~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/slab.h

Version: ~ [ linux-5.16-rc3 ] ~ [ linux-5.15.5 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.82 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.162 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.218 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.256 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.291 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.293 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef MM_SLAB_H
  2 #define MM_SLAB_H
  3 /*
  4  * Internal slab definitions
  5  */
  6 
  7 #ifdef CONFIG_SLOB
  8 /*
  9  * Common fields provided in kmem_cache by all slab allocators
 10  * This struct is either used directly by the allocator (SLOB)
 11  * or the allocator must include definitions for all fields
 12  * provided in kmem_cache_common in their definition of kmem_cache.
 13  *
 14  * Once we can do anonymous structs (C11 standard) we could put a
 15  * anonymous struct definition in these allocators so that the
 16  * separate allocations in the kmem_cache structure of SLAB and
 17  * SLUB is no longer needed.
 18  */
 19 struct kmem_cache {
 20         unsigned int object_size;/* The original size of the object */
 21         unsigned int size;      /* The aligned/padded/added on size  */
 22         unsigned int align;     /* Alignment as calculated */
 23         unsigned long flags;    /* Active flags on the slab */
 24         const char *name;       /* Slab name for sysfs */
 25         int refcount;           /* Use counter */
 26         void (*ctor)(void *);   /* Called on object slot creation */
 27         struct list_head list;  /* List of all slab caches on the system */
 28 };
 29 
 30 #endif /* CONFIG_SLOB */
 31 
 32 #ifdef CONFIG_SLAB
 33 #include <linux/slab_def.h>
 34 #endif
 35 
 36 #ifdef CONFIG_SLUB
 37 #include <linux/slub_def.h>
 38 #endif
 39 
 40 #include <linux/memcontrol.h>
 41 #include <linux/fault-inject.h>
 42 #include <linux/kmemcheck.h>
 43 #include <linux/kasan.h>
 44 #include <linux/kmemleak.h>
 45 
 46 /*
 47  * State of the slab allocator.
 48  *
 49  * This is used to describe the states of the allocator during bootup.
 50  * Allocators use this to gradually bootstrap themselves. Most allocators
 51  * have the problem that the structures used for managing slab caches are
 52  * allocated from slab caches themselves.
 53  */
 54 enum slab_state {
 55         DOWN,                   /* No slab functionality yet */
 56         PARTIAL,                /* SLUB: kmem_cache_node available */
 57         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
 58         UP,                     /* Slab caches usable but not all extras yet */
 59         FULL                    /* Everything is working */
 60 };
 61 
 62 extern enum slab_state slab_state;
 63 
 64 /* The slab cache mutex protects the management structures during changes */
 65 extern struct mutex slab_mutex;
 66 
 67 /* The list of all slab caches on the system */
 68 extern struct list_head slab_caches;
 69 
 70 /* The slab cache that manages slab cache information */
 71 extern struct kmem_cache *kmem_cache;
 72 
 73 unsigned long calculate_alignment(unsigned long flags,
 74                 unsigned long align, unsigned long size);
 75 
 76 #ifndef CONFIG_SLOB
 77 /* Kmalloc array related functions */
 78 void setup_kmalloc_cache_index_table(void);
 79 void create_kmalloc_caches(unsigned long);
 80 
 81 /* Find the kmalloc slab corresponding for a certain size */
 82 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
 83 #endif
 84 
 85 
 86 /* Functions provided by the slab allocators */
 87 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
 88 
 89 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
 90                         unsigned long flags);
 91 extern void create_boot_cache(struct kmem_cache *, const char *name,
 92                         size_t size, unsigned long flags);
 93 
 94 int slab_unmergeable(struct kmem_cache *s);
 95 struct kmem_cache *find_mergeable(size_t size, size_t align,
 96                 unsigned long flags, const char *name, void (*ctor)(void *));
 97 #ifndef CONFIG_SLOB
 98 struct kmem_cache *
 99 __kmem_cache_alias(const char *name, size_t size, size_t align,
100                    unsigned long flags, void (*ctor)(void *));
101 
102 unsigned long kmem_cache_flags(unsigned long object_size,
103         unsigned long flags, const char *name,
104         void (*ctor)(void *));
105 #else
106 static inline struct kmem_cache *
107 __kmem_cache_alias(const char *name, size_t size, size_t align,
108                    unsigned long flags, void (*ctor)(void *))
109 { return NULL; }
110 
111 static inline unsigned long kmem_cache_flags(unsigned long object_size,
112         unsigned long flags, const char *name,
113         void (*ctor)(void *))
114 {
115         return flags;
116 }
117 #endif
118 
119 
120 /* Legal flag mask for kmem_cache_create(), for various configurations */
121 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
122                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
123 
124 #if defined(CONFIG_DEBUG_SLAB)
125 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
126 #elif defined(CONFIG_SLUB_DEBUG)
127 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
128                           SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
129 #else
130 #define SLAB_DEBUG_FLAGS (0)
131 #endif
132 
133 #if defined(CONFIG_SLAB)
134 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
135                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
136                           SLAB_NOTRACK | SLAB_ACCOUNT)
137 #elif defined(CONFIG_SLUB)
138 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
139                           SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
140 #else
141 #define SLAB_CACHE_FLAGS (0)
142 #endif
143 
144 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
145 
146 int __kmem_cache_shutdown(struct kmem_cache *);
147 void __kmem_cache_release(struct kmem_cache *);
148 int __kmem_cache_shrink(struct kmem_cache *, bool);
149 void slab_kmem_cache_release(struct kmem_cache *);
150 
151 struct seq_file;
152 struct file;
153 
154 struct slabinfo {
155         unsigned long active_objs;
156         unsigned long num_objs;
157         unsigned long active_slabs;
158         unsigned long num_slabs;
159         unsigned long shared_avail;
160         unsigned int limit;
161         unsigned int batchcount;
162         unsigned int shared;
163         unsigned int objects_per_slab;
164         unsigned int cache_order;
165 };
166 
167 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
168 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
169 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
170                        size_t count, loff_t *ppos);
171 
172 /*
173  * Generic implementation of bulk operations
174  * These are useful for situations in which the allocator cannot
175  * perform optimizations. In that case segments of the object listed
176  * may be allocated or freed using these operations.
177  */
178 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
179 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
180 
181 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
182 /*
183  * Iterate over all memcg caches of the given root cache. The caller must hold
184  * slab_mutex.
185  */
186 #define for_each_memcg_cache(iter, root) \
187         list_for_each_entry(iter, &(root)->memcg_params.list, \
188                             memcg_params.list)
189 
190 static inline bool is_root_cache(struct kmem_cache *s)
191 {
192         return s->memcg_params.is_root_cache;
193 }
194 
195 static inline bool slab_equal_or_root(struct kmem_cache *s,
196                                       struct kmem_cache *p)
197 {
198         return p == s || p == s->memcg_params.root_cache;
199 }
200 
201 /*
202  * We use suffixes to the name in memcg because we can't have caches
203  * created in the system with the same name. But when we print them
204  * locally, better refer to them with the base name
205  */
206 static inline const char *cache_name(struct kmem_cache *s)
207 {
208         if (!is_root_cache(s))
209                 s = s->memcg_params.root_cache;
210         return s->name;
211 }
212 
213 /*
214  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
215  * That said the caller must assure the memcg's cache won't go away by either
216  * taking a css reference to the owner cgroup, or holding the slab_mutex.
217  */
218 static inline struct kmem_cache *
219 cache_from_memcg_idx(struct kmem_cache *s, int idx)
220 {
221         struct kmem_cache *cachep;
222         struct memcg_cache_array *arr;
223 
224         rcu_read_lock();
225         arr = rcu_dereference(s->memcg_params.memcg_caches);
226 
227         /*
228          * Make sure we will access the up-to-date value. The code updating
229          * memcg_caches issues a write barrier to match this (see
230          * memcg_create_kmem_cache()).
231          */
232         cachep = lockless_dereference(arr->entries[idx]);
233         rcu_read_unlock();
234 
235         return cachep;
236 }
237 
238 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
239 {
240         if (is_root_cache(s))
241                 return s;
242         return s->memcg_params.root_cache;
243 }
244 
245 static __always_inline int memcg_charge_slab(struct page *page,
246                                              gfp_t gfp, int order,
247                                              struct kmem_cache *s)
248 {
249         int ret;
250 
251         if (!memcg_kmem_enabled())
252                 return 0;
253         if (is_root_cache(s))
254                 return 0;
255 
256         ret = __memcg_kmem_charge_memcg(page, gfp, order,
257                                         s->memcg_params.memcg);
258         if (ret)
259                 return ret;
260 
261         memcg_kmem_update_page_stat(page,
262                         (s->flags & SLAB_RECLAIM_ACCOUNT) ?
263                         MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
264                         1 << order);
265         return 0;
266 }
267 
268 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
269                                                 struct kmem_cache *s)
270 {
271         memcg_kmem_update_page_stat(page,
272                         (s->flags & SLAB_RECLAIM_ACCOUNT) ?
273                         MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
274                         -(1 << order));
275         memcg_kmem_uncharge(page, order);
276 }
277 
278 extern void slab_init_memcg_params(struct kmem_cache *);
279 
280 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
281 
282 #define for_each_memcg_cache(iter, root) \
283         for ((void)(iter), (void)(root); 0; )
284 
285 static inline bool is_root_cache(struct kmem_cache *s)
286 {
287         return true;
288 }
289 
290 static inline bool slab_equal_or_root(struct kmem_cache *s,
291                                       struct kmem_cache *p)
292 {
293         return true;
294 }
295 
296 static inline const char *cache_name(struct kmem_cache *s)
297 {
298         return s->name;
299 }
300 
301 static inline struct kmem_cache *
302 cache_from_memcg_idx(struct kmem_cache *s, int idx)
303 {
304         return NULL;
305 }
306 
307 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
308 {
309         return s;
310 }
311 
312 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
313                                     struct kmem_cache *s)
314 {
315         return 0;
316 }
317 
318 static inline void memcg_uncharge_slab(struct page *page, int order,
319                                        struct kmem_cache *s)
320 {
321 }
322 
323 static inline void slab_init_memcg_params(struct kmem_cache *s)
324 {
325 }
326 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
327 
328 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
329 {
330         struct kmem_cache *cachep;
331         struct page *page;
332 
333         /*
334          * When kmemcg is not being used, both assignments should return the
335          * same value. but we don't want to pay the assignment price in that
336          * case. If it is not compiled in, the compiler should be smart enough
337          * to not do even the assignment. In that case, slab_equal_or_root
338          * will also be a constant.
339          */
340         if (!memcg_kmem_enabled() &&
341             !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
342                 return s;
343 
344         page = virt_to_head_page(x);
345         cachep = page->slab_cache;
346         if (slab_equal_or_root(cachep, s))
347                 return cachep;
348 
349         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
350                __func__, s->name, cachep->name);
351         WARN_ON_ONCE(1);
352         return s;
353 }
354 
355 static inline size_t slab_ksize(const struct kmem_cache *s)
356 {
357 #ifndef CONFIG_SLUB
358         return s->object_size;
359 
360 #else /* CONFIG_SLUB */
361 # ifdef CONFIG_SLUB_DEBUG
362         /*
363          * Debugging requires use of the padding between object
364          * and whatever may come after it.
365          */
366         if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
367                 return s->object_size;
368 # endif
369         /*
370          * If we have the need to store the freelist pointer
371          * back there or track user information then we can
372          * only use the space before that information.
373          */
374         if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
375                 return s->inuse;
376         /*
377          * Else we can use all the padding etc for the allocation
378          */
379         return s->size;
380 #endif
381 }
382 
383 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
384                                                      gfp_t flags)
385 {
386         flags &= gfp_allowed_mask;
387         lockdep_trace_alloc(flags);
388         might_sleep_if(gfpflags_allow_blocking(flags));
389 
390         if (should_failslab(s, flags))
391                 return NULL;
392 
393         return memcg_kmem_get_cache(s, flags);
394 }
395 
396 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
397                                         size_t size, void **p)
398 {
399         size_t i;
400 
401         flags &= gfp_allowed_mask;
402         for (i = 0; i < size; i++) {
403                 void *object = p[i];
404 
405                 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
406                 kmemleak_alloc_recursive(object, s->object_size, 1,
407                                          s->flags, flags);
408                 kasan_slab_alloc(s, object, flags);
409         }
410         memcg_kmem_put_cache(s);
411 }
412 
413 #ifndef CONFIG_SLOB
414 /*
415  * The slab lists for all objects.
416  */
417 struct kmem_cache_node {
418         spinlock_t list_lock;
419 
420 #ifdef CONFIG_SLAB
421         struct list_head slabs_partial; /* partial list first, better asm code */
422         struct list_head slabs_full;
423         struct list_head slabs_free;
424         unsigned long free_objects;
425         unsigned int free_limit;
426         unsigned int colour_next;       /* Per-node cache coloring */
427         struct array_cache *shared;     /* shared per node */
428         struct alien_cache **alien;     /* on other nodes */
429         unsigned long next_reap;        /* updated without locking */
430         int free_touched;               /* updated without locking */
431 #endif
432 
433 #ifdef CONFIG_SLUB
434         unsigned long nr_partial;
435         struct list_head partial;
436 #ifdef CONFIG_SLUB_DEBUG
437         atomic_long_t nr_slabs;
438         atomic_long_t total_objects;
439         struct list_head full;
440 #endif
441 #endif
442 
443 };
444 
445 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
446 {
447         return s->node[node];
448 }
449 
450 /*
451  * Iterator over all nodes. The body will be executed for each node that has
452  * a kmem_cache_node structure allocated (which is true for all online nodes)
453  */
454 #define for_each_kmem_cache_node(__s, __node, __n) \
455         for (__node = 0; __node < nr_node_ids; __node++) \
456                  if ((__n = get_node(__s, __node)))
457 
458 #endif
459 
460 void *slab_start(struct seq_file *m, loff_t *pos);
461 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
462 void slab_stop(struct seq_file *m, void *p);
463 int memcg_slab_show(struct seq_file *m, void *p);
464 
465 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
466 
467 #endif /* MM_SLAB_H */
468 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp