~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/memblock.c

Version: ~ [ linux-5.8 ] ~ [ linux-5.7.14 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.57 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.138 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.193 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.232 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.232 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Procedures for maintaining information about logical memory blocks.
  3  *
  4  * Peter Bergner, IBM Corp.     June 2001.
  5  * Copyright (C) 2001 Peter Bergner.
  6  *
  7  *      This program is free software; you can redistribute it and/or
  8  *      modify it under the terms of the GNU General Public License
  9  *      as published by the Free Software Foundation; either version
 10  *      2 of the License, or (at your option) any later version.
 11  */
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/slab.h>
 15 #include <linux/init.h>
 16 #include <linux/bitops.h>
 17 #include <linux/poison.h>
 18 #include <linux/pfn.h>
 19 #include <linux/debugfs.h>
 20 #include <linux/kmemleak.h>
 21 #include <linux/seq_file.h>
 22 #include <linux/memblock.h>
 23 
 24 #include <asm/sections.h>
 25 #include <linux/io.h>
 26 
 27 #include "internal.h"
 28 
 29 #define INIT_MEMBLOCK_REGIONS                   128
 30 #define INIT_PHYSMEM_REGIONS                    4
 31 
 32 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
 33 # define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
 34 #endif
 35 
 36 /**
 37  * DOC: memblock overview
 38  *
 39  * Memblock is a method of managing memory regions during the early
 40  * boot period when the usual kernel memory allocators are not up and
 41  * running.
 42  *
 43  * Memblock views the system memory as collections of contiguous
 44  * regions. There are several types of these collections:
 45  *
 46  * * ``memory`` - describes the physical memory available to the
 47  *   kernel; this may differ from the actual physical memory installed
 48  *   in the system, for instance when the memory is restricted with
 49  *   ``mem=`` command line parameter
 50  * * ``reserved`` - describes the regions that were allocated
 51  * * ``physmap`` - describes the actual physical memory regardless of
 52  *   the possible restrictions; the ``physmap`` type is only available
 53  *   on some architectures.
 54  *
 55  * Each region is represented by :c:type:`struct memblock_region` that
 56  * defines the region extents, its attributes and NUMA node id on NUMA
 57  * systems. Every memory type is described by the :c:type:`struct
 58  * memblock_type` which contains an array of memory regions along with
 59  * the allocator metadata. The memory types are nicely wrapped with
 60  * :c:type:`struct memblock`. This structure is statically initialzed
 61  * at build time. The region arrays for the "memory" and "reserved"
 62  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
 63  * "physmap" type to %INIT_PHYSMEM_REGIONS.
 64  * The :c:func:`memblock_allow_resize` enables automatic resizing of
 65  * the region arrays during addition of new regions. This feature
 66  * should be used with care so that memory allocated for the region
 67  * array will not overlap with areas that should be reserved, for
 68  * example initrd.
 69  *
 70  * The early architecture setup should tell memblock what the physical
 71  * memory layout is by using :c:func:`memblock_add` or
 72  * :c:func:`memblock_add_node` functions. The first function does not
 73  * assign the region to a NUMA node and it is appropriate for UMA
 74  * systems. Yet, it is possible to use it on NUMA systems as well and
 75  * assign the region to a NUMA node later in the setup process using
 76  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
 77  * performs such an assignment directly.
 78  *
 79  * Once memblock is setup the memory can be allocated using either
 80  * memblock or bootmem APIs.
 81  *
 82  * As the system boot progresses, the architecture specific
 83  * :c:func:`mem_init` function frees all the memory to the buddy page
 84  * allocator.
 85  *
 86  * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
 87  * memblock data structures will be discarded after the system
 88  * initialization compltes.
 89  */
 90 
 91 #ifndef CONFIG_NEED_MULTIPLE_NODES
 92 struct pglist_data __refdata contig_page_data;
 93 EXPORT_SYMBOL(contig_page_data);
 94 #endif
 95 
 96 unsigned long max_low_pfn;
 97 unsigned long min_low_pfn;
 98 unsigned long max_pfn;
 99 unsigned long long max_possible_pfn;
100 
101 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
102 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
103 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
104 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
105 #endif
106 
107 struct memblock memblock __initdata_memblock = {
108         .memory.regions         = memblock_memory_init_regions,
109         .memory.cnt             = 1,    /* empty dummy entry */
110         .memory.max             = INIT_MEMBLOCK_REGIONS,
111         .memory.name            = "memory",
112 
113         .reserved.regions       = memblock_reserved_init_regions,
114         .reserved.cnt           = 1,    /* empty dummy entry */
115         .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
116         .reserved.name          = "reserved",
117 
118 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
119         .physmem.regions        = memblock_physmem_init_regions,
120         .physmem.cnt            = 1,    /* empty dummy entry */
121         .physmem.max            = INIT_PHYSMEM_REGIONS,
122         .physmem.name           = "physmem",
123 #endif
124 
125         .bottom_up              = false,
126         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
127 };
128 
129 int memblock_debug __initdata_memblock;
130 static bool system_has_some_mirror __initdata_memblock = false;
131 static int memblock_can_resize __initdata_memblock;
132 static int memblock_memory_in_slab __initdata_memblock = 0;
133 static int memblock_reserved_in_slab __initdata_memblock = 0;
134 
135 enum memblock_flags __init_memblock choose_memblock_flags(void)
136 {
137         return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
138 }
139 
140 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
141 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
142 {
143         return *size = min(*size, PHYS_ADDR_MAX - base);
144 }
145 
146 /*
147  * Address comparison utilities
148  */
149 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
150                                        phys_addr_t base2, phys_addr_t size2)
151 {
152         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
153 }
154 
155 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
156                                         phys_addr_t base, phys_addr_t size)
157 {
158         unsigned long i;
159 
160         for (i = 0; i < type->cnt; i++)
161                 if (memblock_addrs_overlap(base, size, type->regions[i].base,
162                                            type->regions[i].size))
163                         break;
164         return i < type->cnt;
165 }
166 
167 /**
168  * __memblock_find_range_bottom_up - find free area utility in bottom-up
169  * @start: start of candidate range
170  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
171  *       %MEMBLOCK_ALLOC_ACCESSIBLE
172  * @size: size of free area to find
173  * @align: alignment of free area to find
174  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
175  * @flags: pick from blocks based on memory attributes
176  *
177  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
178  *
179  * Return:
180  * Found address on success, 0 on failure.
181  */
182 static phys_addr_t __init_memblock
183 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
184                                 phys_addr_t size, phys_addr_t align, int nid,
185                                 enum memblock_flags flags)
186 {
187         phys_addr_t this_start, this_end, cand;
188         u64 i;
189 
190         for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
191                 this_start = clamp(this_start, start, end);
192                 this_end = clamp(this_end, start, end);
193 
194                 cand = round_up(this_start, align);
195                 if (cand < this_end && this_end - cand >= size)
196                         return cand;
197         }
198 
199         return 0;
200 }
201 
202 /**
203  * __memblock_find_range_top_down - find free area utility, in top-down
204  * @start: start of candidate range
205  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
206  *       %MEMBLOCK_ALLOC_ACCESSIBLE
207  * @size: size of free area to find
208  * @align: alignment of free area to find
209  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
210  * @flags: pick from blocks based on memory attributes
211  *
212  * Utility called from memblock_find_in_range_node(), find free area top-down.
213  *
214  * Return:
215  * Found address on success, 0 on failure.
216  */
217 static phys_addr_t __init_memblock
218 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
219                                phys_addr_t size, phys_addr_t align, int nid,
220                                enum memblock_flags flags)
221 {
222         phys_addr_t this_start, this_end, cand;
223         u64 i;
224 
225         for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
226                                         NULL) {
227                 this_start = clamp(this_start, start, end);
228                 this_end = clamp(this_end, start, end);
229 
230                 if (this_end < size)
231                         continue;
232 
233                 cand = round_down(this_end - size, align);
234                 if (cand >= this_start)
235                         return cand;
236         }
237 
238         return 0;
239 }
240 
241 /**
242  * memblock_find_in_range_node - find free area in given range and node
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  * @start: start of candidate range
246  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
247  *       %MEMBLOCK_ALLOC_ACCESSIBLE
248  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
249  * @flags: pick from blocks based on memory attributes
250  *
251  * Find @size free area aligned to @align in the specified range and node.
252  *
253  * When allocation direction is bottom-up, the @start should be greater
254  * than the end of the kernel image. Otherwise, it will be trimmed. The
255  * reason is that we want the bottom-up allocation just near the kernel
256  * image so it is highly likely that the allocated memory and the kernel
257  * will reside in the same node.
258  *
259  * If bottom-up allocation failed, will try to allocate memory top-down.
260  *
261  * Return:
262  * Found address on success, 0 on failure.
263  */
264 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
265                                         phys_addr_t align, phys_addr_t start,
266                                         phys_addr_t end, int nid,
267                                         enum memblock_flags flags)
268 {
269         phys_addr_t kernel_end, ret;
270 
271         /* pump up @end */
272         if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
273             end == MEMBLOCK_ALLOC_KASAN)
274                 end = memblock.current_limit;
275 
276         /* avoid allocating the first page */
277         start = max_t(phys_addr_t, start, PAGE_SIZE);
278         end = max(start, end);
279         kernel_end = __pa_symbol(_end);
280 
281         /*
282          * try bottom-up allocation only when bottom-up mode
283          * is set and @end is above the kernel image.
284          */
285         if (memblock_bottom_up() && end > kernel_end) {
286                 phys_addr_t bottom_up_start;
287 
288                 /* make sure we will allocate above the kernel */
289                 bottom_up_start = max(start, kernel_end);
290 
291                 /* ok, try bottom-up allocation first */
292                 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
293                                                       size, align, nid, flags);
294                 if (ret)
295                         return ret;
296 
297                 /*
298                  * we always limit bottom-up allocation above the kernel,
299                  * but top-down allocation doesn't have the limit, so
300                  * retrying top-down allocation may succeed when bottom-up
301                  * allocation failed.
302                  *
303                  * bottom-up allocation is expected to be fail very rarely,
304                  * so we use WARN_ONCE() here to see the stack trace if
305                  * fail happens.
306                  */
307                 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
308                           "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
309         }
310 
311         return __memblock_find_range_top_down(start, end, size, align, nid,
312                                               flags);
313 }
314 
315 /**
316  * memblock_find_in_range - find free area in given range
317  * @start: start of candidate range
318  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
319  *       %MEMBLOCK_ALLOC_ACCESSIBLE
320  * @size: size of free area to find
321  * @align: alignment of free area to find
322  *
323  * Find @size free area aligned to @align in the specified range.
324  *
325  * Return:
326  * Found address on success, 0 on failure.
327  */
328 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
329                                         phys_addr_t end, phys_addr_t size,
330                                         phys_addr_t align)
331 {
332         phys_addr_t ret;
333         enum memblock_flags flags = choose_memblock_flags();
334 
335 again:
336         ret = memblock_find_in_range_node(size, align, start, end,
337                                             NUMA_NO_NODE, flags);
338 
339         if (!ret && (flags & MEMBLOCK_MIRROR)) {
340                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
341                         &size);
342                 flags &= ~MEMBLOCK_MIRROR;
343                 goto again;
344         }
345 
346         return ret;
347 }
348 
349 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
350 {
351         type->total_size -= type->regions[r].size;
352         memmove(&type->regions[r], &type->regions[r + 1],
353                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
354         type->cnt--;
355 
356         /* Special case for empty arrays */
357         if (type->cnt == 0) {
358                 WARN_ON(type->total_size != 0);
359                 type->cnt = 1;
360                 type->regions[0].base = 0;
361                 type->regions[0].size = 0;
362                 type->regions[0].flags = 0;
363                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
364         }
365 }
366 
367 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
368 /**
369  * memblock_discard - discard memory and reserved arrays if they were allocated
370  */
371 void __init memblock_discard(void)
372 {
373         phys_addr_t addr, size;
374 
375         if (memblock.reserved.regions != memblock_reserved_init_regions) {
376                 addr = __pa(memblock.reserved.regions);
377                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378                                   memblock.reserved.max);
379                 __memblock_free_late(addr, size);
380         }
381 
382         if (memblock.memory.regions != memblock_memory_init_regions) {
383                 addr = __pa(memblock.memory.regions);
384                 size = PAGE_ALIGN(sizeof(struct memblock_region) *
385                                   memblock.memory.max);
386                 __memblock_free_late(addr, size);
387         }
388 }
389 #endif
390 
391 /**
392  * memblock_double_array - double the size of the memblock regions array
393  * @type: memblock type of the regions array being doubled
394  * @new_area_start: starting address of memory range to avoid overlap with
395  * @new_area_size: size of memory range to avoid overlap with
396  *
397  * Double the size of the @type regions array. If memblock is being used to
398  * allocate memory for a new reserved regions array and there is a previously
399  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
400  * waiting to be reserved, ensure the memory used by the new array does
401  * not overlap.
402  *
403  * Return:
404  * 0 on success, -1 on failure.
405  */
406 static int __init_memblock memblock_double_array(struct memblock_type *type,
407                                                 phys_addr_t new_area_start,
408                                                 phys_addr_t new_area_size)
409 {
410         struct memblock_region *new_array, *old_array;
411         phys_addr_t old_alloc_size, new_alloc_size;
412         phys_addr_t old_size, new_size, addr, new_end;
413         int use_slab = slab_is_available();
414         int *in_slab;
415 
416         /* We don't allow resizing until we know about the reserved regions
417          * of memory that aren't suitable for allocation
418          */
419         if (!memblock_can_resize)
420                 return -1;
421 
422         /* Calculate new doubled size */
423         old_size = type->max * sizeof(struct memblock_region);
424         new_size = old_size << 1;
425         /*
426          * We need to allocated new one align to PAGE_SIZE,
427          *   so we can free them completely later.
428          */
429         old_alloc_size = PAGE_ALIGN(old_size);
430         new_alloc_size = PAGE_ALIGN(new_size);
431 
432         /* Retrieve the slab flag */
433         if (type == &memblock.memory)
434                 in_slab = &memblock_memory_in_slab;
435         else
436                 in_slab = &memblock_reserved_in_slab;
437 
438         /* Try to find some space for it.
439          *
440          * WARNING: We assume that either slab_is_available() and we use it or
441          * we use MEMBLOCK for allocations. That means that this is unsafe to
442          * use when bootmem is currently active (unless bootmem itself is
443          * implemented on top of MEMBLOCK which isn't the case yet)
444          *
445          * This should however not be an issue for now, as we currently only
446          * call into MEMBLOCK while it's still active, or much later when slab
447          * is active for memory hotplug operations
448          */
449         if (use_slab) {
450                 new_array = kmalloc(new_size, GFP_KERNEL);
451                 addr = new_array ? __pa(new_array) : 0;
452         } else {
453                 /* only exclude range when trying to double reserved.regions */
454                 if (type != &memblock.reserved)
455                         new_area_start = new_area_size = 0;
456 
457                 addr = memblock_find_in_range(new_area_start + new_area_size,
458                                                 memblock.current_limit,
459                                                 new_alloc_size, PAGE_SIZE);
460                 if (!addr && new_area_size)
461                         addr = memblock_find_in_range(0,
462                                 min(new_area_start, memblock.current_limit),
463                                 new_alloc_size, PAGE_SIZE);
464 
465                 new_array = addr ? __va(addr) : NULL;
466         }
467         if (!addr) {
468                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
469                        type->name, type->max, type->max * 2);
470                 return -1;
471         }
472 
473         new_end = addr + new_size - 1;
474         memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
475                         type->name, type->max * 2, &addr, &new_end);
476 
477         /*
478          * Found space, we now need to move the array over before we add the
479          * reserved region since it may be our reserved array itself that is
480          * full.
481          */
482         memcpy(new_array, type->regions, old_size);
483         memset(new_array + type->max, 0, old_size);
484         old_array = type->regions;
485         type->regions = new_array;
486         type->max <<= 1;
487 
488         /* Free old array. We needn't free it if the array is the static one */
489         if (*in_slab)
490                 kfree(old_array);
491         else if (old_array != memblock_memory_init_regions &&
492                  old_array != memblock_reserved_init_regions)
493                 memblock_free(__pa(old_array), old_alloc_size);
494 
495         /*
496          * Reserve the new array if that comes from the memblock.  Otherwise, we
497          * needn't do it
498          */
499         if (!use_slab)
500                 BUG_ON(memblock_reserve(addr, new_alloc_size));
501 
502         /* Update slab flag */
503         *in_slab = use_slab;
504 
505         return 0;
506 }
507 
508 /**
509  * memblock_merge_regions - merge neighboring compatible regions
510  * @type: memblock type to scan
511  *
512  * Scan @type and merge neighboring compatible regions.
513  */
514 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
515 {
516         int i = 0;
517 
518         /* cnt never goes below 1 */
519         while (i < type->cnt - 1) {
520                 struct memblock_region *this = &type->regions[i];
521                 struct memblock_region *next = &type->regions[i + 1];
522 
523                 if (this->base + this->size != next->base ||
524                     memblock_get_region_node(this) !=
525                     memblock_get_region_node(next) ||
526                     this->flags != next->flags) {
527                         BUG_ON(this->base + this->size > next->base);
528                         i++;
529                         continue;
530                 }
531 
532                 this->size += next->size;
533                 /* move forward from next + 1, index of which is i + 2 */
534                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
535                 type->cnt--;
536         }
537 }
538 
539 /**
540  * memblock_insert_region - insert new memblock region
541  * @type:       memblock type to insert into
542  * @idx:        index for the insertion point
543  * @base:       base address of the new region
544  * @size:       size of the new region
545  * @nid:        node id of the new region
546  * @flags:      flags of the new region
547  *
548  * Insert new memblock region [@base, @base + @size) into @type at @idx.
549  * @type must already have extra room to accommodate the new region.
550  */
551 static void __init_memblock memblock_insert_region(struct memblock_type *type,
552                                                    int idx, phys_addr_t base,
553                                                    phys_addr_t size,
554                                                    int nid,
555                                                    enum memblock_flags flags)
556 {
557         struct memblock_region *rgn = &type->regions[idx];
558 
559         BUG_ON(type->cnt >= type->max);
560         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
561         rgn->base = base;
562         rgn->size = size;
563         rgn->flags = flags;
564         memblock_set_region_node(rgn, nid);
565         type->cnt++;
566         type->total_size += size;
567 }
568 
569 /**
570  * memblock_add_range - add new memblock region
571  * @type: memblock type to add new region into
572  * @base: base address of the new region
573  * @size: size of the new region
574  * @nid: nid of the new region
575  * @flags: flags of the new region
576  *
577  * Add new memblock region [@base, @base + @size) into @type.  The new region
578  * is allowed to overlap with existing ones - overlaps don't affect already
579  * existing regions.  @type is guaranteed to be minimal (all neighbouring
580  * compatible regions are merged) after the addition.
581  *
582  * Return:
583  * 0 on success, -errno on failure.
584  */
585 int __init_memblock memblock_add_range(struct memblock_type *type,
586                                 phys_addr_t base, phys_addr_t size,
587                                 int nid, enum memblock_flags flags)
588 {
589         bool insert = false;
590         phys_addr_t obase = base;
591         phys_addr_t end = base + memblock_cap_size(base, &size);
592         int idx, nr_new;
593         struct memblock_region *rgn;
594 
595         if (!size)
596                 return 0;
597 
598         /* special case for empty array */
599         if (type->regions[0].size == 0) {
600                 WARN_ON(type->cnt != 1 || type->total_size);
601                 type->regions[0].base = base;
602                 type->regions[0].size = size;
603                 type->regions[0].flags = flags;
604                 memblock_set_region_node(&type->regions[0], nid);
605                 type->total_size = size;
606                 return 0;
607         }
608 repeat:
609         /*
610          * The following is executed twice.  Once with %false @insert and
611          * then with %true.  The first counts the number of regions needed
612          * to accommodate the new area.  The second actually inserts them.
613          */
614         base = obase;
615         nr_new = 0;
616 
617         for_each_memblock_type(idx, type, rgn) {
618                 phys_addr_t rbase = rgn->base;
619                 phys_addr_t rend = rbase + rgn->size;
620 
621                 if (rbase >= end)
622                         break;
623                 if (rend <= base)
624                         continue;
625                 /*
626                  * @rgn overlaps.  If it separates the lower part of new
627                  * area, insert that portion.
628                  */
629                 if (rbase > base) {
630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
631                         WARN_ON(nid != memblock_get_region_node(rgn));
632 #endif
633                         WARN_ON(flags != rgn->flags);
634                         nr_new++;
635                         if (insert)
636                                 memblock_insert_region(type, idx++, base,
637                                                        rbase - base, nid,
638                                                        flags);
639                 }
640                 /* area below @rend is dealt with, forget about it */
641                 base = min(rend, end);
642         }
643 
644         /* insert the remaining portion */
645         if (base < end) {
646                 nr_new++;
647                 if (insert)
648                         memblock_insert_region(type, idx, base, end - base,
649                                                nid, flags);
650         }
651 
652         if (!nr_new)
653                 return 0;
654 
655         /*
656          * If this was the first round, resize array and repeat for actual
657          * insertions; otherwise, merge and return.
658          */
659         if (!insert) {
660                 while (type->cnt + nr_new > type->max)
661                         if (memblock_double_array(type, obase, size) < 0)
662                                 return -ENOMEM;
663                 insert = true;
664                 goto repeat;
665         } else {
666                 memblock_merge_regions(type);
667                 return 0;
668         }
669 }
670 
671 /**
672  * memblock_add_node - add new memblock region within a NUMA node
673  * @base: base address of the new region
674  * @size: size of the new region
675  * @nid: nid of the new region
676  *
677  * Add new memblock region [@base, @base + @size) to the "memory"
678  * type. See memblock_add_range() description for mode details
679  *
680  * Return:
681  * 0 on success, -errno on failure.
682  */
683 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
684                                        int nid)
685 {
686         return memblock_add_range(&memblock.memory, base, size, nid, 0);
687 }
688 
689 /**
690  * memblock_add - add new memblock region
691  * @base: base address of the new region
692  * @size: size of the new region
693  *
694  * Add new memblock region [@base, @base + @size) to the "memory"
695  * type. See memblock_add_range() description for mode details
696  *
697  * Return:
698  * 0 on success, -errno on failure.
699  */
700 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
701 {
702         phys_addr_t end = base + size - 1;
703 
704         memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
705                      &base, &end, (void *)_RET_IP_);
706 
707         return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
708 }
709 
710 /**
711  * memblock_isolate_range - isolate given range into disjoint memblocks
712  * @type: memblock type to isolate range for
713  * @base: base of range to isolate
714  * @size: size of range to isolate
715  * @start_rgn: out parameter for the start of isolated region
716  * @end_rgn: out parameter for the end of isolated region
717  *
718  * Walk @type and ensure that regions don't cross the boundaries defined by
719  * [@base, @base + @size).  Crossing regions are split at the boundaries,
720  * which may create at most two more regions.  The index of the first
721  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
722  *
723  * Return:
724  * 0 on success, -errno on failure.
725  */
726 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
727                                         phys_addr_t base, phys_addr_t size,
728                                         int *start_rgn, int *end_rgn)
729 {
730         phys_addr_t end = base + memblock_cap_size(base, &size);
731         int idx;
732         struct memblock_region *rgn;
733 
734         *start_rgn = *end_rgn = 0;
735 
736         if (!size)
737                 return 0;
738 
739         /* we'll create at most two more regions */
740         while (type->cnt + 2 > type->max)
741                 if (memblock_double_array(type, base, size) < 0)
742                         return -ENOMEM;
743 
744         for_each_memblock_type(idx, type, rgn) {
745                 phys_addr_t rbase = rgn->base;
746                 phys_addr_t rend = rbase + rgn->size;
747 
748                 if (rbase >= end)
749                         break;
750                 if (rend <= base)
751                         continue;
752 
753                 if (rbase < base) {
754                         /*
755                          * @rgn intersects from below.  Split and continue
756                          * to process the next region - the new top half.
757                          */
758                         rgn->base = base;
759                         rgn->size -= base - rbase;
760                         type->total_size -= base - rbase;
761                         memblock_insert_region(type, idx, rbase, base - rbase,
762                                                memblock_get_region_node(rgn),
763                                                rgn->flags);
764                 } else if (rend > end) {
765                         /*
766                          * @rgn intersects from above.  Split and redo the
767                          * current region - the new bottom half.
768                          */
769                         rgn->base = end;
770                         rgn->size -= end - rbase;
771                         type->total_size -= end - rbase;
772                         memblock_insert_region(type, idx--, rbase, end - rbase,
773                                                memblock_get_region_node(rgn),
774                                                rgn->flags);
775                 } else {
776                         /* @rgn is fully contained, record it */
777                         if (!*end_rgn)
778                                 *start_rgn = idx;
779                         *end_rgn = idx + 1;
780                 }
781         }
782 
783         return 0;
784 }
785 
786 static int __init_memblock memblock_remove_range(struct memblock_type *type,
787                                           phys_addr_t base, phys_addr_t size)
788 {
789         int start_rgn, end_rgn;
790         int i, ret;
791 
792         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
793         if (ret)
794                 return ret;
795 
796         for (i = end_rgn - 1; i >= start_rgn; i--)
797                 memblock_remove_region(type, i);
798         return 0;
799 }
800 
801 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
802 {
803         phys_addr_t end = base + size - 1;
804 
805         memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
806                      &base, &end, (void *)_RET_IP_);
807 
808         return memblock_remove_range(&memblock.memory, base, size);
809 }
810 
811 /**
812  * memblock_free - free boot memory block
813  * @base: phys starting address of the  boot memory block
814  * @size: size of the boot memory block in bytes
815  *
816  * Free boot memory block previously allocated by memblock_alloc_xx() API.
817  * The freeing memory will not be released to the buddy allocator.
818  */
819 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
820 {
821         phys_addr_t end = base + size - 1;
822 
823         memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
824                      &base, &end, (void *)_RET_IP_);
825 
826         kmemleak_free_part_phys(base, size);
827         return memblock_remove_range(&memblock.reserved, base, size);
828 }
829 
830 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
831 {
832         phys_addr_t end = base + size - 1;
833 
834         memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
835                      &base, &end, (void *)_RET_IP_);
836 
837         return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
838 }
839 
840 /**
841  * memblock_setclr_flag - set or clear flag for a memory region
842  * @base: base address of the region
843  * @size: size of the region
844  * @set: set or clear the flag
845  * @flag: the flag to udpate
846  *
847  * This function isolates region [@base, @base + @size), and sets/clears flag
848  *
849  * Return: 0 on success, -errno on failure.
850  */
851 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852                                 phys_addr_t size, int set, int flag)
853 {
854         struct memblock_type *type = &memblock.memory;
855         int i, ret, start_rgn, end_rgn;
856 
857         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858         if (ret)
859                 return ret;
860 
861         for (i = start_rgn; i < end_rgn; i++)
862                 if (set)
863                         memblock_set_region_flags(&type->regions[i], flag);
864                 else
865                         memblock_clear_region_flags(&type->regions[i], flag);
866 
867         memblock_merge_regions(type);
868         return 0;
869 }
870 
871 /**
872  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
873  * @base: the base phys addr of the region
874  * @size: the size of the region
875  *
876  * Return: 0 on success, -errno on failure.
877  */
878 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
879 {
880         return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
881 }
882 
883 /**
884  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
885  * @base: the base phys addr of the region
886  * @size: the size of the region
887  *
888  * Return: 0 on success, -errno on failure.
889  */
890 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
891 {
892         return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
893 }
894 
895 /**
896  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
897  * @base: the base phys addr of the region
898  * @size: the size of the region
899  *
900  * Return: 0 on success, -errno on failure.
901  */
902 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
903 {
904         system_has_some_mirror = true;
905 
906         return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
907 }
908 
909 /**
910  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
911  * @base: the base phys addr of the region
912  * @size: the size of the region
913  *
914  * Return: 0 on success, -errno on failure.
915  */
916 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
917 {
918         return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
919 }
920 
921 /**
922  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
923  * @base: the base phys addr of the region
924  * @size: the size of the region
925  *
926  * Return: 0 on success, -errno on failure.
927  */
928 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
929 {
930         return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
931 }
932 
933 /**
934  * __next_reserved_mem_region - next function for for_each_reserved_region()
935  * @idx: pointer to u64 loop variable
936  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
937  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
938  *
939  * Iterate over all reserved memory regions.
940  */
941 void __init_memblock __next_reserved_mem_region(u64 *idx,
942                                            phys_addr_t *out_start,
943                                            phys_addr_t *out_end)
944 {
945         struct memblock_type *type = &memblock.reserved;
946 
947         if (*idx < type->cnt) {
948                 struct memblock_region *r = &type->regions[*idx];
949                 phys_addr_t base = r->base;
950                 phys_addr_t size = r->size;
951 
952                 if (out_start)
953                         *out_start = base;
954                 if (out_end)
955                         *out_end = base + size - 1;
956 
957                 *idx += 1;
958                 return;
959         }
960 
961         /* signal end of iteration */
962         *idx = ULLONG_MAX;
963 }
964 
965 /**
966  * __next__mem_range - next function for for_each_free_mem_range() etc.
967  * @idx: pointer to u64 loop variable
968  * @nid: node selector, %NUMA_NO_NODE for all nodes
969  * @flags: pick from blocks based on memory attributes
970  * @type_a: pointer to memblock_type from where the range is taken
971  * @type_b: pointer to memblock_type which excludes memory from being taken
972  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
973  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
974  * @out_nid: ptr to int for nid of the range, can be %NULL
975  *
976  * Find the first area from *@idx which matches @nid, fill the out
977  * parameters, and update *@idx for the next iteration.  The lower 32bit of
978  * *@idx contains index into type_a and the upper 32bit indexes the
979  * areas before each region in type_b.  For example, if type_b regions
980  * look like the following,
981  *
982  *      0:[0-16), 1:[32-48), 2:[128-130)
983  *
984  * The upper 32bit indexes the following regions.
985  *
986  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
987  *
988  * As both region arrays are sorted, the function advances the two indices
989  * in lockstep and returns each intersection.
990  */
991 void __init_memblock __next_mem_range(u64 *idx, int nid,
992                                       enum memblock_flags flags,
993                                       struct memblock_type *type_a,
994                                       struct memblock_type *type_b,
995                                       phys_addr_t *out_start,
996                                       phys_addr_t *out_end, int *out_nid)
997 {
998         int idx_a = *idx & 0xffffffff;
999         int idx_b = *idx >> 32;
1000 
1001         if (WARN_ONCE(nid == MAX_NUMNODES,
1002         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1003                 nid = NUMA_NO_NODE;
1004 
1005         for (; idx_a < type_a->cnt; idx_a++) {
1006                 struct memblock_region *m = &type_a->regions[idx_a];
1007 
1008                 phys_addr_t m_start = m->base;
1009                 phys_addr_t m_end = m->base + m->size;
1010                 int         m_nid = memblock_get_region_node(m);
1011 
1012                 /* only memory regions are associated with nodes, check it */
1013                 if (nid != NUMA_NO_NODE && nid != m_nid)
1014                         continue;
1015 
1016                 /* skip hotpluggable memory regions if needed */
1017                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1018                         continue;
1019 
1020                 /* if we want mirror memory skip non-mirror memory regions */
1021                 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1022                         continue;
1023 
1024                 /* skip nomap memory unless we were asked for it explicitly */
1025                 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1026                         continue;
1027 
1028                 if (!type_b) {
1029                         if (out_start)
1030                                 *out_start = m_start;
1031                         if (out_end)
1032                                 *out_end = m_end;
1033                         if (out_nid)
1034                                 *out_nid = m_nid;
1035                         idx_a++;
1036                         *idx = (u32)idx_a | (u64)idx_b << 32;
1037                         return;
1038                 }
1039 
1040                 /* scan areas before each reservation */
1041                 for (; idx_b < type_b->cnt + 1; idx_b++) {
1042                         struct memblock_region *r;
1043                         phys_addr_t r_start;
1044                         phys_addr_t r_end;
1045 
1046                         r = &type_b->regions[idx_b];
1047                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1048                         r_end = idx_b < type_b->cnt ?
1049                                 r->base : PHYS_ADDR_MAX;
1050 
1051                         /*
1052                          * if idx_b advanced past idx_a,
1053                          * break out to advance idx_a
1054                          */
1055                         if (r_start >= m_end)
1056                                 break;
1057                         /* if the two regions intersect, we're done */
1058                         if (m_start < r_end) {
1059                                 if (out_start)
1060                                         *out_start =
1061                                                 max(m_start, r_start);
1062                                 if (out_end)
1063                                         *out_end = min(m_end, r_end);
1064                                 if (out_nid)
1065                                         *out_nid = m_nid;
1066                                 /*
1067                                  * The region which ends first is
1068                                  * advanced for the next iteration.
1069                                  */
1070                                 if (m_end <= r_end)
1071                                         idx_a++;
1072                                 else
1073                                         idx_b++;
1074                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1075                                 return;
1076                         }
1077                 }
1078         }
1079 
1080         /* signal end of iteration */
1081         *idx = ULLONG_MAX;
1082 }
1083 
1084 /**
1085  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1086  *
1087  * @idx: pointer to u64 loop variable
1088  * @nid: node selector, %NUMA_NO_NODE for all nodes
1089  * @flags: pick from blocks based on memory attributes
1090  * @type_a: pointer to memblock_type from where the range is taken
1091  * @type_b: pointer to memblock_type which excludes memory from being taken
1092  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1093  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1094  * @out_nid: ptr to int for nid of the range, can be %NULL
1095  *
1096  * Finds the next range from type_a which is not marked as unsuitable
1097  * in type_b.
1098  *
1099  * Reverse of __next_mem_range().
1100  */
1101 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1102                                           enum memblock_flags flags,
1103                                           struct memblock_type *type_a,
1104                                           struct memblock_type *type_b,
1105                                           phys_addr_t *out_start,
1106                                           phys_addr_t *out_end, int *out_nid)
1107 {
1108         int idx_a = *idx & 0xffffffff;
1109         int idx_b = *idx >> 32;
1110 
1111         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1112                 nid = NUMA_NO_NODE;
1113 
1114         if (*idx == (u64)ULLONG_MAX) {
1115                 idx_a = type_a->cnt - 1;
1116                 if (type_b != NULL)
1117                         idx_b = type_b->cnt;
1118                 else
1119                         idx_b = 0;
1120         }
1121 
1122         for (; idx_a >= 0; idx_a--) {
1123                 struct memblock_region *m = &type_a->regions[idx_a];
1124 
1125                 phys_addr_t m_start = m->base;
1126                 phys_addr_t m_end = m->base + m->size;
1127                 int m_nid = memblock_get_region_node(m);
1128 
1129                 /* only memory regions are associated with nodes, check it */
1130                 if (nid != NUMA_NO_NODE && nid != m_nid)
1131                         continue;
1132 
1133                 /* skip hotpluggable memory regions if needed */
1134                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1135                         continue;
1136 
1137                 /* if we want mirror memory skip non-mirror memory regions */
1138                 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1139                         continue;
1140 
1141                 /* skip nomap memory unless we were asked for it explicitly */
1142                 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1143                         continue;
1144 
1145                 if (!type_b) {
1146                         if (out_start)
1147                                 *out_start = m_start;
1148                         if (out_end)
1149                                 *out_end = m_end;
1150                         if (out_nid)
1151                                 *out_nid = m_nid;
1152                         idx_a--;
1153                         *idx = (u32)idx_a | (u64)idx_b << 32;
1154                         return;
1155                 }
1156 
1157                 /* scan areas before each reservation */
1158                 for (; idx_b >= 0; idx_b--) {
1159                         struct memblock_region *r;
1160                         phys_addr_t r_start;
1161                         phys_addr_t r_end;
1162 
1163                         r = &type_b->regions[idx_b];
1164                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
1165                         r_end = idx_b < type_b->cnt ?
1166                                 r->base : PHYS_ADDR_MAX;
1167                         /*
1168                          * if idx_b advanced past idx_a,
1169                          * break out to advance idx_a
1170                          */
1171 
1172                         if (r_end <= m_start)
1173                                 break;
1174                         /* if the two regions intersect, we're done */
1175                         if (m_end > r_start) {
1176                                 if (out_start)
1177                                         *out_start = max(m_start, r_start);
1178                                 if (out_end)
1179                                         *out_end = min(m_end, r_end);
1180                                 if (out_nid)
1181                                         *out_nid = m_nid;
1182                                 if (m_start >= r_start)
1183                                         idx_a--;
1184                                 else
1185                                         idx_b--;
1186                                 *idx = (u32)idx_a | (u64)idx_b << 32;
1187                                 return;
1188                         }
1189                 }
1190         }
1191         /* signal end of iteration */
1192         *idx = ULLONG_MAX;
1193 }
1194 
1195 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1196 /*
1197  * Common iterator interface used to define for_each_mem_pfn_range().
1198  */
1199 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1200                                 unsigned long *out_start_pfn,
1201                                 unsigned long *out_end_pfn, int *out_nid)
1202 {
1203         struct memblock_type *type = &memblock.memory;
1204         struct memblock_region *r;
1205 
1206         while (++*idx < type->cnt) {
1207                 r = &type->regions[*idx];
1208 
1209                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1210                         continue;
1211                 if (nid == MAX_NUMNODES || nid == r->nid)
1212                         break;
1213         }
1214         if (*idx >= type->cnt) {
1215                 *idx = -1;
1216                 return;
1217         }
1218 
1219         if (out_start_pfn)
1220                 *out_start_pfn = PFN_UP(r->base);
1221         if (out_end_pfn)
1222                 *out_end_pfn = PFN_DOWN(r->base + r->size);
1223         if (out_nid)
1224                 *out_nid = r->nid;
1225 }
1226 
1227 /**
1228  * memblock_set_node - set node ID on memblock regions
1229  * @base: base of area to set node ID for
1230  * @size: size of area to set node ID for
1231  * @type: memblock type to set node ID for
1232  * @nid: node ID to set
1233  *
1234  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1235  * Regions which cross the area boundaries are split as necessary.
1236  *
1237  * Return:
1238  * 0 on success, -errno on failure.
1239  */
1240 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1241                                       struct memblock_type *type, int nid)
1242 {
1243         int start_rgn, end_rgn;
1244         int i, ret;
1245 
1246         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1247         if (ret)
1248                 return ret;
1249 
1250         for (i = start_rgn; i < end_rgn; i++)
1251                 memblock_set_region_node(&type->regions[i], nid);
1252 
1253         memblock_merge_regions(type);
1254         return 0;
1255 }
1256 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1257 
1258 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1259                                         phys_addr_t align, phys_addr_t start,
1260                                         phys_addr_t end, int nid,
1261                                         enum memblock_flags flags)
1262 {
1263         phys_addr_t found;
1264 
1265         if (!align) {
1266                 /* Can't use WARNs this early in boot on powerpc */
1267                 dump_stack();
1268                 align = SMP_CACHE_BYTES;
1269         }
1270 
1271         found = memblock_find_in_range_node(size, align, start, end, nid,
1272                                             flags);
1273         if (found && !memblock_reserve(found, size)) {
1274                 /*
1275                  * The min_count is set to 0 so that memblock allocations are
1276                  * never reported as leaks.
1277                  */
1278                 kmemleak_alloc_phys(found, size, 0, 0);
1279                 return found;
1280         }
1281         return 0;
1282 }
1283 
1284 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1285                                         phys_addr_t start, phys_addr_t end,
1286                                         enum memblock_flags flags)
1287 {
1288         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1289                                         flags);
1290 }
1291 
1292 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1293                                         phys_addr_t align, phys_addr_t max_addr,
1294                                         int nid, enum memblock_flags flags)
1295 {
1296         return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1297 }
1298 
1299 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1300 {
1301         enum memblock_flags flags = choose_memblock_flags();
1302         phys_addr_t ret;
1303 
1304 again:
1305         ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1306                                       nid, flags);
1307 
1308         if (!ret && (flags & MEMBLOCK_MIRROR)) {
1309                 flags &= ~MEMBLOCK_MIRROR;
1310                 goto again;
1311         }
1312         return ret;
1313 }
1314 
1315 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1316 {
1317         return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1318                                        MEMBLOCK_NONE);
1319 }
1320 
1321 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1322 {
1323         phys_addr_t alloc;
1324 
1325         alloc = __memblock_alloc_base(size, align, max_addr);
1326 
1327         if (alloc == 0)
1328                 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1329                       &size, &max_addr);
1330 
1331         return alloc;
1332 }
1333 
1334 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1335 {
1336         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1337 }
1338 
1339 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1340 {
1341         phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1342 
1343         if (res)
1344                 return res;
1345         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1346 }
1347 
1348 /**
1349  * memblock_alloc_internal - allocate boot memory block
1350  * @size: size of memory block to be allocated in bytes
1351  * @align: alignment of the region and block's size
1352  * @min_addr: the lower bound of the memory region to allocate (phys address)
1353  * @max_addr: the upper bound of the memory region to allocate (phys address)
1354  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1355  *
1356  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1357  * will fall back to memory below @min_addr. Also, allocation may fall back
1358  * to any node in the system if the specified node can not
1359  * hold the requested memory.
1360  *
1361  * The allocation is performed from memory region limited by
1362  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1363  *
1364  * The phys address of allocated boot memory block is converted to virtual and
1365  * allocated memory is reset to 0.
1366  *
1367  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1368  * allocated boot memory block, so that it is never reported as leaks.
1369  *
1370  * Return:
1371  * Virtual address of allocated memory block on success, NULL on failure.
1372  */
1373 static void * __init memblock_alloc_internal(
1374                                 phys_addr_t size, phys_addr_t align,
1375                                 phys_addr_t min_addr, phys_addr_t max_addr,
1376                                 int nid)
1377 {
1378         phys_addr_t alloc;
1379         void *ptr;
1380         enum memblock_flags flags = choose_memblock_flags();
1381 
1382         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1383                 nid = NUMA_NO_NODE;
1384 
1385         /*
1386          * Detect any accidental use of these APIs after slab is ready, as at
1387          * this moment memblock may be deinitialized already and its
1388          * internal data may be destroyed (after execution of memblock_free_all)
1389          */
1390         if (WARN_ON_ONCE(slab_is_available()))
1391                 return kzalloc_node(size, GFP_NOWAIT, nid);
1392 
1393         if (!align) {
1394                 dump_stack();
1395                 align = SMP_CACHE_BYTES;
1396         }
1397 
1398         if (max_addr > memblock.current_limit)
1399                 max_addr = memblock.current_limit;
1400 again:
1401         alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1402                                             nid, flags);
1403         if (alloc && !memblock_reserve(alloc, size))
1404                 goto done;
1405 
1406         if (nid != NUMA_NO_NODE) {
1407                 alloc = memblock_find_in_range_node(size, align, min_addr,
1408                                                     max_addr, NUMA_NO_NODE,
1409                                                     flags);
1410                 if (alloc && !memblock_reserve(alloc, size))
1411                         goto done;
1412         }
1413 
1414         if (min_addr) {
1415                 min_addr = 0;
1416                 goto again;
1417         }
1418 
1419         if (flags & MEMBLOCK_MIRROR) {
1420                 flags &= ~MEMBLOCK_MIRROR;
1421                 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1422                         &size);
1423                 goto again;
1424         }
1425 
1426         return NULL;
1427 done:
1428         ptr = phys_to_virt(alloc);
1429 
1430         /* Skip kmemleak for kasan_init() due to high volume. */
1431         if (max_addr != MEMBLOCK_ALLOC_KASAN)
1432                 /*
1433                  * The min_count is set to 0 so that bootmem allocated
1434                  * blocks are never reported as leaks. This is because many
1435                  * of these blocks are only referred via the physical
1436                  * address which is not looked up by kmemleak.
1437                  */
1438                 kmemleak_alloc(ptr, size, 0, 0);
1439 
1440         return ptr;
1441 }
1442 
1443 /**
1444  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1445  * memory and without panicking
1446  * @size: size of memory block to be allocated in bytes
1447  * @align: alignment of the region and block's size
1448  * @min_addr: the lower bound of the memory region from where the allocation
1449  *        is preferred (phys address)
1450  * @max_addr: the upper bound of the memory region from where the allocation
1451  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1452  *            allocate only from memory limited by memblock.current_limit value
1453  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1454  *
1455  * Public function, provides additional debug information (including caller
1456  * info), if enabled. Does not zero allocated memory, does not panic if request
1457  * cannot be satisfied.
1458  *
1459  * Return:
1460  * Virtual address of allocated memory block on success, NULL on failure.
1461  */
1462 void * __init memblock_alloc_try_nid_raw(
1463                         phys_addr_t size, phys_addr_t align,
1464                         phys_addr_t min_addr, phys_addr_t max_addr,
1465                         int nid)
1466 {
1467         void *ptr;
1468 
1469         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1470                      __func__, (u64)size, (u64)align, nid, &min_addr,
1471                      &max_addr, (void *)_RET_IP_);
1472 
1473         ptr = memblock_alloc_internal(size, align,
1474                                            min_addr, max_addr, nid);
1475         if (ptr && size > 0)
1476                 page_init_poison(ptr, size);
1477 
1478         return ptr;
1479 }
1480 
1481 /**
1482  * memblock_alloc_try_nid_nopanic - allocate boot memory block
1483  * @size: size of memory block to be allocated in bytes
1484  * @align: alignment of the region and block's size
1485  * @min_addr: the lower bound of the memory region from where the allocation
1486  *        is preferred (phys address)
1487  * @max_addr: the upper bound of the memory region from where the allocation
1488  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1489  *            allocate only from memory limited by memblock.current_limit value
1490  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1491  *
1492  * Public function, provides additional debug information (including caller
1493  * info), if enabled. This function zeroes the allocated memory.
1494  *
1495  * Return:
1496  * Virtual address of allocated memory block on success, NULL on failure.
1497  */
1498 void * __init memblock_alloc_try_nid_nopanic(
1499                                 phys_addr_t size, phys_addr_t align,
1500                                 phys_addr_t min_addr, phys_addr_t max_addr,
1501                                 int nid)
1502 {
1503         void *ptr;
1504 
1505         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1506                      __func__, (u64)size, (u64)align, nid, &min_addr,
1507                      &max_addr, (void *)_RET_IP_);
1508 
1509         ptr = memblock_alloc_internal(size, align,
1510                                            min_addr, max_addr, nid);
1511         if (ptr)
1512                 memset(ptr, 0, size);
1513         return ptr;
1514 }
1515 
1516 /**
1517  * memblock_alloc_try_nid - allocate boot memory block with panicking
1518  * @size: size of memory block to be allocated in bytes
1519  * @align: alignment of the region and block's size
1520  * @min_addr: the lower bound of the memory region from where the allocation
1521  *        is preferred (phys address)
1522  * @max_addr: the upper bound of the memory region from where the allocation
1523  *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1524  *            allocate only from memory limited by memblock.current_limit value
1525  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1526  *
1527  * Public panicking version of memblock_alloc_try_nid_nopanic()
1528  * which provides debug information (including caller info), if enabled,
1529  * and panics if the request can not be satisfied.
1530  *
1531  * Return:
1532  * Virtual address of allocated memory block on success, NULL on failure.
1533  */
1534 void * __init memblock_alloc_try_nid(
1535                         phys_addr_t size, phys_addr_t align,
1536                         phys_addr_t min_addr, phys_addr_t max_addr,
1537                         int nid)
1538 {
1539         void *ptr;
1540 
1541         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1542                      __func__, (u64)size, (u64)align, nid, &min_addr,
1543                      &max_addr, (void *)_RET_IP_);
1544         ptr = memblock_alloc_internal(size, align,
1545                                            min_addr, max_addr, nid);
1546         if (ptr) {
1547                 memset(ptr, 0, size);
1548                 return ptr;
1549         }
1550 
1551         panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1552               __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1553         return NULL;
1554 }
1555 
1556 /**
1557  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1558  * @base: phys starting address of the  boot memory block
1559  * @size: size of the boot memory block in bytes
1560  *
1561  * This is only useful when the bootmem allocator has already been torn
1562  * down, but we are still initializing the system.  Pages are released directly
1563  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1564  */
1565 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1566 {
1567         phys_addr_t cursor, end;
1568 
1569         end = base + size - 1;
1570         memblock_dbg("%s: [%pa-%pa] %pF\n",
1571                      __func__, &base, &end, (void *)_RET_IP_);
1572         kmemleak_free_part_phys(base, size);
1573         cursor = PFN_UP(base);
1574         end = PFN_DOWN(base + size);
1575 
1576         for (; cursor < end; cursor++) {
1577                 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1578                 totalram_pages_inc();
1579         }
1580 }
1581 
1582 /*
1583  * Remaining API functions
1584  */
1585 
1586 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1587 {
1588         return memblock.memory.total_size;
1589 }
1590 
1591 phys_addr_t __init_memblock memblock_reserved_size(void)
1592 {
1593         return memblock.reserved.total_size;
1594 }
1595 
1596 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1597 {
1598         unsigned long pages = 0;
1599         struct memblock_region *r;
1600         unsigned long start_pfn, end_pfn;
1601 
1602         for_each_memblock(memory, r) {
1603                 start_pfn = memblock_region_memory_base_pfn(r);
1604                 end_pfn = memblock_region_memory_end_pfn(r);
1605                 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1606                 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1607                 pages += end_pfn - start_pfn;
1608         }
1609 
1610         return PFN_PHYS(pages);
1611 }
1612 
1613 /* lowest address */
1614 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615 {
1616         return memblock.memory.regions[0].base;
1617 }
1618 
1619 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620 {
1621         int idx = memblock.memory.cnt - 1;
1622 
1623         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624 }
1625 
1626 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627 {
1628         phys_addr_t max_addr = PHYS_ADDR_MAX;
1629         struct memblock_region *r;
1630 
1631         /*
1632          * translate the memory @limit size into the max address within one of
1633          * the memory memblock regions, if the @limit exceeds the total size
1634          * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635          */
1636         for_each_memblock(memory, r) {
1637                 if (limit <= r->size) {
1638                         max_addr = r->base + limit;
1639                         break;
1640                 }
1641                 limit -= r->size;
1642         }
1643 
1644         return max_addr;
1645 }
1646 
1647 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648 {
1649         phys_addr_t max_addr = PHYS_ADDR_MAX;
1650 
1651         if (!limit)
1652                 return;
1653 
1654         max_addr = __find_max_addr(limit);
1655 
1656         /* @limit exceeds the total size of the memory, do nothing */
1657         if (max_addr == PHYS_ADDR_MAX)
1658                 return;
1659 
1660         /* truncate both memory and reserved regions */
1661         memblock_remove_range(&memblock.memory, max_addr,
1662                               PHYS_ADDR_MAX);
1663         memblock_remove_range(&memblock.reserved, max_addr,
1664                               PHYS_ADDR_MAX);
1665 }
1666 
1667 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668 {
1669         int start_rgn, end_rgn;
1670         int i, ret;
1671 
1672         if (!size)
1673                 return;
1674 
1675         ret = memblock_isolate_range(&memblock.memory, base, size,
1676                                                 &start_rgn, &end_rgn);
1677         if (ret)
1678                 return;
1679 
1680         /* remove all the MAP regions */
1681         for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683                         memblock_remove_region(&memblock.memory, i);
1684 
1685         for (i = start_rgn - 1; i >= 0; i--)
1686                 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687                         memblock_remove_region(&memblock.memory, i);
1688 
1689         /* truncate the reserved regions */
1690         memblock_remove_range(&memblock.reserved, 0, base);
1691         memblock_remove_range(&memblock.reserved,
1692                         base + size, PHYS_ADDR_MAX);
1693 }
1694 
1695 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696 {
1697         phys_addr_t max_addr;
1698 
1699         if (!limit)
1700                 return;
1701 
1702         max_addr = __find_max_addr(limit);
1703 
1704         /* @limit exceeds the total size of the memory, do nothing */
1705         if (max_addr == PHYS_ADDR_MAX)
1706                 return;
1707 
1708         memblock_cap_memory_range(0, max_addr);
1709 }
1710 
1711 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712 {
1713         unsigned int left = 0, right = type->cnt;
1714 
1715         do {
1716                 unsigned int mid = (right + left) / 2;
1717 
1718                 if (addr < type->regions[mid].base)
1719                         right = mid;
1720                 else if (addr >= (type->regions[mid].base +
1721                                   type->regions[mid].size))
1722                         left = mid + 1;
1723                 else
1724                         return mid;
1725         } while (left < right);
1726         return -1;
1727 }
1728 
1729 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730 {
1731         return memblock_search(&memblock.reserved, addr) != -1;
1732 }
1733 
1734 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735 {
1736         return memblock_search(&memblock.memory, addr) != -1;
1737 }
1738 
1739 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740 {
1741         int i = memblock_search(&memblock.memory, addr);
1742 
1743         if (i == -1)
1744                 return false;
1745         return !memblock_is_nomap(&memblock.memory.regions[i]);
1746 }
1747 
1748 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1749 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1750                          unsigned long *start_pfn, unsigned long *end_pfn)
1751 {
1752         struct memblock_type *type = &memblock.memory;
1753         int mid = memblock_search(type, PFN_PHYS(pfn));
1754 
1755         if (mid == -1)
1756                 return -1;
1757 
1758         *start_pfn = PFN_DOWN(type->regions[mid].base);
1759         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1760 
1761         return type->regions[mid].nid;
1762 }
1763 #endif
1764 
1765 /**
1766  * memblock_is_region_memory - check if a region is a subset of memory
1767  * @base: base of region to check
1768  * @size: size of region to check
1769  *
1770  * Check if the region [@base, @base + @size) is a subset of a memory block.
1771  *
1772  * Return:
1773  * 0 if false, non-zero if true
1774  */
1775 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1776 {
1777         int idx = memblock_search(&memblock.memory, base);
1778         phys_addr_t end = base + memblock_cap_size(base, &size);
1779 
1780         if (idx == -1)
1781                 return false;
1782         return (memblock.memory.regions[idx].base +
1783                  memblock.memory.regions[idx].size) >= end;
1784 }
1785 
1786 /**
1787  * memblock_is_region_reserved - check if a region intersects reserved memory
1788  * @base: base of region to check
1789  * @size: size of region to check
1790  *
1791  * Check if the region [@base, @base + @size) intersects a reserved
1792  * memory block.
1793  *
1794  * Return:
1795  * True if they intersect, false if not.
1796  */
1797 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1798 {
1799         memblock_cap_size(base, &size);
1800         return memblock_overlaps_region(&memblock.reserved, base, size);
1801 }
1802 
1803 void __init_memblock memblock_trim_memory(phys_addr_t align)
1804 {
1805         phys_addr_t start, end, orig_start, orig_end;
1806         struct memblock_region *r;
1807 
1808         for_each_memblock(memory, r) {
1809                 orig_start = r->base;
1810                 orig_end = r->base + r->size;
1811                 start = round_up(orig_start, align);
1812                 end = round_down(orig_end, align);
1813 
1814                 if (start == orig_start && end == orig_end)
1815                         continue;
1816 
1817                 if (start < end) {
1818                         r->base = start;
1819                         r->size = end - start;
1820                 } else {
1821                         memblock_remove_region(&memblock.memory,
1822                                                r - memblock.memory.regions);
1823                         r--;
1824                 }
1825         }
1826 }
1827 
1828 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1829 {
1830         memblock.current_limit = limit;
1831 }
1832 
1833 phys_addr_t __init_memblock memblock_get_current_limit(void)
1834 {
1835         return memblock.current_limit;
1836 }
1837 
1838 static void __init_memblock memblock_dump(struct memblock_type *type)
1839 {
1840         phys_addr_t base, end, size;
1841         enum memblock_flags flags;
1842         int idx;
1843         struct memblock_region *rgn;
1844 
1845         pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1846 
1847         for_each_memblock_type(idx, type, rgn) {
1848                 char nid_buf[32] = "";
1849 
1850                 base = rgn->base;
1851                 size = rgn->size;
1852                 end = base + size - 1;
1853                 flags = rgn->flags;
1854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1855                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1856                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1857                                  memblock_get_region_node(rgn));
1858 #endif
1859                 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1860                         type->name, idx, &base, &end, &size, nid_buf, flags);
1861         }
1862 }
1863 
1864 void __init_memblock __memblock_dump_all(void)
1865 {
1866         pr_info("MEMBLOCK configuration:\n");
1867         pr_info(" memory size = %pa reserved size = %pa\n",
1868                 &memblock.memory.total_size,
1869                 &memblock.reserved.total_size);
1870 
1871         memblock_dump(&memblock.memory);
1872         memblock_dump(&memblock.reserved);
1873 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1874         memblock_dump(&memblock.physmem);
1875 #endif
1876 }
1877 
1878 void __init memblock_allow_resize(void)
1879 {
1880         memblock_can_resize = 1;
1881 }
1882 
1883 static int __init early_memblock(char *p)
1884 {
1885         if (p && strstr(p, "debug"))
1886                 memblock_debug = 1;
1887         return 0;
1888 }
1889 early_param("memblock", early_memblock);
1890 
1891 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1892 {
1893         int order;
1894 
1895         while (start < end) {
1896                 order = min(MAX_ORDER - 1UL, __ffs(start));
1897 
1898                 while (start + (1UL << order) > end)
1899                         order--;
1900 
1901                 memblock_free_pages(pfn_to_page(start), start, order);
1902 
1903                 start += (1UL << order);
1904         }
1905 }
1906 
1907 static unsigned long __init __free_memory_core(phys_addr_t start,
1908                                  phys_addr_t end)
1909 {
1910         unsigned long start_pfn = PFN_UP(start);
1911         unsigned long end_pfn = min_t(unsigned long,
1912                                       PFN_DOWN(end), max_low_pfn);
1913 
1914         if (start_pfn >= end_pfn)
1915                 return 0;
1916 
1917         __free_pages_memory(start_pfn, end_pfn);
1918 
1919         return end_pfn - start_pfn;
1920 }
1921 
1922 static unsigned long __init free_low_memory_core_early(void)
1923 {
1924         unsigned long count = 0;
1925         phys_addr_t start, end;
1926         u64 i;
1927 
1928         memblock_clear_hotplug(0, -1);
1929 
1930         for_each_reserved_mem_region(i, &start, &end)
1931                 reserve_bootmem_region(start, end);
1932 
1933         /*
1934          * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1935          *  because in some case like Node0 doesn't have RAM installed
1936          *  low ram will be on Node1
1937          */
1938         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1939                                 NULL)
1940                 count += __free_memory_core(start, end);
1941 
1942         return count;
1943 }
1944 
1945 static int reset_managed_pages_done __initdata;
1946 
1947 void reset_node_managed_pages(pg_data_t *pgdat)
1948 {
1949         struct zone *z;
1950 
1951         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1952                 atomic_long_set(&z->managed_pages, 0);
1953 }
1954 
1955 void __init reset_all_zones_managed_pages(void)
1956 {
1957         struct pglist_data *pgdat;
1958 
1959         if (reset_managed_pages_done)
1960                 return;
1961 
1962         for_each_online_pgdat(pgdat)
1963                 reset_node_managed_pages(pgdat);
1964 
1965         reset_managed_pages_done = 1;
1966 }
1967 
1968 /**
1969  * memblock_free_all - release free pages to the buddy allocator
1970  *
1971  * Return: the number of pages actually released.
1972  */
1973 unsigned long __init memblock_free_all(void)
1974 {
1975         unsigned long pages;
1976 
1977         reset_all_zones_managed_pages();
1978 
1979         pages = free_low_memory_core_early();
1980         totalram_pages_add(pages);
1981 
1982         return pages;
1983 }
1984 
1985 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1986 
1987 static int memblock_debug_show(struct seq_file *m, void *private)
1988 {
1989         struct memblock_type *type = m->private;
1990         struct memblock_region *reg;
1991         int i;
1992         phys_addr_t end;
1993 
1994         for (i = 0; i < type->cnt; i++) {
1995                 reg = &type->regions[i];
1996                 end = reg->base + reg->size - 1;
1997 
1998                 seq_printf(m, "%4d: ", i);
1999                 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2000         }
2001         return 0;
2002 }
2003 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2004 
2005 static int __init memblock_init_debugfs(void)
2006 {
2007         struct dentry *root = debugfs_create_dir("memblock", NULL);
2008         if (!root)
2009                 return -ENXIO;
2010         debugfs_create_file("memory", 0444, root,
2011                             &memblock.memory, &memblock_debug_fops);
2012         debugfs_create_file("reserved", 0444, root,
2013                             &memblock.reserved, &memblock_debug_fops);
2014 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015         debugfs_create_file("physmem", 0444, root,
2016                             &memblock.physmem, &memblock_debug_fops);
2017 #endif
2018 
2019         return 0;
2020 }
2021 __initcall(memblock_init_debugfs);
2022 
2023 #endif /* CONFIG_DEBUG_FS */
2024 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp