                 memblock_debug = 1;
1891         return 0;
1892 }
1893 early_param("memblock", early_memblock);
1894 
1895 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1896 {
1897         struct page *start_pg, *end_pg;
1898         phys_addr_t pg, pgend;
1899 
1900         /*
1901          * Convert start_pfn/end_pfn to a struct page pointer.
1902          */
1903         start_pg = pfn_to_page(start_pfn - 1) + 1;
1904         end_pg = pfn_to_page(end_pfn - 1) + 1;
1905 
1906         /*
1907          * Convert to physical addresses, and round start upwards and end
1908          * downwards.
1909          */
1910         pg = PAGE_ALIGN(__pa(start_pg));
1911         pgend = __pa(end_pg) & PAGE_MASK;
1912 
1913         /*
1914          * If there are free pages between these, free the section of the
1915          * memmap array.
1916          */
1917         if (pg < pgend)
1918                 memblock_free(pg, pgend - pg);
1919 }
1920 
1921 /*
1922  * The mem_map array can get very big.  Free the unused area of the memory map.
1923  */
1924 static void __init free_unused_memmap(void)
1925 {
1926         unsigned long start, end, prev_end = 0;
1927         int i;
1928 
1929         if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1930             IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1931                 return;
1932 
1933         /*
1934          * This relies on each bank being in address order.
1935          * The banks are sorted previously in bootmem_init().
1936          */
1937         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1938 #ifdef CONFIG_SPARSEMEM
1939                 /*
1940                  * Take care not to free memmap entries that don't exist
1941                  * due to SPARSEMEM sections which aren't present.
1942                  */
1943                 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1944 #else
1945                 /*
1946                  * Align down here since the VM subsystem insists that the
1947                  * memmap entries are valid from the bank start aligned to
1948                  * MAX_ORDER_NR_PAGES.
1949                  */
1950                 start = round_down(start, MAX_ORDER_NR_PAGES);
1951 #endif
1952 
1953                 /*
1954                  * If we had a previous bank, and there is a space
1955                  * between the current bank and the previous, free it.
1956                  */
1957                 if (prev_end && prev_end < start)
1958                         free_memmap(prev_end, start);
1959 
1960                 /*
1961                  * Align up here since the VM subsystem insists that the
1962                  * memmap entries are valid from the bank end aligned to
1963                  * MAX_ORDER_NR_PAGES.
1964                  */
1965                 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
1966         }
1967 
1968 #ifdef CONFIG_SPARSEMEM
1969         if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
1970                 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1971 #endif
1972 }
1973 
1974 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1975 {
1976         int order;
1977 
1978         while (start < end) {
1979                 order = min(MAX_ORDER - 1UL, __ffs(start));
1980 
1981                 while (start + (1UL << order) > end)
1982                         order--;
1983 
1984                 memblock_free_pages(pfn_to_page(start), start, order);
1985 
1986                 start += (1UL << order);
1987         }
1988 }
1989 
1990 static unsigned long __init __free_memory_core(phys_addr_t start,
1991                                  phys_addr_t end)
1992 {
1993         unsigned long start_pfn = PFN_UP(start);
1994         unsigned long end_pfn = min_t(unsigned long,
1995                                       PFN_DOWN(end), max_low_pfn);
1996 
1997         if (start_pfn >= end_pfn)
1998                 return 0;
1999 
2000         __free_pages_memory(start_pfn, end_pfn);
2001 
2002         return end_pfn - start_pfn;
2003 }
2004 
2005 static unsigned long __init free_low_memory_core_early(void)
2006 {
2007         unsigned long count = 0;
2008         phys_addr_t start, end;
2009         u64 i;
2010 
2011         memblock_clear_hotplug(0, -1);
2012 
2013         for_each_reserved_mem_range(i, &start, &end)
2014                 reserve_bootmem_region(start, end);
2015 
2016         /*
2017          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2018          *  because in some case like Node0 doesn't have RAM installed
2019          *  low ram will be on Node1
2020          */
2021         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2022                                 NULL)
2023                 count += __free_memory_core(start, end);
2024 
2025         return count;
2026 }
2027 
2028 static int reset_managed_pages_done __initdata;
2029 
2030 void reset_node_managed_pages(pg_data_t *pgdat)
2031 {
2032         struct zone *z;
2033 
2034         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2035                 atomic_long_set(&z->managed_pages, 0);
2036 }
2037 
2038 void __init reset_all_zones_managed_pages(void)
2039 {
2040         struct pglist_data *pgdat;
2041 
2042         if (reset_managed_pages_done)
2043                 return;
2044 
2045         for_each_online_pgdat(pgdat)
2046                 reset_node_managed_pages(pgdat);
2047 
2048         reset_managed_pages_done = 1;
2049 }
2050 
2051 /**
2052  * memblock_free_all - release free pages to the buddy allocator
2053  */
2054 void __init memblock_free_all(void)
2055 {
2056         unsigned long pages;
2057 
2058         free_unused_memmap();
2059         reset_all_zones_managed_pages();
2060 
2061         pages = free_low_memory_core_early();
2062         totalram_pages_add(pages);
2063 }
2064 
2065 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2066 
2067 static int memblock_debug_show(struct seq_file *m, void *private)
2068 {
2069         struct memblock_type *type = m->private;
2070         struct memblock_region *reg;
2071         int i;
2072         phys_addr_t end;
2073 
2074         for (i = 0; i < type->cnt; i++) {
2075                 reg = &type->regions[i];
2076                 end = reg->base + reg->size - 1;
2077 
2078                 seq_printf(m, "%4d: ", i);
2079                 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2080         }
2081         return 0;
2082 }
2083 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2084 
2085 static int __init memblock_init_debugfs(void)
2086 {
2087         struct dentry *root = debugfs_create_dir("memblock", NULL);
2088 
2089         debugfs_create_file("memory", 0444, root,
2090                             &memblock.memory, &memblock_debug_fops);
2091         debugfs_create_file("reserved", 0444, root,
2092                             &memblock.reserved, &memblock_debug_fops);
2093 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2094         debugfs_create_file("physmem", 0444, root, &physmem,
2095                             &memblock_debug_fops);
2096 #endif
2097 
2098         return 0;
2099 }
2100 __initcall(memblock_init_debugfs);
2101 
2102 #endif /* CONFIG_DEBUG_FS */
2103 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp