1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 }; 128 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 129 .lock = INIT_LOCAL_LOCK(lock), 130 }; 131 132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 133 DEFINE_PER_CPU(int, numa_node); 134 EXPORT_PER_CPU_SYMBOL(numa_node); 135 #endif 136 137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 138 139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 140 /* 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 144 * defined in <linux/topology.h>. 145 */ 146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 147 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 148 #endif 149 150 /* work_structs for global per-cpu drains */ 151 struct pcpu_drain { 152 struct zone *zone; 153 struct work_struct work; 154 }; 155 static DEFINE_MUTEX(pcpu_drain_mutex); 156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 157 158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 159 volatile unsigned long latent_entropy __latent_entropy; 160 EXPORT_SYMBOL(latent_entropy); 161 #endif 162 163 /* 164 * Array of node states. 165 */ 166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 167 [N_POSSIBLE] = NODE_MASK_ALL, 168 [N_ONLINE] = { { [0] = 1UL } }, 169 #ifndef CONFIG_NUMA 170 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 171 #ifdef CONFIG_HIGHMEM 172 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 173 #endif 174 [N_MEMORY] = { { [0] = 1UL } }, 175 [N_CPU] = { { [0] = 1UL } }, 176 #endif /* NUMA */ 177 }; 178 EXPORT_SYMBOL(node_states); 179 180 atomic_long_t _totalram_pages __read_mostly; 181 EXPORT_SYMBOL(_totalram_pages); 182 unsigned long totalreserve_pages __read_mostly; 183 unsigned long totalcma_pages __read_mostly; 184 185 int percpu_pagelist_high_fraction; 186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 188 EXPORT_SYMBOL(init_on_alloc); 189 190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 191 EXPORT_SYMBOL(init_on_free); 192 193 static bool _init_on_alloc_enabled_early __read_mostly 194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 195 static int __init early_init_on_alloc(char *buf) 196 { 197 198 return kstrtobool(buf, &_init_on_alloc_enabled_early); 199 } 200 early_param("init_on_alloc", early_init_on_alloc); 201 202 static bool _init_on_free_enabled_early __read_mostly 203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 204 static int __init early_init_on_free(char *buf) 205 { 206 return kstrtobool(buf, &_init_on_free_enabled_early); 207 } 208 early_param("init_on_free", early_init_on_free); 209 210 /* 211 * A cached value of the page's pageblock's migratetype, used when the page is 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 214 * Also the migratetype set in the page does not necessarily match the pcplist 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 216 * other index - this ensures that it will be put on the correct CMA freelist. 217 */ 218 static inline int get_pcppage_migratetype(struct page *page) 219 { 220 return page->index; 221 } 222 223 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 224 { 225 page->index = migratetype; 226 } 227 228 #ifdef CONFIG_PM_SLEEP 229 /* 230 * The following functions are used by the suspend/hibernate code to temporarily 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 232 * while devices are suspended. To avoid races with the suspend/hibernate code, 233 * they should always be called with system_transition_mutex held 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 236 * with that modification). 237 */ 238 239 static gfp_t saved_gfp_mask; 240 241 void pm_restore_gfp_mask(void) 242 { 243 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 244 if (saved_gfp_mask) { 245 gfp_allowed_mask = saved_gfp_mask; 246 saved_gfp_mask = 0; 247 } 248 } 249 250 void pm_restrict_gfp_mask(void) 251 { 252 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 253 WARN_ON(saved_gfp_mask); 254 saved_gfp_mask = gfp_allowed_mask; 255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 256 } 257 258 bool pm_suspended_storage(void) 259 { 260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 261 return false; 262 return true; 263 } 264 #endif /* CONFIG_PM_SLEEP */ 265 266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 267 unsigned int pageblock_order __read_mostly; 268 #endif 269 270 static void __free_pages_ok(struct page *page, unsigned int order, 271 fpi_t fpi_flags); 272 273 /* 274 * results with 256, 32 in the lowmem_reserve sysctl: 275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 276 * 1G machine -> (16M dma, 784M normal, 224M high) 277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 280 * 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally 282 * don't need any ZONE_NORMAL reservation 283 */ 284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 285 #ifdef CONFIG_ZONE_DMA 286 [ZONE_DMA] = 256, 287 #endif 288 #ifdef CONFIG_ZONE_DMA32 289 [ZONE_DMA32] = 256, 290 #endif 291 [ZONE_NORMAL] = 32, 292 #ifdef CONFIG_HIGHMEM 293 [ZONE_HIGHMEM] = 0, 294 #endif 295 [ZONE_MOVABLE] = 0, 296 }; 297 298 static char * const zone_names[MAX_NR_ZONES] = { 299 #ifdef CONFIG_ZONE_DMA 300 "DMA", 301 #endif 302 #ifdef CONFIG_ZONE_DMA32 303 "DMA32", 304 #endif 305 "Normal", 306 #ifdef CONFIG_HIGHMEM 307 "HighMem", 308 #endif 309 "Movable", 310 #ifdef CONFIG_ZONE_DEVICE 311 "Device", 312 #endif 313 }; 314 315 const char * const migratetype_names[MIGRATE_TYPES] = { 316 "Unmovable", 317 "Movable", 318 "Reclaimable", 319 "HighAtomic", 320 #ifdef CONFIG_CMA 321 "CMA", 322 #endif 323 #ifdef CONFIG_MEMORY_ISOLATION 324 "Isolate", 325 #endif 326 }; 327 328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 329 [NULL_COMPOUND_DTOR] = NULL, 330 [COMPOUND_PAGE_DTOR] = free_compound_page, 331 #ifdef CONFIG_HUGETLB_PAGE 332 [HUGETLB_PAGE_DTOR] = free_huge_page, 333 #endif 334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 336 #endif 337 }; 338 339 int min_free_kbytes = 1024; 340 int user_min_free_kbytes = -1; 341 int watermark_boost_factor __read_mostly = 15000; 342 int watermark_scale_factor = 10; 343 344 static unsigned long nr_kernel_pages __initdata; 345 static unsigned long nr_all_pages __initdata; 346 static unsigned long dma_reserve __initdata; 347 348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 350 static unsigned long required_kernelcore __initdata; 351 static unsigned long required_kernelcore_percent __initdata; 352 static unsigned long required_movablecore __initdata; 353 static unsigned long required_movablecore_percent __initdata; 354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 355 static bool mirrored_kernelcore __meminitdata; 356 357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 358 int movable_zone; 359 EXPORT_SYMBOL(movable_zone); 360 361 #if MAX_NUMNODES > 1 362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 363 unsigned int nr_online_nodes __read_mostly = 1; 364 EXPORT_SYMBOL(nr_node_ids); 365 EXPORT_SYMBOL(nr_online_nodes); 366 #endif 367 368 int page_group_by_mobility_disabled __read_mostly; 369 370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 371 /* 372 * During boot we initialize deferred pages on-demand, as needed, but once 373 * page_alloc_init_late() has finished, the deferred pages are all initialized, 374 * and we can permanently disable that path. 375 */ 376 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 377 378 /* 379 * Calling kasan_poison_pages() only after deferred memory initialization 380 * has completed. Poisoning pages during deferred memory init will greatly 381 * lengthen the process and cause problem in large memory systems as the 382 * deferred pages initialization is done with interrupt disabled. 383 * 384 * Assuming that there will be no reference to those newly initialized 385 * pages before they are ever allocated, this should have no effect on 386 * KASAN memory tracking as the poison will be properly inserted at page 387 * allocation time. The only corner case is when pages are allocated by 388 * on-demand allocation and then freed again before the deferred pages 389 * initialization is done, but this is not likely to happen. 390 */ 391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 392 { 393 return static_branch_unlikely(&deferred_pages) || 394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 395 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 396 PageSkipKASanPoison(page); 397 } 398 399 /* Returns true if the struct page for the pfn is uninitialised */ 400 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 401 { 402 int nid = early_pfn_to_nid(pfn); 403 404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 405 return true; 406 407 return false; 408 } 409 410 /* 411 * Returns true when the remaining initialisation should be deferred until 412 * later in the boot cycle when it can be parallelised. 413 */ 414 static bool __meminit 415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 416 { 417 static unsigned long prev_end_pfn, nr_initialised; 418 419 /* 420 * prev_end_pfn static that contains the end of previous zone 421 * No need to protect because called very early in boot before smp_init. 422 */ 423 if (prev_end_pfn != end_pfn) { 424 prev_end_pfn = end_pfn; 425 nr_initialised = 0; 426 } 427 428 /* Always populate low zones for address-constrained allocations */ 429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 430 return false; 431 432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 433 return true; 434 /* 435 * We start only with one section of pages, more pages are added as 436 * needed until the rest of deferred pages are initialized. 437 */ 438 nr_initialised++; 439 if ((nr_initialised > PAGES_PER_SECTION) && 440 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 441 NODE_DATA(nid)->first_deferred_pfn = pfn; 442 return true; 443 } 444 return false; 445 } 446 #else 447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 448 { 449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 450 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 451 PageSkipKASanPoison(page); 452 } 453 454 static inline bool early_page_uninitialised(unsigned long pfn) 455 { 456 return false; 457 } 458 459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 460 { 461 return false; 462 } 463 #endif 464 465 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 466 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 467 unsigned long pfn) 468 { 469 #ifdef CONFIG_SPARSEMEM 470 return section_to_usemap(__pfn_to_section(pfn)); 471 #else 472 return page_zone(page)->pageblock_flags; 473 #endif /* CONFIG_SPARSEMEM */ 474 } 475 476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 477 { 478 #ifdef CONFIG_SPARSEMEM 479 pfn &= (PAGES_PER_SECTION-1); 480 #else 481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 482 #endif /* CONFIG_SPARSEMEM */ 483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 484 } 485 486 static __always_inline 487 unsigned long __get_pfnblock_flags_mask(const struct page *page, 488 unsigned long pfn, 489 unsigned long mask) 490 { 491 unsigned long *bitmap; 492 unsigned long bitidx, word_bitidx; 493 unsigned long word; 494 495 bitmap = get_pageblock_bitmap(page, pfn); 496 bitidx = pfn_to_bitidx(page, pfn); 497 word_bitidx = bitidx / BITS_PER_LONG; 498 bitidx &= (BITS_PER_LONG-1); 499 500 word = bitmap[word_bitidx]; 501 return (word >> bitidx) & mask; 502 } 503 504 /** 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 506 * @page: The page within the block of interest 507 * @pfn: The target page frame number 508 * @mask: mask of bits that the caller is interested in 509 * 510 * Return: pageblock_bits flags 511 */ 512 unsigned long get_pfnblock_flags_mask(const struct page *page, 513 unsigned long pfn, unsigned long mask) 514 { 515 return __get_pfnblock_flags_mask(page, pfn, mask); 516 } 517 518 static __always_inline int get_pfnblock_migratetype(const struct page *page, 519 unsigned long pfn) 520 { 521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 522 } 523 524 /** 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 526 * @page: The page within the block of interest 527 * @flags: The flags to set 528 * @pfn: The target page frame number 529 * @mask: mask of bits that the caller is interested in 530 */ 531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 532 unsigned long pfn, 533 unsigned long mask) 534 { 535 unsigned long *bitmap; 536 unsigned long bitidx, word_bitidx; 537 unsigned long old_word, word; 538 539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 541 542 bitmap = get_pageblock_bitmap(page, pfn); 543 bitidx = pfn_to_bitidx(page, pfn); 544 word_bitidx = bitidx / BITS_PER_LONG; 545 bitidx &= (BITS_PER_LONG-1); 546 547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 548 549 mask <<= bitidx; 550 flags <<= bitidx; 551 552 word = READ_ONCE(bitmap[word_bitidx]); 553 for (;;) { 554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 555 if (word == old_word) 556 break; 557 word = old_word; 558 } 559 } 560 561 void set_pageblock_migratetype(struct page *page, int migratetype) 562 { 563 if (unlikely(page_group_by_mobility_disabled && 564 migratetype < MIGRATE_PCPTYPES)) 565 migratetype = MIGRATE_UNMOVABLE; 566 567 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 568 page_to_pfn(page), MIGRATETYPE_MASK); 569 } 570 571 #ifdef CONFIG_DEBUG_VM 572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 573 { 574 int ret = 0; 575 unsigned seq; 576 unsigned long pfn = page_to_pfn(page); 577 unsigned long sp, start_pfn; 578 579 do { 580 seq = zone_span_seqbegin(zone); 581 start_pfn = zone->zone_start_pfn; 582 sp = zone->spanned_pages; 583 if (!zone_spans_pfn(zone, pfn)) 584 ret = 1; 585 } while (zone_span_seqretry(zone, seq)); 586 587 if (ret) 588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 589 pfn, zone_to_nid(zone), zone->name, 590 start_pfn, start_pfn + sp); 591 592 return ret; 593 } 594 595 static int page_is_consistent(struct zone *zone, struct page *page) 596 { 597 if (zone != page_zone(page)) 598 return 0; 599 600 return 1; 601 } 602 /* 603 * Temporary debugging check for pages not lying within a given zone. 604 */ 605 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 if (page_outside_zone_boundaries(zone, page)) 608 return 1; 609 if (!page_is_consistent(zone, page)) 610 return 1; 611 612 return 0; 613 } 614 #else 615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 616 { 617 return 0; 618 } 619 #endif 620 621 static void bad_page(struct page *page, const char *reason) 622 { 623 static unsigned long resume; 624 static unsigned long nr_shown; 625 static unsigned long nr_unshown; 626 627 /* 628 * Allow a burst of 60 reports, then keep quiet for that minute; 629 * or allow a steady drip of one report per second. 630 */ 631 if (nr_shown == 60) { 632 if (time_before(jiffies, resume)) { 633 nr_unshown++; 634 goto out; 635 } 636 if (nr_unshown) { 637 pr_alert( 638 "BUG: Bad page state: %lu messages suppressed\n", 639 nr_unshown); 640 nr_unshown = 0; 641 } 642 nr_shown = 0; 643 } 644 if (nr_shown++ == 0) 645 resume = jiffies + 60 * HZ; 646 647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 648 current->comm, page_to_pfn(page)); 649 dump_page(page, reason); 650 651 print_modules(); 652 dump_stack(); 653 out: 654 /* Leave bad fields for debug, except PageBuddy could make trouble */ 655 page_mapcount_reset(page); /* remove PageBuddy */ 656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 657 } 658 659 static inline unsigned int order_to_pindex(int migratetype, int order) 660 { 661 int base = order; 662 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 if (order > PAGE_ALLOC_COSTLY_ORDER) { 665 VM_BUG_ON(order != pageblock_order); 666 base = PAGE_ALLOC_COSTLY_ORDER + 1; 667 } 668 #else 669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 670 #endif 671 672 return (MIGRATE_PCPTYPES * base) + migratetype; 673 } 674 675 static inline int pindex_to_order(unsigned int pindex) 676 { 677 int order = pindex / MIGRATE_PCPTYPES; 678 679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 680 if (order > PAGE_ALLOC_COSTLY_ORDER) 681 order = pageblock_order; 682 #else 683 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 684 #endif 685 686 return order; 687 } 688 689 static inline bool pcp_allowed_order(unsigned int order) 690 { 691 if (order <= PAGE_ALLOC_COSTLY_ORDER) 692 return true; 693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 694 if (order == pageblock_order) 695 return true; 696 #endif 697 return false; 698 } 699 700 static inline void free_the_page(struct page *page, unsigned int order) 701 { 702 if (pcp_allowed_order(order)) /* Via pcp? */ 703 free_unref_page(page, order); 704 else 705 __free_pages_ok(page, order, FPI_NONE); 706 } 707 708 /* 709 * Higher-order pages are called "compound pages". They are structured thusly: 710 * 711 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 712 * 713 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 714 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 715 * 716 * The first tail page's ->compound_dtor holds the offset in array of compound 717 * page destructors. See compound_page_dtors. 718 * 719 * The first tail page's ->compound_order holds the order of allocation. 720 * This usage means that zero-order pages may not be compound. 721 */ 722 723 void free_compound_page(struct page *page) 724 { 725 mem_cgroup_uncharge(page_folio(page)); 726 free_the_page(page, compound_order(page)); 727 } 728 729 void prep_compound_page(struct page *page, unsigned int order) 730 { 731 int i; 732 int nr_pages = 1 << order; 733 734 __SetPageHead(page); 735 for (i = 1; i < nr_pages; i++) { 736 struct page *p = page + i; 737 p->mapping = TAIL_MAPPING; 738 set_compound_head(p, page); 739 } 740 741 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 742 set_compound_order(page, order); 743 atomic_set(compound_mapcount_ptr(page), -1); 744 if (hpage_pincount_available(page)) 745 atomic_set(compound_pincount_ptr(page), 0); 746 } 747 748 #ifdef CONFIG_DEBUG_PAGEALLOC 749 unsigned int _debug_guardpage_minorder; 750 751 bool _debug_pagealloc_enabled_early __read_mostly 752 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 753 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 754 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 755 EXPORT_SYMBOL(_debug_pagealloc_enabled); 756 757 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 758 759 static int __init early_debug_pagealloc(char *buf) 760 { 761 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 762 } 763 early_param("debug_pagealloc", early_debug_pagealloc); 764 765 static int __init debug_guardpage_minorder_setup(char *buf) 766 { 767 unsigned long res; 768 769 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 770 pr_err("Bad debug_guardpage_minorder value\n"); 771 return 0; 772 } 773 _debug_guardpage_minorder = res; 774 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 775 return 0; 776 } 777 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 778 779 static inline bool set_page_guard(struct zone *zone, struct page *page, 780 unsigned int order, int migratetype) 781 { 782 if (!debug_guardpage_enabled()) 783 return false; 784 785 if (order >= debug_guardpage_minorder()) 786 return false; 787 788 __SetPageGuard(page); 789 INIT_LIST_HEAD(&page->lru); 790 set_page_private(page, order); 791 /* Guard pages are not available for any usage */ 792 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 793 794 return true; 795 } 796 797 static inline void clear_page_guard(struct zone *zone, struct page *page, 798 unsigned int order, int migratetype) 799 { 800 if (!debug_guardpage_enabled()) 801 return; 802 803 __ClearPageGuard(page); 804 805 set_page_private(page, 0); 806 if (!is_migrate_isolate(migratetype)) 807 __mod_zone_freepage_state(zone, (1 << order), migratetype); 808 } 809 #else 810 static inline bool set_page_guard(struct zone *zone, struct page *page, 811 unsigned int order, int migratetype) { return false; } 812 static inline void clear_page_guard(struct zone *zone, struct page *page, 813 unsigned int order, int migratetype) {} 814 #endif 815 816 /* 817 * Enable static keys related to various memory debugging and hardening options. 818 * Some override others, and depend on early params that are evaluated in the 819 * order of appearance. So we need to first gather the full picture of what was 820 * enabled, and then make decisions. 821 */ 822 void init_mem_debugging_and_hardening(void) 823 { 824 bool page_poisoning_requested = false; 825 826 #ifdef CONFIG_PAGE_POISONING 827 /* 828 * Page poisoning is debug page alloc for some arches. If 829 * either of those options are enabled, enable poisoning. 830 */ 831 if (page_poisoning_enabled() || 832 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 833 debug_pagealloc_enabled())) { 834 static_branch_enable(&_page_poisoning_enabled); 835 page_poisoning_requested = true; 836 } 837 #endif 838 839 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 840 page_poisoning_requested) { 841 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 842 "will take precedence over init_on_alloc and init_on_free\n"); 843 _init_on_alloc_enabled_early = false; 844 _init_on_free_enabled_early = false; 845 } 846 847 if (_init_on_alloc_enabled_early) 848 static_branch_enable(&init_on_alloc); 849 else 850 static_branch_disable(&init_on_alloc); 851 852 if (_init_on_free_enabled_early) 853 static_branch_enable(&init_on_free); 854 else 855 static_branch_disable(&init_on_free); 856 857 #ifdef CONFIG_DEBUG_PAGEALLOC 858 if (!debug_pagealloc_enabled()) 859 return; 860 861 static_branch_enable(&_debug_pagealloc_enabled); 862 863 if (!debug_guardpage_minorder()) 864 return; 865 866 static_branch_enable(&_debug_guardpage_enabled); 867 #endif 868 } 869 870 static inline void set_buddy_order(struct page *page, unsigned int order) 871 { 872 set_page_private(page, order); 873 __SetPageBuddy(page); 874 } 875 876 /* 877 * This function checks whether a page is free && is the buddy 878 * we can coalesce a page and its buddy if 879 * (a) the buddy is not in a hole (check before calling!) && 880 * (b) the buddy is in the buddy system && 881 * (c) a page and its buddy have the same order && 882 * (d) a page and its buddy are in the same zone. 883 * 884 * For recording whether a page is in the buddy system, we set PageBuddy. 885 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 886 * 887 * For recording page's order, we use page_private(page). 888 */ 889 static inline bool page_is_buddy(struct page *page, struct page *buddy, 890 unsigned int order) 891 { 892 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 893 return false; 894 895 if (buddy_order(buddy) != order) 896 return false; 897 898 /* 899 * zone check is done late to avoid uselessly calculating 900 * zone/node ids for pages that could never merge. 901 */ 902 if (page_zone_id(page) != page_zone_id(buddy)) 903 return false; 904 905 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 906 907 return true; 908 } 909 910 #ifdef CONFIG_COMPACTION 911 static inline struct capture_control *task_capc(struct zone *zone) 912 { 913 struct capture_control *capc = current->capture_control; 914 915 return unlikely(capc) && 916 !(current->flags & PF_KTHREAD) && 917 !capc->page && 918 capc->cc->zone == zone ? capc : NULL; 919 } 920 921 static inline bool 922 compaction_capture(struct capture_control *capc, struct page *page, 923 int order, int migratetype) 924 { 925 if (!capc || order != capc->cc->order) 926 return false; 927 928 /* Do not accidentally pollute CMA or isolated regions*/ 929 if (is_migrate_cma(migratetype) || 930 is_migrate_isolate(migratetype)) 931 return false; 932 933 /* 934 * Do not let lower order allocations pollute a movable pageblock. 935 * This might let an unmovable request use a reclaimable pageblock 936 * and vice-versa but no more than normal fallback logic which can 937 * have trouble finding a high-order free page. 938 */ 939 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 940 return false; 941 942 capc->page = page; 943 return true; 944 } 945 946 #else 947 static inline struct capture_control *task_capc(struct zone *zone) 948 { 949 return NULL; 950 } 951 952 static inline bool 953 compaction_capture(struct capture_control *capc, struct page *page, 954 int order, int migratetype) 955 { 956 return false; 957 } 958 #endif /* CONFIG_COMPACTION */ 959 960 /* Used for pages not on another list */ 961 static inline void add_to_free_list(struct page *page, struct zone *zone, 962 unsigned int order, int migratetype) 963 { 964 struct free_area *area = &zone->free_area[order]; 965 966 list_add(&page->lru, &area->free_list[migratetype]); 967 area->nr_free++; 968 } 969 970 /* Used for pages not on another list */ 971 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 972 unsigned int order, int migratetype) 973 { 974 struct free_area *area = &zone->free_area[order]; 975 976 list_add_tail(&page->lru, &area->free_list[migratetype]); 977 area->nr_free++; 978 } 979 980 /* 981 * Used for pages which are on another list. Move the pages to the tail 982 * of the list - so the moved pages won't immediately be considered for 983 * allocation again (e.g., optimization for memory onlining). 984 */ 985 static inline void move_to_free_list(struct page *page, struct zone *zone, 986 unsigned int order, int migratetype) 987 { 988 struct free_area *area = &zone->free_area[order]; 989 990 list_move_tail(&page->lru, &area->free_list[migratetype]); 991 } 992 993 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 994 unsigned int order) 995 { 996 /* clear reported state and update reported page count */ 997 if (page_reported(page)) 998 __ClearPageReported(page); 999 1000 list_del(&page->lru); 1001 __ClearPageBuddy(page); 1002 set_page_private(page, 0); 1003 zone->free_area[order].nr_free--; 1004 } 1005 1006 /* 1007 * If this is not the largest possible page, check if the buddy 1008 * of the next-highest order is free. If it is, it's possible 1009 * that pages are being freed that will coalesce soon. In case, 1010 * that is happening, add the free page to the tail of the list 1011 * so it's less likely to be used soon and more likely to be merged 1012 * as a higher order page 1013 */ 1014 static inline bool 1015 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1016 struct page *page, unsigned int order) 1017 { 1018 struct page *higher_page, *higher_buddy; 1019 unsigned long combined_pfn; 1020 1021 if (order >= MAX_ORDER - 2) 1022 return false; 1023 1024 combined_pfn = buddy_pfn & pfn; 1025 higher_page = page + (combined_pfn - pfn); 1026 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1027 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1028 1029 return page_is_buddy(higher_page, higher_buddy, order + 1); 1030 } 1031 1032 /* 1033 * Freeing function for a buddy system allocator. 1034 * 1035 * The concept of a buddy system is to maintain direct-mapped table 1036 * (containing bit values) for memory blocks of various "orders". 1037 * The bottom level table contains the map for the smallest allocatable 1038 * units of memory (here, pages), and each level above it describes 1039 * pairs of units from the levels below, hence, "buddies". 1040 * At a high level, all that happens here is marking the table entry 1041 * at the bottom level available, and propagating the changes upward 1042 * as necessary, plus some accounting needed to play nicely with other 1043 * parts of the VM system. 1044 * At each level, we keep a list of pages, which are heads of continuous 1045 * free pages of length of (1 << order) and marked with PageBuddy. 1046 * Page's order is recorded in page_private(page) field. 1047 * So when we are allocating or freeing one, we can derive the state of the 1048 * other. That is, if we allocate a small block, and both were 1049 * free, the remainder of the region must be split into blocks. 1050 * If a block is freed, and its buddy is also free, then this 1051 * triggers coalescing into a block of larger size. 1052 * 1053 * -- nyc 1054 */ 1055 1056 static inline void __free_one_page(struct page *page, 1057 unsigned long pfn, 1058 struct zone *zone, unsigned int order, 1059 int migratetype, fpi_t fpi_flags) 1060 { 1061 struct capture_control *capc = task_capc(zone); 1062 unsigned long buddy_pfn; 1063 unsigned long combined_pfn; 1064 unsigned int max_order; 1065 struct page *buddy; 1066 bool to_tail; 1067 1068 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1069 1070 VM_BUG_ON(!zone_is_initialized(zone)); 1071 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1072 1073 VM_BUG_ON(migratetype == -1); 1074 if (likely(!is_migrate_isolate(migratetype))) 1075 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1076 1077 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1078 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1079 1080 continue_merging: 1081 while (order < max_order) { 1082 if (compaction_capture(capc, page, order, migratetype)) { 1083 __mod_zone_freepage_state(zone, -(1 << order), 1084 migratetype); 1085 return; 1086 } 1087 buddy_pfn = __find_buddy_pfn(pfn, order); 1088 buddy = page + (buddy_pfn - pfn); 1089 1090 if (!page_is_buddy(page, buddy, order)) 1091 goto done_merging; 1092 /* 1093 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1094 * merge with it and move up one order. 1095 */ 1096 if (page_is_guard(buddy)) 1097 clear_page_guard(zone, buddy, order, migratetype); 1098 else 1099 del_page_from_free_list(buddy, zone, order); 1100 combined_pfn = buddy_pfn & pfn; 1101 page = page + (combined_pfn - pfn); 1102 pfn = combined_pfn; 1103 order++; 1104 } 1105 if (order < MAX_ORDER - 1) { 1106 /* If we are here, it means order is >= pageblock_order. 1107 * We want to prevent merge between freepages on isolate 1108 * pageblock and normal pageblock. Without this, pageblock 1109 * isolation could cause incorrect freepage or CMA accounting. 1110 * 1111 * We don't want to hit this code for the more frequent 1112 * low-order merging. 1113 */ 1114 if (unlikely(has_isolate_pageblock(zone))) { 1115 int buddy_mt; 1116 1117 buddy_pfn = __find_buddy_pfn(pfn, order); 1118 buddy = page + (buddy_pfn - pfn); 1119 buddy_mt = get_pageblock_migratetype(buddy); 1120 1121 if (migratetype != buddy_mt 1122 && (is_migrate_isolate(migratetype) || 1123 is_migrate_isolate(buddy_mt))) 1124 goto done_merging; 1125 } 1126 max_order = order + 1; 1127 goto continue_merging; 1128 } 1129 1130 done_merging: 1131 set_buddy_order(page, order); 1132 1133 if (fpi_flags & FPI_TO_TAIL) 1134 to_tail = true; 1135 else if (is_shuffle_order(order)) 1136 to_tail = shuffle_pick_tail(); 1137 else 1138 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1139 1140 if (to_tail) 1141 add_to_free_list_tail(page, zone, order, migratetype); 1142 else 1143 add_to_free_list(page, zone, order, migratetype); 1144 1145 /* Notify page reporting subsystem of freed page */ 1146 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1147 page_reporting_notify_free(order); 1148 } 1149 1150 /* 1151 * A bad page could be due to a number of fields. Instead of multiple branches, 1152 * try and check multiple fields with one check. The caller must do a detailed 1153 * check if necessary. 1154 */ 1155 static inline bool page_expected_state(struct page *page, 1156 unsigned long check_flags) 1157 { 1158 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1159 return false; 1160 1161 if (unlikely((unsigned long)page->mapping | 1162 page_ref_count(page) | 1163 #ifdef CONFIG_MEMCG 1164 page->memcg_data | 1165 #endif 1166 (page->flags & check_flags))) 1167 return false; 1168 1169 return true; 1170 } 1171 1172 static const char *page_bad_reason(struct page *page, unsigned long flags) 1173 { 1174 const char *bad_reason = NULL; 1175 1176 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1177 bad_reason = "nonzero mapcount"; 1178 if (unlikely(page->mapping != NULL)) 1179 bad_reason = "non-NULL mapping"; 1180 if (unlikely(page_ref_count(page) != 0)) 1181 bad_reason = "nonzero _refcount"; 1182 if (unlikely(page->flags & flags)) { 1183 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1184 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1185 else 1186 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1187 } 1188 #ifdef CONFIG_MEMCG 1189 if (unlikely(page->memcg_data)) 1190 bad_reason = "page still charged to cgroup"; 1191 #endif 1192 return bad_reason; 1193 } 1194 1195 static void check_free_page_bad(struct page *page) 1196 { 1197 bad_page(page, 1198 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1199 } 1200 1201 static inline int check_free_page(struct page *page) 1202 { 1203 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1204 return 0; 1205 1206 /* Something has gone sideways, find it */ 1207 check_free_page_bad(page); 1208 return 1; 1209 } 1210 1211 static int free_tail_pages_check(struct page *head_page, struct page *page) 1212 { 1213 int ret = 1; 1214 1215 /* 1216 * We rely page->lru.next never has bit 0 set, unless the page 1217 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1218 */ 1219 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1220 1221 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1222 ret = 0; 1223 goto out; 1224 } 1225 switch (page - head_page) { 1226 case 1: 1227 /* the first tail page: ->mapping may be compound_mapcount() */ 1228 if (unlikely(compound_mapcount(page))) { 1229 bad_page(page, "nonzero compound_mapcount"); 1230 goto out; 1231 } 1232 break; 1233 case 2: 1234 /* 1235 * the second tail page: ->mapping is 1236 * deferred_list.next -- ignore value. 1237 */ 1238 break; 1239 default: 1240 if (page->mapping != TAIL_MAPPING) { 1241 bad_page(page, "corrupted mapping in tail page"); 1242 goto out; 1243 } 1244 break; 1245 } 1246 if (unlikely(!PageTail(page))) { 1247 bad_page(page, "PageTail not set"); 1248 goto out; 1249 } 1250 if (unlikely(compound_head(page) != head_page)) { 1251 bad_page(page, "compound_head not consistent"); 1252 goto out; 1253 } 1254 ret = 0; 1255 out: 1256 page->mapping = NULL; 1257 clear_compound_head(page); 1258 return ret; 1259 } 1260 1261 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1262 { 1263 int i; 1264 1265 if (zero_tags) { 1266 for (i = 0; i < numpages; i++) 1267 tag_clear_highpage(page + i); 1268 return; 1269 } 1270 1271 /* s390's use of memset() could override KASAN redzones. */ 1272 kasan_disable_current(); 1273 for (i = 0; i < numpages; i++) { 1274 u8 tag = page_kasan_tag(page + i); 1275 page_kasan_tag_reset(page + i); 1276 clear_highpage(page + i); 1277 page_kasan_tag_set(page + i, tag); 1278 } 1279 kasan_enable_current(); 1280 } 1281 1282 static __always_inline bool free_pages_prepare(struct page *page, 1283 unsigned int order, bool check_free, fpi_t fpi_flags) 1284 { 1285 int bad = 0; 1286 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1287 1288 VM_BUG_ON_PAGE(PageTail(page), page); 1289 1290 trace_mm_page_free(page, order); 1291 1292 if (unlikely(PageHWPoison(page)) && !order) { 1293 /* 1294 * Do not let hwpoison pages hit pcplists/buddy 1295 * Untie memcg state and reset page's owner 1296 */ 1297 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1298 __memcg_kmem_uncharge_page(page, order); 1299 reset_page_owner(page, order); 1300 return false; 1301 } 1302 1303 /* 1304 * Check tail pages before head page information is cleared to 1305 * avoid checking PageCompound for order-0 pages. 1306 */ 1307 if (unlikely(order)) { 1308 bool compound = PageCompound(page); 1309 int i; 1310 1311 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1312 1313 if (compound) { 1314 ClearPageDoubleMap(page); 1315 ClearPageHasHWPoisoned(page); 1316 } 1317 for (i = 1; i < (1 << order); i++) { 1318 if (compound) 1319 bad += free_tail_pages_check(page, page + i); 1320 if (unlikely(check_free_page(page + i))) { 1321 bad++; 1322 continue; 1323 } 1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1325 } 1326 } 1327 if (PageMappingFlags(page)) 1328 page->mapping = NULL; 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1330 __memcg_kmem_uncharge_page(page, order); 1331 if (check_free) 1332 bad += check_free_page(page); 1333 if (bad) 1334 return false; 1335 1336 page_cpupid_reset_last(page); 1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1338 reset_page_owner(page, order); 1339 1340 if (!PageHighMem(page)) { 1341 debug_check_no_locks_freed(page_address(page), 1342 PAGE_SIZE << order); 1343 debug_check_no_obj_freed(page_address(page), 1344 PAGE_SIZE << order); 1345 } 1346 1347 kernel_poison_pages(page, 1 << order); 1348 1349 /* 1350 * As memory initialization might be integrated into KASAN, 1351 * kasan_free_pages and kernel_init_free_pages must be 1352 * kept together to avoid discrepancies in behavior. 1353 * 1354 * With hardware tag-based KASAN, memory tags must be set before the 1355 * page becomes unavailable via debug_pagealloc or arch_free_page. 1356 */ 1357 if (kasan_has_integrated_init()) { 1358 if (!skip_kasan_poison) 1359 kasan_free_pages(page, order); 1360 } else { 1361 bool init = want_init_on_free(); 1362 1363 if (init) 1364 kernel_init_free_pages(page, 1 << order, false); 1365 if (!skip_kasan_poison) 1366 kasan_poison_pages(page, order, init); 1367 } 1368 1369 /* 1370 * arch_free_page() can make the page's contents inaccessible. s390 1371 * does this. So nothing which can access the page's contents should 1372 * happen after this. 1373 */ 1374 arch_free_page(page, order); 1375 1376 debug_pagealloc_unmap_pages(page, 1 << order); 1377 1378 return true; 1379 } 1380 1381 #ifdef CONFIG_DEBUG_VM 1382 /* 1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1385 * moved from pcp lists to free lists. 1386 */ 1387 static bool free_pcp_prepare(struct page *page, unsigned int order) 1388 { 1389 return free_pages_prepare(page, order, true, FPI_NONE); 1390 } 1391 1392 static bool bulkfree_pcp_prepare(struct page *page) 1393 { 1394 if (debug_pagealloc_enabled_static()) 1395 return check_free_page(page); 1396 else 1397 return false; 1398 } 1399 #else 1400 /* 1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1402 * moving from pcp lists to free list in order to reduce overhead. With 1403 * debug_pagealloc enabled, they are checked also immediately when being freed 1404 * to the pcp lists. 1405 */ 1406 static bool free_pcp_prepare(struct page *page, unsigned int order) 1407 { 1408 if (debug_pagealloc_enabled_static()) 1409 return free_pages_prepare(page, order, true, FPI_NONE); 1410 else 1411 return free_pages_prepare(page, order, false, FPI_NONE); 1412 } 1413 1414 static bool bulkfree_pcp_prepare(struct page *page) 1415 { 1416 return check_free_page(page); 1417 } 1418 #endif /* CONFIG_DEBUG_VM */ 1419 1420 static inline void prefetch_buddy(struct page *page) 1421 { 1422 unsigned long pfn = page_to_pfn(page); 1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1424 struct page *buddy = page + (buddy_pfn - pfn); 1425 1426 prefetch(buddy); 1427 } 1428 1429 /* 1430 * Frees a number of pages from the PCP lists 1431 * Assumes all pages on list are in same zone. 1432 * count is the number of pages to free. 1433 */ 1434 static void free_pcppages_bulk(struct zone *zone, int count, 1435 struct per_cpu_pages *pcp) 1436 { 1437 int pindex = 0; 1438 int batch_free = 0; 1439 int nr_freed = 0; 1440 unsigned int order; 1441 int prefetch_nr = READ_ONCE(pcp->batch); 1442 bool isolated_pageblocks; 1443 struct page *page, *tmp; 1444 LIST_HEAD(head); 1445 1446 /* 1447 * Ensure proper count is passed which otherwise would stuck in the 1448 * below while (list_empty(list)) loop. 1449 */ 1450 count = min(pcp->count, count); 1451 while (count > 0) { 1452 struct list_head *list; 1453 1454 /* 1455 * Remove pages from lists in a round-robin fashion. A 1456 * batch_free count is maintained that is incremented when an 1457 * empty list is encountered. This is so more pages are freed 1458 * off fuller lists instead of spinning excessively around empty 1459 * lists 1460 */ 1461 do { 1462 batch_free++; 1463 if (++pindex == NR_PCP_LISTS) 1464 pindex = 0; 1465 list = &pcp->lists[pindex]; 1466 } while (list_empty(list)); 1467 1468 /* This is the only non-empty list. Free them all. */ 1469 if (batch_free == NR_PCP_LISTS) 1470 batch_free = count; 1471 1472 order = pindex_to_order(pindex); 1473 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1474 do { 1475 page = list_last_entry(list, struct page, lru); 1476 /* must delete to avoid corrupting pcp list */ 1477 list_del(&page->lru); 1478 nr_freed += 1 << order; 1479 count -= 1 << order; 1480 1481 if (bulkfree_pcp_prepare(page)) 1482 continue; 1483 1484 /* Encode order with the migratetype */ 1485 page->index <<= NR_PCP_ORDER_WIDTH; 1486 page->index |= order; 1487 1488 list_add_tail(&page->lru, &head); 1489 1490 /* 1491 * We are going to put the page back to the global 1492 * pool, prefetch its buddy to speed up later access 1493 * under zone->lock. It is believed the overhead of 1494 * an additional test and calculating buddy_pfn here 1495 * can be offset by reduced memory latency later. To 1496 * avoid excessive prefetching due to large count, only 1497 * prefetch buddy for the first pcp->batch nr of pages. 1498 */ 1499 if (prefetch_nr) { 1500 prefetch_buddy(page); 1501 prefetch_nr--; 1502 } 1503 } while (count > 0 && --batch_free && !list_empty(list)); 1504 } 1505 pcp->count -= nr_freed; 1506 1507 /* 1508 * local_lock_irq held so equivalent to spin_lock_irqsave for 1509 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1510 */ 1511 spin_lock(&zone->lock); 1512 isolated_pageblocks = has_isolate_pageblock(zone); 1513 1514 /* 1515 * Use safe version since after __free_one_page(), 1516 * page->lru.next will not point to original list. 1517 */ 1518 list_for_each_entry_safe(page, tmp, &head, lru) { 1519 int mt = get_pcppage_migratetype(page); 1520 1521 /* mt has been encoded with the order (see above) */ 1522 order = mt & NR_PCP_ORDER_MASK; 1523 mt >>= NR_PCP_ORDER_WIDTH; 1524 1525 /* MIGRATE_ISOLATE page should not go to pcplists */ 1526 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1527 /* Pageblock could have been isolated meanwhile */ 1528 if (unlikely(isolated_pageblocks)) 1529 mt = get_pageblock_migratetype(page); 1530 1531 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1532 trace_mm_page_pcpu_drain(page, order, mt); 1533 } 1534 spin_unlock(&zone->lock); 1535 } 1536 1537 static void free_one_page(struct zone *zone, 1538 struct page *page, unsigned long pfn, 1539 unsigned int order, 1540 int migratetype, fpi_t fpi_flags) 1541 { 1542 unsigned long flags; 1543 1544 spin_lock_irqsave(&zone->lock, flags); 1545 if (unlikely(has_isolate_pageblock(zone) || 1546 is_migrate_isolate(migratetype))) { 1547 migratetype = get_pfnblock_migratetype(page, pfn); 1548 } 1549 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1550 spin_unlock_irqrestore(&zone->lock, flags); 1551 } 1552 1553 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1554 unsigned long zone, int nid) 1555 { 1556 mm_zero_struct_page(page); 1557 set_page_links(page, zone, nid, pfn); 1558 init_page_count(page); 1559 page_mapcount_reset(page); 1560 page_cpupid_reset_last(page); 1561 page_kasan_tag_reset(page); 1562 1563 INIT_LIST_HEAD(&page->lru); 1564 #ifdef WANT_PAGE_VIRTUAL 1565 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1566 if (!is_highmem_idx(zone)) 1567 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1568 #endif 1569 } 1570 1571 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1572 static void __meminit init_reserved_page(unsigned long pfn) 1573 { 1574 pg_data_t *pgdat; 1575 int nid, zid; 1576 1577 if (!early_page_uninitialised(pfn)) 1578 return; 1579 1580 nid = early_pfn_to_nid(pfn); 1581 pgdat = NODE_DATA(nid); 1582 1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1584 struct zone *zone = &pgdat->node_zones[zid]; 1585 1586 if (zone_spans_pfn(zone, pfn)) 1587 break; 1588 } 1589 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1590 } 1591 #else 1592 static inline void init_reserved_page(unsigned long pfn) 1593 { 1594 } 1595 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1596 1597 /* 1598 * Initialised pages do not have PageReserved set. This function is 1599 * called for each range allocated by the bootmem allocator and 1600 * marks the pages PageReserved. The remaining valid pages are later 1601 * sent to the buddy page allocator. 1602 */ 1603 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1604 { 1605 unsigned long start_pfn = PFN_DOWN(start); 1606 unsigned long end_pfn = PFN_UP(end); 1607 1608 for (; start_pfn < end_pfn; start_pfn++) { 1609 if (pfn_valid(start_pfn)) { 1610 struct page *page = pfn_to_page(start_pfn); 1611 1612 init_reserved_page(start_pfn); 1613 1614 /* Avoid false-positive PageTail() */ 1615 INIT_LIST_HEAD(&page->lru); 1616 1617 /* 1618 * no need for atomic set_bit because the struct 1619 * page is not visible yet so nobody should 1620 * access it yet. 1621 */ 1622 __SetPageReserved(page); 1623 } 1624 } 1625 } 1626 1627 static void __free_pages_ok(struct page *page, unsigned int order, 1628 fpi_t fpi_flags) 1629 { 1630 unsigned long flags; 1631 int migratetype; 1632 unsigned long pfn = page_to_pfn(page); 1633 struct zone *zone = page_zone(page); 1634 1635 if (!free_pages_prepare(page, order, true, fpi_flags)) 1636 return; 1637 1638 migratetype = get_pfnblock_migratetype(page, pfn); 1639 1640 spin_lock_irqsave(&zone->lock, flags); 1641 if (unlikely(has_isolate_pageblock(zone) || 1642 is_migrate_isolate(migratetype))) { 1643 migratetype = get_pfnblock_migratetype(page, pfn); 1644 } 1645 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1646 spin_unlock_irqrestore(&zone->lock, flags); 1647 1648 __count_vm_events(PGFREE, 1 << order); 1649 } 1650 1651 void __free_pages_core(struct page *page, unsigned int order) 1652 { 1653 unsigned int nr_pages = 1 << order; 1654 struct page *p = page; 1655 unsigned int loop; 1656 1657 /* 1658 * When initializing the memmap, __init_single_page() sets the refcount 1659 * of all pages to 1 ("allocated"/"not free"). We have to set the 1660 * refcount of all involved pages to 0. 1661 */ 1662 prefetchw(p); 1663 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1664 prefetchw(p + 1); 1665 __ClearPageReserved(p); 1666 set_page_count(p, 0); 1667 } 1668 __ClearPageReserved(p); 1669 set_page_count(p, 0); 1670 1671 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1672 1673 /* 1674 * Bypass PCP and place fresh pages right to the tail, primarily 1675 * relevant for memory onlining. 1676 */ 1677 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1678 } 1679 1680 #ifdef CONFIG_NUMA 1681 1682 /* 1683 * During memory init memblocks map pfns to nids. The search is expensive and 1684 * this caches recent lookups. The implementation of __early_pfn_to_nid 1685 * treats start/end as pfns. 1686 */ 1687 struct mminit_pfnnid_cache { 1688 unsigned long last_start; 1689 unsigned long last_end; 1690 int last_nid; 1691 }; 1692 1693 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1694 1695 /* 1696 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1697 */ 1698 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1699 struct mminit_pfnnid_cache *state) 1700 { 1701 unsigned long start_pfn, end_pfn; 1702 int nid; 1703 1704 if (state->last_start <= pfn && pfn < state->last_end) 1705 return state->last_nid; 1706 1707 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1708 if (nid != NUMA_NO_NODE) { 1709 state->last_start = start_pfn; 1710 state->last_end = end_pfn; 1711 state->last_nid = nid; 1712 } 1713 1714 return nid; 1715 } 1716 1717 int __meminit early_pfn_to_nid(unsigned long pfn) 1718 { 1719 static DEFINE_SPINLOCK(early_pfn_lock); 1720 int nid; 1721 1722 spin_lock(&early_pfn_lock); 1723 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1724 if (nid < 0) 1725 nid = first_online_node; 1726 spin_unlock(&early_pfn_lock); 1727 1728 return nid; 1729 } 1730 #endif /* CONFIG_NUMA */ 1731 1732 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1733 unsigned int order) 1734 { 1735 if (early_page_uninitialised(pfn)) 1736 return; 1737 __free_pages_core(page, order); 1738 } 1739 1740 /* 1741 * Check that the whole (or subset of) a pageblock given by the interval of 1742 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1743 * with the migration of free compaction scanner. 1744 * 1745 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1746 * 1747 * It's possible on some configurations to have a setup like node0 node1 node0 1748 * i.e. it's possible that all pages within a zones range of pages do not 1749 * belong to a single zone. We assume that a border between node0 and node1 1750 * can occur within a single pageblock, but not a node0 node1 node0 1751 * interleaving within a single pageblock. It is therefore sufficient to check 1752 * the first and last page of a pageblock and avoid checking each individual 1753 * page in a pageblock. 1754 */ 1755 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1756 unsigned long end_pfn, struct zone *zone) 1757 { 1758 struct page *start_page; 1759 struct page *end_page; 1760 1761 /* end_pfn is one past the range we are checking */ 1762 end_pfn--; 1763 1764 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1765 return NULL; 1766 1767 start_page = pfn_to_online_page(start_pfn); 1768 if (!start_page) 1769 return NULL; 1770 1771 if (page_zone(start_page) != zone) 1772 return NULL; 1773 1774 end_page = pfn_to_page(end_pfn); 1775 1776 /* This gives a shorter code than deriving page_zone(end_page) */ 1777 if (page_zone_id(start_page) != page_zone_id(end_page)) 1778 return NULL; 1779 1780 return start_page; 1781 } 1782 1783 void set_zone_contiguous(struct zone *zone) 1784 { 1785 unsigned long block_start_pfn = zone->zone_start_pfn; 1786 unsigned long block_end_pfn; 1787 1788 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1789 for (; block_start_pfn < zone_end_pfn(zone); 1790 block_start_pfn = block_end_pfn, 1791 block_end_pfn += pageblock_nr_pages) { 1792 1793 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1794 1795 if (!__pageblock_pfn_to_page(block_start_pfn, 1796 block_end_pfn, zone)) 1797 return; 1798 cond_resched(); 1799 } 1800 1801 /* We confirm that there is no hole */ 1802 zone->contiguous = true; 1803 } 1804 1805 void clear_zone_contiguous(struct zone *zone) 1806 { 1807 zone->contiguous = false; 1808 } 1809 1810 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1811 static void __init deferred_free_range(unsigned long pfn, 1812 unsigned long nr_pages) 1813 { 1814 struct page *page; 1815 unsigned long i; 1816 1817 if (!nr_pages) 1818 return; 1819 1820 page = pfn_to_page(pfn); 1821 1822 /* Free a large naturally-aligned chunk if possible */ 1823 if (nr_pages == pageblock_nr_pages && 1824 (pfn & (pageblock_nr_pages - 1)) == 0) { 1825 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1826 __free_pages_core(page, pageblock_order); 1827 return; 1828 } 1829 1830 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1831 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1832 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1833 __free_pages_core(page, 0); 1834 } 1835 } 1836 1837 /* Completion tracking for deferred_init_memmap() threads */ 1838 static atomic_t pgdat_init_n_undone __initdata; 1839 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1840 1841 static inline void __init pgdat_init_report_one_done(void) 1842 { 1843 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1844 complete(&pgdat_init_all_done_comp); 1845 } 1846 1847 /* 1848 * Returns true if page needs to be initialized or freed to buddy allocator. 1849 * 1850 * First we check if pfn is valid on architectures where it is possible to have 1851 * holes within pageblock_nr_pages. On systems where it is not possible, this 1852 * function is optimized out. 1853 * 1854 * Then, we check if a current large page is valid by only checking the validity 1855 * of the head pfn. 1856 */ 1857 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1858 { 1859 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1860 return false; 1861 return true; 1862 } 1863 1864 /* 1865 * Free pages to buddy allocator. Try to free aligned pages in 1866 * pageblock_nr_pages sizes. 1867 */ 1868 static void __init deferred_free_pages(unsigned long pfn, 1869 unsigned long end_pfn) 1870 { 1871 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1872 unsigned long nr_free = 0; 1873 1874 for (; pfn < end_pfn; pfn++) { 1875 if (!deferred_pfn_valid(pfn)) { 1876 deferred_free_range(pfn - nr_free, nr_free); 1877 nr_free = 0; 1878 } else if (!(pfn & nr_pgmask)) { 1879 deferred_free_range(pfn - nr_free, nr_free); 1880 nr_free = 1; 1881 } else { 1882 nr_free++; 1883 } 1884 } 1885 /* Free the last block of pages to allocator */ 1886 deferred_free_range(pfn - nr_free, nr_free); 1887 } 1888 1889 /* 1890 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1891 * by performing it only once every pageblock_nr_pages. 1892 * Return number of pages initialized. 1893 */ 1894 static unsigned long __init deferred_init_pages(struct zone *zone, 1895 unsigned long pfn, 1896 unsigned long end_pfn) 1897 { 1898 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1899 int nid = zone_to_nid(zone); 1900 unsigned long nr_pages = 0; 1901 int zid = zone_idx(zone); 1902 struct page *page = NULL; 1903 1904 for (; pfn < end_pfn; pfn++) { 1905 if (!deferred_pfn_valid(pfn)) { 1906 page = NULL; 1907 continue; 1908 } else if (!page || !(pfn & nr_pgmask)) { 1909 page = pfn_to_page(pfn); 1910 } else { 1911 page++; 1912 } 1913 __init_single_page(page, pfn, zid, nid); 1914 nr_pages++; 1915 } 1916 return (nr_pages); 1917 } 1918 1919 /* 1920 * This function is meant to pre-load the iterator for the zone init. 1921 * Specifically it walks through the ranges until we are caught up to the 1922 * first_init_pfn value and exits there. If we never encounter the value we 1923 * return false indicating there are no valid ranges left. 1924 */ 1925 static bool __init 1926 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1927 unsigned long *spfn, unsigned long *epfn, 1928 unsigned long first_init_pfn) 1929 { 1930 u64 j; 1931 1932 /* 1933 * Start out by walking through the ranges in this zone that have 1934 * already been initialized. We don't need to do anything with them 1935 * so we just need to flush them out of the system. 1936 */ 1937 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1938 if (*epfn <= first_init_pfn) 1939 continue; 1940 if (*spfn < first_init_pfn) 1941 *spfn = first_init_pfn; 1942 *i = j; 1943 return true; 1944 } 1945 1946 return false; 1947 } 1948 1949 /* 1950 * Initialize and free pages. We do it in two loops: first we initialize 1951 * struct page, then free to buddy allocator, because while we are 1952 * freeing pages we can access pages that are ahead (computing buddy 1953 * page in __free_one_page()). 1954 * 1955 * In order to try and keep some memory in the cache we have the loop 1956 * broken along max page order boundaries. This way we will not cause 1957 * any issues with the buddy page computation. 1958 */ 1959 static unsigned long __init 1960 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1961 unsigned long *end_pfn) 1962 { 1963 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1964 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1965 unsigned long nr_pages = 0; 1966 u64 j = *i; 1967 1968 /* First we loop through and initialize the page values */ 1969 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1970 unsigned long t; 1971 1972 if (mo_pfn <= *start_pfn) 1973 break; 1974 1975 t = min(mo_pfn, *end_pfn); 1976 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1977 1978 if (mo_pfn < *end_pfn) { 1979 *start_pfn = mo_pfn; 1980 break; 1981 } 1982 } 1983 1984 /* Reset values and now loop through freeing pages as needed */ 1985 swap(j, *i); 1986 1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1988 unsigned long t; 1989 1990 if (mo_pfn <= spfn) 1991 break; 1992 1993 t = min(mo_pfn, epfn); 1994 deferred_free_pages(spfn, t); 1995 1996 if (mo_pfn <= epfn) 1997 break; 1998 } 1999 2000 return nr_pages; 2001 } 2002 2003 static void __init 2004 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2005 void *arg) 2006 { 2007 unsigned long spfn, epfn; 2008 struct zone *zone = arg; 2009 u64 i; 2010 2011 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2012 2013 /* 2014 * Initialize and free pages in MAX_ORDER sized increments so that we 2015 * can avoid introducing any issues with the buddy allocator. 2016 */ 2017 while (spfn < end_pfn) { 2018 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2019 cond_resched(); 2020 } 2021 } 2022 2023 /* An arch may override for more concurrency. */ 2024 __weak int __init 2025 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2026 { 2027 return 1; 2028 } 2029 2030 /* Initialise remaining memory on a node */ 2031 static int __init deferred_init_memmap(void *data) 2032 { 2033 pg_data_t *pgdat = data; 2034 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2035 unsigned long spfn = 0, epfn = 0; 2036 unsigned long first_init_pfn, flags; 2037 unsigned long start = jiffies; 2038 struct zone *zone; 2039 int zid, max_threads; 2040 u64 i; 2041 2042 /* Bind memory initialisation thread to a local node if possible */ 2043 if (!cpumask_empty(cpumask)) 2044 set_cpus_allowed_ptr(current, cpumask); 2045 2046 pgdat_resize_lock(pgdat, &flags); 2047 first_init_pfn = pgdat->first_deferred_pfn; 2048 if (first_init_pfn == ULONG_MAX) { 2049 pgdat_resize_unlock(pgdat, &flags); 2050 pgdat_init_report_one_done(); 2051 return 0; 2052 } 2053 2054 /* Sanity check boundaries */ 2055 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2056 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2057 pgdat->first_deferred_pfn = ULONG_MAX; 2058 2059 /* 2060 * Once we unlock here, the zone cannot be grown anymore, thus if an 2061 * interrupt thread must allocate this early in boot, zone must be 2062 * pre-grown prior to start of deferred page initialization. 2063 */ 2064 pgdat_resize_unlock(pgdat, &flags); 2065 2066 /* Only the highest zone is deferred so find it */ 2067 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2068 zone = pgdat->node_zones + zid; 2069 if (first_init_pfn < zone_end_pfn(zone)) 2070 break; 2071 } 2072 2073 /* If the zone is empty somebody else may have cleared out the zone */ 2074 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2075 first_init_pfn)) 2076 goto zone_empty; 2077 2078 max_threads = deferred_page_init_max_threads(cpumask); 2079 2080 while (spfn < epfn) { 2081 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2082 struct padata_mt_job job = { 2083 .thread_fn = deferred_init_memmap_chunk, 2084 .fn_arg = zone, 2085 .start = spfn, 2086 .size = epfn_align - spfn, 2087 .align = PAGES_PER_SECTION, 2088 .min_chunk = PAGES_PER_SECTION, 2089 .max_threads = max_threads, 2090 }; 2091 2092 padata_do_multithreaded(&job); 2093 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2094 epfn_align); 2095 } 2096 zone_empty: 2097 /* Sanity check that the next zone really is unpopulated */ 2098 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2099 2100 pr_info("node %d deferred pages initialised in %ums\n", 2101 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2102 2103 pgdat_init_report_one_done(); 2104 return 0; 2105 } 2106 2107 /* 2108 * If this zone has deferred pages, try to grow it by initializing enough 2109 * deferred pages to satisfy the allocation specified by order, rounded up to 2110 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2111 * of SECTION_SIZE bytes by initializing struct pages in increments of 2112 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2113 * 2114 * Return true when zone was grown, otherwise return false. We return true even 2115 * when we grow less than requested, to let the caller decide if there are 2116 * enough pages to satisfy the allocation. 2117 * 2118 * Note: We use noinline because this function is needed only during boot, and 2119 * it is called from a __ref function _deferred_grow_zone. This way we are 2120 * making sure that it is not inlined into permanent text section. 2121 */ 2122 static noinline bool __init 2123 deferred_grow_zone(struct zone *zone, unsigned int order) 2124 { 2125 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2126 pg_data_t *pgdat = zone->zone_pgdat; 2127 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2128 unsigned long spfn, epfn, flags; 2129 unsigned long nr_pages = 0; 2130 u64 i; 2131 2132 /* Only the last zone may have deferred pages */ 2133 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2134 return false; 2135 2136 pgdat_resize_lock(pgdat, &flags); 2137 2138 /* 2139 * If someone grew this zone while we were waiting for spinlock, return 2140 * true, as there might be enough pages already. 2141 */ 2142 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2143 pgdat_resize_unlock(pgdat, &flags); 2144 return true; 2145 } 2146 2147 /* If the zone is empty somebody else may have cleared out the zone */ 2148 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2149 first_deferred_pfn)) { 2150 pgdat->first_deferred_pfn = ULONG_MAX; 2151 pgdat_resize_unlock(pgdat, &flags); 2152 /* Retry only once. */ 2153 return first_deferred_pfn != ULONG_MAX; 2154 } 2155 2156 /* 2157 * Initialize and free pages in MAX_ORDER sized increments so 2158 * that we can avoid introducing any issues with the buddy 2159 * allocator. 2160 */ 2161 while (spfn < epfn) { 2162 /* update our first deferred PFN for this section */ 2163 first_deferred_pfn = spfn; 2164 2165 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2166 touch_nmi_watchdog(); 2167 2168 /* We should only stop along section boundaries */ 2169 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2170 continue; 2171 2172 /* If our quota has been met we can stop here */ 2173 if (nr_pages >= nr_pages_needed) 2174 break; 2175 } 2176 2177 pgdat->first_deferred_pfn = spfn; 2178 pgdat_resize_unlock(pgdat, &flags); 2179 2180 return nr_pages > 0; 2181 } 2182 2183 /* 2184 * deferred_grow_zone() is __init, but it is called from 2185 * get_page_from_freelist() during early boot until deferred_pages permanently 2186 * disables this call. This is why we have refdata wrapper to avoid warning, 2187 * and to ensure that the function body gets unloaded. 2188 */ 2189 static bool __ref 2190 _deferred_grow_zone(struct zone *zone, unsigned int order) 2191 { 2192 return deferred_grow_zone(zone, order); 2193 } 2194 2195 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2196 2197 void __init page_alloc_init_late(void) 2198 { 2199 struct zone *zone; 2200 int nid; 2201 2202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2203 2204 /* There will be num_node_state(N_MEMORY) threads */ 2205 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2206 for_each_node_state(nid, N_MEMORY) { 2207 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2208 } 2209 2210 /* Block until all are initialised */ 2211 wait_for_completion(&pgdat_init_all_done_comp); 2212 2213 /* 2214 * We initialized the rest of the deferred pages. Permanently disable 2215 * on-demand struct page initialization. 2216 */ 2217 static_branch_disable(&deferred_pages); 2218 2219 /* Reinit limits that are based on free pages after the kernel is up */ 2220 files_maxfiles_init(); 2221 #endif 2222 2223 buffer_init(); 2224 2225 /* Discard memblock private memory */ 2226 memblock_discard(); 2227 2228 for_each_node_state(nid, N_MEMORY) 2229 shuffle_free_memory(NODE_DATA(nid)); 2230 2231 for_each_populated_zone(zone) 2232 set_zone_contiguous(zone); 2233 } 2234 2235 #ifdef CONFIG_CMA 2236 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2237 void __init init_cma_reserved_pageblock(struct page *page) 2238 { 2239 unsigned i = pageblock_nr_pages; 2240 struct page *p = page; 2241 2242 do { 2243 __ClearPageReserved(p); 2244 set_page_count(p, 0); 2245 } while (++p, --i); 2246 2247 set_pageblock_migratetype(page, MIGRATE_CMA); 2248 2249 if (pageblock_order >= MAX_ORDER) { 2250 i = pageblock_nr_pages; 2251 p = page; 2252 do { 2253 set_page_refcounted(p); 2254 __free_pages(p, MAX_ORDER - 1); 2255 p += MAX_ORDER_NR_PAGES; 2256 } while (i -= MAX_ORDER_NR_PAGES); 2257 } else { 2258 set_page_refcounted(page); 2259 __free_pages(page, pageblock_order); 2260 } 2261 2262 adjust_managed_page_count(page, pageblock_nr_pages); 2263 page_zone(page)->cma_pages += pageblock_nr_pages; 2264 } 2265 #endif 2266 2267 /* 2268 * The order of subdivision here is critical for the IO subsystem. 2269 * Please do not alter this order without good reasons and regression 2270 * testing. Specifically, as large blocks of memory are subdivided, 2271 * the order in which smaller blocks are delivered depends on the order 2272 * they're subdivided in this function. This is the primary factor 2273 * influencing the order in which pages are delivered to the IO 2274 * subsystem according to empirical testing, and this is also justified 2275 * by considering the behavior of a buddy system containing a single 2276 * large block of memory acted on by a series of small allocations. 2277 * This behavior is a critical factor in sglist merging's success. 2278 * 2279 * -- nyc 2280 */ 2281 static inline void expand(struct zone *zone, struct page *page, 2282 int low, int high, int migratetype) 2283 { 2284 unsigned long size = 1 << high; 2285 2286 while (high > low) { 2287 high--; 2288 size >>= 1; 2289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2290 2291 /* 2292 * Mark as guard pages (or page), that will allow to 2293 * merge back to allocator when buddy will be freed. 2294 * Corresponding page table entries will not be touched, 2295 * pages will stay not present in virtual address space 2296 */ 2297 if (set_page_guard(zone, &page[size], high, migratetype)) 2298 continue; 2299 2300 add_to_free_list(&page[size], zone, high, migratetype); 2301 set_buddy_order(&page[size], high); 2302 } 2303 } 2304 2305 static void check_new_page_bad(struct page *page) 2306 { 2307 if (unlikely(page->flags & __PG_HWPOISON)) { 2308 /* Don't complain about hwpoisoned pages */ 2309 page_mapcount_reset(page); /* remove PageBuddy */ 2310 return; 2311 } 2312 2313 bad_page(page, 2314 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2315 } 2316 2317 /* 2318 * This page is about to be returned from the page allocator 2319 */ 2320 static inline int check_new_page(struct page *page) 2321 { 2322 if (likely(page_expected_state(page, 2323 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2324 return 0; 2325 2326 check_new_page_bad(page); 2327 return 1; 2328 } 2329 2330 #ifdef CONFIG_DEBUG_VM 2331 /* 2332 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2333 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2334 * also checked when pcp lists are refilled from the free lists. 2335 */ 2336 static inline bool check_pcp_refill(struct page *page) 2337 { 2338 if (debug_pagealloc_enabled_static()) 2339 return check_new_page(page); 2340 else 2341 return false; 2342 } 2343 2344 static inline bool check_new_pcp(struct page *page) 2345 { 2346 return check_new_page(page); 2347 } 2348 #else 2349 /* 2350 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2351 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2352 * enabled, they are also checked when being allocated from the pcp lists. 2353 */ 2354 static inline bool check_pcp_refill(struct page *page) 2355 { 2356 return check_new_page(page); 2357 } 2358 static inline bool check_new_pcp(struct page *page) 2359 { 2360 if (debug_pagealloc_enabled_static()) 2361 return check_new_page(page); 2362 else 2363 return false; 2364 } 2365 #endif /* CONFIG_DEBUG_VM */ 2366 2367 static bool check_new_pages(struct page *page, unsigned int order) 2368 { 2369 int i; 2370 for (i = 0; i < (1 << order); i++) { 2371 struct page *p = page + i; 2372 2373 if (unlikely(check_new_page(p))) 2374 return true; 2375 } 2376 2377 return false; 2378 } 2379 2380 inline void post_alloc_hook(struct page *page, unsigned int order, 2381 gfp_t gfp_flags) 2382 { 2383 set_page_private(page, 0); 2384 set_page_refcounted(page); 2385 2386 arch_alloc_page(page, order); 2387 debug_pagealloc_map_pages(page, 1 << order); 2388 2389 /* 2390 * Page unpoisoning must happen before memory initialization. 2391 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2392 * allocations and the page unpoisoning code will complain. 2393 */ 2394 kernel_unpoison_pages(page, 1 << order); 2395 2396 /* 2397 * As memory initialization might be integrated into KASAN, 2398 * kasan_alloc_pages and kernel_init_free_pages must be 2399 * kept together to avoid discrepancies in behavior. 2400 */ 2401 if (kasan_has_integrated_init()) { 2402 kasan_alloc_pages(page, order, gfp_flags); 2403 } else { 2404 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2405 2406 kasan_unpoison_pages(page, order, init); 2407 if (init) 2408 kernel_init_free_pages(page, 1 << order, 2409 gfp_flags & __GFP_ZEROTAGS); 2410 } 2411 2412 set_page_owner(page, order, gfp_flags); 2413 } 2414 2415 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2416 unsigned int alloc_flags) 2417 { 2418 post_alloc_hook(page, order, gfp_flags); 2419 2420 if (order && (gfp_flags & __GFP_COMP)) 2421 prep_compound_page(page, order); 2422 2423 /* 2424 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2425 * allocate the page. The expectation is that the caller is taking 2426 * steps that will free more memory. The caller should avoid the page 2427 * being used for !PFMEMALLOC purposes. 2428 */ 2429 if (alloc_flags & ALLOC_NO_WATERMARKS) 2430 set_page_pfmemalloc(page); 2431 else 2432 clear_page_pfmemalloc(page); 2433 } 2434 2435 /* 2436 * Go through the free lists for the given migratetype and remove 2437 * the smallest available page from the freelists 2438 */ 2439 static __always_inline 2440 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2441 int migratetype) 2442 { 2443 unsigned int current_order; 2444 struct free_area *area; 2445 struct page *page; 2446 2447 /* Find a page of the appropriate size in the preferred list */ 2448 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2449 area = &(zone->free_area[current_order]); 2450 page = get_page_from_free_area(area, migratetype); 2451 if (!page) 2452 continue; 2453 del_page_from_free_list(page, zone, current_order); 2454 expand(zone, page, order, current_order, migratetype); 2455 set_pcppage_migratetype(page, migratetype); 2456 return page; 2457 } 2458 2459 return NULL; 2460 } 2461 2462 2463 /* 2464 * This array describes the order lists are fallen back to when 2465 * the free lists for the desirable migrate type are depleted 2466 */ 2467 static int fallbacks[MIGRATE_TYPES][3] = { 2468 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2469 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2470 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2471 #ifdef CONFIG_CMA 2472 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2473 #endif 2474 #ifdef CONFIG_MEMORY_ISOLATION 2475 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2476 #endif 2477 }; 2478 2479 #ifdef CONFIG_CMA 2480 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2481 unsigned int order) 2482 { 2483 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2484 } 2485 #else 2486 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2487 unsigned int order) { return NULL; } 2488 #endif 2489 2490 /* 2491 * Move the free pages in a range to the freelist tail of the requested type. 2492 * Note that start_page and end_pages are not aligned on a pageblock 2493 * boundary. If alignment is required, use move_freepages_block() 2494 */ 2495 static int move_freepages(struct zone *zone, 2496 unsigned long start_pfn, unsigned long end_pfn, 2497 int migratetype, int *num_movable) 2498 { 2499 struct page *page; 2500 unsigned long pfn; 2501 unsigned int order; 2502 int pages_moved = 0; 2503 2504 for (pfn = start_pfn; pfn <= end_pfn;) { 2505 page = pfn_to_page(pfn); 2506 if (!PageBuddy(page)) { 2507 /* 2508 * We assume that pages that could be isolated for 2509 * migration are movable. But we don't actually try 2510 * isolating, as that would be expensive. 2511 */ 2512 if (num_movable && 2513 (PageLRU(page) || __PageMovable(page))) 2514 (*num_movable)++; 2515 pfn++; 2516 continue; 2517 } 2518 2519 /* Make sure we are not inadvertently changing nodes */ 2520 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2521 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2522 2523 order = buddy_order(page); 2524 move_to_free_list(page, zone, order, migratetype); 2525 pfn += 1 << order; 2526 pages_moved += 1 << order; 2527 } 2528 2529 return pages_moved; 2530 } 2531 2532 int move_freepages_block(struct zone *zone, struct page *page, 2533 int migratetype, int *num_movable) 2534 { 2535 unsigned long start_pfn, end_pfn, pfn; 2536 2537 if (num_movable) 2538 *num_movable = 0; 2539 2540 pfn = page_to_pfn(page); 2541 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2542 end_pfn = start_pfn + pageblock_nr_pages - 1; 2543 2544 /* Do not cross zone boundaries */ 2545 if (!zone_spans_pfn(zone, start_pfn)) 2546 start_pfn = pfn; 2547 if (!zone_spans_pfn(zone, end_pfn)) 2548 return 0; 2549 2550 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2551 num_movable); 2552 } 2553 2554 static void change_pageblock_range(struct page *pageblock_page, 2555 int start_order, int migratetype) 2556 { 2557 int nr_pageblocks = 1 << (start_order - pageblock_order); 2558 2559 while (nr_pageblocks--) { 2560 set_pageblock_migratetype(pageblock_page, migratetype); 2561 pageblock_page += pageblock_nr_pages; 2562 } 2563 } 2564 2565 /* 2566 * When we are falling back to another migratetype during allocation, try to 2567 * steal extra free pages from the same pageblocks to satisfy further 2568 * allocations, instead of polluting multiple pageblocks. 2569 * 2570 * If we are stealing a relatively large buddy page, it is likely there will 2571 * be more free pages in the pageblock, so try to steal them all. For 2572 * reclaimable and unmovable allocations, we steal regardless of page size, 2573 * as fragmentation caused by those allocations polluting movable pageblocks 2574 * is worse than movable allocations stealing from unmovable and reclaimable 2575 * pageblocks. 2576 */ 2577 static bool can_steal_fallback(unsigned int order, int start_mt) 2578 { 2579 /* 2580 * Leaving this order check is intended, although there is 2581 * relaxed order check in next check. The reason is that 2582 * we can actually steal whole pageblock if this condition met, 2583 * but, below check doesn't guarantee it and that is just heuristic 2584 * so could be changed anytime. 2585 */ 2586 if (order >= pageblock_order) 2587 return true; 2588 2589 if (order >= pageblock_order / 2 || 2590 start_mt == MIGRATE_RECLAIMABLE || 2591 start_mt == MIGRATE_UNMOVABLE || 2592 page_group_by_mobility_disabled) 2593 return true; 2594 2595 return false; 2596 } 2597 2598 static inline bool boost_watermark(struct zone *zone) 2599 { 2600 unsigned long max_boost; 2601 2602 if (!watermark_boost_factor) 2603 return false; 2604 /* 2605 * Don't bother in zones that are unlikely to produce results. 2606 * On small machines, including kdump capture kernels running 2607 * in a small area, boosting the watermark can cause an out of 2608 * memory situation immediately. 2609 */ 2610 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2611 return false; 2612 2613 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2614 watermark_boost_factor, 10000); 2615 2616 /* 2617 * high watermark may be uninitialised if fragmentation occurs 2618 * very early in boot so do not boost. We do not fall 2619 * through and boost by pageblock_nr_pages as failing 2620 * allocations that early means that reclaim is not going 2621 * to help and it may even be impossible to reclaim the 2622 * boosted watermark resulting in a hang. 2623 */ 2624 if (!max_boost) 2625 return false; 2626 2627 max_boost = max(pageblock_nr_pages, max_boost); 2628 2629 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2630 max_boost); 2631 2632 return true; 2633 } 2634 2635 /* 2636 * This function implements actual steal behaviour. If order is large enough, 2637 * we can steal whole pageblock. If not, we first move freepages in this 2638 * pageblock to our migratetype and determine how many already-allocated pages 2639 * are there in the pageblock with a compatible migratetype. If at least half 2640 * of pages are free or compatible, we can change migratetype of the pageblock 2641 * itself, so pages freed in the future will be put on the correct free list. 2642 */ 2643 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2644 unsigned int alloc_flags, int start_type, bool whole_block) 2645 { 2646 unsigned int current_order = buddy_order(page); 2647 int free_pages, movable_pages, alike_pages; 2648 int old_block_type; 2649 2650 old_block_type = get_pageblock_migratetype(page); 2651 2652 /* 2653 * This can happen due to races and we want to prevent broken 2654 * highatomic accounting. 2655 */ 2656 if (is_migrate_highatomic(old_block_type)) 2657 goto single_page; 2658 2659 /* Take ownership for orders >= pageblock_order */ 2660 if (current_order >= pageblock_order) { 2661 change_pageblock_range(page, current_order, start_type); 2662 goto single_page; 2663 } 2664 2665 /* 2666 * Boost watermarks to increase reclaim pressure to reduce the 2667 * likelihood of future fallbacks. Wake kswapd now as the node 2668 * may be balanced overall and kswapd will not wake naturally. 2669 */ 2670 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2671 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2672 2673 /* We are not allowed to try stealing from the whole block */ 2674 if (!whole_block) 2675 goto single_page; 2676 2677 free_pages = move_freepages_block(zone, page, start_type, 2678 &movable_pages); 2679 /* 2680 * Determine how many pages are compatible with our allocation. 2681 * For movable allocation, it's the number of movable pages which 2682 * we just obtained. For other types it's a bit more tricky. 2683 */ 2684 if (start_type == MIGRATE_MOVABLE) { 2685 alike_pages = movable_pages; 2686 } else { 2687 /* 2688 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2689 * to MOVABLE pageblock, consider all non-movable pages as 2690 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2691 * vice versa, be conservative since we can't distinguish the 2692 * exact migratetype of non-movable pages. 2693 */ 2694 if (old_block_type == MIGRATE_MOVABLE) 2695 alike_pages = pageblock_nr_pages 2696 - (free_pages + movable_pages); 2697 else 2698 alike_pages = 0; 2699 } 2700 2701 /* moving whole block can fail due to zone boundary conditions */ 2702 if (!free_pages) 2703 goto single_page; 2704 2705 /* 2706 * If a sufficient number of pages in the block are either free or of 2707 * comparable migratability as our allocation, claim the whole block. 2708 */ 2709 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2710 page_group_by_mobility_disabled) 2711 set_pageblock_migratetype(page, start_type); 2712 2713 return; 2714 2715 single_page: 2716 move_to_free_list(page, zone, current_order, start_type); 2717 } 2718 2719 /* 2720 * Check whether there is a suitable fallback freepage with requested order. 2721 * If only_stealable is true, this function returns fallback_mt only if 2722 * we can steal other freepages all together. This would help to reduce 2723 * fragmentation due to mixed migratetype pages in one pageblock. 2724 */ 2725 int find_suitable_fallback(struct free_area *area, unsigned int order, 2726 int migratetype, bool only_stealable, bool *can_steal) 2727 { 2728 int i; 2729 int fallback_mt; 2730 2731 if (area->nr_free == 0) 2732 return -1; 2733 2734 *can_steal = false; 2735 for (i = 0;; i++) { 2736 fallback_mt = fallbacks[migratetype][i]; 2737 if (fallback_mt == MIGRATE_TYPES) 2738 break; 2739 2740 if (free_area_empty(area, fallback_mt)) 2741 continue; 2742 2743 if (can_steal_fallback(order, migratetype)) 2744 *can_steal = true; 2745 2746 if (!only_stealable) 2747 return fallback_mt; 2748 2749 if (*can_steal) 2750 return fallback_mt; 2751 } 2752 2753 return -1; 2754 } 2755 2756 /* 2757 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2758 * there are no empty page blocks that contain a page with a suitable order 2759 */ 2760 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2761 unsigned int alloc_order) 2762 { 2763 int mt; 2764 unsigned long max_managed, flags; 2765 2766 /* 2767 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2768 * Check is race-prone but harmless. 2769 */ 2770 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2771 if (zone->nr_reserved_highatomic >= max_managed) 2772 return; 2773 2774 spin_lock_irqsave(&zone->lock, flags); 2775 2776 /* Recheck the nr_reserved_highatomic limit under the lock */ 2777 if (zone->nr_reserved_highatomic >= max_managed) 2778 goto out_unlock; 2779 2780 /* Yoink! */ 2781 mt = get_pageblock_migratetype(page); 2782 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2783 && !is_migrate_cma(mt)) { 2784 zone->nr_reserved_highatomic += pageblock_nr_pages; 2785 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2786 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2787 } 2788 2789 out_unlock: 2790 spin_unlock_irqrestore(&zone->lock, flags); 2791 } 2792 2793 /* 2794 * Used when an allocation is about to fail under memory pressure. This 2795 * potentially hurts the reliability of high-order allocations when under 2796 * intense memory pressure but failed atomic allocations should be easier 2797 * to recover from than an OOM. 2798 * 2799 * If @force is true, try to unreserve a pageblock even though highatomic 2800 * pageblock is exhausted. 2801 */ 2802 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2803 bool force) 2804 { 2805 struct zonelist *zonelist = ac->zonelist; 2806 unsigned long flags; 2807 struct zoneref *z; 2808 struct zone *zone; 2809 struct page *page; 2810 int order; 2811 bool ret; 2812 2813 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2814 ac->nodemask) { 2815 /* 2816 * Preserve at least one pageblock unless memory pressure 2817 * is really high. 2818 */ 2819 if (!force && zone->nr_reserved_highatomic <= 2820 pageblock_nr_pages) 2821 continue; 2822 2823 spin_lock_irqsave(&zone->lock, flags); 2824 for (order = 0; order < MAX_ORDER; order++) { 2825 struct free_area *area = &(zone->free_area[order]); 2826 2827 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2828 if (!page) 2829 continue; 2830 2831 /* 2832 * In page freeing path, migratetype change is racy so 2833 * we can counter several free pages in a pageblock 2834 * in this loop although we changed the pageblock type 2835 * from highatomic to ac->migratetype. So we should 2836 * adjust the count once. 2837 */ 2838 if (is_migrate_highatomic_page(page)) { 2839 /* 2840 * It should never happen but changes to 2841 * locking could inadvertently allow a per-cpu 2842 * drain to add pages to MIGRATE_HIGHATOMIC 2843 * while unreserving so be safe and watch for 2844 * underflows. 2845 */ 2846 zone->nr_reserved_highatomic -= min( 2847 pageblock_nr_pages, 2848 zone->nr_reserved_highatomic); 2849 } 2850 2851 /* 2852 * Convert to ac->migratetype and avoid the normal 2853 * pageblock stealing heuristics. Minimally, the caller 2854 * is doing the work and needs the pages. More 2855 * importantly, if the block was always converted to 2856 * MIGRATE_UNMOVABLE or another type then the number 2857 * of pageblocks that cannot be completely freed 2858 * may increase. 2859 */ 2860 set_pageblock_migratetype(page, ac->migratetype); 2861 ret = move_freepages_block(zone, page, ac->migratetype, 2862 NULL); 2863 if (ret) { 2864 spin_unlock_irqrestore(&zone->lock, flags); 2865 return ret; 2866 } 2867 } 2868 spin_unlock_irqrestore(&zone->lock, flags); 2869 } 2870 2871 return false; 2872 } 2873 2874 /* 2875 * Try finding a free buddy page on the fallback list and put it on the free 2876 * list of requested migratetype, possibly along with other pages from the same 2877 * block, depending on fragmentation avoidance heuristics. Returns true if 2878 * fallback was found so that __rmqueue_smallest() can grab it. 2879 * 2880 * The use of signed ints for order and current_order is a deliberate 2881 * deviation from the rest of this file, to make the for loop 2882 * condition simpler. 2883 */ 2884 static __always_inline bool 2885 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2886 unsigned int alloc_flags) 2887 { 2888 struct free_area *area; 2889 int current_order; 2890 int min_order = order; 2891 struct page *page; 2892 int fallback_mt; 2893 bool can_steal; 2894 2895 /* 2896 * Do not steal pages from freelists belonging to other pageblocks 2897 * i.e. orders < pageblock_order. If there are no local zones free, 2898 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2899 */ 2900 if (alloc_flags & ALLOC_NOFRAGMENT) 2901 min_order = pageblock_order; 2902 2903 /* 2904 * Find the largest available free page in the other list. This roughly 2905 * approximates finding the pageblock with the most free pages, which 2906 * would be too costly to do exactly. 2907 */ 2908 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2909 --current_order) { 2910 area = &(zone->free_area[current_order]); 2911 fallback_mt = find_suitable_fallback(area, current_order, 2912 start_migratetype, false, &can_steal); 2913 if (fallback_mt == -1) 2914 continue; 2915 2916 /* 2917 * We cannot steal all free pages from the pageblock and the 2918 * requested migratetype is movable. In that case it's better to 2919 * steal and split the smallest available page instead of the 2920 * largest available page, because even if the next movable 2921 * allocation falls back into a different pageblock than this 2922 * one, it won't cause permanent fragmentation. 2923 */ 2924 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2925 && current_order > order) 2926 goto find_smallest; 2927 2928 goto do_steal; 2929 } 2930 2931 return false; 2932 2933 find_smallest: 2934 for (current_order = order; current_order < MAX_ORDER; 2935 current_order++) { 2936 area = &(zone->free_area[current_order]); 2937 fallback_mt = find_suitable_fallback(area, current_order, 2938 start_migratetype, false, &can_steal); 2939 if (fallback_mt != -1) 2940 break; 2941 } 2942 2943 /* 2944 * This should not happen - we already found a suitable fallback 2945 * when looking for the largest page. 2946 */ 2947 VM_BUG_ON(current_order == MAX_ORDER); 2948 2949 do_steal: 2950 page = get_page_from_free_area(area, fallback_mt); 2951 2952 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2953 can_steal); 2954 2955 trace_mm_page_alloc_extfrag(page, order, current_order, 2956 start_migratetype, fallback_mt); 2957 2958 return true; 2959 2960 } 2961 2962 /* 2963 * Do the hard work of removing an element from the buddy allocator. 2964 * Call me with the zone->lock already held. 2965 */ 2966 static __always_inline struct page * 2967 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2968 unsigned int alloc_flags) 2969 { 2970 struct page *page; 2971 2972 if (IS_ENABLED(CONFIG_CMA)) { 2973 /* 2974 * Balance movable allocations between regular and CMA areas by 2975 * allocating from CMA when over half of the zone's free memory 2976 * is in the CMA area. 2977 */ 2978 if (alloc_flags & ALLOC_CMA && 2979 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2980 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2981 page = __rmqueue_cma_fallback(zone, order); 2982 if (page) 2983 goto out; 2984 } 2985 } 2986 retry: 2987 page = __rmqueue_smallest(zone, order, migratetype); 2988 if (unlikely(!page)) { 2989 if (alloc_flags & ALLOC_CMA) 2990 page = __rmqueue_cma_fallback(zone, order); 2991 2992 if (!page && __rmqueue_fallback(zone, order, migratetype, 2993 alloc_flags)) 2994 goto retry; 2995 } 2996 out: 2997 if (page) 2998 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2999 return page; 3000 } 3001 3002 /* 3003 * Obtain a specified number of elements from the buddy allocator, all under 3004 * a single hold of the lock, for efficiency. Add them to the supplied list. 3005 * Returns the number of new pages which were placed at *list. 3006 */ 3007 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3008 unsigned long count, struct list_head *list, 3009 int migratetype, unsigned int alloc_flags) 3010 { 3011 int i, allocated = 0; 3012 3013 /* 3014 * local_lock_irq held so equivalent to spin_lock_irqsave for 3015 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3016 */ 3017 spin_lock(&zone->lock); 3018 for (i = 0; i < count; ++i) { 3019 struct page *page = __rmqueue(zone, order, migratetype, 3020 alloc_flags); 3021 if (unlikely(page == NULL)) 3022 break; 3023 3024 if (unlikely(check_pcp_refill(page))) 3025 continue; 3026 3027 /* 3028 * Split buddy pages returned by expand() are received here in 3029 * physical page order. The page is added to the tail of 3030 * caller's list. From the callers perspective, the linked list 3031 * is ordered by page number under some conditions. This is 3032 * useful for IO devices that can forward direction from the 3033 * head, thus also in the physical page order. This is useful 3034 * for IO devices that can merge IO requests if the physical 3035 * pages are ordered properly. 3036 */ 3037 list_add_tail(&page->lru, list); 3038 allocated++; 3039 if (is_migrate_cma(get_pcppage_migratetype(page))) 3040 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3041 -(1 << order)); 3042 } 3043 3044 /* 3045 * i pages were removed from the buddy list even if some leak due 3046 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3047 * on i. Do not confuse with 'allocated' which is the number of 3048 * pages added to the pcp list. 3049 */ 3050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3051 spin_unlock(&zone->lock); 3052 return allocated; 3053 } 3054 3055 #ifdef CONFIG_NUMA 3056 /* 3057 * Called from the vmstat counter updater to drain pagesets of this 3058 * currently executing processor on remote nodes after they have 3059 * expired. 3060 * 3061 * Note that this function must be called with the thread pinned to 3062 * a single processor. 3063 */ 3064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3065 { 3066 unsigned long flags; 3067 int to_drain, batch; 3068 3069 local_lock_irqsave(&pagesets.lock, flags); 3070 batch = READ_ONCE(pcp->batch); 3071 to_drain = min(pcp->count, batch); 3072 if (to_drain > 0) 3073 free_pcppages_bulk(zone, to_drain, pcp); 3074 local_unlock_irqrestore(&pagesets.lock, flags); 3075 } 3076 #endif 3077 3078 /* 3079 * Drain pcplists of the indicated processor and zone. 3080 * 3081 * The processor must either be the current processor and the 3082 * thread pinned to the current processor or a processor that 3083 * is not online. 3084 */ 3085 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3086 { 3087 unsigned long flags; 3088 struct per_cpu_pages *pcp; 3089 3090 local_lock_irqsave(&pagesets.lock, flags); 3091 3092 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3093 if (pcp->count) 3094 free_pcppages_bulk(zone, pcp->count, pcp); 3095 3096 local_unlock_irqrestore(&pagesets.lock, flags); 3097 } 3098 3099 /* 3100 * Drain pcplists of all zones on the indicated processor. 3101 * 3102 * The processor must either be the current processor and the 3103 * thread pinned to the current processor or a processor that 3104 * is not online. 3105 */ 3106 static void drain_pages(unsigned int cpu) 3107 { 3108 struct zone *zone; 3109 3110 for_each_populated_zone(zone) { 3111 drain_pages_zone(cpu, zone); 3112 } 3113 } 3114 3115 /* 3116 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3117 * 3118 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3119 * the single zone's pages. 3120 */ 3121 void drain_local_pages(struct zone *zone) 3122 { 3123 int cpu = smp_processor_id(); 3124 3125 if (zone) 3126 drain_pages_zone(cpu, zone); 3127 else 3128 drain_pages(cpu); 3129 } 3130 3131 static void drain_local_pages_wq(struct work_struct *work) 3132 { 3133 struct pcpu_drain *drain; 3134 3135 drain = container_of(work, struct pcpu_drain, work); 3136 3137 /* 3138 * drain_all_pages doesn't use proper cpu hotplug protection so 3139 * we can race with cpu offline when the WQ can move this from 3140 * a cpu pinned worker to an unbound one. We can operate on a different 3141 * cpu which is alright but we also have to make sure to not move to 3142 * a different one. 3143 */ 3144 migrate_disable(); 3145 drain_local_pages(drain->zone); 3146 migrate_enable(); 3147 } 3148 3149 /* 3150 * The implementation of drain_all_pages(), exposing an extra parameter to 3151 * drain on all cpus. 3152 * 3153 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3154 * not empty. The check for non-emptiness can however race with a free to 3155 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3156 * that need the guarantee that every CPU has drained can disable the 3157 * optimizing racy check. 3158 */ 3159 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3160 { 3161 int cpu; 3162 3163 /* 3164 * Allocate in the BSS so we won't require allocation in 3165 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3166 */ 3167 static cpumask_t cpus_with_pcps; 3168 3169 /* 3170 * Make sure nobody triggers this path before mm_percpu_wq is fully 3171 * initialized. 3172 */ 3173 if (WARN_ON_ONCE(!mm_percpu_wq)) 3174 return; 3175 3176 /* 3177 * Do not drain if one is already in progress unless it's specific to 3178 * a zone. Such callers are primarily CMA and memory hotplug and need 3179 * the drain to be complete when the call returns. 3180 */ 3181 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3182 if (!zone) 3183 return; 3184 mutex_lock(&pcpu_drain_mutex); 3185 } 3186 3187 /* 3188 * We don't care about racing with CPU hotplug event 3189 * as offline notification will cause the notified 3190 * cpu to drain that CPU pcps and on_each_cpu_mask 3191 * disables preemption as part of its processing 3192 */ 3193 for_each_online_cpu(cpu) { 3194 struct per_cpu_pages *pcp; 3195 struct zone *z; 3196 bool has_pcps = false; 3197 3198 if (force_all_cpus) { 3199 /* 3200 * The pcp.count check is racy, some callers need a 3201 * guarantee that no cpu is missed. 3202 */ 3203 has_pcps = true; 3204 } else if (zone) { 3205 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3206 if (pcp->count) 3207 has_pcps = true; 3208 } else { 3209 for_each_populated_zone(z) { 3210 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3211 if (pcp->count) { 3212 has_pcps = true; 3213 break; 3214 } 3215 } 3216 } 3217 3218 if (has_pcps) 3219 cpumask_set_cpu(cpu, &cpus_with_pcps); 3220 else 3221 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3222 } 3223 3224 for_each_cpu(cpu, &cpus_with_pcps) { 3225 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3226 3227 drain->zone = zone; 3228 INIT_WORK(&drain->work, drain_local_pages_wq); 3229 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3230 } 3231 for_each_cpu(cpu, &cpus_with_pcps) 3232 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3233 3234 mutex_unlock(&pcpu_drain_mutex); 3235 } 3236 3237 /* 3238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3239 * 3240 * When zone parameter is non-NULL, spill just the single zone's pages. 3241 * 3242 * Note that this can be extremely slow as the draining happens in a workqueue. 3243 */ 3244 void drain_all_pages(struct zone *zone) 3245 { 3246 __drain_all_pages(zone, false); 3247 } 3248 3249 #ifdef CONFIG_HIBERNATION 3250 3251 /* 3252 * Touch the watchdog for every WD_PAGE_COUNT pages. 3253 */ 3254 #define WD_PAGE_COUNT (128*1024) 3255 3256 void mark_free_pages(struct zone *zone) 3257 { 3258 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3259 unsigned long flags; 3260 unsigned int order, t; 3261 struct page *page; 3262 3263 if (zone_is_empty(zone)) 3264 return; 3265 3266 spin_lock_irqsave(&zone->lock, flags); 3267 3268 max_zone_pfn = zone_end_pfn(zone); 3269 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3270 if (pfn_valid(pfn)) { 3271 page = pfn_to_page(pfn); 3272 3273 if (!--page_count) { 3274 touch_nmi_watchdog(); 3275 page_count = WD_PAGE_COUNT; 3276 } 3277 3278 if (page_zone(page) != zone) 3279 continue; 3280 3281 if (!swsusp_page_is_forbidden(page)) 3282 swsusp_unset_page_free(page); 3283 } 3284 3285 for_each_migratetype_order(order, t) { 3286 list_for_each_entry(page, 3287 &zone->free_area[order].free_list[t], lru) { 3288 unsigned long i; 3289 3290 pfn = page_to_pfn(page); 3291 for (i = 0; i < (1UL << order); i++) { 3292 if (!--page_count) { 3293 touch_nmi_watchdog(); 3294 page_count = WD_PAGE_COUNT; 3295 } 3296 swsusp_set_page_free(pfn_to_page(pfn + i)); 3297 } 3298 } 3299 } 3300 spin_unlock_irqrestore(&zone->lock, flags); 3301 } 3302 #endif /* CONFIG_PM */ 3303 3304 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3305 unsigned int order) 3306 { 3307 int migratetype; 3308 3309 if (!free_pcp_prepare(page, order)) 3310 return false; 3311 3312 migratetype = get_pfnblock_migratetype(page, pfn); 3313 set_pcppage_migratetype(page, migratetype); 3314 return true; 3315 } 3316 3317 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3318 { 3319 int min_nr_free, max_nr_free; 3320 3321 /* Check for PCP disabled or boot pageset */ 3322 if (unlikely(high < batch)) 3323 return 1; 3324 3325 /* Leave at least pcp->batch pages on the list */ 3326 min_nr_free = batch; 3327 max_nr_free = high - batch; 3328 3329 /* 3330 * Double the number of pages freed each time there is subsequent 3331 * freeing of pages without any allocation. 3332 */ 3333 batch <<= pcp->free_factor; 3334 if (batch < max_nr_free) 3335 pcp->free_factor++; 3336 batch = clamp(batch, min_nr_free, max_nr_free); 3337 3338 return batch; 3339 } 3340 3341 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3342 { 3343 int high = READ_ONCE(pcp->high); 3344 3345 if (unlikely(!high)) 3346 return 0; 3347 3348 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3349 return high; 3350 3351 /* 3352 * If reclaim is active, limit the number of pages that can be 3353 * stored on pcp lists 3354 */ 3355 return min(READ_ONCE(pcp->batch) << 2, high); 3356 } 3357 3358 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3359 int migratetype, unsigned int order) 3360 { 3361 struct zone *zone = page_zone(page); 3362 struct per_cpu_pages *pcp; 3363 int high; 3364 int pindex; 3365 3366 __count_vm_event(PGFREE); 3367 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3368 pindex = order_to_pindex(migratetype, order); 3369 list_add(&page->lru, &pcp->lists[pindex]); 3370 pcp->count += 1 << order; 3371 high = nr_pcp_high(pcp, zone); 3372 if (pcp->count >= high) { 3373 int batch = READ_ONCE(pcp->batch); 3374 3375 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3376 } 3377 } 3378 3379 /* 3380 * Free a pcp page 3381 */ 3382 void free_unref_page(struct page *page, unsigned int order) 3383 { 3384 unsigned long flags; 3385 unsigned long pfn = page_to_pfn(page); 3386 int migratetype; 3387 3388 if (!free_unref_page_prepare(page, pfn, order)) 3389 return; 3390 3391 /* 3392 * We only track unmovable, reclaimable and movable on pcp lists. 3393 * Place ISOLATE pages on the isolated list because they are being 3394 * offlined but treat HIGHATOMIC as movable pages so we can get those 3395 * areas back if necessary. Otherwise, we may have to free 3396 * excessively into the page allocator 3397 */ 3398 migratetype = get_pcppage_migratetype(page); 3399 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3400 if (unlikely(is_migrate_isolate(migratetype))) { 3401 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3402 return; 3403 } 3404 migratetype = MIGRATE_MOVABLE; 3405 } 3406 3407 local_lock_irqsave(&pagesets.lock, flags); 3408 free_unref_page_commit(page, pfn, migratetype, order); 3409 local_unlock_irqrestore(&pagesets.lock, flags); 3410 } 3411 3412 /* 3413 * Free a list of 0-order pages 3414 */ 3415 void free_unref_page_list(struct list_head *list) 3416 { 3417 struct page *page, *next; 3418 unsigned long flags, pfn; 3419 int batch_count = 0; 3420 int migratetype; 3421 3422 /* Prepare pages for freeing */ 3423 list_for_each_entry_safe(page, next, list, lru) { 3424 pfn = page_to_pfn(page); 3425 if (!free_unref_page_prepare(page, pfn, 0)) { 3426 list_del(&page->lru); 3427 continue; 3428 } 3429 3430 /* 3431 * Free isolated pages directly to the allocator, see 3432 * comment in free_unref_page. 3433 */ 3434 migratetype = get_pcppage_migratetype(page); 3435 if (unlikely(is_migrate_isolate(migratetype))) { 3436 list_del(&page->lru); 3437 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3438 continue; 3439 } 3440 3441 set_page_private(page, pfn); 3442 } 3443 3444 local_lock_irqsave(&pagesets.lock, flags); 3445 list_for_each_entry_safe(page, next, list, lru) { 3446 pfn = page_private(page); 3447 set_page_private(page, 0); 3448 3449 /* 3450 * Non-isolated types over MIGRATE_PCPTYPES get added 3451 * to the MIGRATE_MOVABLE pcp list. 3452 */ 3453 migratetype = get_pcppage_migratetype(page); 3454 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3455 migratetype = MIGRATE_MOVABLE; 3456 3457 trace_mm_page_free_batched(page); 3458 free_unref_page_commit(page, pfn, migratetype, 0); 3459 3460 /* 3461 * Guard against excessive IRQ disabled times when we get 3462 * a large list of pages to free. 3463 */ 3464 if (++batch_count == SWAP_CLUSTER_MAX) { 3465 local_unlock_irqrestore(&pagesets.lock, flags); 3466 batch_count = 0; 3467 local_lock_irqsave(&pagesets.lock, flags); 3468 } 3469 } 3470 local_unlock_irqrestore(&pagesets.lock, flags); 3471 } 3472 3473 /* 3474 * split_page takes a non-compound higher-order page, and splits it into 3475 * n (1<<order) sub-pages: page[0..n] 3476 * Each sub-page must be freed individually. 3477 * 3478 * Note: this is probably too low level an operation for use in drivers. 3479 * Please consult with lkml before using this in your driver. 3480 */ 3481 void split_page(struct page *page, unsigned int order) 3482 { 3483 int i; 3484 3485 VM_BUG_ON_PAGE(PageCompound(page), page); 3486 VM_BUG_ON_PAGE(!page_count(page), page); 3487 3488 for (i = 1; i < (1 << order); i++) 3489 set_page_refcounted(page + i); 3490 split_page_owner(page, 1 << order); 3491 split_page_memcg(page, 1 << order); 3492 } 3493 EXPORT_SYMBOL_GPL(split_page); 3494 3495 int __isolate_free_page(struct page *page, unsigned int order) 3496 { 3497 unsigned long watermark; 3498 struct zone *zone; 3499 int mt; 3500 3501 BUG_ON(!PageBuddy(page)); 3502 3503 zone = page_zone(page); 3504 mt = get_pageblock_migratetype(page); 3505 3506 if (!is_migrate_isolate(mt)) { 3507 /* 3508 * Obey watermarks as if the page was being allocated. We can 3509 * emulate a high-order watermark check with a raised order-0 3510 * watermark, because we already know our high-order page 3511 * exists. 3512 */ 3513 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3514 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3515 return 0; 3516 3517 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3518 } 3519 3520 /* Remove page from free list */ 3521 3522 del_page_from_free_list(page, zone, order); 3523 3524 /* 3525 * Set the pageblock if the isolated page is at least half of a 3526 * pageblock 3527 */ 3528 if (order >= pageblock_order - 1) { 3529 struct page *endpage = page + (1 << order) - 1; 3530 for (; page < endpage; page += pageblock_nr_pages) { 3531 int mt = get_pageblock_migratetype(page); 3532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3533 && !is_migrate_highatomic(mt)) 3534 set_pageblock_migratetype(page, 3535 MIGRATE_MOVABLE); 3536 } 3537 } 3538 3539 3540 return 1UL << order; 3541 } 3542 3543 /** 3544 * __putback_isolated_page - Return a now-isolated page back where we got it 3545 * @page: Page that was isolated 3546 * @order: Order of the isolated page 3547 * @mt: The page's pageblock's migratetype 3548 * 3549 * This function is meant to return a page pulled from the free lists via 3550 * __isolate_free_page back to the free lists they were pulled from. 3551 */ 3552 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3553 { 3554 struct zone *zone = page_zone(page); 3555 3556 /* zone lock should be held when this function is called */ 3557 lockdep_assert_held(&zone->lock); 3558 3559 /* Return isolated page to tail of freelist. */ 3560 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3561 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3562 } 3563 3564 /* 3565 * Update NUMA hit/miss statistics 3566 * 3567 * Must be called with interrupts disabled. 3568 */ 3569 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3570 long nr_account) 3571 { 3572 #ifdef CONFIG_NUMA 3573 enum numa_stat_item local_stat = NUMA_LOCAL; 3574 3575 /* skip numa counters update if numa stats is disabled */ 3576 if (!static_branch_likely(&vm_numa_stat_key)) 3577 return; 3578 3579 if (zone_to_nid(z) != numa_node_id()) 3580 local_stat = NUMA_OTHER; 3581 3582 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3583 __count_numa_events(z, NUMA_HIT, nr_account); 3584 else { 3585 __count_numa_events(z, NUMA_MISS, nr_account); 3586 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3587 } 3588 __count_numa_events(z, local_stat, nr_account); 3589 #endif 3590 } 3591 3592 /* Remove page from the per-cpu list, caller must protect the list */ 3593 static inline 3594 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3595 int migratetype, 3596 unsigned int alloc_flags, 3597 struct per_cpu_pages *pcp, 3598 struct list_head *list) 3599 { 3600 struct page *page; 3601 3602 do { 3603 if (list_empty(list)) { 3604 int batch = READ_ONCE(pcp->batch); 3605 int alloced; 3606 3607 /* 3608 * Scale batch relative to order if batch implies 3609 * free pages can be stored on the PCP. Batch can 3610 * be 1 for small zones or for boot pagesets which 3611 * should never store free pages as the pages may 3612 * belong to arbitrary zones. 3613 */ 3614 if (batch > 1) 3615 batch = max(batch >> order, 2); 3616 alloced = rmqueue_bulk(zone, order, 3617 batch, list, 3618 migratetype, alloc_flags); 3619 3620 pcp->count += alloced << order; 3621 if (unlikely(list_empty(list))) 3622 return NULL; 3623 } 3624 3625 page = list_first_entry(list, struct page, lru); 3626 list_del(&page->lru); 3627 pcp->count -= 1 << order; 3628 } while (check_new_pcp(page)); 3629 3630 return page; 3631 } 3632 3633 /* Lock and remove page from the per-cpu list */ 3634 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3635 struct zone *zone, unsigned int order, 3636 gfp_t gfp_flags, int migratetype, 3637 unsigned int alloc_flags) 3638 { 3639 struct per_cpu_pages *pcp; 3640 struct list_head *list; 3641 struct page *page; 3642 unsigned long flags; 3643 3644 local_lock_irqsave(&pagesets.lock, flags); 3645 3646 /* 3647 * On allocation, reduce the number of pages that are batch freed. 3648 * See nr_pcp_free() where free_factor is increased for subsequent 3649 * frees. 3650 */ 3651 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3652 pcp->free_factor >>= 1; 3653 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3654 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3655 local_unlock_irqrestore(&pagesets.lock, flags); 3656 if (page) { 3657 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3658 zone_statistics(preferred_zone, zone, 1); 3659 } 3660 return page; 3661 } 3662 3663 /* 3664 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3665 */ 3666 static inline 3667 struct page *rmqueue(struct zone *preferred_zone, 3668 struct zone *zone, unsigned int order, 3669 gfp_t gfp_flags, unsigned int alloc_flags, 3670 int migratetype) 3671 { 3672 unsigned long flags; 3673 struct page *page; 3674 3675 if (likely(pcp_allowed_order(order))) { 3676 /* 3677 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3678 * we need to skip it when CMA area isn't allowed. 3679 */ 3680 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3681 migratetype != MIGRATE_MOVABLE) { 3682 page = rmqueue_pcplist(preferred_zone, zone, order, 3683 gfp_flags, migratetype, alloc_flags); 3684 goto out; 3685 } 3686 } 3687 3688 /* 3689 * We most definitely don't want callers attempting to 3690 * allocate greater than order-1 page units with __GFP_NOFAIL. 3691 */ 3692 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3693 spin_lock_irqsave(&zone->lock, flags); 3694 3695 do { 3696 page = NULL; 3697 /* 3698 * order-0 request can reach here when the pcplist is skipped 3699 * due to non-CMA allocation context. HIGHATOMIC area is 3700 * reserved for high-order atomic allocation, so order-0 3701 * request should skip it. 3702 */ 3703 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3705 if (page) 3706 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3707 } 3708 if (!page) 3709 page = __rmqueue(zone, order, migratetype, alloc_flags); 3710 } while (page && check_new_pages(page, order)); 3711 if (!page) 3712 goto failed; 3713 3714 __mod_zone_freepage_state(zone, -(1 << order), 3715 get_pcppage_migratetype(page)); 3716 spin_unlock_irqrestore(&zone->lock, flags); 3717 3718 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3719 zone_statistics(preferred_zone, zone, 1); 3720 3721 out: 3722 /* Separate test+clear to avoid unnecessary atomics */ 3723 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3724 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3725 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3726 } 3727 3728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3729 return page; 3730 3731 failed: 3732 spin_unlock_irqrestore(&zone->lock, flags); 3733 return NULL; 3734 } 3735 3736 #ifdef CONFIG_FAIL_PAGE_ALLOC 3737 3738 static struct { 3739 struct fault_attr attr; 3740 3741 bool ignore_gfp_highmem; 3742 bool ignore_gfp_reclaim; 3743 u32 min_order; 3744 } fail_page_alloc = { 3745 .attr = FAULT_ATTR_INITIALIZER, 3746 .ignore_gfp_reclaim = true, 3747 .ignore_gfp_highmem = true, 3748 .min_order = 1, 3749 }; 3750 3751 static int __init setup_fail_page_alloc(char *str) 3752 { 3753 return setup_fault_attr(&fail_page_alloc.attr, str); 3754 } 3755 __setup("fail_page_alloc=", setup_fail_page_alloc); 3756 3757 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3758 { 3759 if (order < fail_page_alloc.min_order) 3760 return false; 3761 if (gfp_mask & __GFP_NOFAIL) 3762 return false; 3763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3764 return false; 3765 if (fail_page_alloc.ignore_gfp_reclaim && 3766 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3767 return false; 3768 3769 return should_fail(&fail_page_alloc.attr, 1 << order); 3770 } 3771 3772 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3773 3774 static int __init fail_page_alloc_debugfs(void) 3775 { 3776 umode_t mode = S_IFREG | 0600; 3777 struct dentry *dir; 3778 3779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3780 &fail_page_alloc.attr); 3781 3782 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3783 &fail_page_alloc.ignore_gfp_reclaim); 3784 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3785 &fail_page_alloc.ignore_gfp_highmem); 3786 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3787 3788 return 0; 3789 } 3790 3791 late_initcall(fail_page_alloc_debugfs); 3792 3793 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3794 3795 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3796 3797 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3798 { 3799 return false; 3800 } 3801 3802 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3803 3804 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3805 { 3806 return __should_fail_alloc_page(gfp_mask, order); 3807 } 3808 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3809 3810 static inline long __zone_watermark_unusable_free(struct zone *z, 3811 unsigned int order, unsigned int alloc_flags) 3812 { 3813 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3814 long unusable_free = (1 << order) - 1; 3815 3816 /* 3817 * If the caller does not have rights to ALLOC_HARDER then subtract 3818 * the high-atomic reserves. This will over-estimate the size of the 3819 * atomic reserve but it avoids a search. 3820 */ 3821 if (likely(!alloc_harder)) 3822 unusable_free += z->nr_reserved_highatomic; 3823 3824 #ifdef CONFIG_CMA 3825 /* If allocation can't use CMA areas don't use free CMA pages */ 3826 if (!(alloc_flags & ALLOC_CMA)) 3827 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3828 #endif 3829 3830 return unusable_free; 3831 } 3832 3833 /* 3834 * Return true if free base pages are above 'mark'. For high-order checks it 3835 * will return true of the order-0 watermark is reached and there is at least 3836 * one free page of a suitable size. Checking now avoids taking the zone lock 3837 * to check in the allocation paths if no pages are free. 3838 */ 3839 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3840 int highest_zoneidx, unsigned int alloc_flags, 3841 long free_pages) 3842 { 3843 long min = mark; 3844 int o; 3845 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3846 3847 /* free_pages may go negative - that's OK */ 3848 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3849 3850 if (alloc_flags & ALLOC_HIGH) 3851 min -= min / 2; 3852 3853 if (unlikely(alloc_harder)) { 3854 /* 3855 * OOM victims can try even harder than normal ALLOC_HARDER 3856 * users on the grounds that it's definitely going to be in 3857 * the exit path shortly and free memory. Any allocation it 3858 * makes during the free path will be small and short-lived. 3859 */ 3860 if (alloc_flags & ALLOC_OOM) 3861 min -= min / 2; 3862 else 3863 min -= min / 4; 3864 } 3865 3866 /* 3867 * Check watermarks for an order-0 allocation request. If these 3868 * are not met, then a high-order request also cannot go ahead 3869 * even if a suitable page happened to be free. 3870 */ 3871 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3872 return false; 3873 3874 /* If this is an order-0 request then the watermark is fine */ 3875 if (!order) 3876 return true; 3877 3878 /* For a high-order request, check at least one suitable page is free */ 3879 for (o = order; o < MAX_ORDER; o++) { 3880 struct free_area *area = &z->free_area[o]; 3881 int mt; 3882 3883 if (!area->nr_free) 3884 continue; 3885 3886 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3887 if (!free_area_empty(area, mt)) 3888 return true; 3889 } 3890 3891 #ifdef CONFIG_CMA 3892 if ((alloc_flags & ALLOC_CMA) && 3893 !free_area_empty(area, MIGRATE_CMA)) { 3894 return true; 3895 } 3896 #endif 3897 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3898 return true; 3899 } 3900 return false; 3901 } 3902 3903 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3904 int highest_zoneidx, unsigned int alloc_flags) 3905 { 3906 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3907 zone_page_state(z, NR_FREE_PAGES)); 3908 } 3909 3910 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3911 unsigned long mark, int highest_zoneidx, 3912 unsigned int alloc_flags, gfp_t gfp_mask) 3913 { 3914 long free_pages; 3915 3916 free_pages = zone_page_state(z, NR_FREE_PAGES); 3917 3918 /* 3919 * Fast check for order-0 only. If this fails then the reserves 3920 * need to be calculated. 3921 */ 3922 if (!order) { 3923 long fast_free; 3924 3925 fast_free = free_pages; 3926 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3927 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3928 return true; 3929 } 3930 3931 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3932 free_pages)) 3933 return true; 3934 /* 3935 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3936 * when checking the min watermark. The min watermark is the 3937 * point where boosting is ignored so that kswapd is woken up 3938 * when below the low watermark. 3939 */ 3940 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3941 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3942 mark = z->_watermark[WMARK_MIN]; 3943 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3944 alloc_flags, free_pages); 3945 } 3946 3947 return false; 3948 } 3949 3950 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3951 unsigned long mark, int highest_zoneidx) 3952 { 3953 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3954 3955 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3956 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3957 3958 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3959 free_pages); 3960 } 3961 3962 #ifdef CONFIG_NUMA 3963 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3964 3965 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3966 { 3967 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3968 node_reclaim_distance; 3969 } 3970 #else /* CONFIG_NUMA */ 3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3972 { 3973 return true; 3974 } 3975 #endif /* CONFIG_NUMA */ 3976 3977 /* 3978 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3979 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3980 * premature use of a lower zone may cause lowmem pressure problems that 3981 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3982 * probably too small. It only makes sense to spread allocations to avoid 3983 * fragmentation between the Normal and DMA32 zones. 3984 */ 3985 static inline unsigned int 3986 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3987 { 3988 unsigned int alloc_flags; 3989 3990 /* 3991 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3992 * to save a branch. 3993 */ 3994 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3995 3996 #ifdef CONFIG_ZONE_DMA32 3997 if (!zone) 3998 return alloc_flags; 3999 4000 if (zone_idx(zone) != ZONE_NORMAL) 4001 return alloc_flags; 4002 4003 /* 4004 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4005 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4006 * on UMA that if Normal is populated then so is DMA32. 4007 */ 4008 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4009 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4010 return alloc_flags; 4011 4012 alloc_flags |= ALLOC_NOFRAGMENT; 4013 #endif /* CONFIG_ZONE_DMA32 */ 4014 return alloc_flags; 4015 } 4016 4017 /* Must be called after current_gfp_context() which can change gfp_mask */ 4018 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4019 unsigned int alloc_flags) 4020 { 4021 #ifdef CONFIG_CMA 4022 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4023 alloc_flags |= ALLOC_CMA; 4024 #endif 4025 return alloc_flags; 4026 } 4027 4028 /* 4029 * get_page_from_freelist goes through the zonelist trying to allocate 4030 * a page. 4031 */ 4032 static struct page * 4033 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4034 const struct alloc_context *ac) 4035 { 4036 struct zoneref *z; 4037 struct zone *zone; 4038 struct pglist_data *last_pgdat_dirty_limit = NULL; 4039 bool no_fallback; 4040 4041 retry: 4042 /* 4043 * Scan zonelist, looking for a zone with enough free. 4044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4045 */ 4046 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4047 z = ac->preferred_zoneref; 4048 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4049 ac->nodemask) { 4050 struct page *page; 4051 unsigned long mark; 4052 4053 if (cpusets_enabled() && 4054 (alloc_flags & ALLOC_CPUSET) && 4055 !__cpuset_zone_allowed(zone, gfp_mask)) 4056 continue; 4057 /* 4058 * When allocating a page cache page for writing, we 4059 * want to get it from a node that is within its dirty 4060 * limit, such that no single node holds more than its 4061 * proportional share of globally allowed dirty pages. 4062 * The dirty limits take into account the node's 4063 * lowmem reserves and high watermark so that kswapd 4064 * should be able to balance it without having to 4065 * write pages from its LRU list. 4066 * 4067 * XXX: For now, allow allocations to potentially 4068 * exceed the per-node dirty limit in the slowpath 4069 * (spread_dirty_pages unset) before going into reclaim, 4070 * which is important when on a NUMA setup the allowed 4071 * nodes are together not big enough to reach the 4072 * global limit. The proper fix for these situations 4073 * will require awareness of nodes in the 4074 * dirty-throttling and the flusher threads. 4075 */ 4076 if (ac->spread_dirty_pages) { 4077 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4078 continue; 4079 4080 if (!node_dirty_ok(zone->zone_pgdat)) { 4081 last_pgdat_dirty_limit = zone->zone_pgdat; 4082 continue; 4083 } 4084 } 4085 4086 if (no_fallback && nr_online_nodes > 1 && 4087 zone != ac->preferred_zoneref->zone) { 4088 int local_nid; 4089 4090 /* 4091 * If moving to a remote node, retry but allow 4092 * fragmenting fallbacks. Locality is more important 4093 * than fragmentation avoidance. 4094 */ 4095 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4096 if (zone_to_nid(zone) != local_nid) { 4097 alloc_flags &= ~ALLOC_NOFRAGMENT; 4098 goto retry; 4099 } 4100 } 4101 4102 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4103 if (!zone_watermark_fast(zone, order, mark, 4104 ac->highest_zoneidx, alloc_flags, 4105 gfp_mask)) { 4106 int ret; 4107 4108 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4109 /* 4110 * Watermark failed for this zone, but see if we can 4111 * grow this zone if it contains deferred pages. 4112 */ 4113 if (static_branch_unlikely(&deferred_pages)) { 4114 if (_deferred_grow_zone(zone, order)) 4115 goto try_this_zone; 4116 } 4117 #endif 4118 /* Checked here to keep the fast path fast */ 4119 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4120 if (alloc_flags & ALLOC_NO_WATERMARKS) 4121 goto try_this_zone; 4122 4123 if (!node_reclaim_enabled() || 4124 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4125 continue; 4126 4127 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4128 switch (ret) { 4129 case NODE_RECLAIM_NOSCAN: 4130 /* did not scan */ 4131 continue; 4132 case NODE_RECLAIM_FULL: 4133 /* scanned but unreclaimable */ 4134 continue; 4135 default: 4136 /* did we reclaim enough */ 4137 if (zone_watermark_ok(zone, order, mark, 4138 ac->highest_zoneidx, alloc_flags)) 4139 goto try_this_zone; 4140 4141 continue; 4142 } 4143 } 4144 4145 try_this_zone: 4146 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4147 gfp_mask, alloc_flags, ac->migratetype); 4148 if (page) { 4149 prep_new_page(page, order, gfp_mask, alloc_flags); 4150 4151 /* 4152 * If this is a high-order atomic allocation then check 4153 * if the pageblock should be reserved for the future 4154 */ 4155 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4156 reserve_highatomic_pageblock(page, zone, order); 4157 4158 return page; 4159 } else { 4160 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4161 /* Try again if zone has deferred pages */ 4162 if (static_branch_unlikely(&deferred_pages)) { 4163 if (_deferred_grow_zone(zone, order)) 4164 goto try_this_zone; 4165 } 4166 #endif 4167 } 4168 } 4169 4170 /* 4171 * It's possible on a UMA machine to get through all zones that are 4172 * fragmented. If avoiding fragmentation, reset and try again. 4173 */ 4174 if (no_fallback) { 4175 alloc_flags &= ~ALLOC_NOFRAGMENT; 4176 goto retry; 4177 } 4178 4179 return NULL; 4180 } 4181 4182 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4183 { 4184 unsigned int filter = SHOW_MEM_FILTER_NODES; 4185 4186 /* 4187 * This documents exceptions given to allocations in certain 4188 * contexts that are allowed to allocate outside current's set 4189 * of allowed nodes. 4190 */ 4191 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4192 if (tsk_is_oom_victim(current) || 4193 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4194 filter &= ~SHOW_MEM_FILTER_NODES; 4195 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4196 filter &= ~SHOW_MEM_FILTER_NODES; 4197 4198 show_mem(filter, nodemask); 4199 } 4200 4201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4202 { 4203 struct va_format vaf; 4204 va_list args; 4205 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4206 4207 if ((gfp_mask & __GFP_NOWARN) || 4208 !__ratelimit(&nopage_rs) || 4209 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4210 return; 4211 4212 va_start(args, fmt); 4213 vaf.fmt = fmt; 4214 vaf.va = &args; 4215 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4216 current->comm, &vaf, gfp_mask, &gfp_mask, 4217 nodemask_pr_args(nodemask)); 4218 va_end(args); 4219 4220 cpuset_print_current_mems_allowed(); 4221 pr_cont("\n"); 4222 dump_stack(); 4223 warn_alloc_show_mem(gfp_mask, nodemask); 4224 } 4225 4226 static inline struct page * 4227 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4228 unsigned int alloc_flags, 4229 const struct alloc_context *ac) 4230 { 4231 struct page *page; 4232 4233 page = get_page_from_freelist(gfp_mask, order, 4234 alloc_flags|ALLOC_CPUSET, ac); 4235 /* 4236 * fallback to ignore cpuset restriction if our nodes 4237 * are depleted 4238 */ 4239 if (!page) 4240 page = get_page_from_freelist(gfp_mask, order, 4241 alloc_flags, ac); 4242 4243 return page; 4244 } 4245 4246 static inline struct page * 4247 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4248 const struct alloc_context *ac, unsigned long *did_some_progress) 4249 { 4250 struct oom_control oc = { 4251 .zonelist = ac->zonelist, 4252 .nodemask = ac->nodemask, 4253 .memcg = NULL, 4254 .gfp_mask = gfp_mask, 4255 .order = order, 4256 }; 4257 struct page *page; 4258 4259 *did_some_progress = 0; 4260 4261 /* 4262 * Acquire the oom lock. If that fails, somebody else is 4263 * making progress for us. 4264 */ 4265 if (!mutex_trylock(&oom_lock)) { 4266 *did_some_progress = 1; 4267 schedule_timeout_uninterruptible(1); 4268 return NULL; 4269 } 4270 4271 /* 4272 * Go through the zonelist yet one more time, keep very high watermark 4273 * here, this is only to catch a parallel oom killing, we must fail if 4274 * we're still under heavy pressure. But make sure that this reclaim 4275 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4276 * allocation which will never fail due to oom_lock already held. 4277 */ 4278 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4279 ~__GFP_DIRECT_RECLAIM, order, 4280 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4281 if (page) 4282 goto out; 4283 4284 /* Coredumps can quickly deplete all memory reserves */ 4285 if (current->flags & PF_DUMPCORE) 4286 goto out; 4287 /* The OOM killer will not help higher order allocs */ 4288 if (order > PAGE_ALLOC_COSTLY_ORDER) 4289 goto out; 4290 /* 4291 * We have already exhausted all our reclaim opportunities without any 4292 * success so it is time to admit defeat. We will skip the OOM killer 4293 * because it is very likely that the caller has a more reasonable 4294 * fallback than shooting a random task. 4295 * 4296 * The OOM killer may not free memory on a specific node. 4297 */ 4298 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4299 goto out; 4300 /* The OOM killer does not needlessly kill tasks for lowmem */ 4301 if (ac->highest_zoneidx < ZONE_NORMAL) 4302 goto out; 4303 if (pm_suspended_storage()) 4304 goto out; 4305 /* 4306 * XXX: GFP_NOFS allocations should rather fail than rely on 4307 * other request to make a forward progress. 4308 * We are in an unfortunate situation where out_of_memory cannot 4309 * do much for this context but let's try it to at least get 4310 * access to memory reserved if the current task is killed (see 4311 * out_of_memory). Once filesystems are ready to handle allocation 4312 * failures more gracefully we should just bail out here. 4313 */ 4314 4315 /* Exhausted what can be done so it's blame time */ 4316 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4317 *did_some_progress = 1; 4318 4319 /* 4320 * Help non-failing allocations by giving them access to memory 4321 * reserves 4322 */ 4323 if (gfp_mask & __GFP_NOFAIL) 4324 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4325 ALLOC_NO_WATERMARKS, ac); 4326 } 4327 out: 4328 mutex_unlock(&oom_lock); 4329 return page; 4330 } 4331 4332 /* 4333 * Maximum number of compaction retries with a progress before OOM 4334 * killer is consider as the only way to move forward. 4335 */ 4336 #define MAX_COMPACT_RETRIES 16 4337 4338 #ifdef CONFIG_COMPACTION 4339 /* Try memory compaction for high-order allocations before reclaim */ 4340 static struct page * 4341 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4342 unsigned int alloc_flags, const struct alloc_context *ac, 4343 enum compact_priority prio, enum compact_result *compact_result) 4344 { 4345 struct page *page = NULL; 4346 unsigned long pflags; 4347 unsigned int noreclaim_flag; 4348 4349 if (!order) 4350 return NULL; 4351 4352 psi_memstall_enter(&pflags); 4353 noreclaim_flag = memalloc_noreclaim_save(); 4354 4355 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4356 prio, &page); 4357 4358 memalloc_noreclaim_restore(noreclaim_flag); 4359 psi_memstall_leave(&pflags); 4360 4361 if (*compact_result == COMPACT_SKIPPED) 4362 return NULL; 4363 /* 4364 * At least in one zone compaction wasn't deferred or skipped, so let's 4365 * count a compaction stall 4366 */ 4367 count_vm_event(COMPACTSTALL); 4368 4369 /* Prep a captured page if available */ 4370 if (page) 4371 prep_new_page(page, order, gfp_mask, alloc_flags); 4372 4373 /* Try get a page from the freelist if available */ 4374 if (!page) 4375 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4376 4377 if (page) { 4378 struct zone *zone = page_zone(page); 4379 4380 zone->compact_blockskip_flush = false; 4381 compaction_defer_reset(zone, order, true); 4382 count_vm_event(COMPACTSUCCESS); 4383 return page; 4384 } 4385 4386 /* 4387 * It's bad if compaction run occurs and fails. The most likely reason 4388 * is that pages exist, but not enough to satisfy watermarks. 4389 */ 4390 count_vm_event(COMPACTFAIL); 4391 4392 cond_resched(); 4393 4394 return NULL; 4395 } 4396 4397 static inline bool 4398 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4399 enum compact_result compact_result, 4400 enum compact_priority *compact_priority, 4401 int *compaction_retries) 4402 { 4403 int max_retries = MAX_COMPACT_RETRIES; 4404 int min_priority; 4405 bool ret = false; 4406 int retries = *compaction_retries; 4407 enum compact_priority priority = *compact_priority; 4408 4409 if (!order) 4410 return false; 4411 4412 if (fatal_signal_pending(current)) 4413 return false; 4414 4415 if (compaction_made_progress(compact_result)) 4416 (*compaction_retries)++; 4417 4418 /* 4419 * compaction considers all the zone as desperately out of memory 4420 * so it doesn't really make much sense to retry except when the 4421 * failure could be caused by insufficient priority 4422 */ 4423 if (compaction_failed(compact_result)) 4424 goto check_priority; 4425 4426 /* 4427 * compaction was skipped because there are not enough order-0 pages 4428 * to work with, so we retry only if it looks like reclaim can help. 4429 */ 4430 if (compaction_needs_reclaim(compact_result)) { 4431 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4432 goto out; 4433 } 4434 4435 /* 4436 * make sure the compaction wasn't deferred or didn't bail out early 4437 * due to locks contention before we declare that we should give up. 4438 * But the next retry should use a higher priority if allowed, so 4439 * we don't just keep bailing out endlessly. 4440 */ 4441 if (compaction_withdrawn(compact_result)) { 4442 goto check_priority; 4443 } 4444 4445 /* 4446 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4447 * costly ones because they are de facto nofail and invoke OOM 4448 * killer to move on while costly can fail and users are ready 4449 * to cope with that. 1/4 retries is rather arbitrary but we 4450 * would need much more detailed feedback from compaction to 4451 * make a better decision. 4452 */ 4453 if (order > PAGE_ALLOC_COSTLY_ORDER) 4454 max_retries /= 4; 4455 if (*compaction_retries <= max_retries) { 4456 ret = true; 4457 goto out; 4458 } 4459 4460 /* 4461 * Make sure there are attempts at the highest priority if we exhausted 4462 * all retries or failed at the lower priorities. 4463 */ 4464 check_priority: 4465 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4466 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4467 4468 if (*compact_priority > min_priority) { 4469 (*compact_priority)--; 4470 *compaction_retries = 0; 4471 ret = true; 4472 } 4473 out: 4474 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4475 return ret; 4476 } 4477 #else 4478 static inline struct page * 4479 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4480 unsigned int alloc_flags, const struct alloc_context *ac, 4481 enum compact_priority prio, enum compact_result *compact_result) 4482 { 4483 *compact_result = COMPACT_SKIPPED; 4484 return NULL; 4485 } 4486 4487 static inline bool 4488 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4489 enum compact_result compact_result, 4490 enum compact_priority *compact_priority, 4491 int *compaction_retries) 4492 { 4493 struct zone *zone; 4494 struct zoneref *z; 4495 4496 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4497 return false; 4498 4499 /* 4500 * There are setups with compaction disabled which would prefer to loop 4501 * inside the allocator rather than hit the oom killer prematurely. 4502 * Let's give them a good hope and keep retrying while the order-0 4503 * watermarks are OK. 4504 */ 4505 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4506 ac->highest_zoneidx, ac->nodemask) { 4507 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4508 ac->highest_zoneidx, alloc_flags)) 4509 return true; 4510 } 4511 return false; 4512 } 4513 #endif /* CONFIG_COMPACTION */ 4514 4515 #ifdef CONFIG_LOCKDEP 4516 static struct lockdep_map __fs_reclaim_map = 4517 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4518 4519 static bool __need_reclaim(gfp_t gfp_mask) 4520 { 4521 /* no reclaim without waiting on it */ 4522 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4523 return false; 4524 4525 /* this guy won't enter reclaim */ 4526 if (current->flags & PF_MEMALLOC) 4527 return false; 4528 4529 if (gfp_mask & __GFP_NOLOCKDEP) 4530 return false; 4531 4532 return true; 4533 } 4534 4535 void __fs_reclaim_acquire(unsigned long ip) 4536 { 4537 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4538 } 4539 4540 void __fs_reclaim_release(unsigned long ip) 4541 { 4542 lock_release(&__fs_reclaim_map, ip); 4543 } 4544 4545 void fs_reclaim_acquire(gfp_t gfp_mask) 4546 { 4547 gfp_mask = current_gfp_context(gfp_mask); 4548 4549 if (__need_reclaim(gfp_mask)) { 4550 if (gfp_mask & __GFP_FS) 4551 __fs_reclaim_acquire(_RET_IP_); 4552 4553 #ifdef CONFIG_MMU_NOTIFIER 4554 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4555 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4556 #endif 4557 4558 } 4559 } 4560 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4561 4562 void fs_reclaim_release(gfp_t gfp_mask) 4563 { 4564 gfp_mask = current_gfp_context(gfp_mask); 4565 4566 if (__need_reclaim(gfp_mask)) { 4567 if (gfp_mask & __GFP_FS) 4568 __fs_reclaim_release(_RET_IP_); 4569 } 4570 } 4571 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4572 #endif 4573 4574 /* Perform direct synchronous page reclaim */ 4575 static unsigned long 4576 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4577 const struct alloc_context *ac) 4578 { 4579 unsigned int noreclaim_flag; 4580 unsigned long pflags, progress; 4581 4582 cond_resched(); 4583 4584 /* We now go into synchronous reclaim */ 4585 cpuset_memory_pressure_bump(); 4586 psi_memstall_enter(&pflags); 4587 fs_reclaim_acquire(gfp_mask); 4588 noreclaim_flag = memalloc_noreclaim_save(); 4589 4590 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4591 ac->nodemask); 4592 4593 memalloc_noreclaim_restore(noreclaim_flag); 4594 fs_reclaim_release(gfp_mask); 4595 psi_memstall_leave(&pflags); 4596 4597 cond_resched(); 4598 4599 return progress; 4600 } 4601 4602 /* The really slow allocator path where we enter direct reclaim */ 4603 static inline struct page * 4604 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4605 unsigned int alloc_flags, const struct alloc_context *ac, 4606 unsigned long *did_some_progress) 4607 { 4608 struct page *page = NULL; 4609 bool drained = false; 4610 4611 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4612 if (unlikely(!(*did_some_progress))) 4613 return NULL; 4614 4615 retry: 4616 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4617 4618 /* 4619 * If an allocation failed after direct reclaim, it could be because 4620 * pages are pinned on the per-cpu lists or in high alloc reserves. 4621 * Shrink them and try again 4622 */ 4623 if (!page && !drained) { 4624 unreserve_highatomic_pageblock(ac, false); 4625 drain_all_pages(NULL); 4626 drained = true; 4627 goto retry; 4628 } 4629 4630 return page; 4631 } 4632 4633 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4634 const struct alloc_context *ac) 4635 { 4636 struct zoneref *z; 4637 struct zone *zone; 4638 pg_data_t *last_pgdat = NULL; 4639 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4640 4641 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4642 ac->nodemask) { 4643 if (last_pgdat != zone->zone_pgdat) 4644 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4645 last_pgdat = zone->zone_pgdat; 4646 } 4647 } 4648 4649 static inline unsigned int 4650 gfp_to_alloc_flags(gfp_t gfp_mask) 4651 { 4652 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4653 4654 /* 4655 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4656 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4657 * to save two branches. 4658 */ 4659 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4660 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4661 4662 /* 4663 * The caller may dip into page reserves a bit more if the caller 4664 * cannot run direct reclaim, or if the caller has realtime scheduling 4665 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4666 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4667 */ 4668 alloc_flags |= (__force int) 4669 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4670 4671 if (gfp_mask & __GFP_ATOMIC) { 4672 /* 4673 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4674 * if it can't schedule. 4675 */ 4676 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4677 alloc_flags |= ALLOC_HARDER; 4678 /* 4679 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4680 * comment for __cpuset_node_allowed(). 4681 */ 4682 alloc_flags &= ~ALLOC_CPUSET; 4683 } else if (unlikely(rt_task(current)) && in_task()) 4684 alloc_flags |= ALLOC_HARDER; 4685 4686 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4687 4688 return alloc_flags; 4689 } 4690 4691 static bool oom_reserves_allowed(struct task_struct *tsk) 4692 { 4693 if (!tsk_is_oom_victim(tsk)) 4694 return false; 4695 4696 /* 4697 * !MMU doesn't have oom reaper so give access to memory reserves 4698 * only to the thread with TIF_MEMDIE set 4699 */ 4700 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4701 return false; 4702 4703 return true; 4704 } 4705 4706 /* 4707 * Distinguish requests which really need access to full memory 4708 * reserves from oom victims which can live with a portion of it 4709 */ 4710 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4711 { 4712 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4713 return 0; 4714 if (gfp_mask & __GFP_MEMALLOC) 4715 return ALLOC_NO_WATERMARKS; 4716 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4717 return ALLOC_NO_WATERMARKS; 4718 if (!in_interrupt()) { 4719 if (current->flags & PF_MEMALLOC) 4720 return ALLOC_NO_WATERMARKS; 4721 else if (oom_reserves_allowed(current)) 4722 return ALLOC_OOM; 4723 } 4724 4725 return 0; 4726 } 4727 4728 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4729 { 4730 return !!__gfp_pfmemalloc_flags(gfp_mask); 4731 } 4732 4733 /* 4734 * Checks whether it makes sense to retry the reclaim to make a forward progress 4735 * for the given allocation request. 4736 * 4737 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4738 * without success, or when we couldn't even meet the watermark if we 4739 * reclaimed all remaining pages on the LRU lists. 4740 * 4741 * Returns true if a retry is viable or false to enter the oom path. 4742 */ 4743 static inline bool 4744 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4745 struct alloc_context *ac, int alloc_flags, 4746 bool did_some_progress, int *no_progress_loops) 4747 { 4748 struct zone *zone; 4749 struct zoneref *z; 4750 bool ret = false; 4751 4752 /* 4753 * Costly allocations might have made a progress but this doesn't mean 4754 * their order will become available due to high fragmentation so 4755 * always increment the no progress counter for them 4756 */ 4757 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4758 *no_progress_loops = 0; 4759 else 4760 (*no_progress_loops)++; 4761 4762 /* 4763 * Make sure we converge to OOM if we cannot make any progress 4764 * several times in the row. 4765 */ 4766 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4767 /* Before OOM, exhaust highatomic_reserve */ 4768 return unreserve_highatomic_pageblock(ac, true); 4769 } 4770 4771 /* 4772 * Keep reclaiming pages while there is a chance this will lead 4773 * somewhere. If none of the target zones can satisfy our allocation 4774 * request even if all reclaimable pages are considered then we are 4775 * screwed and have to go OOM. 4776 */ 4777 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4778 ac->highest_zoneidx, ac->nodemask) { 4779 unsigned long available; 4780 unsigned long reclaimable; 4781 unsigned long min_wmark = min_wmark_pages(zone); 4782 bool wmark; 4783 4784 available = reclaimable = zone_reclaimable_pages(zone); 4785 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4786 4787 /* 4788 * Would the allocation succeed if we reclaimed all 4789 * reclaimable pages? 4790 */ 4791 wmark = __zone_watermark_ok(zone, order, min_wmark, 4792 ac->highest_zoneidx, alloc_flags, available); 4793 trace_reclaim_retry_zone(z, order, reclaimable, 4794 available, min_wmark, *no_progress_loops, wmark); 4795 if (wmark) { 4796 ret = true; 4797 break; 4798 } 4799 } 4800 4801 /* 4802 * Memory allocation/reclaim might be called from a WQ context and the 4803 * current implementation of the WQ concurrency control doesn't 4804 * recognize that a particular WQ is congested if the worker thread is 4805 * looping without ever sleeping. Therefore we have to do a short sleep 4806 * here rather than calling cond_resched(). 4807 */ 4808 if (current->flags & PF_WQ_WORKER) 4809 schedule_timeout_uninterruptible(1); 4810 else 4811 cond_resched(); 4812 return ret; 4813 } 4814 4815 static inline bool 4816 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4817 { 4818 /* 4819 * It's possible that cpuset's mems_allowed and the nodemask from 4820 * mempolicy don't intersect. This should be normally dealt with by 4821 * policy_nodemask(), but it's possible to race with cpuset update in 4822 * such a way the check therein was true, and then it became false 4823 * before we got our cpuset_mems_cookie here. 4824 * This assumes that for all allocations, ac->nodemask can come only 4825 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4826 * when it does not intersect with the cpuset restrictions) or the 4827 * caller can deal with a violated nodemask. 4828 */ 4829 if (cpusets_enabled() && ac->nodemask && 4830 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4831 ac->nodemask = NULL; 4832 return true; 4833 } 4834 4835 /* 4836 * When updating a task's mems_allowed or mempolicy nodemask, it is 4837 * possible to race with parallel threads in such a way that our 4838 * allocation can fail while the mask is being updated. If we are about 4839 * to fail, check if the cpuset changed during allocation and if so, 4840 * retry. 4841 */ 4842 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4843 return true; 4844 4845 return false; 4846 } 4847 4848 static inline struct page * 4849 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4850 struct alloc_context *ac) 4851 { 4852 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4853 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4854 struct page *page = NULL; 4855 unsigned int alloc_flags; 4856 unsigned long did_some_progress; 4857 enum compact_priority compact_priority; 4858 enum compact_result compact_result; 4859 int compaction_retries; 4860 int no_progress_loops; 4861 unsigned int cpuset_mems_cookie; 4862 int reserve_flags; 4863 4864 /* 4865 * We also sanity check to catch abuse of atomic reserves being used by 4866 * callers that are not in atomic context. 4867 */ 4868 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4869 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4870 gfp_mask &= ~__GFP_ATOMIC; 4871 4872 retry_cpuset: 4873 compaction_retries = 0; 4874 no_progress_loops = 0; 4875 compact_priority = DEF_COMPACT_PRIORITY; 4876 cpuset_mems_cookie = read_mems_allowed_begin(); 4877 4878 /* 4879 * The fast path uses conservative alloc_flags to succeed only until 4880 * kswapd needs to be woken up, and to avoid the cost of setting up 4881 * alloc_flags precisely. So we do that now. 4882 */ 4883 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4884 4885 /* 4886 * We need to recalculate the starting point for the zonelist iterator 4887 * because we might have used different nodemask in the fast path, or 4888 * there was a cpuset modification and we are retrying - otherwise we 4889 * could end up iterating over non-eligible zones endlessly. 4890 */ 4891 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4892 ac->highest_zoneidx, ac->nodemask); 4893 if (!ac->preferred_zoneref->zone) 4894 goto nopage; 4895 4896 /* 4897 * Check for insane configurations where the cpuset doesn't contain 4898 * any suitable zone to satisfy the request - e.g. non-movable 4899 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4900 */ 4901 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4902 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4903 ac->highest_zoneidx, 4904 &cpuset_current_mems_allowed); 4905 if (!z->zone) 4906 goto nopage; 4907 } 4908 4909 if (alloc_flags & ALLOC_KSWAPD) 4910 wake_all_kswapds(order, gfp_mask, ac); 4911 4912 /* 4913 * The adjusted alloc_flags might result in immediate success, so try 4914 * that first 4915 */ 4916 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4917 if (page) 4918 goto got_pg; 4919 4920 /* 4921 * For costly allocations, try direct compaction first, as it's likely 4922 * that we have enough base pages and don't need to reclaim. For non- 4923 * movable high-order allocations, do that as well, as compaction will 4924 * try prevent permanent fragmentation by migrating from blocks of the 4925 * same migratetype. 4926 * Don't try this for allocations that are allowed to ignore 4927 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4928 */ 4929 if (can_direct_reclaim && 4930 (costly_order || 4931 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4932 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4933 page = __alloc_pages_direct_compact(gfp_mask, order, 4934 alloc_flags, ac, 4935 INIT_COMPACT_PRIORITY, 4936 &compact_result); 4937 if (page) 4938 goto got_pg; 4939 4940 /* 4941 * Checks for costly allocations with __GFP_NORETRY, which 4942 * includes some THP page fault allocations 4943 */ 4944 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4945 /* 4946 * If allocating entire pageblock(s) and compaction 4947 * failed because all zones are below low watermarks 4948 * or is prohibited because it recently failed at this 4949 * order, fail immediately unless the allocator has 4950 * requested compaction and reclaim retry. 4951 * 4952 * Reclaim is 4953 * - potentially very expensive because zones are far 4954 * below their low watermarks or this is part of very 4955 * bursty high order allocations, 4956 * - not guaranteed to help because isolate_freepages() 4957 * may not iterate over freed pages as part of its 4958 * linear scan, and 4959 * - unlikely to make entire pageblocks free on its 4960 * own. 4961 */ 4962 if (compact_result == COMPACT_SKIPPED || 4963 compact_result == COMPACT_DEFERRED) 4964 goto nopage; 4965 4966 /* 4967 * Looks like reclaim/compaction is worth trying, but 4968 * sync compaction could be very expensive, so keep 4969 * using async compaction. 4970 */ 4971 compact_priority = INIT_COMPACT_PRIORITY; 4972 } 4973 } 4974 4975 retry: 4976 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4977 if (alloc_flags & ALLOC_KSWAPD) 4978 wake_all_kswapds(order, gfp_mask, ac); 4979 4980 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4981 if (reserve_flags) 4982 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 4983 4984 /* 4985 * Reset the nodemask and zonelist iterators if memory policies can be 4986 * ignored. These allocations are high priority and system rather than 4987 * user oriented. 4988 */ 4989 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4990 ac->nodemask = NULL; 4991 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4992 ac->highest_zoneidx, ac->nodemask); 4993 } 4994 4995 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4997 if (page) 4998 goto got_pg; 4999 5000 /* Caller is not willing to reclaim, we can't balance anything */ 5001 if (!can_direct_reclaim) 5002 goto nopage; 5003 5004 /* Avoid recursion of direct reclaim */ 5005 if (current->flags & PF_MEMALLOC) 5006 goto nopage; 5007 5008 /* Try direct reclaim and then allocating */ 5009 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5010 &did_some_progress); 5011 if (page) 5012 goto got_pg; 5013 5014 /* Try direct compaction and then allocating */ 5015 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5016 compact_priority, &compact_result); 5017 if (page) 5018 goto got_pg; 5019 5020 /* Do not loop if specifically requested */ 5021 if (gfp_mask & __GFP_NORETRY) 5022 goto nopage; 5023 5024 /* 5025 * Do not retry costly high order allocations unless they are 5026 * __GFP_RETRY_MAYFAIL 5027 */ 5028 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5029 goto nopage; 5030 5031 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5032 did_some_progress > 0, &no_progress_loops)) 5033 goto retry; 5034 5035 /* 5036 * It doesn't make any sense to retry for the compaction if the order-0 5037 * reclaim is not able to make any progress because the current 5038 * implementation of the compaction depends on the sufficient amount 5039 * of free memory (see __compaction_suitable) 5040 */ 5041 if (did_some_progress > 0 && 5042 should_compact_retry(ac, order, alloc_flags, 5043 compact_result, &compact_priority, 5044 &compaction_retries)) 5045 goto retry; 5046 5047 5048 /* Deal with possible cpuset update races before we start OOM killing */ 5049 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5050 goto retry_cpuset; 5051 5052 /* Reclaim has failed us, start killing things */ 5053 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5054 if (page) 5055 goto got_pg; 5056 5057 /* Avoid allocations with no watermarks from looping endlessly */ 5058 if (tsk_is_oom_victim(current) && 5059 (alloc_flags & ALLOC_OOM || 5060 (gfp_mask & __GFP_NOMEMALLOC))) 5061 goto nopage; 5062 5063 /* Retry as long as the OOM killer is making progress */ 5064 if (did_some_progress) { 5065 no_progress_loops = 0; 5066 goto retry; 5067 } 5068 5069 nopage: 5070 /* Deal with possible cpuset update races before we fail */ 5071 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5072 goto retry_cpuset; 5073 5074 /* 5075 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5076 * we always retry 5077 */ 5078 if (gfp_mask & __GFP_NOFAIL) { 5079 /* 5080 * All existing users of the __GFP_NOFAIL are blockable, so warn 5081 * of any new users that actually require GFP_NOWAIT 5082 */ 5083 if (WARN_ON_ONCE(!can_direct_reclaim)) 5084 goto fail; 5085 5086 /* 5087 * PF_MEMALLOC request from this context is rather bizarre 5088 * because we cannot reclaim anything and only can loop waiting 5089 * for somebody to do a work for us 5090 */ 5091 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5092 5093 /* 5094 * non failing costly orders are a hard requirement which we 5095 * are not prepared for much so let's warn about these users 5096 * so that we can identify them and convert them to something 5097 * else. 5098 */ 5099 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5100 5101 /* 5102 * Help non-failing allocations by giving them access to memory 5103 * reserves but do not use ALLOC_NO_WATERMARKS because this 5104 * could deplete whole memory reserves which would just make 5105 * the situation worse 5106 */ 5107 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5108 if (page) 5109 goto got_pg; 5110 5111 cond_resched(); 5112 goto retry; 5113 } 5114 fail: 5115 warn_alloc(gfp_mask, ac->nodemask, 5116 "page allocation failure: order:%u", order); 5117 got_pg: 5118 return page; 5119 } 5120 5121 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5122 int preferred_nid, nodemask_t *nodemask, 5123 struct alloc_context *ac, gfp_t *alloc_gfp, 5124 unsigned int *alloc_flags) 5125 { 5126 ac->highest_zoneidx = gfp_zone(gfp_mask); 5127 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5128 ac->nodemask = nodemask; 5129 ac->migratetype = gfp_migratetype(gfp_mask); 5130 5131 if (cpusets_enabled()) { 5132 *alloc_gfp |= __GFP_HARDWALL; 5133 /* 5134 * When we are in the interrupt context, it is irrelevant 5135 * to the current task context. It means that any node ok. 5136 */ 5137 if (in_task() && !ac->nodemask) 5138 ac->nodemask = &cpuset_current_mems_allowed; 5139 else 5140 *alloc_flags |= ALLOC_CPUSET; 5141 } 5142 5143 fs_reclaim_acquire(gfp_mask); 5144 fs_reclaim_release(gfp_mask); 5145 5146 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5147 5148 if (should_fail_alloc_page(gfp_mask, order)) 5149 return false; 5150 5151 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5152 5153 /* Dirty zone balancing only done in the fast path */ 5154 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5155 5156 /* 5157 * The preferred zone is used for statistics but crucially it is 5158 * also used as the starting point for the zonelist iterator. It 5159 * may get reset for allocations that ignore memory policies. 5160 */ 5161 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5162 ac->highest_zoneidx, ac->nodemask); 5163 5164 return true; 5165 } 5166 5167 /* 5168 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5169 * @gfp: GFP flags for the allocation 5170 * @preferred_nid: The preferred NUMA node ID to allocate from 5171 * @nodemask: Set of nodes to allocate from, may be NULL 5172 * @nr_pages: The number of pages desired on the list or array 5173 * @page_list: Optional list to store the allocated pages 5174 * @page_array: Optional array to store the pages 5175 * 5176 * This is a batched version of the page allocator that attempts to 5177 * allocate nr_pages quickly. Pages are added to page_list if page_list 5178 * is not NULL, otherwise it is assumed that the page_array is valid. 5179 * 5180 * For lists, nr_pages is the number of pages that should be allocated. 5181 * 5182 * For arrays, only NULL elements are populated with pages and nr_pages 5183 * is the maximum number of pages that will be stored in the array. 5184 * 5185 * Returns the number of pages on the list or array. 5186 */ 5187 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5188 nodemask_t *nodemask, int nr_pages, 5189 struct list_head *page_list, 5190 struct page **page_array) 5191 { 5192 struct page *page; 5193 unsigned long flags; 5194 struct zone *zone; 5195 struct zoneref *z; 5196 struct per_cpu_pages *pcp; 5197 struct list_head *pcp_list; 5198 struct alloc_context ac; 5199 gfp_t alloc_gfp; 5200 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5201 int nr_populated = 0, nr_account = 0; 5202 5203 /* 5204 * Skip populated array elements to determine if any pages need 5205 * to be allocated before disabling IRQs. 5206 */ 5207 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5208 nr_populated++; 5209 5210 /* No pages requested? */ 5211 if (unlikely(nr_pages <= 0)) 5212 goto out; 5213 5214 /* Already populated array? */ 5215 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5216 goto out; 5217 5218 /* Bulk allocator does not support memcg accounting. */ 5219 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5220 goto failed; 5221 5222 /* Use the single page allocator for one page. */ 5223 if (nr_pages - nr_populated == 1) 5224 goto failed; 5225 5226 #ifdef CONFIG_PAGE_OWNER 5227 /* 5228 * PAGE_OWNER may recurse into the allocator to allocate space to 5229 * save the stack with pagesets.lock held. Releasing/reacquiring 5230 * removes much of the performance benefit of bulk allocation so 5231 * force the caller to allocate one page at a time as it'll have 5232 * similar performance to added complexity to the bulk allocator. 5233 */ 5234 if (static_branch_unlikely(&page_owner_inited)) 5235 goto failed; 5236 #endif 5237 5238 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5239 gfp &= gfp_allowed_mask; 5240 alloc_gfp = gfp; 5241 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5242 goto out; 5243 gfp = alloc_gfp; 5244 5245 /* Find an allowed local zone that meets the low watermark. */ 5246 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5247 unsigned long mark; 5248 5249 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5250 !__cpuset_zone_allowed(zone, gfp)) { 5251 continue; 5252 } 5253 5254 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5255 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5256 goto failed; 5257 } 5258 5259 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5260 if (zone_watermark_fast(zone, 0, mark, 5261 zonelist_zone_idx(ac.preferred_zoneref), 5262 alloc_flags, gfp)) { 5263 break; 5264 } 5265 } 5266 5267 /* 5268 * If there are no allowed local zones that meets the watermarks then 5269 * try to allocate a single page and reclaim if necessary. 5270 */ 5271 if (unlikely(!zone)) 5272 goto failed; 5273 5274 /* Attempt the batch allocation */ 5275 local_lock_irqsave(&pagesets.lock, flags); 5276 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5277 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5278 5279 while (nr_populated < nr_pages) { 5280 5281 /* Skip existing pages */ 5282 if (page_array && page_array[nr_populated]) { 5283 nr_populated++; 5284 continue; 5285 } 5286 5287 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5288 pcp, pcp_list); 5289 if (unlikely(!page)) { 5290 /* Try and get at least one page */ 5291 if (!nr_populated) 5292 goto failed_irq; 5293 break; 5294 } 5295 nr_account++; 5296 5297 prep_new_page(page, 0, gfp, 0); 5298 if (page_list) 5299 list_add(&page->lru, page_list); 5300 else 5301 page_array[nr_populated] = page; 5302 nr_populated++; 5303 } 5304 5305 local_unlock_irqrestore(&pagesets.lock, flags); 5306 5307 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5308 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5309 5310 out: 5311 return nr_populated; 5312 5313 failed_irq: 5314 local_unlock_irqrestore(&pagesets.lock, flags); 5315 5316 failed: 5317 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5318 if (page) { 5319 if (page_list) 5320 list_add(&page->lru, page_list); 5321 else 5322 page_array[nr_populated] = page; 5323 nr_populated++; 5324 } 5325 5326 goto out; 5327 } 5328 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5329 5330 /* 5331 * This is the 'heart' of the zoned buddy allocator. 5332 */ 5333 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5334 nodemask_t *nodemask) 5335 { 5336 struct page *page; 5337 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5338 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5339 struct alloc_context ac = { }; 5340 5341 /* 5342 * There are several places where we assume that the order value is sane 5343 * so bail out early if the request is out of bound. 5344 */ 5345 if (unlikely(order >= MAX_ORDER)) { 5346 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5347 return NULL; 5348 } 5349 5350 gfp &= gfp_allowed_mask; 5351 /* 5352 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5353 * resp. GFP_NOIO which has to be inherited for all allocation requests 5354 * from a particular context which has been marked by 5355 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5356 * movable zones are not used during allocation. 5357 */ 5358 gfp = current_gfp_context(gfp); 5359 alloc_gfp = gfp; 5360 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5361 &alloc_gfp, &alloc_flags)) 5362 return NULL; 5363 5364 /* 5365 * Forbid the first pass from falling back to types that fragment 5366 * memory until all local zones are considered. 5367 */ 5368 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5369 5370 /* First allocation attempt */ 5371 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5372 if (likely(page)) 5373 goto out; 5374 5375 alloc_gfp = gfp; 5376 ac.spread_dirty_pages = false; 5377 5378 /* 5379 * Restore the original nodemask if it was potentially replaced with 5380 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5381 */ 5382 ac.nodemask = nodemask; 5383 5384 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5385 5386 out: 5387 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5388 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5389 __free_pages(page, order); 5390 page = NULL; 5391 } 5392 5393 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5394 5395 return page; 5396 } 5397 EXPORT_SYMBOL(__alloc_pages); 5398 5399 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5400 nodemask_t *nodemask) 5401 { 5402 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5403 preferred_nid, nodemask); 5404 5405 if (page && order > 1) 5406 prep_transhuge_page(page); 5407 return (struct folio *)page; 5408 } 5409 EXPORT_SYMBOL(__folio_alloc); 5410 5411 /* 5412 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5413 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5414 * you need to access high mem. 5415 */ 5416 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5417 { 5418 struct page *page; 5419 5420 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5421 if (!page) 5422 return 0; 5423 return (unsigned long) page_address(page); 5424 } 5425 EXPORT_SYMBOL(__get_free_pages); 5426 5427 unsigned long get_zeroed_page(gfp_t gfp_mask) 5428 { 5429 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5430 } 5431 EXPORT_SYMBOL(get_zeroed_page); 5432 5433 /** 5434 * __free_pages - Free pages allocated with alloc_pages(). 5435 * @page: The page pointer returned from alloc_pages(). 5436 * @order: The order of the allocation. 5437 * 5438 * This function can free multi-page allocations that are not compound 5439 * pages. It does not check that the @order passed in matches that of 5440 * the allocation, so it is easy to leak memory. Freeing more memory 5441 * than was allocated will probably emit a warning. 5442 * 5443 * If the last reference to this page is speculative, it will be released 5444 * by put_page() which only frees the first page of a non-compound 5445 * allocation. To prevent the remaining pages from being leaked, we free 5446 * the subsequent pages here. If you want to use the page's reference 5447 * count to decide when to free the allocation, you should allocate a 5448 * compound page, and use put_page() instead of __free_pages(). 5449 * 5450 * Context: May be called in interrupt context or while holding a normal 5451 * spinlock, but not in NMI context or while holding a raw spinlock. 5452 */ 5453 void __free_pages(struct page *page, unsigned int order) 5454 { 5455 if (put_page_testzero(page)) 5456 free_the_page(page, order); 5457 else if (!PageHead(page)) 5458 while (order-- > 0) 5459 free_the_page(page + (1 << order), order); 5460 } 5461 EXPORT_SYMBOL(__free_pages); 5462 5463 void free_pages(unsigned long addr, unsigned int order) 5464 { 5465 if (addr != 0) { 5466 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5467 __free_pages(virt_to_page((void *)addr), order); 5468 } 5469 } 5470 5471 EXPORT_SYMBOL(free_pages); 5472 5473 /* 5474 * Page Fragment: 5475 * An arbitrary-length arbitrary-offset area of memory which resides 5476 * within a 0 or higher order page. Multiple fragments within that page 5477 * are individually refcounted, in the page's reference counter. 5478 * 5479 * The page_frag functions below provide a simple allocation framework for 5480 * page fragments. This is used by the network stack and network device 5481 * drivers to provide a backing region of memory for use as either an 5482 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5483 */ 5484 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5485 gfp_t gfp_mask) 5486 { 5487 struct page *page = NULL; 5488 gfp_t gfp = gfp_mask; 5489 5490 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5491 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5492 __GFP_NOMEMALLOC; 5493 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5494 PAGE_FRAG_CACHE_MAX_ORDER); 5495 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5496 #endif 5497 if (unlikely(!page)) 5498 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5499 5500 nc->va = page ? page_address(page) : NULL; 5501 5502 return page; 5503 } 5504 5505 void __page_frag_cache_drain(struct page *page, unsigned int count) 5506 { 5507 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5508 5509 if (page_ref_sub_and_test(page, count)) 5510 free_the_page(page, compound_order(page)); 5511 } 5512 EXPORT_SYMBOL(__page_frag_cache_drain); 5513 5514 void *page_frag_alloc_align(struct page_frag_cache *nc, 5515 unsigned int fragsz, gfp_t gfp_mask, 5516 unsigned int align_mask) 5517 { 5518 unsigned int size = PAGE_SIZE; 5519 struct page *page; 5520 int offset; 5521 5522 if (unlikely(!nc->va)) { 5523 refill: 5524 page = __page_frag_cache_refill(nc, gfp_mask); 5525 if (!page) 5526 return NULL; 5527 5528 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5529 /* if size can vary use size else just use PAGE_SIZE */ 5530 size = nc->size; 5531 #endif 5532 /* Even if we own the page, we do not use atomic_set(). 5533 * This would break get_page_unless_zero() users. 5534 */ 5535 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5536 5537 /* reset page count bias and offset to start of new frag */ 5538 nc->pfmemalloc = page_is_pfmemalloc(page); 5539 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5540 nc->offset = size; 5541 } 5542 5543 offset = nc->offset - fragsz; 5544 if (unlikely(offset < 0)) { 5545 page = virt_to_page(nc->va); 5546 5547 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5548 goto refill; 5549 5550 if (unlikely(nc->pfmemalloc)) { 5551 free_the_page(page, compound_order(page)); 5552 goto refill; 5553 } 5554 5555 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5556 /* if size can vary use size else just use PAGE_SIZE */ 5557 size = nc->size; 5558 #endif 5559 /* OK, page count is 0, we can safely set it */ 5560 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5561 5562 /* reset page count bias and offset to start of new frag */ 5563 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5564 offset = size - fragsz; 5565 } 5566 5567 nc->pagecnt_bias--; 5568 offset &= align_mask; 5569 nc->offset = offset; 5570 5571 return nc->va + offset; 5572 } 5573 EXPORT_SYMBOL(page_frag_alloc_align); 5574 5575 /* 5576 * Frees a page fragment allocated out of either a compound or order 0 page. 5577 */ 5578 void page_frag_free(void *addr) 5579 { 5580 struct page *page = virt_to_head_page(addr); 5581 5582 if (unlikely(put_page_testzero(page))) 5583 free_the_page(page, compound_order(page)); 5584 } 5585 EXPORT_SYMBOL(page_frag_free); 5586 5587 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5588 size_t size) 5589 { 5590 if (addr) { 5591 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5592 unsigned long used = addr + PAGE_ALIGN(size); 5593 5594 split_page(virt_to_page((void *)addr), order); 5595 while (used < alloc_end) { 5596 free_page(used); 5597 used += PAGE_SIZE; 5598 } 5599 } 5600 return (void *)addr; 5601 } 5602 5603 /** 5604 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5605 * @size: the number of bytes to allocate 5606 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5607 * 5608 * This function is similar to alloc_pages(), except that it allocates the 5609 * minimum number of pages to satisfy the request. alloc_pages() can only 5610 * allocate memory in power-of-two pages. 5611 * 5612 * This function is also limited by MAX_ORDER. 5613 * 5614 * Memory allocated by this function must be released by free_pages_exact(). 5615 * 5616 * Return: pointer to the allocated area or %NULL in case of error. 5617 */ 5618 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5619 { 5620 unsigned int order = get_order(size); 5621 unsigned long addr; 5622 5623 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5624 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5625 5626 addr = __get_free_pages(gfp_mask, order); 5627 return make_alloc_exact(addr, order, size); 5628 } 5629 EXPORT_SYMBOL(alloc_pages_exact); 5630 5631 /** 5632 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5633 * pages on a node. 5634 * @nid: the preferred node ID where memory should be allocated 5635 * @size: the number of bytes to allocate 5636 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5637 * 5638 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5639 * back. 5640 * 5641 * Return: pointer to the allocated area or %NULL in case of error. 5642 */ 5643 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5644 { 5645 unsigned int order = get_order(size); 5646 struct page *p; 5647 5648 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5649 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5650 5651 p = alloc_pages_node(nid, gfp_mask, order); 5652 if (!p) 5653 return NULL; 5654 return make_alloc_exact((unsigned long)page_address(p), order, size); 5655 } 5656 5657 /** 5658 * free_pages_exact - release memory allocated via alloc_pages_exact() 5659 * @virt: the value returned by alloc_pages_exact. 5660 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5661 * 5662 * Release the memory allocated by a previous call to alloc_pages_exact. 5663 */ 5664 void free_pages_exact(void *virt, size_t size) 5665 { 5666 unsigned long addr = (unsigned long)virt; 5667 unsigned long end = addr + PAGE_ALIGN(size); 5668 5669 while (addr < end) { 5670 free_page(addr); 5671 addr += PAGE_SIZE; 5672 } 5673 } 5674 EXPORT_SYMBOL(free_pages_exact); 5675 5676 /** 5677 * nr_free_zone_pages - count number of pages beyond high watermark 5678 * @offset: The zone index of the highest zone 5679 * 5680 * nr_free_zone_pages() counts the number of pages which are beyond the 5681 * high watermark within all zones at or below a given zone index. For each 5682 * zone, the number of pages is calculated as: 5683 * 5684 * nr_free_zone_pages = managed_pages - high_pages 5685 * 5686 * Return: number of pages beyond high watermark. 5687 */ 5688 static unsigned long nr_free_zone_pages(int offset) 5689 { 5690 struct zoneref *z; 5691 struct zone *zone; 5692 5693 /* Just pick one node, since fallback list is circular */ 5694 unsigned long sum = 0; 5695 5696 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5697 5698 for_each_zone_zonelist(zone, z, zonelist, offset) { 5699 unsigned long size = zone_managed_pages(zone); 5700 unsigned long high = high_wmark_pages(zone); 5701 if (size > high) 5702 sum += size - high; 5703 } 5704 5705 return sum; 5706 } 5707 5708 /** 5709 * nr_free_buffer_pages - count number of pages beyond high watermark 5710 * 5711 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5712 * watermark within ZONE_DMA and ZONE_NORMAL. 5713 * 5714 * Return: number of pages beyond high watermark within ZONE_DMA and 5715 * ZONE_NORMAL. 5716 */ 5717 unsigned long nr_free_buffer_pages(void) 5718 { 5719 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5720 } 5721 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5722 5723 static inline void show_node(struct zone *zone) 5724 { 5725 if (IS_ENABLED(CONFIG_NUMA)) 5726 printk("Node %d ", zone_to_nid(zone)); 5727 } 5728 5729 long si_mem_available(void) 5730 { 5731 long available; 5732 unsigned long pagecache; 5733 unsigned long wmark_low = 0; 5734 unsigned long pages[NR_LRU_LISTS]; 5735 unsigned long reclaimable; 5736 struct zone *zone; 5737 int lru; 5738 5739 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5740 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5741 5742 for_each_zone(zone) 5743 wmark_low += low_wmark_pages(zone); 5744 5745 /* 5746 * Estimate the amount of memory available for userspace allocations, 5747 * without causing swapping. 5748 */ 5749 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5750 5751 /* 5752 * Not all the page cache can be freed, otherwise the system will 5753 * start swapping. Assume at least half of the page cache, or the 5754 * low watermark worth of cache, needs to stay. 5755 */ 5756 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5757 pagecache -= min(pagecache / 2, wmark_low); 5758 available += pagecache; 5759 5760 /* 5761 * Part of the reclaimable slab and other kernel memory consists of 5762 * items that are in use, and cannot be freed. Cap this estimate at the 5763 * low watermark. 5764 */ 5765 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5766 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5767 available += reclaimable - min(reclaimable / 2, wmark_low); 5768 5769 if (available < 0) 5770 available = 0; 5771 return available; 5772 } 5773 EXPORT_SYMBOL_GPL(si_mem_available); 5774 5775 void si_meminfo(struct sysinfo *val) 5776 { 5777 val->totalram = totalram_pages(); 5778 val->sharedram = global_node_page_state(NR_SHMEM); 5779 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5780 val->bufferram = nr_blockdev_pages(); 5781 val->totalhigh = totalhigh_pages(); 5782 val->freehigh = nr_free_highpages(); 5783 val->mem_unit = PAGE_SIZE; 5784 } 5785 5786 EXPORT_SYMBOL(si_meminfo); 5787 5788 #ifdef CONFIG_NUMA 5789 void si_meminfo_node(struct sysinfo *val, int nid) 5790 { 5791 int zone_type; /* needs to be signed */ 5792 unsigned long managed_pages = 0; 5793 unsigned long managed_highpages = 0; 5794 unsigned long free_highpages = 0; 5795 pg_data_t *pgdat = NODE_DATA(nid); 5796 5797 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5798 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5799 val->totalram = managed_pages; 5800 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5801 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5802 #ifdef CONFIG_HIGHMEM 5803 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5804 struct zone *zone = &pgdat->node_zones[zone_type]; 5805 5806 if (is_highmem(zone)) { 5807 managed_highpages += zone_managed_pages(zone); 5808 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5809 } 5810 } 5811 val->totalhigh = managed_highpages; 5812 val->freehigh = free_highpages; 5813 #else 5814 val->totalhigh = managed_highpages; 5815 val->freehigh = free_highpages; 5816 #endif 5817 val->mem_unit = PAGE_SIZE; 5818 } 5819 #endif 5820 5821 /* 5822 * Determine whether the node should be displayed or not, depending on whether 5823 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5824 */ 5825 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5826 { 5827 if (!(flags & SHOW_MEM_FILTER_NODES)) 5828 return false; 5829 5830 /* 5831 * no node mask - aka implicit memory numa policy. Do not bother with 5832 * the synchronization - read_mems_allowed_begin - because we do not 5833 * have to be precise here. 5834 */ 5835 if (!nodemask) 5836 nodemask = &cpuset_current_mems_allowed; 5837 5838 return !node_isset(nid, *nodemask); 5839 } 5840 5841 #define K(x) ((x) << (PAGE_SHIFT-10)) 5842 5843 static void show_migration_types(unsigned char type) 5844 { 5845 static const char types[MIGRATE_TYPES] = { 5846 [MIGRATE_UNMOVABLE] = 'U', 5847 [MIGRATE_MOVABLE] = 'M', 5848 [MIGRATE_RECLAIMABLE] = 'E', 5849 [MIGRATE_HIGHATOMIC] = 'H', 5850 #ifdef CONFIG_CMA 5851 [MIGRATE_CMA] = 'C', 5852 #endif 5853 #ifdef CONFIG_MEMORY_ISOLATION 5854 [MIGRATE_ISOLATE] = 'I', 5855 #endif 5856 }; 5857 char tmp[MIGRATE_TYPES + 1]; 5858 char *p = tmp; 5859 int i; 5860 5861 for (i = 0; i < MIGRATE_TYPES; i++) { 5862 if (type & (1 << i)) 5863 *p++ = types[i]; 5864 } 5865 5866 *p = '\0'; 5867 printk(KERN_CONT "(%s) ", tmp); 5868 } 5869 5870 /* 5871 * Show free area list (used inside shift_scroll-lock stuff) 5872 * We also calculate the percentage fragmentation. We do this by counting the 5873 * memory on each free list with the exception of the first item on the list. 5874 * 5875 * Bits in @filter: 5876 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5877 * cpuset. 5878 */ 5879 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5880 { 5881 unsigned long free_pcp = 0; 5882 int cpu; 5883 struct zone *zone; 5884 pg_data_t *pgdat; 5885 5886 for_each_populated_zone(zone) { 5887 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5888 continue; 5889 5890 for_each_online_cpu(cpu) 5891 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5892 } 5893 5894 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5895 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5896 " unevictable:%lu dirty:%lu writeback:%lu\n" 5897 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5898 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5899 " kernel_misc_reclaimable:%lu\n" 5900 " free:%lu free_pcp:%lu free_cma:%lu\n", 5901 global_node_page_state(NR_ACTIVE_ANON), 5902 global_node_page_state(NR_INACTIVE_ANON), 5903 global_node_page_state(NR_ISOLATED_ANON), 5904 global_node_page_state(NR_ACTIVE_FILE), 5905 global_node_page_state(NR_INACTIVE_FILE), 5906 global_node_page_state(NR_ISOLATED_FILE), 5907 global_node_page_state(NR_UNEVICTABLE), 5908 global_node_page_state(NR_FILE_DIRTY), 5909 global_node_page_state(NR_WRITEBACK), 5910 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5911 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5912 global_node_page_state(NR_FILE_MAPPED), 5913 global_node_page_state(NR_SHMEM), 5914 global_node_page_state(NR_PAGETABLE), 5915 global_zone_page_state(NR_BOUNCE), 5916 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5917 global_zone_page_state(NR_FREE_PAGES), 5918 free_pcp, 5919 global_zone_page_state(NR_FREE_CMA_PAGES)); 5920 5921 for_each_online_pgdat(pgdat) { 5922 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5923 continue; 5924 5925 printk("Node %d" 5926 " active_anon:%lukB" 5927 " inactive_anon:%lukB" 5928 " active_file:%lukB" 5929 " inactive_file:%lukB" 5930 " unevictable:%lukB" 5931 " isolated(anon):%lukB" 5932 " isolated(file):%lukB" 5933 " mapped:%lukB" 5934 " dirty:%lukB" 5935 " writeback:%lukB" 5936 " shmem:%lukB" 5937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5938 " shmem_thp: %lukB" 5939 " shmem_pmdmapped: %lukB" 5940 " anon_thp: %lukB" 5941 #endif 5942 " writeback_tmp:%lukB" 5943 " kernel_stack:%lukB" 5944 #ifdef CONFIG_SHADOW_CALL_STACK 5945 " shadow_call_stack:%lukB" 5946 #endif 5947 " pagetables:%lukB" 5948 " all_unreclaimable? %s" 5949 "\n", 5950 pgdat->node_id, 5951 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5952 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5953 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5954 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5955 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5956 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5957 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5958 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5959 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5960 K(node_page_state(pgdat, NR_WRITEBACK)), 5961 K(node_page_state(pgdat, NR_SHMEM)), 5962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5963 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5964 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5965 K(node_page_state(pgdat, NR_ANON_THPS)), 5966 #endif 5967 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5968 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5969 #ifdef CONFIG_SHADOW_CALL_STACK 5970 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5971 #endif 5972 K(node_page_state(pgdat, NR_PAGETABLE)), 5973 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5974 "yes" : "no"); 5975 } 5976 5977 for_each_populated_zone(zone) { 5978 int i; 5979 5980 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5981 continue; 5982 5983 free_pcp = 0; 5984 for_each_online_cpu(cpu) 5985 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5986 5987 show_node(zone); 5988 printk(KERN_CONT 5989 "%s" 5990 " free:%lukB" 5991 " boost:%lukB" 5992 " min:%lukB" 5993 " low:%lukB" 5994 " high:%lukB" 5995 " reserved_highatomic:%luKB" 5996 " active_anon:%lukB" 5997 " inactive_anon:%lukB" 5998 " active_file:%lukB" 5999 " inactive_file:%lukB" 6000 " unevictable:%lukB" 6001 " writepending:%lukB" 6002 " present:%lukB" 6003 " managed:%lukB" 6004 " mlocked:%lukB" 6005 " bounce:%lukB" 6006 " free_pcp:%lukB" 6007 " local_pcp:%ukB" 6008 " free_cma:%lukB" 6009 "\n", 6010 zone->name, 6011 K(zone_page_state(zone, NR_FREE_PAGES)), 6012 K(zone->watermark_boost), 6013 K(min_wmark_pages(zone)), 6014 K(low_wmark_pages(zone)), 6015 K(high_wmark_pages(zone)), 6016 K(zone->nr_reserved_highatomic), 6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6019 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6020 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6021 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6022 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6023 K(zone->present_pages), 6024 K(zone_managed_pages(zone)), 6025 K(zone_page_state(zone, NR_MLOCK)), 6026 K(zone_page_state(zone, NR_BOUNCE)), 6027 K(free_pcp), 6028 K(this_cpu_read(zone->per_cpu_pageset->count)), 6029 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6030 printk("lowmem_reserve[]:"); 6031 for (i = 0; i < MAX_NR_ZONES; i++) 6032 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6033 printk(KERN_CONT "\n"); 6034 } 6035 6036 for_each_populated_zone(zone) { 6037 unsigned int order; 6038 unsigned long nr[MAX_ORDER], flags, total = 0; 6039 unsigned char types[MAX_ORDER]; 6040 6041 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6042 continue; 6043 show_node(zone); 6044 printk(KERN_CONT "%s: ", zone->name); 6045 6046 spin_lock_irqsave(&zone->lock, flags); 6047 for (order = 0; order < MAX_ORDER; order++) { 6048 struct free_area *area = &zone->free_area[order]; 6049 int type; 6050 6051 nr[order] = area->nr_free; 6052 total += nr[order] << order; 6053 6054 types[order] = 0; 6055 for (type = 0; type < MIGRATE_TYPES; type++) { 6056 if (!free_area_empty(area, type)) 6057 types[order] |= 1 << type; 6058 } 6059 } 6060 spin_unlock_irqrestore(&zone->lock, flags); 6061 for (order = 0; order < MAX_ORDER; order++) { 6062 printk(KERN_CONT "%lu*%lukB ", 6063 nr[order], K(1UL) << order); 6064 if (nr[order]) 6065 show_migration_types(types[order]); 6066 } 6067 printk(KERN_CONT "= %lukB\n", K(total)); 6068 } 6069 6070 hugetlb_show_meminfo(); 6071 6072 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6073 6074 show_swap_cache_info(); 6075 } 6076 6077 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6078 { 6079 zoneref->zone = zone; 6080 zoneref->zone_idx = zone_idx(zone); 6081 } 6082 6083 /* 6084 * Builds allocation fallback zone lists. 6085 * 6086 * Add all populated zones of a node to the zonelist. 6087 */ 6088 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6089 { 6090 struct zone *zone; 6091 enum zone_type zone_type = MAX_NR_ZONES; 6092 int nr_zones = 0; 6093 6094 do { 6095 zone_type--; 6096 zone = pgdat->node_zones + zone_type; 6097 if (managed_zone(zone)) { 6098 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6099 check_highest_zone(zone_type); 6100 } 6101 } while (zone_type); 6102 6103 return nr_zones; 6104 } 6105 6106 #ifdef CONFIG_NUMA 6107 6108 static int __parse_numa_zonelist_order(char *s) 6109 { 6110 /* 6111 * We used to support different zonelists modes but they turned 6112 * out to be just not useful. Let's keep the warning in place 6113 * if somebody still use the cmd line parameter so that we do 6114 * not fail it silently 6115 */ 6116 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6117 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6118 return -EINVAL; 6119 } 6120 return 0; 6121 } 6122 6123 char numa_zonelist_order[] = "Node"; 6124 6125 /* 6126 * sysctl handler for numa_zonelist_order 6127 */ 6128 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6129 void *buffer, size_t *length, loff_t *ppos) 6130 { 6131 if (write) 6132 return __parse_numa_zonelist_order(buffer); 6133 return proc_dostring(table, write, buffer, length, ppos); 6134 } 6135 6136 6137 #define MAX_NODE_LOAD (nr_online_nodes) 6138 static int node_load[MAX_NUMNODES]; 6139 6140 /** 6141 * find_next_best_node - find the next node that should appear in a given node's fallback list 6142 * @node: node whose fallback list we're appending 6143 * @used_node_mask: nodemask_t of already used nodes 6144 * 6145 * We use a number of factors to determine which is the next node that should 6146 * appear on a given node's fallback list. The node should not have appeared 6147 * already in @node's fallback list, and it should be the next closest node 6148 * according to the distance array (which contains arbitrary distance values 6149 * from each node to each node in the system), and should also prefer nodes 6150 * with no CPUs, since presumably they'll have very little allocation pressure 6151 * on them otherwise. 6152 * 6153 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6154 */ 6155 int find_next_best_node(int node, nodemask_t *used_node_mask) 6156 { 6157 int n, val; 6158 int min_val = INT_MAX; 6159 int best_node = NUMA_NO_NODE; 6160 6161 /* Use the local node if we haven't already */ 6162 if (!node_isset(node, *used_node_mask)) { 6163 node_set(node, *used_node_mask); 6164 return node; 6165 } 6166 6167 for_each_node_state(n, N_MEMORY) { 6168 6169 /* Don't want a node to appear more than once */ 6170 if (node_isset(n, *used_node_mask)) 6171 continue; 6172 6173 /* Use the distance array to find the distance */ 6174 val = node_distance(node, n); 6175 6176 /* Penalize nodes under us ("prefer the next node") */ 6177 val += (n < node); 6178 6179 /* Give preference to headless and unused nodes */ 6180 if (!cpumask_empty(cpumask_of_node(n))) 6181 val += PENALTY_FOR_NODE_WITH_CPUS; 6182 6183 /* Slight preference for less loaded node */ 6184 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6185 val += node_load[n]; 6186 6187 if (val < min_val) { 6188 min_val = val; 6189 best_node = n; 6190 } 6191 } 6192 6193 if (best_node >= 0) 6194 node_set(best_node, *used_node_mask); 6195 6196 return best_node; 6197 } 6198 6199 6200 /* 6201 * Build zonelists ordered by node and zones within node. 6202 * This results in maximum locality--normal zone overflows into local 6203 * DMA zone, if any--but risks exhausting DMA zone. 6204 */ 6205 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6206 unsigned nr_nodes) 6207 { 6208 struct zoneref *zonerefs; 6209 int i; 6210 6211 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6212 6213 for (i = 0; i < nr_nodes; i++) { 6214 int nr_zones; 6215 6216 pg_data_t *node = NODE_DATA(node_order[i]); 6217 6218 nr_zones = build_zonerefs_node(node, zonerefs); 6219 zonerefs += nr_zones; 6220 } 6221 zonerefs->zone = NULL; 6222 zonerefs->zone_idx = 0; 6223 } 6224 6225 /* 6226 * Build gfp_thisnode zonelists 6227 */ 6228 static void build_thisnode_zonelists(pg_data_t *pgdat) 6229 { 6230 struct zoneref *zonerefs; 6231 int nr_zones; 6232 6233 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6234 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6235 zonerefs += nr_zones; 6236 zonerefs->zone = NULL; 6237 zonerefs->zone_idx = 0; 6238 } 6239 6240 /* 6241 * Build zonelists ordered by zone and nodes within zones. 6242 * This results in conserving DMA zone[s] until all Normal memory is 6243 * exhausted, but results in overflowing to remote node while memory 6244 * may still exist in local DMA zone. 6245 */ 6246 6247 static void build_zonelists(pg_data_t *pgdat) 6248 { 6249 static int node_order[MAX_NUMNODES]; 6250 int node, load, nr_nodes = 0; 6251 nodemask_t used_mask = NODE_MASK_NONE; 6252 int local_node, prev_node; 6253 6254 /* NUMA-aware ordering of nodes */ 6255 local_node = pgdat->node_id; 6256 load = nr_online_nodes; 6257 prev_node = local_node; 6258 6259 memset(node_order, 0, sizeof(node_order)); 6260 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6261 /* 6262 * We don't want to pressure a particular node. 6263 * So adding penalty to the first node in same 6264 * distance group to make it round-robin. 6265 */ 6266 if (node_distance(local_node, node) != 6267 node_distance(local_node, prev_node)) 6268 node_load[node] += load; 6269 6270 node_order[nr_nodes++] = node; 6271 prev_node = node; 6272 load--; 6273 } 6274 6275 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6276 build_thisnode_zonelists(pgdat); 6277 pr_info("Fallback order for Node %d: ", local_node); 6278 for (node = 0; node < nr_nodes; node++) 6279 pr_cont("%d ", node_order[node]); 6280 pr_cont("\n"); 6281 } 6282 6283 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6284 /* 6285 * Return node id of node used for "local" allocations. 6286 * I.e., first node id of first zone in arg node's generic zonelist. 6287 * Used for initializing percpu 'numa_mem', which is used primarily 6288 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6289 */ 6290 int local_memory_node(int node) 6291 { 6292 struct zoneref *z; 6293 6294 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6295 gfp_zone(GFP_KERNEL), 6296 NULL); 6297 return zone_to_nid(z->zone); 6298 } 6299 #endif 6300 6301 static void setup_min_unmapped_ratio(void); 6302 static void setup_min_slab_ratio(void); 6303 #else /* CONFIG_NUMA */ 6304 6305 static void build_zonelists(pg_data_t *pgdat) 6306 { 6307 int node, local_node; 6308 struct zoneref *zonerefs; 6309 int nr_zones; 6310 6311 local_node = pgdat->node_id; 6312 6313 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6314 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6315 zonerefs += nr_zones; 6316 6317 /* 6318 * Now we build the zonelist so that it contains the zones 6319 * of all the other nodes. 6320 * We don't want to pressure a particular node, so when 6321 * building the zones for node N, we make sure that the 6322 * zones coming right after the local ones are those from 6323 * node N+1 (modulo N) 6324 */ 6325 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6326 if (!node_online(node)) 6327 continue; 6328 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6329 zonerefs += nr_zones; 6330 } 6331 for (node = 0; node < local_node; node++) { 6332 if (!node_online(node)) 6333 continue; 6334 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6335 zonerefs += nr_zones; 6336 } 6337 6338 zonerefs->zone = NULL; 6339 zonerefs->zone_idx = 0; 6340 } 6341 6342 #endif /* CONFIG_NUMA */ 6343 6344 /* 6345 * Boot pageset table. One per cpu which is going to be used for all 6346 * zones and all nodes. The parameters will be set in such a way 6347 * that an item put on a list will immediately be handed over to 6348 * the buddy list. This is safe since pageset manipulation is done 6349 * with interrupts disabled. 6350 * 6351 * The boot_pagesets must be kept even after bootup is complete for 6352 * unused processors and/or zones. They do play a role for bootstrapping 6353 * hotplugged processors. 6354 * 6355 * zoneinfo_show() and maybe other functions do 6356 * not check if the processor is online before following the pageset pointer. 6357 * Other parts of the kernel may not check if the zone is available. 6358 */ 6359 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6360 /* These effectively disable the pcplists in the boot pageset completely */ 6361 #define BOOT_PAGESET_HIGH 0 6362 #define BOOT_PAGESET_BATCH 1 6363 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6364 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6365 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6366 6367 static void __build_all_zonelists(void *data) 6368 { 6369 int nid; 6370 int __maybe_unused cpu; 6371 pg_data_t *self = data; 6372 static DEFINE_SPINLOCK(lock); 6373 6374 spin_lock(&lock); 6375 6376 #ifdef CONFIG_NUMA 6377 memset(node_load, 0, sizeof(node_load)); 6378 #endif 6379 6380 /* 6381 * This node is hotadded and no memory is yet present. So just 6382 * building zonelists is fine - no need to touch other nodes. 6383 */ 6384 if (self && !node_online(self->node_id)) { 6385 build_zonelists(self); 6386 } else { 6387 for_each_online_node(nid) { 6388 pg_data_t *pgdat = NODE_DATA(nid); 6389 6390 build_zonelists(pgdat); 6391 } 6392 6393 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6394 /* 6395 * We now know the "local memory node" for each node-- 6396 * i.e., the node of the first zone in the generic zonelist. 6397 * Set up numa_mem percpu variable for on-line cpus. During 6398 * boot, only the boot cpu should be on-line; we'll init the 6399 * secondary cpus' numa_mem as they come on-line. During 6400 * node/memory hotplug, we'll fixup all on-line cpus. 6401 */ 6402 for_each_online_cpu(cpu) 6403 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6404 #endif 6405 } 6406 6407 spin_unlock(&am