1 /* 2 * mm/mmap.c 3 * 4 * Written by obz. 5 * 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk> 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/backing-dev.h> 11 #include <linux/mm.h> 12 #include <linux/shm.h> 13 #include <linux/mman.h> 14 #include <linux/pagemap.h> 15 #include <linux/swap.h> 16 #include <linux/syscalls.h> 17 #include <linux/capability.h> 18 #include <linux/init.h> 19 #include <linux/file.h> 20 #include <linux/fs.h> 21 #include <linux/personality.h> 22 #include <linux/security.h> 23 #include <linux/ima.h> 24 #include <linux/hugetlb.h> 25 #include <linux/profile.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/mempolicy.h> 29 #include <linux/rmap.h> 30 #include <linux/mmu_notifier.h> 31 #include <linux/perf_event.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/cacheflush.h> 35 #include <asm/tlb.h> 36 #include <asm/mmu_context.h> 37 38 #include "internal.h" 39 40 #ifndef arch_mmap_check 41 #define arch_mmap_check(addr, len, flags) (0) 42 #endif 43 44 #ifndef arch_rebalance_pgtables 45 #define arch_rebalance_pgtables(addr, len) (addr) 46 #endif 47 48 static void unmap_region(struct mm_struct *mm, 49 struct vm_area_struct *vma, struct vm_area_struct *prev, 50 unsigned long start, unsigned long end); 51 52 /* 53 * WARNING: the debugging will use recursive algorithms so never enable this 54 * unless you know what you are doing. 55 */ 56 #undef DEBUG_MM_RB 57 58 /* description of effects of mapping type and prot in current implementation. 59 * this is due to the limited x86 page protection hardware. The expected 60 * behavior is in parens: 61 * 62 * map_type prot 63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 65 * w: (no) no w: (no) no w: (yes) yes w: (no) no 66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 67 * 68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 69 * w: (no) no w: (no) no w: (copy) copy w: (no) no 70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 71 * 72 */ 73 pgprot_t protection_map[16] = { 74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, 75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 76 }; 77 78 pgprot_t vm_get_page_prot(unsigned long vm_flags) 79 { 80 return __pgprot(pgprot_val(protection_map[vm_flags & 81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | 82 pgprot_val(arch_vm_get_page_prot(vm_flags))); 83 } 84 EXPORT_SYMBOL(vm_get_page_prot); 85 86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ 87 int sysctl_overcommit_ratio = 50; /* default is 50% */ 88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 89 struct percpu_counter vm_committed_as; 90 91 /* 92 * Check that a process has enough memory to allocate a new virtual 93 * mapping. 0 means there is enough memory for the allocation to 94 * succeed and -ENOMEM implies there is not. 95 * 96 * We currently support three overcommit policies, which are set via the 97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 98 * 99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 100 * Additional code 2002 Jul 20 by Robert Love. 101 * 102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 103 * 104 * Note this is a helper function intended to be used by LSMs which 105 * wish to use this logic. 106 */ 107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 108 { 109 unsigned long free, allowed; 110 111 vm_acct_memory(pages); 112 113 /* 114 * Sometimes we want to use more memory than we have 115 */ 116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 117 return 0; 118 119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 120 unsigned long n; 121 122 free = global_page_state(NR_FILE_PAGES); 123 free += nr_swap_pages; 124 125 /* 126 * Any slabs which are created with the 127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 128 * which are reclaimable, under pressure. The dentry 129 * cache and most inode caches should fall into this 130 */ 131 free += global_page_state(NR_SLAB_RECLAIMABLE); 132 133 /* 134 * Leave the last 3% for root 135 */ 136 if (!cap_sys_admin) 137 free -= free / 32; 138 139 if (free > pages) 140 return 0; 141 142 /* 143 * nr_free_pages() is very expensive on large systems, 144 * only call if we're about to fail. 145 */ 146 n = nr_free_pages(); 147 148 /* 149 * Leave reserved pages. The pages are not for anonymous pages. 150 */ 151 if (n <= totalreserve_pages) 152 goto error; 153 else 154 n -= totalreserve_pages; 155 156 /* 157 * Leave the last 3% for root 158 */ 159 if (!cap_sys_admin) 160 n -= n / 32; 161 free += n; 162 163 if (free > pages) 164 return 0; 165 166 goto error; 167 } 168 169 allowed = (totalram_pages - hugetlb_total_pages()) 170 * sysctl_overcommit_ratio / 100; 171 /* 172 * Leave the last 3% for root 173 */ 174 if (!cap_sys_admin) 175 allowed -= allowed / 32; 176 allowed += total_swap_pages; 177 178 /* Don't let a single process grow too big: 179 leave 3% of the size of this process for other processes */ 180 if (mm) 181 allowed -= mm->total_vm / 32; 182 183 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 184 return 0; 185 error: 186 vm_unacct_memory(pages); 187 188 return -ENOMEM; 189 } 190 191 /* 192 * Requires inode->i_mapping->i_mmap_lock 193 */ 194 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 195 struct file *file, struct address_space *mapping) 196 { 197 if (vma->vm_flags & VM_DENYWRITE) 198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount); 199 if (vma->vm_flags & VM_SHARED) 200 mapping->i_mmap_writable--; 201 202 flush_dcache_mmap_lock(mapping); 203 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 204 list_del_init(&vma->shared.vm_set.list); 205 else 206 vma_prio_tree_remove(vma, &mapping->i_mmap); 207 flush_dcache_mmap_unlock(mapping); 208 } 209 210 /* 211 * Unlink a file-based vm structure from its prio_tree, to hide 212 * vma from rmap and vmtruncate before freeing its page tables. 213 */ 214 void unlink_file_vma(struct vm_area_struct *vma) 215 { 216 struct file *file = vma->vm_file; 217 218 if (file) { 219 struct address_space *mapping = file->f_mapping; 220 spin_lock(&mapping->i_mmap_lock); 221 __remove_shared_vm_struct(vma, file, mapping); 222 spin_unlock(&mapping->i_mmap_lock); 223 } 224 } 225 226 /* 227 * Close a vm structure and free it, returning the next. 228 */ 229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) 230 { 231 struct vm_area_struct *next = vma->vm_next; 232 233 might_sleep(); 234 if (vma->vm_ops && vma->vm_ops->close) 235 vma->vm_ops->close(vma); 236 if (vma->vm_file) { 237 fput(vma->vm_file); 238 if (vma->vm_flags & VM_EXECUTABLE) 239 removed_exe_file_vma(vma->vm_mm); 240 } 241 mpol_put(vma_policy(vma)); 242 kmem_cache_free(vm_area_cachep, vma); 243 return next; 244 } 245 246 SYSCALL_DEFINE1(brk, unsigned long, brk) 247 { 248 unsigned long rlim, retval; 249 unsigned long newbrk, oldbrk; 250 struct mm_struct *mm = current->mm; 251 unsigned long min_brk; 252 253 down_write(&mm->mmap_sem); 254 255 #ifdef CONFIG_COMPAT_BRK 256 min_brk = mm->end_code; 257 #else 258 min_brk = mm->start_brk; 259 #endif 260 if (brk < min_brk) 261 goto out; 262 263 /* 264 * Check against rlimit here. If this check is done later after the test 265 * of oldbrk with newbrk then it can escape the test and let the data 266 * segment grow beyond its set limit the in case where the limit is 267 * not page aligned -Ram Gupta 268 */ 269 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur; 270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + 271 (mm->end_data - mm->start_data) > rlim) 272 goto out; 273 274 newbrk = PAGE_ALIGN(brk); 275 oldbrk = PAGE_ALIGN(mm->brk); 276 if (oldbrk == newbrk) 277 goto set_brk; 278 279 /* Always allow shrinking brk. */ 280 if (brk <= mm->brk) { 281 if (!do_munmap(mm, newbrk, oldbrk-newbrk)) 282 goto set_brk; 283 goto out; 284 } 285 286 /* Check against existing mmap mappings. */ 287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) 288 goto out; 289 290 /* Ok, looks good - let it rip. */ 291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) 292 goto out; 293 set_brk: 294 mm->brk = brk; 295 out: 296 retval = mm->brk; 297 up_write(&mm->mmap_sem); 298 return retval; 299 } 300 301 #ifdef DEBUG_MM_RB 302 static int browse_rb(struct rb_root *root) 303 { 304 int i = 0, j; 305 struct rb_node *nd, *pn = NULL; 306 unsigned long prev = 0, pend = 0; 307 308 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 309 struct vm_area_struct *vma; 310 vma = rb_entry(nd, struct vm_area_struct, vm_rb); 311 if (vma->vm_start < prev) 312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; 313 if (vma->vm_start < pend) 314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend); 315 if (vma->vm_start > vma->vm_end) 316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); 317 i++; 318 pn = nd; 319 prev = vma->vm_start; 320 pend = vma->vm_end; 321 } 322 j = 0; 323 for (nd = pn; nd; nd = rb_prev(nd)) { 324 j++; 325 } 326 if (i != j) 327 printk("backwards %d, forwards %d\n", j, i), i = 0; 328 return i; 329 } 330 331 void validate_mm(struct mm_struct *mm) 332 { 333 int bug = 0; 334 int i = 0; 335 struct vm_area_struct *tmp = mm->mmap; 336 while (tmp) { 337 tmp = tmp->vm_next; 338 i++; 339 } 340 if (i != mm->map_count) 341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; 342 i = browse_rb(&mm->mm_rb); 343 if (i != mm->map_count) 344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; 345 BUG_ON(bug); 346 } 347 #else 348 #define validate_mm(mm) do { } while (0) 349 #endif 350 351 static struct vm_area_struct * 352 find_vma_prepare(struct mm_struct *mm, unsigned long addr, 353 struct vm_area_struct **pprev, struct rb_node ***rb_link, 354 struct rb_node ** rb_parent) 355 { 356 struct vm_area_struct * vma; 357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev; 358 359 __rb_link = &mm->mm_rb.rb_node; 360 rb_prev = __rb_parent = NULL; 361 vma = NULL; 362 363 while (*__rb_link) { 364 struct vm_area_struct *vma_tmp; 365 366 __rb_parent = *__rb_link; 367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); 368 369 if (vma_tmp->vm_end > addr) { 370 vma = vma_tmp; 371 if (vma_tmp->vm_start <= addr) 372 break; 373 __rb_link = &__rb_parent->rb_left; 374 } else { 375 rb_prev = __rb_parent; 376 __rb_link = &__rb_parent->rb_right; 377 } 378 } 379 380 *pprev = NULL; 381 if (rb_prev) 382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); 383 *rb_link = __rb_link; 384 *rb_parent = __rb_parent; 385 return vma; 386 } 387 388 static inline void 389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 390 struct vm_area_struct *prev, struct rb_node *rb_parent) 391 { 392 struct vm_area_struct *next; 393 394 vma->vm_prev = prev; 395 if (prev) { 396 next = prev->vm_next; 397 prev->vm_next = vma; 398 } else { 399 mm->mmap = vma; 400 if (rb_parent) 401 next = rb_entry(rb_parent, 402 struct vm_area_struct, vm_rb); 403 else 404 next = NULL; 405 } 406 vma->vm_next = next; 407 if (next) 408 next->vm_prev = vma; 409 } 410 411 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, 412 struct rb_node **rb_link, struct rb_node *rb_parent) 413 { 414 rb_link_node(&vma->vm_rb, rb_parent, rb_link); 415 rb_insert_color(&vma->vm_rb, &mm->mm_rb); 416 } 417 418 static void __vma_link_file(struct vm_area_struct *vma) 419 { 420 struct file *file; 421 422 file = vma->vm_file; 423 if (file) { 424 struct address_space *mapping = file->f_mapping; 425 426 if (vma->vm_flags & VM_DENYWRITE) 427 atomic_dec(&file->f_path.dentry->d_inode->i_writecount); 428 if (vma->vm_flags & VM_SHARED) 429 mapping->i_mmap_writable++; 430 431 flush_dcache_mmap_lock(mapping); 432 if (unlikely(vma->vm_flags & VM_NONLINEAR)) 433 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); 434 else 435 vma_prio_tree_insert(vma, &mapping->i_mmap); 436 flush_dcache_mmap_unlock(mapping); 437 } 438 } 439 440 static void 441 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 442 struct vm_area_struct *prev, struct rb_node **rb_link, 443 struct rb_node *rb_parent) 444 { 445 __vma_link_list(mm, vma, prev, rb_parent); 446 __vma_link_rb(mm, vma, rb_link, rb_parent); 447 __anon_vma_link(vma); 448 } 449 450 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, 451 struct vm_area_struct *prev, struct rb_node **rb_link, 452 struct rb_node *rb_parent) 453 { 454 struct address_space *mapping = NULL; 455 456 if (vma->vm_file) 457 mapping = vma->vm_file->f_mapping; 458 459 if (mapping) { 460 spin_lock(&mapping->i_mmap_lock); 461 vma->vm_truncate_count = mapping->truncate_count; 462 } 463 anon_vma_lock(vma); 464 465 __vma_link(mm, vma, prev, rb_link, rb_parent); 466 __vma_link_file(vma); 467 468 anon_vma_unlock(vma); 469 if (mapping) 470 spin_unlock(&mapping->i_mmap_lock); 471 472 mm->map_count++; 473 validate_mm(mm); 474 } 475 476 /* 477 * Helper for vma_adjust in the split_vma insert case: 478 * insert vm structure into list and rbtree and anon_vma, 479 * but it has already been inserted into prio_tree earlier. 480 */ 481 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) 482 { 483 struct vm_area_struct *__vma, *prev; 484 struct rb_node **rb_link, *rb_parent; 485 486 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); 487 BUG_ON(__vma && __vma->vm_start < vma->vm_end); 488 __vma_link(mm, vma, prev, rb_link, rb_parent); 489 mm->map_count++; 490 } 491 492 static inline void 493 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, 494 struct vm_area_struct *prev) 495 { 496 struct vm_area_struct *next = vma->vm_next; 497 498 prev->vm_next = next; 499 if (next) 500 next->vm_prev = prev; 501 rb_erase(&vma->vm_rb, &mm->mm_rb); 502 if (mm->mmap_cache == vma) 503 mm->mmap_cache = prev; 504 } 505 506 /* 507 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that 508 * is already present in an i_mmap tree without adjusting the tree. 509 * The following helper function should be used when such adjustments 510 * are necessary. The "insert" vma (if any) is to be inserted 511 * before we drop the necessary locks. 512 */ 513 void vma_adjust(struct vm_area_struct *vma, unsigned long start, 514 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 515 { 516 struct mm_struct *mm = vma->vm_mm; 517 struct vm_area_struct *next = vma->vm_next; 518 struct vm_area_struct *importer = NULL; 519 struct address_space *mapping = NULL; 520 struct prio_tree_root *root = NULL; 521 struct file *file = vma->vm_file; 522 struct anon_vma *anon_vma = NULL; 523 long adjust_next = 0; 524 int remove_next = 0; 525 526 if (next && !insert) { 527 if (end >= next->vm_end) { 528 /* 529 * vma expands, overlapping all the next, and 530 * perhaps the one after too (mprotect case 6). 531 */ 532 again: remove_next = 1 + (end > next->vm_end); 533 end = next->vm_end; 534 anon_vma = next->anon_vma; 535 importer = vma; 536 } else if (end > next->vm_start) { 537 /* 538 * vma expands, overlapping part of the next: 539 * mprotect case 5 shifting the boundary up. 540 */ 541 adjust_next = (end - next->vm_start) >> PAGE_SHIFT; 542 anon_vma = next->anon_vma; 543 importer = vma; 544 } else if (end < vma->vm_end) { 545 /* 546 * vma shrinks, and !insert tells it's not 547 * split_vma inserting another: so it must be 548 * mprotect case 4 shifting the boundary down. 549 */ 550 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); 551 anon_vma = next->anon_vma; 552 importer = next; 553 } 554 } 555 556 if (file) { 557 mapping = file->f_mapping; 558 if (!(vma->vm_flags & VM_NONLINEAR)) 559 root = &mapping->i_mmap; 560 spin_lock(&mapping->i_mmap_lock); 561 if (importer && 562 vma->vm_truncate_count != next->vm_truncate_count) { 563 /* 564 * unmap_mapping_range might be in progress: 565 * ensure that the expanding vma is rescanned. 566 */ 567 importer->vm_truncate_count = 0; 568 } 569 if (insert) { 570 insert->vm_truncate_count = vma->vm_truncate_count; 571 /* 572 * Put into prio_tree now, so instantiated pages 573 * are visible to arm/parisc __flush_dcache_page 574 * throughout; but we cannot insert into address 575 * space until vma start or end is updated. 576 */ 577 __vma_link_file(insert); 578 } 579 } 580 581 /* 582 * When changing only vma->vm_end, we don't really need 583 * anon_vma lock. 584 */ 585 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) 586 anon_vma = vma->anon_vma; 587 if (anon_vma) { 588 spin_lock(&anon_vma->lock); 589 /* 590 * Easily overlooked: when mprotect shifts the boundary, 591 * make sure the expanding vma has anon_vma set if the 592 * shrinking vma had, to cover any anon pages imported. 593 */ 594 if (importer && !importer->anon_vma) { 595 importer->anon_vma = anon_vma; 596 __anon_vma_link(importer); 597 } 598 } 599 600 if (root) { 601 flush_dcache_mmap_lock(mapping); 602 vma_prio_tree_remove(vma, root); 603 if (adjust_next) 604 vma_prio_tree_remove(next, root); 605 } 606 607 vma->vm_start = start; 608 vma->vm_end = end; 609 vma->vm_pgoff = pgoff; 610 if (adjust_next) { 611 next->vm_start += adjust_next << PAGE_SHIFT; 612 next->vm_pgoff += adjust_next; 613 } 614 615 if (root) { 616 if (adjust_next) 617 vma_prio_tree_insert(next, root); 618 vma_prio_tree_insert(vma, root); 619 flush_dcache_mmap_unlock(mapping); 620 } 621 622 if (remove_next) { 623 /* 624 * vma_merge has merged next into vma, and needs 625 * us to remove next before dropping the locks. 626 */ 627 __vma_unlink(mm, next, vma); 628 if (file) 629 __remove_shared_vm_struct(next, file, mapping); 630 if (next->anon_vma) 631 __anon_vma_merge(vma, next); 632 } else if (insert) { 633 /* 634 * split_vma has split insert from vma, and needs 635 * us to insert it before dropping the locks 636 * (it may either follow vma or precede it). 637 */ 638 __insert_vm_struct(mm, insert); 639 } 640 641 if (anon_vma) 642 spin_unlock(&anon_vma->lock); 643 if (mapping) 644 spin_unlock(&mapping->i_mmap_lock); 645 646 if (remove_next) { 647 if (file) { 648 fput(file); 649 if (next->vm_flags & VM_EXECUTABLE) 650 removed_exe_file_vma(mm); 651 } 652 mm->map_count--; 653 mpol_put(vma_policy(next)); 654 kmem_cache_free(vm_area_cachep, next); 655 /* 656 * In mprotect's case 6 (see comments on vma_merge), 657 * we must remove another next too. It would clutter 658 * up the code too much to do both in one go. 659 */ 660 if (remove_next == 2) { 661 next = vma->vm_next; 662 goto again; 663 } 664 } 665 666 validate_mm(mm); 667 } 668 669 /* 670 * If the vma has a ->close operation then the driver probably needs to release 671 * per-vma resources, so we don't attempt to merge those. 672 */ 673 static inline int is_mergeable_vma(struct vm_area_struct *vma, 674 struct file *file, unsigned long vm_flags) 675 { 676 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ 677 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) 678 return 0; 679 if (vma->vm_file != file) 680 return 0; 681 if (vma->vm_ops && vma->vm_ops->close) 682 return 0; 683 return 1; 684 } 685 686 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, 687 struct anon_vma *anon_vma2) 688 { 689 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); 690 } 691 692 /* 693 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 694 * in front of (at a lower virtual address and file offset than) the vma. 695 * 696 * We cannot merge two vmas if they have differently assigned (non-NULL) 697 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 698 * 699 * We don't check here for the merged mmap wrapping around the end of pagecache 700 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which 701 * wrap, nor mmaps which cover the final page at index -1UL. 702 */ 703 static int 704 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 705 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 706 { 707 if (is_mergeable_vma(vma, file, vm_flags) && 708 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 709 if (vma->vm_pgoff == vm_pgoff) 710 return 1; 711 } 712 return 0; 713 } 714 715 /* 716 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 717 * beyond (at a higher virtual address and file offset than) the vma. 718 * 719 * We cannot merge two vmas if they have differently assigned (non-NULL) 720 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 721 */ 722 static int 723 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 724 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) 725 { 726 if (is_mergeable_vma(vma, file, vm_flags) && 727 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { 728 pgoff_t vm_pglen; 729 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 730 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 731 return 1; 732 } 733 return 0; 734 } 735 736 /* 737 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out 738 * whether that can be merged with its predecessor or its successor. 739 * Or both (it neatly fills a hole). 740 * 741 * In most cases - when called for mmap, brk or mremap - [addr,end) is 742 * certain not to be mapped by the time vma_merge is called; but when 743 * called for mprotect, it is certain to be already mapped (either at 744 * an offset within prev, or at the start of next), and the flags of 745 * this area are about to be changed to vm_flags - and the no-change 746 * case has already been eliminated. 747 * 748 * The following mprotect cases have to be considered, where AAAA is 749 * the area passed down from mprotect_fixup, never extending beyond one 750 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: 751 * 752 * AAAA AAAA AAAA AAAA 753 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX 754 * cannot merge might become might become might become 755 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or 756 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or 757 * mremap move: PPPPNNNNNNNN 8 758 * AAAA 759 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN 760 * might become case 1 below case 2 below case 3 below 761 * 762 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: 763 * mprotect_fixup updates vm_flags & vm_page_prot on successful return. 764 */ 765 struct vm_area_struct *vma_merge(struct mm_struct *mm, 766 struct vm_area_struct *prev, unsigned long addr, 767 unsigned long end, unsigned long vm_flags, 768 struct anon_vma *anon_vma, struct file *file, 769 pgoff_t pgoff, struct mempolicy *policy) 770 { 771 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 772 struct vm_area_struct *area, *next; 773 774 /* 775 * We later require that vma->vm_flags == vm_flags, 776 * so this tests vma->vm_flags & VM_SPECIAL, too. 777 */ 778 if (vm_flags & VM_SPECIAL) 779 return NULL; 780 781 if (prev) 782 next = prev->vm_next; 783 else 784 next = mm->mmap; 785 area = next; 786 if (next && next->vm_end == end) /* cases 6, 7, 8 */ 787 next = next->vm_next; 788 789 /* 790 * Can it merge with the predecessor? 791 */ 792 if (prev && prev->vm_end == addr && 793 mpol_equal(vma_policy(prev), policy) && 794 can_vma_merge_after(prev, vm_flags, 795 anon_vma, file, pgoff)) { 796 /* 797 * OK, it can. Can we now merge in the successor as well? 798 */ 799 if (next && end == next->vm_start && 800 mpol_equal(policy, vma_policy(next)) && 801 can_vma_merge_before(next, vm_flags, 802 anon_vma, file, pgoff+pglen) && 803 is_mergeable_anon_vma(prev->anon_vma, 804 next->anon_vma)) { 805 /* cases 1, 6 */ 806 vma_adjust(prev, prev->vm_start, 807 next->vm_end, prev->vm_pgoff, NULL); 808 } else /* cases 2, 5, 7 */ 809 vma_adjust(prev, prev->vm_start, 810 end, prev->vm_pgoff, NULL); 811 return prev; 812 } 813 814 /* 815 * Can this new request be merged in front of next? 816 */ 817 if (next && end == next->vm_start && 818 mpol_equal(policy, vma_policy(next)) && 819 can_vma_merge_before(next, vm_flags, 820 anon_vma, file, pgoff+pglen)) { 821 if (prev && addr < prev->vm_end) /* case 4 */ 822 vma_adjust(prev, prev->vm_start, 823 addr, prev->vm_pgoff, NULL); 824 else /* cases 3, 8 */ 825 vma_adjust(area, addr, next->vm_end, 826 next->vm_pgoff - pglen, NULL); 827 return area; 828 } 829 830 return NULL; 831 } 832 833 /* 834 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 835 * neighbouring vmas for a suitable anon_vma, before it goes off 836 * to allocate a new anon_vma. It checks because a repetitive 837 * sequence of mprotects and faults may otherwise lead to distinct 838 * anon_vmas being allocated, preventing vma merge in subsequent 839 * mprotect. 840 */ 841 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 842 { 843 struct vm_area_struct *near; 844 unsigned long vm_flags; 845 846 near = vma->vm_next; 847 if (!near) 848 goto try_prev; 849 850 /* 851 * Since only mprotect tries to remerge vmas, match flags 852 * which might be mprotected into each other later on. 853 * Neither mlock nor madvise tries to remerge at present, 854 * so leave their flags as obstructing a merge. 855 */ 856 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 857 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 858 859 if (near->anon_vma && vma->vm_end == near->vm_start && 860 mpol_equal(vma_policy(vma), vma_policy(near)) && 861 can_vma_merge_before(near, vm_flags, 862 NULL, vma->vm_file, vma->vm_pgoff + 863 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT))) 864 return near->anon_vma; 865 try_prev: 866 /* 867 * It is potentially slow to have to call find_vma_prev here. 868 * But it's only on the first write fault on the vma, not 869 * every time, and we could devise a way to avoid it later 870 * (e.g. stash info in next's anon_vma_node when assigning 871 * an anon_vma, or when trying vma_merge). Another time. 872 */ 873 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); 874 if (!near) 875 goto none; 876 877 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC); 878 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC); 879 880 if (near->anon_vma && near->vm_end == vma->vm_start && 881 mpol_equal(vma_policy(near), vma_policy(vma)) && 882 can_vma_merge_after(near, vm_flags, 883 NULL, vma->vm_file, vma->vm_pgoff)) 884 return near->anon_vma; 885 none: 886 /* 887 * There's no absolute need to look only at touching neighbours: 888 * we could search further afield for "compatible" anon_vmas. 889 * But it would probably just be a waste of time searching, 890 * or lead to too many vmas hanging off the same anon_vma. 891 * We're trying to allow mprotect remerging later on, 892 * not trying to minimize memory used for anon_vmas. 893 */ 894 return NULL; 895 } 896 897 #ifdef CONFIG_PROC_FS 898 void vm_stat_account(struct mm_struct *mm, unsigned long flags, 899 struct file *file, long pages) 900 { 901 const unsigned long stack_flags 902 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); 903 904 if (file) { 905 mm->shared_vm += pages; 906 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) 907 mm->exec_vm += pages; 908 } else if (flags & stack_flags) 909 mm->stack_vm += pages; 910 if (flags & (VM_RESERVED|VM_IO)) 911 mm->reserved_vm += pages; 912 } 913 #endif /* CONFIG_PROC_FS */ 914 915 /* 916 * The caller must hold down_write(¤t->mm->mmap_sem). 917 */ 918 919 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 920 unsigned long len, unsigned long prot, 921 unsigned long flags, unsigned long pgoff) 922 { 923 struct mm_struct * mm = current->mm; 924 struct inode *inode; 925 unsigned int vm_flags; 926 int error; 927 unsigned long reqprot = prot; 928 929 /* 930 * Does the application expect PROT_READ to imply PROT_EXEC? 931 * 932 * (the exception is when the underlying filesystem is noexec 933 * mounted, in which case we dont add PROT_EXEC.) 934 */ 935 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 936 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) 937 prot |= PROT_EXEC; 938 939 if (!len) 940 return -EINVAL; 941 942 if (!(flags & MAP_FIXED)) 943 addr = round_hint_to_min(addr); 944 945 /* Careful about overflows.. */ 946 len = PAGE_ALIGN(len); 947 if (!len) 948 return -ENOMEM; 949 950 /* offset overflow? */ 951 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) 952 return -EOVERFLOW; 953 954 /* Too many mappings? */ 955 if (mm->map_count > sysctl_max_map_count) 956 return -ENOMEM; 957 958 /* Obtain the address to map to. we verify (or select) it and ensure 959 * that it represents a valid section of the address space. 960 */ 961 addr = get_unmapped_area(file, addr, len, pgoff, flags); 962 if (addr & ~PAGE_MASK) 963 return addr; 964 965 /* Do simple checking here so the lower-level routines won't have 966 * to. we assume access permissions have been handled by the open 967 * of the memory object, so we don't do any here. 968 */ 969 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | 970 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; 971 972 if (flags & MAP_LOCKED) 973 if (!can_do_mlock()) 974 return -EPERM; 975 976 /* mlock MCL_FUTURE? */ 977 if (vm_flags & VM_LOCKED) { 978 unsigned long locked, lock_limit; 979 locked = len >> PAGE_SHIFT; 980 locked += mm->locked_vm; 981 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 982 lock_limit >>= PAGE_SHIFT; 983 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 984 return -EAGAIN; 985 } 986 987 inode = file ? file->f_path.dentry->d_inode : NULL; 988 989 if (file) { 990 switch (flags & MAP_TYPE) { 991 case MAP_SHARED: 992 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) 993 return -EACCES; 994 995 /* 996 * Make sure we don't allow writing to an append-only 997 * file.. 998 */ 999 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) 1000 return -EACCES; 1001 1002 /* 1003 * Make sure there are no mandatory locks on the file. 1004 */ 1005 if (locks_verify_locked(inode)) 1006 return -EAGAIN; 1007 1008 vm_flags |= VM_SHARED | VM_MAYSHARE; 1009 if (!(file->f_mode & FMODE_WRITE)) 1010 vm_flags &= ~(VM_MAYWRITE | VM_SHARED); 1011 1012 /* fall through */ 1013 case MAP_PRIVATE: 1014 if (!(file->f_mode & FMODE_READ)) 1015 return -EACCES; 1016 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { 1017 if (vm_flags & VM_EXEC) 1018 return -EPERM; 1019 vm_flags &= ~VM_MAYEXEC; 1020 } 1021 1022 if (!file->f_op || !file->f_op->mmap) 1023 return -ENODEV; 1024 break; 1025 1026 default: 1027 return -EINVAL; 1028 } 1029 } else { 1030 switch (flags & MAP_TYPE) { 1031 case MAP_SHARED: 1032 /* 1033 * Ignore pgoff. 1034 */ 1035 pgoff = 0; 1036 vm_flags |= VM_SHARED | VM_MAYSHARE; 1037 break; 1038 case MAP_PRIVATE: 1039 /* 1040 * Set pgoff according to addr for anon_vma. 1041 */ 1042 pgoff = addr >> PAGE_SHIFT; 1043 break; 1044 default: 1045 return -EINVAL; 1046 } 1047 } 1048 1049 error = security_file_mmap(file, reqprot, prot, flags, addr, 0); 1050 if (error) 1051 return error; 1052 error = ima_file_mmap(file, prot); 1053 if (error) 1054 return error; 1055 1056 return mmap_region(file, addr, len, flags, vm_flags, pgoff); 1057 } 1058 EXPORT_SYMBOL(do_mmap_pgoff); 1059 1060 /* 1061 * Some shared mappigns will want the pages marked read-only 1062 * to track write events. If so, we'll downgrade vm_page_prot 1063 * to the private version (using protection_map[] without the 1064 * VM_SHARED bit). 1065 */ 1066 int vma_wants_writenotify(struct vm_area_struct *vma) 1067 { 1068 unsigned int vm_flags = vma->vm_flags; 1069 1070 /* If it was private or non-writable, the write bit is already clear */ 1071 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) 1072 return 0; 1073 1074 /* The backer wishes to know when pages are first written to? */ 1075 if (vma->vm_ops && vma->vm_ops->page_mkwrite) 1076 return 1; 1077 1078 /* The open routine did something to the protections already? */ 1079 if (pgprot_val(vma->vm_page_prot) != 1080 pgprot_val(vm_get_page_prot(vm_flags))) 1081 return 0; 1082 1083 /* Specialty mapping? */ 1084 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) 1085 return 0; 1086 1087 /* Can the mapping track the dirty pages? */ 1088 return vma->vm_file && vma->vm_file->f_mapping && 1089 mapping_cap_account_dirty(vma->vm_file->f_mapping); 1090 } 1091 1092 /* 1093 * We account for memory if it's a private writeable mapping, 1094 * not hugepages and VM_NORESERVE wasn't set. 1095 */ 1096 static inline int accountable_mapping(struct file *file, unsigned int vm_flags) 1097 { 1098 /* 1099 * hugetlb has its own accounting separate from the core VM 1100 * VM_HUGETLB may not be set yet so we cannot check for that flag. 1101 */ 1102 if (file && is_file_hugepages(file)) 1103 return 0; 1104 1105 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 1106 } 1107 1108 unsigned long mmap_region(struct file *file, unsigned long addr, 1109 unsigned long len, unsigned long flags, 1110 unsigned int vm_flags, unsigned long pgoff) 1111 { 1112 struct mm_struct *mm = current->mm; 1113 struct vm_area_struct *vma, *prev; 1114 int correct_wcount = 0; 1115 int error; 1116 struct rb_node **rb_link, *rb_parent; 1117 unsigned long charged = 0; 1118 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; 1119 1120 /* Clear old maps */ 1121 error = -ENOMEM; 1122 munmap_back: 1123 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 1124 if (vma && vma->vm_start < addr + len) { 1125 if (do_munmap(mm, addr, len)) 1126 return -ENOMEM; 1127 goto munmap_back; 1128 } 1129 1130 /* Check against address space limit. */ 1131 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 1132 return -ENOMEM; 1133 1134 /* 1135 * Set 'VM_NORESERVE' if we should not account for the 1136 * memory use of this mapping. 1137 */ 1138 if ((flags & MAP_NORESERVE)) { 1139 /* We honor MAP_NORESERVE if allowed to overcommit */ 1140 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) 1141 vm_flags |= VM_NORESERVE; 1142 1143 /* hugetlb applies strict overcommit unless MAP_NORESERVE */ 1144 if (file && is_file_hugepages(file)) 1145 vm_flags |= VM_NORESERVE; 1146 } 1147 1148 /* 1149 * Private writable mapping: check memory availability 1150 */ 1151 if (accountable_mapping(file, vm_flags)) { 1152 charged = len >> PAGE_SHIFT; 1153 if (security_vm_enough_memory(charged)) 1154 return -ENOMEM; 1155 vm_flags |= VM_ACCOUNT; 1156 } 1157 1158 /* 1159 * Can we just expand an old mapping? 1160 */ 1161 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); 1162 if (vma) 1163 goto out; 1164 1165 /* 1166 * Determine the object being mapped and call the appropriate 1167 * specific mapper. the address has already been validated, but 1168 * not unmapped, but the maps are removed from the list. 1169 */ 1170 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 1171 if (!vma) { 1172 error = -ENOMEM; 1173 goto unacct_error; 1174 } 1175 1176 vma->vm_mm = mm; 1177 vma->vm_start = addr; 1178 vma->vm_end = addr + len; 1179 vma->vm_flags = vm_flags; 1180 vma->vm_page_prot = vm_get_page_prot(vm_flags); 1181 vma->vm_pgoff = pgoff; 1182 1183 if (file) { 1184 error = -EINVAL; 1185 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) 1186 goto free_vma; 1187 if (vm_flags & VM_DENYWRITE) { 1188 error = deny_write_access(file); 1189 if (error) 1190 goto free_vma; 1191 correct_wcount = 1; 1192 } 1193 vma->vm_file = file; 1194 get_file(file); 1195 error = file->f_op->mmap(file, vma); 1196 if (error) 1197 goto unmap_and_free_vma; 1198 if (vm_flags & VM_EXECUTABLE) 1199 added_exe_file_vma(mm); 1200 1201 /* Can addr have changed?? 1202 * 1203 * Answer: Yes, several device drivers can do it in their 1204 * f_op->mmap method. -DaveM 1205 */ 1206 addr = vma->vm_start; 1207 pgoff = vma->vm_pgoff; 1208 vm_flags = vma->vm_flags; 1209 } else if (vm_flags & VM_SHARED) { 1210 error = shmem_zero_setup(vma); 1211 if (error) 1212 goto free_vma; 1213 } 1214 1215 if (vma_wants_writenotify(vma)) 1216 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); 1217 1218 vma_link(mm, vma, prev, rb_link, rb_parent); 1219 file = vma->vm_file; 1220 1221 /* Once vma denies write, undo our temporary denial count */ 1222 if (correct_wcount) 1223 atomic_inc(&inode->i_writecount); 1224 out: 1225 perf_event_mmap(vma); 1226 1227 mm->total_vm += len >> PAGE_SHIFT; 1228 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); 1229 if (vm_flags & VM_LOCKED) { 1230 /* 1231 * makes pages present; downgrades, drops, reacquires mmap_sem 1232 */ 1233 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len); 1234 if (nr_pages < 0) 1235 return nr_pages; /* vma gone! */ 1236 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages; 1237 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) 1238 make_pages_present(addr, addr + len); 1239 return addr; 1240 1241 unmap_and_free_vma: 1242 if (correct_wcount) 1243 atomic_inc(&inode->i_writecount); 1244 vma->vm_file = NULL; 1245 fput(file); 1246 1247 /* Undo any partial mapping done by a device driver. */ 1248 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); 1249 charged = 0; 1250 free_vma: 1251 kmem_cache_free(vm_area_cachep, vma); 1252 unacct_error: 1253 if (charged) 1254 vm_unacct_memory(charged); 1255 return error; 1256 } 1257 1258 /* Get an address range which is currently unmapped. 1259 * For shmat() with addr=0. 1260 * 1261 * Ugly calling convention alert: 1262 * Return value with the low bits set means error value, 1263 * ie 1264 * if (ret & ~PAGE_MASK) 1265 * error = ret; 1266 * 1267 * This function "knows" that -ENOMEM has the bits set. 1268 */ 1269 #ifndef HAVE_ARCH_UNMAPPED_AREA 1270 unsigned long 1271 arch_get_unmapped_area(struct file *filp, unsigned long addr, 1272 unsigned long len, unsigned long pgoff, unsigned long flags) 1273 { 1274 struct mm_struct *mm = current->mm; 1275 struct vm_area_struct *vma; 1276 unsigned long start_addr; 1277 1278 if (len > TASK_SIZE) 1279 return -ENOMEM; 1280 1281 if (flags & MAP_FIXED) 1282 return addr; 1283 1284 if (addr) { 1285 addr = PAGE_ALIGN(addr); 1286 vma = find_vma(mm, addr); 1287 if (TASK_SIZE - len >= addr && 1288 (!vma || addr + len <= vma->vm_start)) 1289 return addr; 1290 } 1291 if (len > mm->cached_hole_size) { 1292 start_addr = addr = mm->free_area_cache; 1293 } else { 1294 start_addr = addr = TASK_UNMAPPED_BASE; 1295 mm->cached_hole_size = 0; 1296 } 1297 1298 full_search: 1299 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { 1300 /* At this point: (!vma || addr < vma->vm_end). */ 1301 if (TASK_SIZE - len < addr) { 1302 /* 1303 * Start a new search - just in case we missed 1304 * some holes. 1305 */ 1306 if (start_addr != TASK_UNMAPPED_BASE) { 1307 addr = TASK_UNMAPPED_BASE; 1308 start_addr = addr; 1309 mm->cached_hole_size = 0; 1310 goto full_search; 1311 } 1312 return -ENOMEM; 1313 } 1314 if (!vma || addr + len <= vma->vm_start) { 1315 /* 1316 * Remember the place where we stopped the search: 1317 */ 1318 mm->free_area_cache = addr + len; 1319 return addr; 1320 } 1321 if (addr + mm->cached_hole_size < vma->vm_start) 1322 mm->cached_hole_size = vma->vm_start - addr; 1323 addr = vma->vm_end; 1324 } 1325 } 1326 #endif 1327 1328 void arch_unmap_area(struct mm_struct *mm, unsigned long addr) 1329 { 1330 /* 1331 * Is this a new hole at the lowest possible address? 1332 */ 1333 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { 1334 mm->free_area_cache = addr; 1335 mm->cached_hole_size = ~0UL; 1336 } 1337 } 1338 1339 /* 1340 * This mmap-allocator allocates new areas top-down from below the 1341 * stack's low limit (the base): 1342 */ 1343 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1344 unsigned long 1345 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, 1346 const unsigned long len, const unsigned long pgoff, 1347 const unsigned long flags) 1348 { 1349 struct vm_area_struct *vma; 1350 struct mm_struct *mm = current->mm; 1351 unsigned long addr = addr0; 1352 1353 /* requested length too big for entire address space */ 1354 if (len > TASK_SIZE) 1355 return -ENOMEM; 1356 1357 if (flags & MAP_FIXED) 1358 return addr; 1359 1360 /* requesting a specific address */ 1361 if (addr) { 1362 addr = PAGE_ALIGN(addr); 1363 vma = find_vma(mm, addr); 1364 if (TASK_SIZE - len >= addr && 1365 (!vma || addr + len <= vma->vm_start)) 1366 return addr; 1367 } 1368 1369 /* check if free_area_cache is useful for us */ 1370 if (len <= mm->cached_hole_size) { 1371 mm->cached_hole_size = 0; 1372 mm->free_area_cache = mm->mmap_base; 1373 } 1374 1375 /* either no address requested or can't fit in requested address hole */ 1376 addr = mm->free_area_cache; 1377 1378 /* make sure it can fit in the remaining address space */ 1379 if (addr > len) { 1380 vma = find_vma(mm, addr-len); 1381 if (!vma || addr <= vma->vm_start) 1382 /* remember the address as a hint for next time */ 1383 return (mm->free_area_cache = addr-len); 1384 } 1385 1386 if (mm->mmap_base < len) 1387 goto bottomup; 1388 1389 addr = mm->mmap_base-len; 1390 1391 do { 1392 /* 1393 * Lookup failure means no vma is above this address, 1394 * else if new region fits below vma->vm_start, 1395 * return with success: 1396 */ 1397 vma = find_vma(mm, addr); 1398 if (!vma || addr+len <= vma->vm_start) 1399 /* remember the address as a hint for next time */ 1400 return (mm->free_area_cache = addr); 1401 1402 /* remember the largest hole we saw so far */ 1403 if (addr + mm->cached_hole_size < vma->vm_start) 1404 mm->cached_hole_size = vma->vm_start - addr; 1405 1406 /* try just below the current vma->vm_start */ 1407 addr = vma->vm_start-len; 1408 } while (len < vma->vm_start); 1409 1410 bottomup: 1411 /* 1412 * A failed mmap() very likely causes application failure, 1413 * so fall back to the bottom-up function here. This scenario 1414 * can happen with large stack limits and large mmap() 1415 * allocations. 1416 */ 1417 mm->cached_hole_size = ~0UL; 1418 mm->free_area_cache = TASK_UNMAPPED_BASE; 1419 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); 1420 /* 1421 * Restore the topdown base: 1422 */ 1423 mm->free_area_cache = mm->mmap_base; 1424 mm->cached_hole_size = ~0UL; 1425 1426 return addr; 1427 } 1428 #endif 1429 1430 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) 1431 { 1432 /* 1433 * Is this a new hole at the highest possible address? 1434 */ 1435 if (addr > mm->free_area_cache) 1436 mm->free_area_cache = addr; 1437 1438 /* dont allow allocations above current base */ 1439 if (mm->free_area_cache > mm->mmap_base) 1440 mm->free_area_cache = mm->mmap_base; 1441 } 1442 1443 unsigned long 1444 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 1445 unsigned long pgoff, unsigned long flags) 1446 { 1447 unsigned long (*get_area)(struct file *, unsigned long, 1448 unsigned long, unsigned long, unsigned long); 1449 1450 unsigned long error = arch_mmap_check(addr, len, flags); 1451 if (error) 1452 return error; 1453 1454 /* Careful about overflows.. */ 1455 if (len > TASK_SIZE) 1456 return -ENOMEM; 1457 1458 get_area = current->mm->get_unmapped_area; 1459 if (file && file->f_op && file->f_op->get_unmapped_area) 1460 get_area = file->f_op->get_unmapped_area; 1461 addr = get_area(file, addr, len, pgoff, flags); 1462 if (IS_ERR_VALUE(addr)) 1463 return addr; 1464 1465 if (addr > TASK_SIZE - len) 1466 return -ENOMEM; 1467 if (addr & ~PAGE_MASK) 1468 return -EINVAL; 1469 1470 return arch_rebalance_pgtables(addr, len); 1471 } 1472 1473 EXPORT_SYMBOL(get_unmapped_area); 1474 1475 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1476 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) 1477 { 1478 struct vm_area_struct *vma = NULL; 1479 1480 if (mm) { 1481 /* Check the cache first. */ 1482 /* (Cache hit rate is typically around 35%.) */ 1483 vma = mm->mmap_cache; 1484 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { 1485 struct rb_node * rb_node; 1486 1487 rb_node = mm->mm_rb.rb_node; 1488 vma = NULL; 1489 1490 while (rb_node) { 1491 struct vm_area_struct * vma_tmp; 1492 1493 vma_tmp = rb_entry(rb_node, 1494 struct vm_area_struct, vm_rb); 1495 1496 if (vma_tmp->vm_end > addr) { 1497 vma = vma_tmp; 1498 if (vma_tmp->vm_start <= addr) 1499 break; 1500 rb_node = rb_node->rb_left; 1501 } else 1502 rb_node = rb_node->rb_right; 1503 } 1504 if (vma) 1505 mm->mmap_cache = vma; 1506 } 1507 } 1508 return vma; 1509 } 1510 1511 EXPORT_SYMBOL(find_vma); 1512 1513 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ 1514 struct vm_area_struct * 1515 find_vma_prev(struct mm_struct *mm, unsigned long addr, 1516 struct vm_area_struct **pprev) 1517 { 1518 struct vm_area_struct *vma = NULL, *prev = NULL; 1519 struct rb_node *rb_node; 1520 if (!mm) 1521 goto out; 1522 1523 /* Guard against addr being lower than the first VMA */ 1524 vma = mm->mmap; 1525 1526 /* Go through the RB tree quickly. */ 1527 rb_node = mm->mm_rb.rb_node; 1528 1529 while (rb_node) { 1530 struct vm_area_struct *vma_tmp; 1531 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); 1532 1533 if (addr < vma_tmp->vm_end) { 1534 rb_node = rb_node->rb_left; 1535 } else { 1536 prev = vma_tmp; 1537 if (!prev->vm_next || (addr < prev->vm_next->vm_end)) 1538 break; 1539 rb_node = rb_node->rb_right; 1540 } 1541 } 1542 1543 out: 1544 *pprev = prev; 1545 return prev ? prev->vm_next : vma; 1546 } 1547 1548 /* 1549 * Verify that the stack growth is acceptable and 1550 * update accounting. This is shared with both the 1551 * grow-up and grow-down cases. 1552 */ 1553 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) 1554 { 1555 struct mm_struct *mm = vma->vm_mm; 1556 struct rlimit *rlim = current->signal->rlim; 1557 unsigned long new_start; 1558 1559 /* address space limit tests */ 1560 if (!may_expand_vm(mm, grow)) 1561 return -ENOMEM; 1562 1563 /* Stack limit test */ 1564 if (size > rlim[RLIMIT_STACK].rlim_cur) 1565 return -ENOMEM; 1566 1567 /* mlock limit tests */ 1568 if (vma->vm_flags & VM_LOCKED) { 1569 unsigned long locked; 1570 unsigned long limit; 1571 locked = mm->locked_vm + grow; 1572 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT; 1573 if (locked > limit && !capable(CAP_IPC_LOCK)) 1574 return -ENOMEM; 1575 } 1576 1577 /* Check to ensure the stack will not grow into a hugetlb-only region */ 1578 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 1579 vma->vm_end - size; 1580 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 1581 return -EFAULT; 1582 1583 /* 1584 * Overcommit.. This must be the final test, as it will 1585 * update security statistics. 1586 */ 1587 if (security_vm_enough_memory_mm(mm, grow)) 1588 return -ENOMEM; 1589 1590 /* Ok, everything looks good - let it rip */ 1591 mm->total_vm += grow; 1592 if (vma->vm_flags & VM_LOCKED) 1593 mm->locked_vm += grow; 1594 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); 1595 return 0; 1596 } 1597 1598 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 1599 /* 1600 * PA-RISC uses this for its stack; IA64 for its Register Backing Store. 1601 * vma is the last one with address > vma->vm_end. Have to extend vma. 1602 */ 1603 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 1604 { 1605 int error; 1606 1607 if (!(vma->vm_flags & VM_GROWSUP)) 1608 return -EFAULT; 1609 1610 /* 1611 * We must make sure the anon_vma is allocated 1612 * so that the anon_vma locking is not a noop. 1613 */ 1614 if (unlikely(anon_vma_prepare(vma))) 1615 return -ENOMEM; 1616 anon_vma_lock(vma); 1617 1618 /* 1619 * vma->vm_start/vm_end cannot change under us because the caller 1620 * is required to hold the mmap_sem in read mode. We need the 1621 * anon_vma lock to serialize against concurrent expand_stacks. 1622 * Also guard against wrapping around to address 0. 1623 */ 1624 if (address < PAGE_ALIGN(address+4)) 1625 address = PAGE_ALIGN(address+4); 1626 else { 1627 anon_vma_unlock(vma); 1628 return -ENOMEM; 1629 } 1630 error = 0; 1631 1632 /* Somebody else might have raced and expanded it already */ 1633 if (address > vma->vm_end) { 1634 unsigned long size, grow; 1635 1636 size = address - vma->vm_start; 1637 grow = (address - vma->vm_end) >> PAGE_SHIFT; 1638 1639 error = -ENOMEM; 1640 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 1641 error = acct_stack_growth(vma, size, grow); 1642 if (!error) 1643 vma->vm_end = address; 1644 } 1645 } 1646 anon_vma_unlock(vma); 1647 return error; 1648 } 1649 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ 1650 1651 /* 1652 * vma is the first one with address < vma->vm_start. Have to extend vma. 1653 */ 1654 static int expand_downwards(struct vm_area_struct *vma, 1655 unsigned long address) 1656 { 1657 int error; 1658 1659 /* 1660 * We must make sure the anon_vma is allocated 1661 * so that the anon_vma locking is not a noop. 1662 */ 1663 if (unlikely(anon_vma_prepare(vma))) 1664 return -ENOMEM; 1665 1666 address &= PAGE_MASK; 1667 error = security_file_mmap(NULL, 0, 0, 0, address, 1); 1668 if (error) 1669 return error; 1670 1671 anon_vma_lock(vma); 1672 1673 /* 1674 * vma->vm_start/vm_end cannot change under us because the caller 1675 * is required to hold the mmap_sem in read mode. We need the 1676 * anon_vma lock to serialize against concurrent expand_stacks. 1677 */ 1678 1679 /* Somebody else might have raced and expanded it already */ 1680 if (address < vma->vm_start) { 1681 unsigned long size, grow; 1682 1683 size = vma->vm_end - address; 1684 grow = (vma->vm_start - address) >> PAGE_SHIFT; 1685 1686 error = -ENOMEM; 1687 if (grow <= vma->vm_pgoff) { 1688 error = acct_stack_growth(vma, size, grow); 1689 if (!error) { 1690 vma->vm_start = address; 1691 vma->vm_pgoff -= grow; 1692 } 1693 } 1694 } 1695 anon_vma_unlock(vma); 1696 return error; 1697 } 1698 1699 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) 1700 { 1701 return expand_downwards(vma, address); 1702 } 1703 1704 #ifdef CONFIG_STACK_GROWSUP 1705 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1706 { 1707 return expand_upwards(vma, address); 1708 } 1709 1710 struct vm_area_struct * 1711 find_extend_vma(struct mm_struct *mm, unsigned long addr) 1712 { 1713 struct vm_area_struct *vma, *prev; 1714 1715 addr &= PAGE_MASK; 1716 vma = find_vma_prev(mm, addr, &prev); 1717 if (vma && (vma->vm_start <= addr)) 1718 return vma; 1719 if (!prev || expand_stack(prev, addr)) 1720 return NULL; 1721 if (prev->vm_flags & VM_LOCKED) { 1722 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0) 1723 return NULL; /* vma gone! */ 1724 } 1725 return prev; 1726 } 1727 #else 1728 int expand_stack(struct vm_area_struct *vma, unsigned long address) 1729 { 1730 return expand_downwards(vma, address); 1731 } 1732 1733 struct vm_area_struct * 1734 find_extend_vma(struct mm_struct * mm, unsigned long addr) 1735 { 1736 struct vm_area_struct * vma; 1737 unsigned long start; 1738 1739 addr &= PAGE_MASK; 1740 vma = find_vma(mm,addr); 1741 if (!vma) 1742 return NULL; 1743 if (vma->vm_start <= addr) 1744 return vma; 1745 if (!(vma->vm_flags & VM_GROWSDOWN)) 1746 return NULL; 1747 start = vma->vm_start; 1748 if (expand_stack(vma, addr)) 1749 return NULL; 1750 if (vma->vm_flags & VM_LOCKED) { 1751 if (mlock_vma_pages_range(vma, addr, start) < 0) 1752 return NULL; /* vma gone! */ 1753 } 1754 return vma; 1755 } 1756 #endif 1757 1758 /* 1759 * Ok - we have the memory areas we should free on the vma list, 1760 * so release them, and do the vma updates. 1761 * 1762 * Called with the mm semaphore held. 1763 */ 1764 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) 1765 { 1766 /* Update high watermark before we lower total_vm */ 1767 update_hiwater_vm(mm); 1768 do { 1769 long nrpages = vma_pages(vma); 1770 1771 mm->total_vm -= nrpages; 1772 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); 1773 vma = remove_vma(vma); 1774 } while (vma); 1775 validate_mm(mm); 1776 } 1777 1778 /* 1779 * Get rid of page table information in the indicated region. 1780 * 1781 * Called with the mm semaphore held. 1782 */ 1783 static void unmap_region(struct mm_struct *mm, 1784 struct vm_area_struct *vma, struct vm_area_struct *prev, 1785 unsigned long start, unsigned long end) 1786 { 1787 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; 1788 struct mmu_gather *tlb; 1789 unsigned long nr_accounted = 0; 1790 1791 lru_add_drain(); 1792 tlb = tlb_gather_mmu(mm, 0); 1793 update_hiwater_rss(mm); 1794 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); 1795 vm_unacct_memory(nr_accounted); 1796 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, 1797 next? next->vm_start: 0); 1798 tlb_finish_mmu(tlb, start, end); 1799 } 1800 1801 /* 1802 * Create a list of vma's touched by the unmap, removing them from the mm's 1803 * vma list as we go.. 1804 */ 1805 static void 1806 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, 1807 struct vm_area_struct *prev, unsigned long end) 1808 { 1809 struct vm_area_struct **insertion_point; 1810 struct vm_area_struct *tail_vma = NULL; 1811 unsigned long addr; 1812 1813 insertion_point = (prev ? &prev->vm_next : &mm->mmap); 1814 vma->vm_prev = NULL; 1815 do { 1816 rb_erase(&vma->vm_rb, &mm->mm_rb); 1817 mm->map_count--; 1818 tail_vma = vma; 1819 vma = vma->vm_next; 1820 } while (vma && vma->vm_start < end); 1821 *insertion_point = vma; 1822 if (vma) 1823 vma->vm_prev = prev; 1824 tail_vma->vm_next = NULL; 1825 if (mm->unmap_area == arch_unmap_area) 1826 addr = prev ? prev->vm_end : mm->mmap_base; 1827 else 1828 addr = vma ? vma->vm_start : mm->mmap_base; 1829 mm->unmap_area(mm, addr); 1830 mm->mmap_cache = NULL; /* Kill the cache. */ 1831 } 1832 1833 /* 1834 * Split a vma into two pieces at address 'addr', a new vma is allocated 1835 * either for the first part or the tail. 1836 */ 1837 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma, 1838 unsigned long addr, int new_below) 1839 { 1840 struct mempolicy *pol; 1841 struct vm_area_struct *new; 1842 1843 if (is_vm_hugetlb_page(vma) && (addr & 1844 ~(huge_page_mask(hstate_vma(vma))))) 1845 return -EINVAL; 1846 1847 if (mm->map_count >= sysctl_max_map_count) 1848 return -ENOMEM; 1849 1850 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 1851 if (!new) 1852 return -ENOMEM; 1853 1854 /* most fields are the same, copy all, and then fixup */ 1855 *new = *vma; 1856 1857 if (new_below) 1858 new->vm_end = addr; 1859 else { 1860 new->vm_start = addr; 1861 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 1862 } 1863 1864 pol = mpol_dup(vma_policy(vma)); 1865 if (IS_ERR(pol)) { 1866 kmem_cache_free(vm_area_cachep, new); 1867 return PTR_ERR(pol); 1868 } 1869 vma_set_policy(new, pol); 1870 1871 if (new->vm_file) { 1872 get_file(new->vm_file); 1873 if (vma->vm_flags & VM_EXECUTABLE) 1874 added_exe_file_vma(mm); 1875 } 1876 1877 if (new->vm_ops && new->vm_ops->open) 1878 new->vm_ops->open(new); 1879 1880 if (new_below) 1881 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + 1882 ((addr - new->vm_start) >> PAGE_SHIFT), new); 1883 else 1884 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); 1885 1886 return 0; 1887 } 1888 1889 /* Munmap is split into 2 main parts -- this part which finds 1890 * what needs doing, and the areas themselves, which do the 1891 * work. This now handles partial unmappings. 1892 * Jeremy Fitzhardinge <jeremy@goop.org> 1893 */ 1894 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) 1895 { 1896 unsigned long end; 1897 struct vm_area_struct *vma, *prev, *last; 1898 1899 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) 1900 return -EINVAL; 1901 1902 if ((len = PAGE_ALIGN(len)) == 0) 1903 return -EINVAL; 1904 1905 /* Find the first overlapping VMA */ 1906 vma = find_vma_prev(mm, start, &prev); 1907 if (!vma) 1908 return 0; 1909 /* we have start < vma->vm_end */ 1910 1911 /* if it doesn't overlap, we have nothing.. */ 1912 end = start + len; 1913 if (vma->vm_start >= end) 1914 return 0; 1915 1916 /* 1917 * If we need to split any vma, do it now to save pain later. 1918 * 1919 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 1920 * unmapped vm_area_struct will remain in use: so lower split_vma 1921 * places tmp vma above, and higher split_vma places tmp vma below. 1922 */ 1923 if (start > vma->vm_start) { 1924 int error = split_vma(mm, vma, start, 0); 1925 if (error) 1926 return error; 1927 prev = vma; 1928 } 1929 1930 /* Does it split the last one? */ 1931 last = find_vma(mm, end); 1932 if (last && end > last->vm_start) { 1933 int error = split_vma(mm, last, end, 1); 1934 if (error) 1935 return error; 1936 } 1937 vma = prev? prev->vm_next: mm->mmap; 1938 1939 /* 1940 * unlock any mlock()ed ranges before detaching vmas 1941 */ 1942 if (mm->locked_vm) { 1943 struct vm_area_struct *tmp = vma; 1944 while (tmp && tmp->vm_start < end) { 1945 if (tmp->vm_flags & VM_LOCKED) { 1946 mm->locked_vm -= vma_pages(tmp); 1947 munlock_vma_pages_all(tmp); 1948 } 1949 tmp = tmp->vm_next; 1950 } 1951 } 1952 1953 /* 1954 * Remove the vma's, and unmap the actual pages 1955 */ 1956 detach_vmas_to_be_unmapped(mm, vma, prev, end); 1957 unmap_region(mm, vma, prev, start, end); 1958 1959 /* Fix up all other VM information */ 1960 remove_vma_list(mm, vma); 1961 1962 return 0; 1963 } 1964 1965 EXPORT_SYMBOL(do_munmap); 1966 1967 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) 1968 { 1969 int ret; 1970 struct mm_struct *mm = current->mm; 1971 1972 profile_munmap(addr); 1973 1974 down_write(&mm->mmap_sem); 1975 ret = do_munmap(mm, addr, len); 1976 up_write(&mm->mmap_sem); 1977 return ret; 1978 } 1979 1980 static inline void verify_mm_writelocked(struct mm_struct *mm) 1981 { 1982 #ifdef CONFIG_DEBUG_VM 1983 if (unlikely(down_read_trylock(&mm->mmap_sem))) { 1984 WARN_ON(1); 1985 up_read(&mm->mmap_sem); 1986 } 1987 #endif 1988 } 1989 1990 /* 1991 * this is really a simplified "do_mmap". it only handles 1992 * anonymous maps. eventually we may be able to do some 1993 * brk-specific accounting here. 1994 */ 1995 unsigned long do_brk(unsigned long addr, unsigned long len) 1996 { 1997 struct mm_struct * mm = current->mm; 1998 struct vm_area_struct * vma, * prev; 1999 unsigned long flags; 2000 struct rb_node ** rb_link, * rb_parent; 2001 pgoff_t pgoff = addr >> PAGE_SHIFT; 2002 int error; 2003 2004 len = PAGE_ALIGN(len); 2005 if (!len) 2006 return addr; 2007 2008 error = security_file_mmap(NULL, 0, 0, 0, addr, 1); 2009 if (error) 2010 return error; 2011 2012 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2013 2014 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); 2015 if (error & ~PAGE_MASK) 2016 return error; 2017 2018 /* 2019 * mlock MCL_FUTURE? 2020 */ 2021 if (mm->def_flags & VM_LOCKED) { 2022 unsigned long locked, lock_limit; 2023 locked = len >> PAGE_SHIFT; 2024 locked += mm->locked_vm; 2025 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; 2026 lock_limit >>= PAGE_SHIFT; 2027 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) 2028 return -EAGAIN; 2029 } 2030 2031 /* 2032 * mm->mmap_sem is required to protect against another thread 2033 * changing the mappings in case we sleep. 2034 */ 2035 verify_mm_writelocked(mm); 2036 2037 /* 2038 * Clear old maps. this also does some error checking for us 2039 */ 2040 munmap_back: 2041 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2042 if (vma && vma->vm_start < addr + len) { 2043 if (do_munmap(mm, addr, len)) 2044 return -ENOMEM; 2045 goto munmap_back; 2046 } 2047 2048 /* Check against address space limits *after* clearing old maps... */ 2049 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) 2050 return -ENOMEM; 2051 2052 if (mm->map_count > sysctl_max_map_count) 2053 return -ENOMEM; 2054 2055 if (security_vm_enough_memory(len >> PAGE_SHIFT)) 2056 return -ENOMEM; 2057 2058 /* Can we just expand an old private anonymous mapping? */ 2059 vma = vma_merge(mm, prev, addr, addr + len, flags, 2060 NULL, NULL, pgoff, NULL); 2061 if (vma) 2062 goto out; 2063 2064 /* 2065 * create a vma struct for an anonymous mapping 2066 */ 2067 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2068 if (!vma) { 2069 vm_unacct_memory(len >> PAGE_SHIFT); 2070 return -ENOMEM; 2071 } 2072 2073 vma->vm_mm = mm; 2074 vma->vm_start = addr; 2075 vma->vm_end = addr + len; 2076 vma->vm_pgoff = pgoff; 2077 vma->vm_flags = flags; 2078 vma->vm_page_prot = vm_get_page_prot(flags); 2079 vma_link(mm, vma, prev, rb_link, rb_parent); 2080 out: 2081 mm->total_vm += len >> PAGE_SHIFT; 2082 if (flags & VM_LOCKED) { 2083 if (!mlock_vma_pages_range(vma, addr, addr + len)) 2084 mm->locked_vm += (len >> PAGE_SHIFT); 2085 } 2086 return addr; 2087 } 2088 2089 EXPORT_SYMBOL(do_brk); 2090 2091 /* Release all mmaps. */ 2092 void exit_mmap(struct mm_struct *mm) 2093 { 2094 struct mmu_gather *tlb; 2095 struct vm_area_struct *vma; 2096 unsigned long nr_accounted = 0; 2097 unsigned long end; 2098 2099 /* mm's last user has gone, and its about to be pulled down */ 2100 mmu_notifier_release(mm); 2101 2102 if (mm->locked_vm) { 2103 vma = mm->mmap; 2104 while (vma) { 2105 if (vma->vm_flags & VM_LOCKED) 2106 munlock_vma_pages_all(vma); 2107 vma = vma->vm_next; 2108 } 2109 } 2110 2111 arch_exit_mmap(mm); 2112 2113 vma = mm->mmap; 2114 if (!vma) /* Can happen if dup_mmap() received an OOM */ 2115 return; 2116 2117 lru_add_drain(); 2118 flush_cache_mm(mm); 2119 tlb = tlb_gather_mmu(mm, 1); 2120 /* update_hiwater_rss(mm) here? but nobody should be looking */ 2121 /* Use -1 here to ensure all VMAs in the mm are unmapped */ 2122 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); 2123 vm_unacct_memory(nr_accounted); 2124 2125 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); 2126 tlb_finish_mmu(tlb, 0, end); 2127 2128 /* 2129 * Walk the list again, actually closing and freeing it, 2130 * with preemption enabled, without holding any MM locks. 2131 */ 2132 while (vma) 2133 vma = remove_vma(vma); 2134 2135 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); 2136 } 2137 2138 /* Insert vm structure into process list sorted by address 2139 * and into the inode's i_mmap tree. If vm_file is non-NULL 2140 * then i_mmap_lock is taken here. 2141 */ 2142 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) 2143 { 2144 struct vm_area_struct * __vma, * prev; 2145 struct rb_node ** rb_link, * rb_parent; 2146 2147 /* 2148 * The vm_pgoff of a purely anonymous vma should be irrelevant 2149 * until its first write fault, when page's anon_vma and index 2150 * are set. But now set the vm_pgoff it will almost certainly 2151 * end up with (unless mremap moves it elsewhere before that 2152 * first wfault), so /proc/pid/maps tells a consistent story. 2153 * 2154 * By setting it to reflect the virtual start address of the 2155 * vma, merges and splits can happen in a seamless way, just 2156 * using the existing file pgoff checks and manipulations. 2157 * Similarly in do_mmap_pgoff and in do_brk. 2158 */ 2159 if (!vma->vm_file) { 2160 BUG_ON(vma->anon_vma); 2161 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; 2162 } 2163 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); 2164 if (__vma && __vma->vm_start < vma->vm_end) 2165 return -ENOMEM; 2166 if ((vma->vm_flags & VM_ACCOUNT) && 2167 security_vm_enough_memory_mm(mm, vma_pages(vma))) 2168 return -ENOMEM; 2169 vma_link(mm, vma, prev, rb_link, rb_parent); 2170 return 0; 2171 } 2172 2173 /* 2174 * Copy the vma structure to a new location in the same mm, 2175 * prior to moving page table entries, to effect an mremap move. 2176 */ 2177 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 2178 unsigned long addr, unsigned long len, pgoff_t pgoff) 2179 { 2180 struct vm_area_struct *vma = *vmap; 2181 unsigned long vma_start = vma->vm_start; 2182 struct mm_struct *mm = vma->vm_mm; 2183 struct vm_area_struct *new_vma, *prev; 2184 struct rb_node **rb_link, *rb_parent; 2185 struct mempolicy *pol; 2186 2187 /* 2188 * If anonymous vma has not yet been faulted, update new pgoff 2189 * to match new location, to increase its chance of merging. 2190 */ 2191 if (!vma->vm_file && !vma->anon_vma) 2192 pgoff = addr >> PAGE_SHIFT; 2193 2194 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); 2195 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, 2196 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); 2197 if (new_vma) { 2198 /* 2199 * Source vma may have been merged into new_vma 2200 */ 2201 if (vma_start >= new_vma->vm_start && 2202 vma_start < new_vma->vm_end) 2203 *vmap = new_vma; 2204 } else { 2205 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 2206 if (new_vma) { 2207 *new_vma = *vma; 2208 pol = mpol_dup(vma_policy(vma)); 2209 if (IS_ERR(pol)) { 2210 kmem_cache_free(vm_area_cachep, new_vma); 2211 return NULL; 2212 } 2213 vma_set_policy(new_vma, pol); 2214 new_vma->vm_start = addr; 2215 new_vma->vm_end = addr + len; 2216 new_vma->vm_pgoff = pgoff; 2217 if (new_vma->vm_file) { 2218 get_file(new_vma->vm_file); 2219 if (vma->vm_flags & VM_EXECUTABLE) 2220 added_exe_file_vma(mm); 2221 } 2222 if (new_vma->vm_ops && new_vma->vm_ops->open) 2223 new_vma->vm_ops->open(new_vma); 2224 vma_link(mm, new_vma, prev, rb_link, rb_parent); 2225 } 2226 } 2227 return new_vma; 2228 } 2229 2230 /* 2231 * Return true if the calling process may expand its vm space by the passed 2232 * number of pages 2233 */ 2234 int may_expand_vm(struct mm_struct *mm, unsigned long npages) 2235 { 2236 unsigned long cur = mm->total_vm; /* pages */ 2237 unsigned long lim; 2238 2239 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT; 2240 2241 if (cur + npages > lim) 2242 return 0; 2243 return 1; 2244 } 2245 2246 2247 static int special_mapping_fault(struct vm_area_struct *vma, 2248 struct vm_fault *vmf) 2249 { 2250 pgoff_t pgoff; 2251 struct page **pages; 2252 2253 /* 2254 * special mappings have no vm_file, and in that case, the mm 2255 * uses vm_pgoff internally. So we have to subtract it from here. 2256 * We are allowed to do this because we are the mm; do not copy 2257 * this code into drivers! 2258 */ 2259 pgoff = vmf->pgoff - vma->vm_pgoff; 2260 2261 for (pages = vma->vm_private_data; pgoff && *pages; ++pages) 2262 pgoff--; 2263 2264 if (*pages) { 2265 struct page *page = *pages; 2266 get_page(page); 2267 vmf->page = page; 2268 return 0; 2269 } 2270 2271 return VM_FAULT_SIGBUS; 2272 } 2273 2274 /* 2275 * Having a close hook prevents vma merging regardless of flags. 2276 */ 2277 static void special_mapping_close(struct vm_area_struct *vma) 2278 { 2279 } 2280 2281 static const struct vm_operations_struct special_mapping_vmops = { 2282 .close = special_mapping_close, 2283 .fault = special_mapping_fault, 2284 }; 2285 2286 /* 2287 * Called with mm->mmap_sem held for writing. 2288 * Insert a new vma covering the given region, with the given flags. 2289 * Its pages are supplied by the given array of struct page *. 2290 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. 2291 * The region past the last page supplied will always produce SIGBUS. 2292 * The array pointer and the pages it points to are assumed to stay alive 2293 * for as long as this mapping might exist. 2294 */ 2295 int install_special_mapping(struct mm_struct *mm, 2296 unsigned long addr, unsigned long len, 2297 unsigned long vm_flags, struct page **pages) 2298 { 2299 int ret; 2300 struct vm_area_struct *vma; 2301 2302 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 2303 if (unlikely(vma == NULL)) 2304 return -ENOMEM; 2305 2306 vma->vm_mm = mm; 2307 vma->vm_start = addr; 2308 vma->vm_end = addr + len; 2309 2310 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; 2311 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2312 2313 vma->vm_ops = &special_mapping_vmops; 2314 vma->vm_private_data = pages; 2315 2316 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 2317 if (ret) 2318 goto out; 2319 2320 ret = insert_vm_struct(mm, vma); 2321 if (ret) 2322 goto out; 2323 2324 mm->total_vm += len >> PAGE_SHIFT; 2325 2326 perf_event_mmap(vma); 2327 2328 return 0; 2329 2330 out: 2331 kmem_cache_free(vm_area_cachep, vma); 2332 return ret; 2333 } 2334 2335 static DEFINE_MUTEX(mm_all_locks_mutex); 2336 2337 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 2338 { 2339 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2340 /* 2341 * The LSB of head.next can't change from under us 2342 * because we hold the mm_all_locks_mutex. 2343 */ 2344 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); 2345 /* 2346 * We can safely modify head.next after taking the 2347 * anon_vma->lock. If some other vma in this mm shares 2348 * the same anon_vma we won't take it again. 2349 * 2350 * No need of atomic instructions here, head.next 2351 * can't change from under us thanks to the 2352 * anon_vma->lock. 2353 */ 2354 if (__test_and_set_bit(0, (unsigned long *) 2355 &anon_vma->head.next)) 2356 BUG(); 2357 } 2358 } 2359 2360 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2361 { 2362 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2363 /* 2364 * AS_MM_ALL_LOCKS can't change from under us because 2365 * we hold the mm_all_locks_mutex. 2366 * 2367 * Operations on ->flags have to be atomic because 2368 * even if AS_MM_ALL_LOCKS is stable thanks to the 2369 * mm_all_locks_mutex, there may be other cpus 2370 * changing other bitflags in parallel to us. 2371 */ 2372 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2373 BUG(); 2374 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); 2375 } 2376 } 2377 2378 /* 2379 * This operation locks against the VM for all pte/vma/mm related 2380 * operations that could ever happen on a certain mm. This includes 2381 * vmtruncate, try_to_unmap, and all page faults. 2382 * 2383 * The caller must take the mmap_sem in write mode before calling 2384 * mm_take_all_locks(). The caller isn't allowed to release the 2385 * mmap_sem until mm_drop_all_locks() returns. 2386 * 2387 * mmap_sem in write mode is required in order to block all operations 2388 * that could modify pagetables and free pages without need of 2389 * altering the vma layout (for example populate_range() with 2390 * nonlinear vmas). It's also needed in write mode to avoid new 2391 * anon_vmas to be associated with existing vmas. 2392 * 2393 * A single task can't take more than one mm_take_all_locks() in a row 2394 * or it would deadlock. 2395 * 2396 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in 2397 * mapping->flags avoid to take the same lock twice, if more than one 2398 * vma in this mm is backed by the same anon_vma or address_space. 2399 * 2400 * We can take all the locks in random order because the VM code 2401 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never 2402 * takes more than one of them in a row. Secondly we're protected 2403 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. 2404 * 2405 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2406 * that may have to take thousand of locks. 2407 * 2408 * mm_take_all_locks() can fail if it's interrupted by signals. 2409 */ 2410 int mm_take_all_locks(struct mm_struct *mm) 2411 { 2412 struct vm_area_struct *vma; 2413 int ret = -EINTR; 2414 2415 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2416 2417 mutex_lock(&mm_all_locks_mutex); 2418 2419 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2420 if (signal_pending(current)) 2421 goto out_unlock; 2422 if (vma->vm_file && vma->vm_file->f_mapping) 2423 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2424 } 2425 2426 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2427 if (signal_pending(current)) 2428 goto out_unlock; 2429 if (vma->anon_vma) 2430 vm_lock_anon_vma(mm, vma->anon_vma); 2431 } 2432 2433 ret = 0; 2434 2435 out_unlock: 2436 if (ret) 2437 mm_drop_all_locks(mm); 2438 2439 return ret; 2440 } 2441 2442 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2443 { 2444 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { 2445 /* 2446 * The LSB of head.next can't change to 0 from under 2447 * us because we hold the mm_all_locks_mutex. 2448 * 2449 * We must however clear the bitflag before unlocking 2450 * the vma so the users using the anon_vma->head will 2451 * never see our bitflag. 2452 * 2453 * No need of atomic instructions here, head.next 2454 * can't change from under us until we release the 2455 * anon_vma->lock. 2456 */ 2457 if (!__test_and_clear_bit(0, (unsigned long *) 2458 &anon_vma->head.next)) 2459 BUG(); 2460 spin_unlock(&anon_vma->lock); 2461 } 2462 } 2463 2464 static void vm_unlock_mapping(struct address_space *mapping) 2465 { 2466 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2467 /* 2468 * AS_MM_ALL_LOCKS can't change to 0 from under us 2469 * because we hold the mm_all_locks_mutex. 2470 */ 2471 spin_unlock(&mapping->i_mmap_lock); 2472 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2473 &mapping->flags)) 2474 BUG(); 2475 } 2476 } 2477 2478 /* 2479 * The mmap_sem cannot be released by the caller until 2480 * mm_drop_all_locks() returns. 2481 */ 2482 void mm_drop_all_locks(struct mm_struct *mm) 2483 { 2484 struct vm_area_struct *vma; 2485 2486 BUG_ON(down_read_trylock(&mm->mmap_sem)); 2487 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2488 2489 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2490 if (vma->anon_vma) 2491 vm_unlock_anon_vma(vma->anon_vma); 2492 if (vma->vm_file && vma->vm_file->f_mapping) 2493 vm_unlock_mapping(vma->vm_file->f_mapping); 2494 } 2495 2496 mutex_unlock(&mm_all_locks_mutex); 2497 } 2498 2499 /* 2500 * initialise the VMA slab 2501 */ 2502 void __init mmap_init(void) 2503 { 2504 int ret; 2505 2506 ret = percpu_counter_init(&vm_committed_as, 0); 2507 VM_BUG_ON(ret); 2508 } 2509
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.