1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 struct scan_control { 67 /* How many pages shrink_list() should reclaim */ 68 unsigned long nr_to_reclaim; 69 70 /* 71 * Nodemask of nodes allowed by the caller. If NULL, all nodes 72 * are scanned. 73 */ 74 nodemask_t *nodemask; 75 76 /* 77 * The memory cgroup that hit its limit and as a result is the 78 * primary target of this reclaim invocation. 79 */ 80 struct mem_cgroup *target_mem_cgroup; 81 82 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 83 unsigned int may_writepage:1; 84 85 /* Can mapped pages be reclaimed? */ 86 unsigned int may_unmap:1; 87 88 /* Can pages be swapped as part of reclaim? */ 89 unsigned int may_swap:1; 90 91 /* 92 * Cgroups are not reclaimed below their configured memory.low, 93 * unless we threaten to OOM. If any cgroups are skipped due to 94 * memory.low and nothing was reclaimed, go back for memory.low. 95 */ 96 unsigned int memcg_low_reclaim:1; 97 unsigned int memcg_low_skipped:1; 98 99 unsigned int hibernation_mode:1; 100 101 /* One of the zones is ready for compaction */ 102 unsigned int compaction_ready:1; 103 104 /* Allocation order */ 105 s8 order; 106 107 /* Scan (total_size >> priority) pages at once */ 108 s8 priority; 109 110 /* The highest zone to isolate pages for reclaim from */ 111 s8 reclaim_idx; 112 113 /* This context's GFP mask */ 114 gfp_t gfp_mask; 115 116 /* Incremented by the number of inactive pages that were scanned */ 117 unsigned long nr_scanned; 118 119 /* Number of pages freed so far during a call to shrink_zones() */ 120 unsigned long nr_reclaimed; 121 122 struct { 123 unsigned int dirty; 124 unsigned int unqueued_dirty; 125 unsigned int congested; 126 unsigned int writeback; 127 unsigned int immediate; 128 unsigned int file_taken; 129 unsigned int taken; 130 } nr; 131 132 /* for recording the reclaimed slab by now */ 133 struct reclaim_state reclaim_state; 134 }; 135 136 #ifdef ARCH_HAS_PREFETCH 137 #define prefetch_prev_lru_page(_page, _base, _field) \ 138 do { \ 139 if ((_page)->lru.prev != _base) { \ 140 struct page *prev; \ 141 \ 142 prev = lru_to_page(&(_page->lru)); \ 143 prefetch(&prev->_field); \ 144 } \ 145 } while (0) 146 #else 147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 148 #endif 149 150 #ifdef ARCH_HAS_PREFETCHW 151 #define prefetchw_prev_lru_page(_page, _base, _field) \ 152 do { \ 153 if ((_page)->lru.prev != _base) { \ 154 struct page *prev; \ 155 \ 156 prev = lru_to_page(&(_page->lru)); \ 157 prefetchw(&prev->_field); \ 158 } \ 159 } while (0) 160 #else 161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 162 #endif 163 164 /* 165 * From 0 .. 100. Higher means more swappy. 166 */ 167 int vm_swappiness = 60; 168 /* 169 * The total number of pages which are beyond the high watermark within all 170 * zones. 171 */ 172 unsigned long vm_total_pages; 173 174 static LIST_HEAD(shrinker_list); 175 static DECLARE_RWSEM(shrinker_rwsem); 176 177 #ifdef CONFIG_MEMCG_KMEM 178 179 /* 180 * We allow subsystems to populate their shrinker-related 181 * LRU lists before register_shrinker_prepared() is called 182 * for the shrinker, since we don't want to impose 183 * restrictions on their internal registration order. 184 * In this case shrink_slab_memcg() may find corresponding 185 * bit is set in the shrinkers map. 186 * 187 * This value is used by the function to detect registering 188 * shrinkers and to skip do_shrink_slab() calls for them. 189 */ 190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) 191 192 static DEFINE_IDR(shrinker_idr); 193 static int shrinker_nr_max; 194 195 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 196 { 197 int id, ret = -ENOMEM; 198 199 down_write(&shrinker_rwsem); 200 /* This may call shrinker, so it must use down_read_trylock() */ 201 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); 202 if (id < 0) 203 goto unlock; 204 205 if (id >= shrinker_nr_max) { 206 if (memcg_expand_shrinker_maps(id)) { 207 idr_remove(&shrinker_idr, id); 208 goto unlock; 209 } 210 211 shrinker_nr_max = id + 1; 212 } 213 shrinker->id = id; 214 ret = 0; 215 unlock: 216 up_write(&shrinker_rwsem); 217 return ret; 218 } 219 220 static void unregister_memcg_shrinker(struct shrinker *shrinker) 221 { 222 int id = shrinker->id; 223 224 BUG_ON(id < 0); 225 226 down_write(&shrinker_rwsem); 227 idr_remove(&shrinker_idr, id); 228 up_write(&shrinker_rwsem); 229 } 230 #else /* CONFIG_MEMCG_KMEM */ 231 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 232 { 233 return 0; 234 } 235 236 static void unregister_memcg_shrinker(struct shrinker *shrinker) 237 { 238 } 239 #endif /* CONFIG_MEMCG_KMEM */ 240 241 static void set_task_reclaim_state(struct task_struct *task, 242 struct reclaim_state *rs) 243 { 244 /* Check for an overwrite */ 245 WARN_ON_ONCE(rs && task->reclaim_state); 246 247 /* Check for the nulling of an already-nulled member */ 248 WARN_ON_ONCE(!rs && !task->reclaim_state); 249 250 task->reclaim_state = rs; 251 } 252 253 #ifdef CONFIG_MEMCG 254 static bool global_reclaim(struct scan_control *sc) 255 { 256 return !sc->target_mem_cgroup; 257 } 258 259 /** 260 * sane_reclaim - is the usual dirty throttling mechanism operational? 261 * @sc: scan_control in question 262 * 263 * The normal page dirty throttling mechanism in balance_dirty_pages() is 264 * completely broken with the legacy memcg and direct stalling in 265 * shrink_page_list() is used for throttling instead, which lacks all the 266 * niceties such as fairness, adaptive pausing, bandwidth proportional 267 * allocation and configurability. 268 * 269 * This function tests whether the vmscan currently in progress can assume 270 * that the normal dirty throttling mechanism is operational. 271 */ 272 static bool sane_reclaim(struct scan_control *sc) 273 { 274 struct mem_cgroup *memcg = sc->target_mem_cgroup; 275 276 if (!memcg) 277 return true; 278 #ifdef CONFIG_CGROUP_WRITEBACK 279 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 280 return true; 281 #endif 282 return false; 283 } 284 285 static void set_memcg_congestion(pg_data_t *pgdat, 286 struct mem_cgroup *memcg, 287 bool congested) 288 { 289 struct mem_cgroup_per_node *mn; 290 291 if (!memcg) 292 return; 293 294 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 295 WRITE_ONCE(mn->congested, congested); 296 } 297 298 static bool memcg_congested(pg_data_t *pgdat, 299 struct mem_cgroup *memcg) 300 { 301 struct mem_cgroup_per_node *mn; 302 303 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 304 return READ_ONCE(mn->congested); 305 306 } 307 #else 308 static bool global_reclaim(struct scan_control *sc) 309 { 310 return true; 311 } 312 313 static bool sane_reclaim(struct scan_control *sc) 314 { 315 return true; 316 } 317 318 static inline void set_memcg_congestion(struct pglist_data *pgdat, 319 struct mem_cgroup *memcg, bool congested) 320 { 321 } 322 323 static inline bool memcg_congested(struct pglist_data *pgdat, 324 struct mem_cgroup *memcg) 325 { 326 return false; 327 328 } 329 #endif 330 331 /* 332 * This misses isolated pages which are not accounted for to save counters. 333 * As the data only determines if reclaim or compaction continues, it is 334 * not expected that isolated pages will be a dominating factor. 335 */ 336 unsigned long zone_reclaimable_pages(struct zone *zone) 337 { 338 unsigned long nr; 339 340 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 341 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 342 if (get_nr_swap_pages() > 0) 343 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 344 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 345 346 return nr; 347 } 348 349 /** 350 * lruvec_lru_size - Returns the number of pages on the given LRU list. 351 * @lruvec: lru vector 352 * @lru: lru to use 353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 354 */ 355 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 356 { 357 unsigned long lru_size = 0; 358 int zid; 359 360 if (!mem_cgroup_disabled()) { 361 for (zid = 0; zid < MAX_NR_ZONES; zid++) 362 lru_size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 363 } else 364 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 365 366 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 368 unsigned long size; 369 370 if (!managed_zone(zone)) 371 continue; 372 373 if (!mem_cgroup_disabled()) 374 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 375 else 376 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 377 NR_ZONE_LRU_BASE + lru); 378 lru_size -= min(size, lru_size); 379 } 380 381 return lru_size; 382 383 } 384 385 /* 386 * Add a shrinker callback to be called from the vm. 387 */ 388 int prealloc_shrinker(struct shrinker *shrinker) 389 { 390 unsigned int size = sizeof(*shrinker->nr_deferred); 391 392 if (shrinker->flags & SHRINKER_NUMA_AWARE) 393 size *= nr_node_ids; 394 395 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 396 if (!shrinker->nr_deferred) 397 return -ENOMEM; 398 399 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 400 if (prealloc_memcg_shrinker(shrinker)) 401 goto free_deferred; 402 } 403 404 return 0; 405 406 free_deferred: 407 kfree(shrinker->nr_deferred); 408 shrinker->nr_deferred = NULL; 409 return -ENOMEM; 410 } 411 412 void free_prealloced_shrinker(struct shrinker *shrinker) 413 { 414 if (!shrinker->nr_deferred) 415 return; 416 417 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 418 unregister_memcg_shrinker(shrinker); 419 420 kfree(shrinker->nr_deferred); 421 shrinker->nr_deferred = NULL; 422 } 423 424 void register_shrinker_prepared(struct shrinker *shrinker) 425 { 426 down_write(&shrinker_rwsem); 427 list_add_tail(&shrinker->list, &shrinker_list); 428 #ifdef CONFIG_MEMCG_KMEM 429 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 430 idr_replace(&shrinker_idr, shrinker, shrinker->id); 431 #endif 432 up_write(&shrinker_rwsem); 433 } 434 435 int register_shrinker(struct shrinker *shrinker) 436 { 437 int err = prealloc_shrinker(shrinker); 438 439 if (err) 440 return err; 441 register_shrinker_prepared(shrinker); 442 return 0; 443 } 444 EXPORT_SYMBOL(register_shrinker); 445 446 /* 447 * Remove one 448 */ 449 void unregister_shrinker(struct shrinker *shrinker) 450 { 451 if (!shrinker->nr_deferred) 452 return; 453 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 454 unregister_memcg_shrinker(shrinker); 455 down_write(&shrinker_rwsem); 456 list_del(&shrinker->list); 457 up_write(&shrinker_rwsem); 458 kfree(shrinker->nr_deferred); 459 shrinker->nr_deferred = NULL; 460 } 461 EXPORT_SYMBOL(unregister_shrinker); 462 463 #define SHRINK_BATCH 128 464 465 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 466 struct shrinker *shrinker, int priority) 467 { 468 unsigned long freed = 0; 469 unsigned long long delta; 470 long total_scan; 471 long freeable; 472 long nr; 473 long new_nr; 474 int nid = shrinkctl->nid; 475 long batch_size = shrinker->batch ? shrinker->batch 476 : SHRINK_BATCH; 477 long scanned = 0, next_deferred; 478 479 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 480 nid = 0; 481 482 freeable = shrinker->count_objects(shrinker, shrinkctl); 483 if (freeable == 0 || freeable == SHRINK_EMPTY) 484 return freeable; 485 486 /* 487 * copy the current shrinker scan count into a local variable 488 * and zero it so that other concurrent shrinker invocations 489 * don't also do this scanning work. 490 */ 491 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 492 493 total_scan = nr; 494 if (shrinker->seeks) { 495 delta = freeable >> priority; 496 delta *= 4; 497 do_div(delta, shrinker->seeks); 498 } else { 499 /* 500 * These objects don't require any IO to create. Trim 501 * them aggressively under memory pressure to keep 502 * them from causing refetches in the IO caches. 503 */ 504 delta = freeable / 2; 505 } 506 507 total_scan += delta; 508 if (total_scan < 0) { 509 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 510 shrinker->scan_objects, total_scan); 511 total_scan = freeable; 512 next_deferred = nr; 513 } else 514 next_deferred = total_scan; 515 516 /* 517 * We need to avoid excessive windup on filesystem shrinkers 518 * due to large numbers of GFP_NOFS allocations causing the 519 * shrinkers to return -1 all the time. This results in a large 520 * nr being built up so when a shrink that can do some work 521 * comes along it empties the entire cache due to nr >>> 522 * freeable. This is bad for sustaining a working set in 523 * memory. 524 * 525 * Hence only allow the shrinker to scan the entire cache when 526 * a large delta change is calculated directly. 527 */ 528 if (delta < freeable / 4) 529 total_scan = min(total_scan, freeable / 2); 530 531 /* 532 * Avoid risking looping forever due to too large nr value: 533 * never try to free more than twice the estimate number of 534 * freeable entries. 535 */ 536 if (total_scan > freeable * 2) 537 total_scan = freeable * 2; 538 539 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 540 freeable, delta, total_scan, priority); 541 542 /* 543 * Normally, we should not scan less than batch_size objects in one 544 * pass to avoid too frequent shrinker calls, but if the slab has less 545 * than batch_size objects in total and we are really tight on memory, 546 * we will try to reclaim all available objects, otherwise we can end 547 * up failing allocations although there are plenty of reclaimable 548 * objects spread over several slabs with usage less than the 549 * batch_size. 550 * 551 * We detect the "tight on memory" situations by looking at the total 552 * number of objects we want to scan (total_scan). If it is greater 553 * than the total number of objects on slab (freeable), we must be 554 * scanning at high prio and therefore should try to reclaim as much as 555 * possible. 556 */ 557 while (total_scan >= batch_size || 558 total_scan >= freeable) { 559 unsigned long ret; 560 unsigned long nr_to_scan = min(batch_size, total_scan); 561 562 shrinkctl->nr_to_scan = nr_to_scan; 563 shrinkctl->nr_scanned = nr_to_scan; 564 ret = shrinker->scan_objects(shrinker, shrinkctl); 565 if (ret == SHRINK_STOP) 566 break; 567 freed += ret; 568 569 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 570 total_scan -= shrinkctl->nr_scanned; 571 scanned += shrinkctl->nr_scanned; 572 573 cond_resched(); 574 } 575 576 if (next_deferred >= scanned) 577 next_deferred -= scanned; 578 else 579 next_deferred = 0; 580 /* 581 * move the unused scan count back into the shrinker in a 582 * manner that handles concurrent updates. If we exhausted the 583 * scan, there is no need to do an update. 584 */ 585 if (next_deferred > 0) 586 new_nr = atomic_long_add_return(next_deferred, 587 &shrinker->nr_deferred[nid]); 588 else 589 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 590 591 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 592 return freed; 593 } 594 595 #ifdef CONFIG_MEMCG_KMEM 596 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 597 struct mem_cgroup *memcg, int priority) 598 { 599 struct memcg_shrinker_map *map; 600 unsigned long ret, freed = 0; 601 int i; 602 603 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) 604 return 0; 605 606 if (!down_read_trylock(&shrinker_rwsem)) 607 return 0; 608 609 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 610 true); 611 if (unlikely(!map)) 612 goto unlock; 613 614 for_each_set_bit(i, map->map, shrinker_nr_max) { 615 struct shrink_control sc = { 616 .gfp_mask = gfp_mask, 617 .nid = nid, 618 .memcg = memcg, 619 }; 620 struct shrinker *shrinker; 621 622 shrinker = idr_find(&shrinker_idr, i); 623 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { 624 if (!shrinker) 625 clear_bit(i, map->map); 626 continue; 627 } 628 629 ret = do_shrink_slab(&sc, shrinker, priority); 630 if (ret == SHRINK_EMPTY) { 631 clear_bit(i, map->map); 632 /* 633 * After the shrinker reported that it had no objects to 634 * free, but before we cleared the corresponding bit in 635 * the memcg shrinker map, a new object might have been 636 * added. To make sure, we have the bit set in this 637 * case, we invoke the shrinker one more time and reset 638 * the bit if it reports that it is not empty anymore. 639 * The memory barrier here pairs with the barrier in 640 * memcg_set_shrinker_bit(): 641 * 642 * list_lru_add() shrink_slab_memcg() 643 * list_add_tail() clear_bit() 644 * <MB> <MB> 645 * set_bit() do_shrink_slab() 646 */ 647 smp_mb__after_atomic(); 648 ret = do_shrink_slab(&sc, shrinker, priority); 649 if (ret == SHRINK_EMPTY) 650 ret = 0; 651 else 652 memcg_set_shrinker_bit(memcg, nid, i); 653 } 654 freed += ret; 655 656 if (rwsem_is_contended(&shrinker_rwsem)) { 657 freed = freed ? : 1; 658 break; 659 } 660 } 661 unlock: 662 up_read(&shrinker_rwsem); 663 return freed; 664 } 665 #else /* CONFIG_MEMCG_KMEM */ 666 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 667 struct mem_cgroup *memcg, int priority) 668 { 669 return 0; 670 } 671 #endif /* CONFIG_MEMCG_KMEM */ 672 673 /** 674 * shrink_slab - shrink slab caches 675 * @gfp_mask: allocation context 676 * @nid: node whose slab caches to target 677 * @memcg: memory cgroup whose slab caches to target 678 * @priority: the reclaim priority 679 * 680 * Call the shrink functions to age shrinkable caches. 681 * 682 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 683 * unaware shrinkers will receive a node id of 0 instead. 684 * 685 * @memcg specifies the memory cgroup to target. Unaware shrinkers 686 * are called only if it is the root cgroup. 687 * 688 * @priority is sc->priority, we take the number of objects and >> by priority 689 * in order to get the scan target. 690 * 691 * Returns the number of reclaimed slab objects. 692 */ 693 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 694 struct mem_cgroup *memcg, 695 int priority) 696 { 697 unsigned long ret, freed = 0; 698 struct shrinker *shrinker; 699 700 /* 701 * The root memcg might be allocated even though memcg is disabled 702 * via "cgroup_disable=memory" boot parameter. This could make 703 * mem_cgroup_is_root() return false, then just run memcg slab 704 * shrink, but skip global shrink. This may result in premature 705 * oom. 706 */ 707 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 708 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 709 710 if (!down_read_trylock(&shrinker_rwsem)) 711 goto out; 712 713 list_for_each_entry(shrinker, &shrinker_list, list) { 714 struct shrink_control sc = { 715 .gfp_mask = gfp_mask, 716 .nid = nid, 717 .memcg = memcg, 718 }; 719 720 ret = do_shrink_slab(&sc, shrinker, priority); 721 if (ret == SHRINK_EMPTY) 722 ret = 0; 723 freed += ret; 724 /* 725 * Bail out if someone want to register a new shrinker to 726 * prevent the regsitration from being stalled for long periods 727 * by parallel ongoing shrinking. 728 */ 729 if (rwsem_is_contended(&shrinker_rwsem)) { 730 freed = freed ? : 1; 731 break; 732 } 733 } 734 735 up_read(&shrinker_rwsem); 736 out: 737 cond_resched(); 738 return freed; 739 } 740 741 void drop_slab_node(int nid) 742 { 743 unsigned long freed; 744 745 do { 746 struct mem_cgroup *memcg = NULL; 747 748 freed = 0; 749 memcg = mem_cgroup_iter(NULL, NULL, NULL); 750 do { 751 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 752 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 753 } while (freed > 10); 754 } 755 756 void drop_slab(void) 757 { 758 int nid; 759 760 for_each_online_node(nid) 761 drop_slab_node(nid); 762 } 763 764 static inline int is_page_cache_freeable(struct page *page) 765 { 766 /* 767 * A freeable page cache page is referenced only by the caller 768 * that isolated the page, the page cache and optional buffer 769 * heads at page->private. 770 */ 771 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? 772 HPAGE_PMD_NR : 1; 773 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 774 } 775 776 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 777 { 778 if (current->flags & PF_SWAPWRITE) 779 return 1; 780 if (!inode_write_congested(inode)) 781 return 1; 782 if (inode_to_bdi(inode) == current->backing_dev_info) 783 return 1; 784 return 0; 785 } 786 787 /* 788 * We detected a synchronous write error writing a page out. Probably 789 * -ENOSPC. We need to propagate that into the address_space for a subsequent 790 * fsync(), msync() or close(). 791 * 792 * The tricky part is that after writepage we cannot touch the mapping: nothing 793 * prevents it from being freed up. But we have a ref on the page and once 794 * that page is locked, the mapping is pinned. 795 * 796 * We're allowed to run sleeping lock_page() here because we know the caller has 797 * __GFP_FS. 798 */ 799 static void handle_write_error(struct address_space *mapping, 800 struct page *page, int error) 801 { 802 lock_page(page); 803 if (page_mapping(page) == mapping) 804 mapping_set_error(mapping, error); 805 unlock_page(page); 806 } 807 808 /* possible outcome of pageout() */ 809 typedef enum { 810 /* failed to write page out, page is locked */ 811 PAGE_KEEP, 812 /* move page to the active list, page is locked */ 813 PAGE_ACTIVATE, 814 /* page has been sent to the disk successfully, page is unlocked */ 815 PAGE_SUCCESS, 816 /* page is clean and locked */ 817 PAGE_CLEAN, 818 } pageout_t; 819 820 /* 821 * pageout is called by shrink_page_list() for each dirty page. 822 * Calls ->writepage(). 823 */ 824 static pageout_t pageout(struct page *page, struct address_space *mapping, 825 struct scan_control *sc) 826 { 827 /* 828 * If the page is dirty, only perform writeback if that write 829 * will be non-blocking. To prevent this allocation from being 830 * stalled by pagecache activity. But note that there may be 831 * stalls if we need to run get_block(). We could test 832 * PagePrivate for that. 833 * 834 * If this process is currently in __generic_file_write_iter() against 835 * this page's queue, we can perform writeback even if that 836 * will block. 837 * 838 * If the page is swapcache, write it back even if that would 839 * block, for some throttling. This happens by accident, because 840 * swap_backing_dev_info is bust: it doesn't reflect the 841 * congestion state of the swapdevs. Easy to fix, if needed. 842 */ 843 if (!is_page_cache_freeable(page)) 844 return PAGE_KEEP; 845 if (!mapping) { 846 /* 847 * Some data journaling orphaned pages can have 848 * page->mapping == NULL while being dirty with clean buffers. 849 */ 850 if (page_has_private(page)) { 851 if (try_to_free_buffers(page)) { 852 ClearPageDirty(page); 853 pr_info("%s: orphaned page\n", __func__); 854 return PAGE_CLEAN; 855 } 856 } 857 return PAGE_KEEP; 858 } 859 if (mapping->a_ops->writepage == NULL) 860 return PAGE_ACTIVATE; 861 if (!may_write_to_inode(mapping->host, sc)) 862 return PAGE_KEEP; 863 864 if (clear_page_dirty_for_io(page)) { 865 int res; 866 struct writeback_control wbc = { 867 .sync_mode = WB_SYNC_NONE, 868 .nr_to_write = SWAP_CLUSTER_MAX, 869 .range_start = 0, 870 .range_end = LLONG_MAX, 871 .for_reclaim = 1, 872 }; 873 874 SetPageReclaim(page); 875 res = mapping->a_ops->writepage(page, &wbc); 876 if (res < 0) 877 handle_write_error(mapping, page, res); 878 if (res == AOP_WRITEPAGE_ACTIVATE) { 879 ClearPageReclaim(page); 880 return PAGE_ACTIVATE; 881 } 882 883 if (!PageWriteback(page)) { 884 /* synchronous write or broken a_ops? */ 885 ClearPageReclaim(page); 886 } 887 trace_mm_vmscan_writepage(page); 888 inc_node_page_state(page, NR_VMSCAN_WRITE); 889 return PAGE_SUCCESS; 890 } 891 892 return PAGE_CLEAN; 893 } 894 895 /* 896 * Same as remove_mapping, but if the page is removed from the mapping, it 897 * gets returned with a refcount of 0. 898 */ 899 static int __remove_mapping(struct address_space *mapping, struct page *page, 900 bool reclaimed) 901 { 902 unsigned long flags; 903 int refcount; 904 905 BUG_ON(!PageLocked(page)); 906 BUG_ON(mapping != page_mapping(page)); 907 908 xa_lock_irqsave(&mapping->i_pages, flags); 909 /* 910 * The non racy check for a busy page. 911 * 912 * Must be careful with the order of the tests. When someone has 913 * a ref to the page, it may be possible that they dirty it then 914 * drop the reference. So if PageDirty is tested before page_count 915 * here, then the following race may occur: 916 * 917 * get_user_pages(&page); 918 * [user mapping goes away] 919 * write_to(page); 920 * !PageDirty(page) [good] 921 * SetPageDirty(page); 922 * put_page(page); 923 * !page_count(page) [good, discard it] 924 * 925 * [oops, our write_to data is lost] 926 * 927 * Reversing the order of the tests ensures such a situation cannot 928 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 929 * load is not satisfied before that of page->_refcount. 930 * 931 * Note that if SetPageDirty is always performed via set_page_dirty, 932 * and thus under the i_pages lock, then this ordering is not required. 933 */ 934 if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) 935 refcount = 1 + HPAGE_PMD_NR; 936 else 937 refcount = 2; 938 if (!page_ref_freeze(page, refcount)) 939 goto cannot_free; 940 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 941 if (unlikely(PageDirty(page))) { 942 page_ref_unfreeze(page, refcount); 943 goto cannot_free; 944 } 945 946 if (PageSwapCache(page)) { 947 swp_entry_t swap = { .val = page_private(page) }; 948 mem_cgroup_swapout(page, swap); 949 __delete_from_swap_cache(page, swap); 950 xa_unlock_irqrestore(&mapping->i_pages, flags); 951 put_swap_page(page, swap); 952 } else { 953 void (*freepage)(struct page *); 954 void *shadow = NULL; 955 956 freepage = mapping->a_ops->freepage; 957 /* 958 * Remember a shadow entry for reclaimed file cache in 959 * order to detect refaults, thus thrashing, later on. 960 * 961 * But don't store shadows in an address space that is 962 * already exiting. This is not just an optizimation, 963 * inode reclaim needs to empty out the radix tree or 964 * the nodes are lost. Don't plant shadows behind its 965 * back. 966 * 967 * We also don't store shadows for DAX mappings because the 968 * only page cache pages found in these are zero pages 969 * covering holes, and because we don't want to mix DAX 970 * exceptional entries and shadow exceptional entries in the 971 * same address_space. 972 */ 973 if (reclaimed && page_is_file_cache(page) && 974 !mapping_exiting(mapping) && !dax_mapping(mapping)) 975 shadow = workingset_eviction(page); 976 __delete_from_page_cache(page, shadow); 977 xa_unlock_irqrestore(&mapping->i_pages, flags); 978 979 if (freepage != NULL) 980 freepage(page); 981 } 982 983 return 1; 984 985 cannot_free: 986 xa_unlock_irqrestore(&mapping->i_pages, flags); 987 return 0; 988 } 989 990 /* 991 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 992 * someone else has a ref on the page, abort and return 0. If it was 993 * successfully detached, return 1. Assumes the caller has a single ref on 994 * this page. 995 */ 996 int remove_mapping(struct address_space *mapping, struct page *page) 997 { 998 if (__remove_mapping(mapping, page, false)) { 999 /* 1000 * Unfreezing the refcount with 1 rather than 2 effectively 1001 * drops the pagecache ref for us without requiring another 1002 * atomic operation. 1003 */ 1004 page_ref_unfreeze(page, 1); 1005 return 1; 1006 } 1007 return 0; 1008 } 1009 1010 /** 1011 * putback_lru_page - put previously isolated page onto appropriate LRU list 1012 * @page: page to be put back to appropriate lru list 1013 * 1014 * Add previously isolated @page to appropriate LRU list. 1015 * Page may still be unevictable for other reasons. 1016 * 1017 * lru_lock must not be held, interrupts must be enabled. 1018 */ 1019 void putback_lru_page(struct page *page) 1020 { 1021 lru_cache_add(page); 1022 put_page(page); /* drop ref from isolate */ 1023 } 1024 1025 enum page_references { 1026 PAGEREF_RECLAIM, 1027 PAGEREF_RECLAIM_CLEAN, 1028 PAGEREF_KEEP, 1029 PAGEREF_ACTIVATE, 1030 }; 1031 1032 static enum page_references page_check_references(struct page *page, 1033 struct scan_control *sc) 1034 { 1035 int referenced_ptes, referenced_page; 1036 unsigned long vm_flags; 1037 1038 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 1039 &vm_flags); 1040 referenced_page = TestClearPageReferenced(page); 1041 1042 /* 1043 * Mlock lost the isolation race with us. Let try_to_unmap() 1044 * move the page to the unevictable list. 1045 */ 1046 if (vm_flags & VM_LOCKED) 1047 return PAGEREF_RECLAIM; 1048 1049 if (referenced_ptes) { 1050 if (PageSwapBacked(page)) 1051 return PAGEREF_ACTIVATE; 1052 /* 1053 * All mapped pages start out with page table 1054 * references from the instantiating fault, so we need 1055 * to look twice if a mapped file page is used more 1056 * than once. 1057 * 1058 * Mark it and spare it for another trip around the 1059 * inactive list. Another page table reference will 1060 * lead to its activation. 1061 * 1062 * Note: the mark is set for activated pages as well 1063 * so that recently deactivated but used pages are 1064 * quickly recovered. 1065 */ 1066 SetPageReferenced(page); 1067 1068 if (referenced_page || referenced_ptes > 1) 1069 return PAGEREF_ACTIVATE; 1070 1071 /* 1072 * Activate file-backed executable pages after first usage. 1073 */ 1074 if (vm_flags & VM_EXEC) 1075 return PAGEREF_ACTIVATE; 1076 1077 return PAGEREF_KEEP; 1078 } 1079 1080 /* Reclaim if clean, defer dirty pages to writeback */ 1081 if (referenced_page && !PageSwapBacked(page)) 1082 return PAGEREF_RECLAIM_CLEAN; 1083 1084 return PAGEREF_RECLAIM; 1085 } 1086 1087 /* Check if a page is dirty or under writeback */ 1088 static void page_check_dirty_writeback(struct page *page, 1089 bool *dirty, bool *writeback) 1090 { 1091 struct address_space *mapping; 1092 1093 /* 1094 * Anonymous pages are not handled by flushers and must be written 1095 * from reclaim context. Do not stall reclaim based on them 1096 */ 1097 if (!page_is_file_cache(page) || 1098 (PageAnon(page) && !PageSwapBacked(page))) { 1099 *dirty = false; 1100 *writeback = false; 1101 return; 1102 } 1103 1104 /* By default assume that the page flags are accurate */ 1105 *dirty = PageDirty(page); 1106 *writeback = PageWriteback(page); 1107 1108 /* Verify dirty/writeback state if the filesystem supports it */ 1109 if (!page_has_private(page)) 1110 return; 1111 1112 mapping = page_mapping(page); 1113 if (mapping && mapping->a_ops->is_dirty_writeback) 1114 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1115 } 1116 1117 /* 1118 * shrink_page_list() returns the number of reclaimed pages 1119 */ 1120 static unsigned long shrink_page_list(struct list_head *page_list, 1121 struct pglist_data *pgdat, 1122 struct scan_control *sc, 1123 enum ttu_flags ttu_flags, 1124 struct reclaim_stat *stat, 1125 bool force_reclaim) 1126 { 1127 LIST_HEAD(ret_pages); 1128 LIST_HEAD(free_pages); 1129 unsigned nr_reclaimed = 0; 1130 unsigned pgactivate = 0; 1131 1132 memset(stat, 0, sizeof(*stat)); 1133 cond_resched(); 1134 1135 while (!list_empty(page_list)) { 1136 struct address_space *mapping; 1137 struct page *page; 1138 int may_enter_fs; 1139 enum page_references references = PAGEREF_RECLAIM_CLEAN; 1140 bool dirty, writeback; 1141 unsigned int nr_pages; 1142 1143 cond_resched(); 1144 1145 page = lru_to_page(page_list); 1146 list_del(&page->lru); 1147 1148 if (!trylock_page(page)) 1149 goto keep; 1150 1151 VM_BUG_ON_PAGE(PageActive(page), page); 1152 1153 nr_pages = 1 << compound_order(page); 1154 1155 /* Account the number of base pages even though THP */ 1156 sc->nr_scanned += nr_pages; 1157 1158 if (unlikely(!page_evictable(page))) 1159 goto activate_locked; 1160 1161 if (!sc->may_unmap && page_mapped(page)) 1162 goto keep_locked; 1163 1164 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1165 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1166 1167 /* 1168 * The number of dirty pages determines if a node is marked 1169 * reclaim_congested which affects wait_iff_congested. kswapd 1170 * will stall and start writing pages if the tail of the LRU 1171 * is all dirty unqueued pages. 1172 */ 1173 page_check_dirty_writeback(page, &dirty, &writeback); 1174 if (dirty || writeback) 1175 stat->nr_dirty++; 1176 1177 if (dirty && !writeback) 1178 stat->nr_unqueued_dirty++; 1179 1180 /* 1181 * Treat this page as congested if the underlying BDI is or if 1182 * pages are cycling through the LRU so quickly that the 1183 * pages marked for immediate reclaim are making it to the 1184 * end of the LRU a second time. 1185 */ 1186 mapping = page_mapping(page); 1187 if (((dirty || writeback) && mapping && 1188 inode_write_congested(mapping->host)) || 1189 (writeback && PageReclaim(page))) 1190 stat->nr_congested++; 1191 1192 /* 1193 * If a page at the tail of the LRU is under writeback, there 1194 * are three cases to consider. 1195 * 1196 * 1) If reclaim is encountering an excessive number of pages 1197 * under writeback and this page is both under writeback and 1198 * PageReclaim then it indicates that pages are being queued 1199 * for IO but are being recycled through the LRU before the 1200 * IO can complete. Waiting on the page itself risks an 1201 * indefinite stall if it is impossible to writeback the 1202 * page due to IO error or disconnected storage so instead 1203 * note that the LRU is being scanned too quickly and the 1204 * caller can stall after page list has been processed. 1205 * 1206 * 2) Global or new memcg reclaim encounters a page that is 1207 * not marked for immediate reclaim, or the caller does not 1208 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1209 * not to fs). In this case mark the page for immediate 1210 * reclaim and continue scanning. 1211 * 1212 * Require may_enter_fs because we would wait on fs, which 1213 * may not have submitted IO yet. And the loop driver might 1214 * enter reclaim, and deadlock if it waits on a page for 1215 * which it is needed to do the write (loop masks off 1216 * __GFP_IO|__GFP_FS for this reason); but more thought 1217 * would probably show more reasons. 1218 * 1219 * 3) Legacy memcg encounters a page that is already marked 1220 * PageReclaim. memcg does not have any dirty pages 1221 * throttling so we could easily OOM just because too many 1222 * pages are in writeback and there is nothing else to 1223 * reclaim. Wait for the writeback to complete. 1224 * 1225 * In cases 1) and 2) we activate the pages to get them out of 1226 * the way while we continue scanning for clean pages on the 1227 * inactive list and refilling from the active list. The 1228 * observation here is that waiting for disk writes is more 1229 * expensive than potentially causing reloads down the line. 1230 * Since they're marked for immediate reclaim, they won't put 1231 * memory pressure on the cache working set any longer than it 1232 * takes to write them to disk. 1233 */ 1234 if (PageWriteback(page)) { 1235 /* Case 1 above */ 1236 if (current_is_kswapd() && 1237 PageReclaim(page) && 1238 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1239 stat->nr_immediate++; 1240 goto activate_locked; 1241 1242 /* Case 2 above */ 1243 } else if (sane_reclaim(sc) || 1244 !PageReclaim(page) || !may_enter_fs) { 1245 /* 1246 * This is slightly racy - end_page_writeback() 1247 * might have just cleared PageReclaim, then 1248 * setting PageReclaim here end up interpreted 1249 * as PageReadahead - but that does not matter 1250 * enough to care. What we do want is for this 1251 * page to have PageReclaim set next time memcg 1252 * reclaim reaches the tests above, so it will 1253 * then wait_on_page_writeback() to avoid OOM; 1254 * and it's also appropriate in global reclaim. 1255 */ 1256 SetPageReclaim(page); 1257 stat->nr_writeback++; 1258 goto activate_locked; 1259 1260 /* Case 3 above */ 1261 } else { 1262 unlock_page(page); 1263 wait_on_page_writeback(page); 1264 /* then go back and try same page again */ 1265 list_add_tail(&page->lru, page_list); 1266 continue; 1267 } 1268 } 1269 1270 if (!force_reclaim) 1271 references = page_check_references(page, sc); 1272 1273 switch (references) { 1274 case PAGEREF_ACTIVATE: 1275 goto activate_locked; 1276 case PAGEREF_KEEP: 1277 stat->nr_ref_keep += nr_pages; 1278 goto keep_locked; 1279 case PAGEREF_RECLAIM: 1280 case PAGEREF_RECLAIM_CLEAN: 1281 ; /* try to reclaim the page below */ 1282 } 1283 1284 /* 1285 * Anonymous process memory has backing store? 1286 * Try to allocate it some swap space here. 1287 * Lazyfree page could be freed directly 1288 */ 1289 if (PageAnon(page) && PageSwapBacked(page)) { 1290 if (!PageSwapCache(page)) { 1291 if (!(sc->gfp_mask & __GFP_IO)) 1292 goto keep_locked; 1293 if (PageTransHuge(page)) { 1294 /* cannot split THP, skip it */ 1295 if (!can_split_huge_page(page, NULL)) 1296 goto activate_locked; 1297 /* 1298 * Split pages without a PMD map right 1299 * away. Chances are some or all of the 1300 * tail pages can be freed without IO. 1301 */ 1302 if (!compound_mapcount(page) && 1303 split_huge_page_to_list(page, 1304 page_list)) 1305 goto activate_locked; 1306 } 1307 if (!add_to_swap(page)) { 1308 if (!PageTransHuge(page)) 1309 goto activate_locked_split; 1310 /* Fallback to swap normal pages */ 1311 if (split_huge_page_to_list(page, 1312 page_list)) 1313 goto activate_locked; 1314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1315 count_vm_event(THP_SWPOUT_FALLBACK); 1316 #endif 1317 if (!add_to_swap(page)) 1318 goto activate_locked_split; 1319 } 1320 1321 may_enter_fs = 1; 1322 1323 /* Adding to swap updated mapping */ 1324 mapping = page_mapping(page); 1325 } 1326 } else if (unlikely(PageTransHuge(page))) { 1327 /* Split file THP */ 1328 if (split_huge_page_to_list(page, page_list)) 1329 goto keep_locked; 1330 } 1331 1332 /* 1333 * THP may get split above, need minus tail pages and update 1334 * nr_pages to avoid accounting tail pages twice. 1335 * 1336 * The tail pages that are added into swap cache successfully 1337 * reach here. 1338 */ 1339 if ((nr_pages > 1) && !PageTransHuge(page)) { 1340 sc->nr_scanned -= (nr_pages - 1); 1341 nr_pages = 1; 1342 } 1343 1344 /* 1345 * The page is mapped into the page tables of one or more 1346 * processes. Try to unmap it here. 1347 */ 1348 if (page_mapped(page)) { 1349 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; 1350 1351 if (unlikely(PageTransHuge(page))) 1352 flags |= TTU_SPLIT_HUGE_PMD; 1353 if (!try_to_unmap(page, flags)) { 1354 stat->nr_unmap_fail += nr_pages; 1355 goto activate_locked; 1356 } 1357 } 1358 1359 if (PageDirty(page)) { 1360 /* 1361 * Only kswapd can writeback filesystem pages 1362 * to avoid risk of stack overflow. But avoid 1363 * injecting inefficient single-page IO into 1364 * flusher writeback as much as possible: only 1365 * write pages when we've encountered many 1366 * dirty pages, and when we've already scanned 1367 * the rest of the LRU for clean pages and see 1368 * the same dirty pages again (PageReclaim). 1369 */ 1370 if (page_is_file_cache(page) && 1371 (!current_is_kswapd() || !PageReclaim(page) || 1372 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1373 /* 1374 * Immediately reclaim when written back. 1375 * Similar in principal to deactivate_page() 1376 * except we already have the page isolated 1377 * and know it's dirty 1378 */ 1379 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1380 SetPageReclaim(page); 1381 1382 goto activate_locked; 1383 } 1384 1385 if (references == PAGEREF_RECLAIM_CLEAN) 1386 goto keep_locked; 1387 if (!may_enter_fs) 1388 goto keep_locked; 1389 if (!sc->may_writepage) 1390 goto keep_locked; 1391 1392 /* 1393 * Page is dirty. Flush the TLB if a writable entry 1394 * potentially exists to avoid CPU writes after IO 1395 * starts and then write it out here. 1396 */ 1397 try_to_unmap_flush_dirty(); 1398 switch (pageout(page, mapping, sc)) { 1399 case PAGE_KEEP: 1400 goto keep_locked; 1401 case PAGE_ACTIVATE: 1402 goto activate_locked; 1403 case PAGE_SUCCESS: 1404 if (PageWriteback(page)) 1405 goto keep; 1406 if (PageDirty(page)) 1407 goto keep; 1408 1409 /* 1410 * A synchronous write - probably a ramdisk. Go 1411 * ahead and try to reclaim the page. 1412 */ 1413 if (!trylock_page(page)) 1414 goto keep; 1415 if (PageDirty(page) || PageWriteback(page)) 1416 goto keep_locked; 1417 mapping = page_mapping(page); 1418 case PAGE_CLEAN: 1419 ; /* try to free the page below */ 1420 } 1421 } 1422 1423 /* 1424 * If the page has buffers, try to free the buffer mappings 1425 * associated with this page. If we succeed we try to free 1426 * the page as well. 1427 * 1428 * We do this even if the page is PageDirty(). 1429 * try_to_release_page() does not perform I/O, but it is 1430 * possible for a page to have PageDirty set, but it is actually 1431 * clean (all its buffers are clean). This happens if the 1432 * buffers were written out directly, with submit_bh(). ext3 1433 * will do this, as well as the blockdev mapping. 1434 * try_to_release_page() will discover that cleanness and will 1435 * drop the buffers and mark the page clean - it can be freed. 1436 * 1437 * Rarely, pages can have buffers and no ->mapping. These are 1438 * the pages which were not successfully invalidated in 1439 * truncate_complete_page(). We try to drop those buffers here 1440 * and if that worked, and the page is no longer mapped into 1441 * process address space (page_count == 1) it can be freed. 1442 * Otherwise, leave the page on the LRU so it is swappable. 1443 */ 1444 if (page_has_private(page)) { 1445 if (!try_to_release_page(page, sc->gfp_mask)) 1446 goto activate_locked; 1447 if (!mapping && page_count(page) == 1) { 1448 unlock_page(page); 1449 if (put_page_testzero(page)) 1450 goto free_it; 1451 else { 1452 /* 1453 * rare race with speculative reference. 1454 * the speculative reference will free 1455 * this page shortly, so we may 1456 * increment nr_reclaimed here (and 1457 * leave it off the LRU). 1458 */ 1459 nr_reclaimed++; 1460 continue; 1461 } 1462 } 1463 } 1464 1465 if (PageAnon(page) && !PageSwapBacked(page)) { 1466 /* follow __remove_mapping for reference */ 1467 if (!page_ref_freeze(page, 1)) 1468 goto keep_locked; 1469 if (PageDirty(page)) { 1470 page_ref_unfreeze(page, 1); 1471 goto keep_locked; 1472 } 1473 1474 count_vm_event(PGLAZYFREED); 1475 count_memcg_page_event(page, PGLAZYFREED); 1476 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1477 goto keep_locked; 1478 1479 unlock_page(page); 1480 free_it: 1481 /* 1482 * THP may get swapped out in a whole, need account 1483 * all base pages. 1484 */ 1485 nr_reclaimed += nr_pages; 1486 1487 /* 1488 * Is there need to periodically free_page_list? It would 1489 * appear not as the counts should be low 1490 */ 1491 if (unlikely(PageTransHuge(page))) { 1492 mem_cgroup_uncharge(page); 1493 (*get_compound_page_dtor(page))(page); 1494 } else 1495 list_add(&page->lru, &free_pages); 1496 continue; 1497 1498 activate_locked_split: 1499 /* 1500 * The tail pages that are failed to add into swap cache 1501 * reach here. Fixup nr_scanned and nr_pages. 1502 */ 1503 if (nr_pages > 1) { 1504 sc->nr_scanned -= (nr_pages - 1); 1505 nr_pages = 1; 1506 } 1507 activate_locked: 1508 /* Not a candidate for swapping, so reclaim swap space. */ 1509 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1510 PageMlocked(page))) 1511 try_to_free_swap(page); 1512 VM_BUG_ON_PAGE(PageActive(page), page); 1513 if (!PageMlocked(page)) { 1514 int type = page_is_file_cache(page); 1515 SetPageActive(page); 1516 stat->nr_activate[type] += nr_pages; 1517 count_memcg_page_event(page, PGACTIVATE); 1518 } 1519 keep_locked: 1520 unlock_page(page); 1521 keep: 1522 list_add(&page->lru, &ret_pages); 1523 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1524 } 1525 1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1527 1528 mem_cgroup_uncharge_list(&free_pages); 1529 try_to_unmap_flush(); 1530 free_unref_page_list(&free_pages); 1531 1532 list_splice(&ret_pages, page_list); 1533 count_vm_events(PGACTIVATE, pgactivate); 1534 1535 return nr_reclaimed; 1536 } 1537 1538 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1539 struct list_head *page_list) 1540 { 1541 struct scan_control sc = { 1542 .gfp_mask = GFP_KERNEL, 1543 .priority = DEF_PRIORITY, 1544 .may_unmap = 1, 1545 }; 1546 struct reclaim_stat dummy_stat; 1547 unsigned long ret; 1548 struct page *page, *next; 1549 LIST_HEAD(clean_pages); 1550 1551 list_for_each_entry_safe(page, next, page_list, lru) { 1552 if (page_is_file_cache(page) && !PageDirty(page) && 1553 !__PageMovable(page) && !PageUnevictable(page)) { 1554 ClearPageActive(page); 1555 list_move(&page->lru, &clean_pages); 1556 } 1557 } 1558 1559 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1560 TTU_IGNORE_ACCESS, &dummy_stat, true); 1561 list_splice(&clean_pages, page_list); 1562 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1563 return ret; 1564 } 1565 1566 /* 1567 * Attempt to remove the specified page from its LRU. Only take this page 1568 * if it is of the appropriate PageActive status. Pages which are being 1569 * freed elsewhere are also ignored. 1570 * 1571 * page: page to consider 1572 * mode: one of the LRU isolation modes defined above 1573 * 1574 * returns 0 on success, -ve errno on failure. 1575 */ 1576 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1577 { 1578 int ret = -EINVAL; 1579 1580 /* Only take pages on the LRU. */ 1581 if (!PageLRU(page)) 1582 return ret; 1583 1584 /* Compaction should not handle unevictable pages but CMA can do so */ 1585 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1586 return ret; 1587 1588 ret = -EBUSY; 1589 1590 /* 1591 * To minimise LRU disruption, the caller can indicate that it only 1592 * wants to isolate pages it will be able to operate on without 1593 * blocking - clean pages for the most part. 1594 * 1595 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1596 * that it is possible to migrate without blocking 1597 */ 1598 if (mode & ISOLATE_ASYNC_MIGRATE) { 1599 /* All the caller can do on PageWriteback is block */ 1600 if (PageWriteback(page)) 1601 return ret; 1602 1603 if (PageDirty(page)) { 1604 struct address_space *mapping; 1605 bool migrate_dirty; 1606 1607 /* 1608 * Only pages without mappings or that have a 1609 * ->migratepage callback are possible to migrate 1610 * without blocking. However, we can be racing with 1611 * truncation so it's necessary to lock the page 1612 * to stabilise the mapping as truncation holds 1613 * the page lock until after the page is removed 1614 * from the page cache. 1615 */ 1616 if (!trylock_page(page)) 1617 return ret; 1618 1619 mapping = page_mapping(page); 1620 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1621 unlock_page(page); 1622 if (!migrate_dirty) 1623 return ret; 1624 } 1625 } 1626 1627 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1628 return ret; 1629 1630 if (likely(get_page_unless_zero(page))) { 1631 /* 1632 * Be careful not to clear PageLRU until after we're 1633 * sure the page is not being freed elsewhere -- the 1634 * page release code relies on it. 1635 */ 1636 ClearPageLRU(page); 1637 ret = 0; 1638 } 1639 1640 return ret; 1641 } 1642 1643 1644 /* 1645 * Update LRU sizes after isolating pages. The LRU size updates must 1646 * be complete before mem_cgroup_update_lru_size due to a santity check. 1647 */ 1648 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1649 enum lru_list lru, unsigned long *nr_zone_taken) 1650 { 1651 int zid; 1652 1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1654 if (!nr_zone_taken[zid]) 1655 continue; 1656 1657 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1658 #ifdef CONFIG_MEMCG 1659 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1660 #endif 1661 } 1662 1663 } 1664 1665 /** 1666 * pgdat->lru_lock is heavily contended. Some of the functions that 1667 * shrink the lists perform better by taking out a batch of pages 1668 * and working on them outside the LRU lock. 1669 * 1670 * For pagecache intensive workloads, this function is the hottest 1671 * spot in the kernel (apart from copy_*_user functions). 1672 * 1673 * Appropriate locks must be held before calling this function. 1674 * 1675 * @nr_to_scan: The number of eligible pages to look through on the list. 1676 * @lruvec: The LRU vector to pull pages from. 1677 * @dst: The temp list to put pages on to. 1678 * @nr_scanned: The number of pages that were scanned. 1679 * @sc: The scan_control struct for this reclaim session 1680 * @mode: One of the LRU isolation modes 1681 * @lru: LRU list id for isolating 1682 * 1683 * returns how many pages were moved onto *@dst. 1684 */ 1685 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1686 struct lruvec *lruvec, struct list_head *dst, 1687 unsigned long *nr_scanned, struct scan_control *sc, 1688 enum lru_list lru) 1689 { 1690 struct list_head *src = &lruvec->lists[lru]; 1691 unsigned long nr_taken = 0; 1692 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1693 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1694 unsigned long skipped = 0; 1695 unsigned long scan, total_scan, nr_pages; 1696 LIST_HEAD(pages_skipped); 1697 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1698 1699 total_scan = 0; 1700 scan = 0; 1701 while (scan < nr_to_scan && !list_empty(src)) { 1702 struct page *page; 1703 1704 page = lru_to_page(src); 1705 prefetchw_prev_lru_page(page, src, flags); 1706 1707 VM_BUG_ON_PAGE(!PageLRU(page), page); 1708 1709 nr_pages = 1 << compound_order(page); 1710 total_scan += nr_pages; 1711 1712 if (page_zonenum(page) > sc->reclaim_idx) { 1713 list_move(&page->lru, &pages_skipped); 1714 nr_skipped[page_zonenum(page)] += nr_pages; 1715 continue; 1716 } 1717 1718 /* 1719 * Do not count skipped pages because that makes the function 1720 * return with no isolated pages if the LRU mostly contains 1721 * ineligible pages. This causes the VM to not reclaim any 1722 * pages, triggering a premature OOM. 1723 * 1724 * Account all tail pages of THP. This would not cause 1725 * premature OOM since __isolate_lru_page() returns -EBUSY 1726 * only when the page is being freed somewhere else. 1727 */ 1728 scan += nr_pages; 1729 switch (__isolate_lru_page(page, mode)) { 1730 case 0: 1731 nr_taken += nr_pages; 1732 nr_zone_taken[page_zonenum(page)] += nr_pages; 1733 list_move(&page->lru, dst); 1734 break; 1735 1736 case -EBUSY: 1737 /* else it is being freed elsewhere */ 1738 list_move(&page->lru, src); 1739 continue; 1740 1741 default: 1742 BUG(); 1743 } 1744 } 1745 1746 /* 1747 * Splice any skipped pages to the start of the LRU list. Note that 1748 * this disrupts the LRU order when reclaiming for lower zones but 1749 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1750 * scanning would soon rescan the same pages to skip and put the 1751 * system at risk of premature OOM. 1752 */ 1753 if (!list_empty(&pages_skipped)) { 1754 int zid; 1755 1756 list_splice(&pages_skipped, src); 1757 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1758 if (!nr_skipped[zid]) 1759 continue; 1760 1761 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1762 skipped += nr_skipped[zid]; 1763 } 1764 } 1765 *nr_scanned = total_scan; 1766 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1767 total_scan, skipped, nr_taken, mode, lru); 1768 update_lru_sizes(lruvec, lru, nr_zone_taken); 1769 return nr_taken; 1770 } 1771 1772 /** 1773 * isolate_lru_page - tries to isolate a page from its LRU list 1774 * @page: page to isolate from its LRU list 1775 * 1776 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1777 * vmstat statistic corresponding to whatever LRU list the page was on. 1778 * 1779 * Returns 0 if the page was removed from an LRU list. 1780 * Returns -EBUSY if the page was not on an LRU list. 1781 * 1782 * The returned page will have PageLRU() cleared. If it was found on 1783 * the active list, it will have PageActive set. If it was found on 1784 * the unevictable list, it will have the PageUnevictable bit set. That flag 1785 * may need to be cleared by the caller before letting the page go. 1786 * 1787 * The vmstat statistic corresponding to the list on which the page was 1788 * found will be decremented. 1789 * 1790 * Restrictions: 1791 * 1792 * (1) Must be called with an elevated refcount on the page. This is a 1793 * fundamentnal difference from isolate_lru_pages (which is called 1794 * without a stable reference). 1795 * (2) the lru_lock must not be held. 1796 * (3) interrupts must be enabled. 1797 */ 1798 int isolate_lru_page(struct page *page) 1799 { 1800 int ret = -EBUSY; 1801 1802 VM_BUG_ON_PAGE(!page_count(page), page); 1803 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1804 1805 if (PageLRU(page)) { 1806 pg_data_t *pgdat = page_pgdat(page); 1807 struct lruvec *lruvec; 1808 1809 spin_lock_irq(&pgdat->lru_lock); 1810 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1811 if (PageLRU(page)) { 1812 int lru = page_lru(page); 1813 get_page(page); 1814 ClearPageLRU(page); 1815 del_page_from_lru_list(page, lruvec, lru); 1816 ret = 0; 1817 } 1818 spin_unlock_irq(&pgdat->lru_lock); 1819 } 1820 return ret; 1821 } 1822 1823 /* 1824 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1825 * then get resheduled. When there are massive number of tasks doing page 1826 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1827 * the LRU list will go small and be scanned faster than necessary, leading to 1828 * unnecessary swapping, thrashing and OOM. 1829 */ 1830 static int too_many_isolated(struct pglist_data *pgdat, int file, 1831 struct scan_control *sc) 1832 { 1833 unsigned long inactive, isolated; 1834 1835 if (current_is_kswapd()) 1836 return 0; 1837 1838 if (!sane_reclaim(sc)) 1839 return 0; 1840 1841 if (file) { 1842 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1843 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1844 } else { 1845 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1846 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1847 } 1848 1849 /* 1850 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1851 * won't get blocked by normal direct-reclaimers, forming a circular 1852 * deadlock. 1853 */ 1854 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1855 inactive >>= 3; 1856 1857 return isolated > inactive; 1858 } 1859 1860 /* 1861 * This moves pages from @list to corresponding LRU list. 1862 * 1863 * We move them the other way if the page is referenced by one or more 1864 * processes, from rmap. 1865 * 1866 * If the pages are mostly unmapped, the processing is fast and it is 1867 * appropriate to hold zone_lru_lock across the whole operation. But if 1868 * the pages are mapped, the processing is slow (page_referenced()) so we 1869 * should drop zone_lru_lock around each page. It's impossible to balance 1870 * this, so instead we remove the pages from the LRU while processing them. 1871 * It is safe to rely on PG_active against the non-LRU pages in here because 1872 * nobody will play with that bit on a non-LRU page. 1873 * 1874 * The downside is that we have to touch page->_refcount against each page. 1875 * But we had to alter page->flags anyway. 1876 * 1877 * Returns the number of pages moved to the given lruvec. 1878 */ 1879 1880 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, 1881 struct list_head *list) 1882 { 1883 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1884 int nr_pages, nr_moved = 0; 1885 LIST_HEAD(pages_to_free); 1886 struct page *page; 1887 enum lru_list lru; 1888 1889 while (!list_empty(list)) { 1890 page = lru_to_page(list); 1891 VM_BUG_ON_PAGE(PageLRU(page), page); 1892 if (unlikely(!page_evictable(page))) { 1893 list_del(&page->lru); 1894 spin_unlock_irq(&pgdat->lru_lock); 1895 putback_lru_page(page); 1896 spin_lock_irq(&pgdat->lru_lock); 1897 continue; 1898 } 1899 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1900 1901 SetPageLRU(page); 1902 lru = page_lru(page); 1903 1904 nr_pages = hpage_nr_pages(page); 1905 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1906 list_move(&page->lru, &lruvec->lists[lru]); 1907 1908 if (put_page_testzero(page)) { 1909 __ClearPageLRU(page); 1910 __ClearPageActive(page); 1911 del_page_from_lru_list(page, lruvec, lru); 1912 1913 if (unlikely(PageCompound(page))) { 1914 spin_unlock_irq(&pgdat->lru_lock); 1915 mem_cgroup_uncharge(page); 1916 (*get_compound_page_dtor(page))(page); 1917 spin_lock_irq(&pgdat->lru_lock); 1918 } else 1919 list_add(&page->lru, &pages_to_free); 1920 } else { 1921 nr_moved += nr_pages; 1922 } 1923 } 1924 1925 /* 1926 * To save our caller's stack, now use input list for pages to free. 1927 */ 1928 list_splice(&pages_to_free, list); 1929 1930 return nr_moved; 1931 } 1932 1933 /* 1934 * If a kernel thread (such as nfsd for loop-back mounts) services 1935 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1936 * In that case we should only throttle if the backing device it is 1937 * writing to is congested. In other cases it is safe to throttle. 1938 */ 1939 static int current_may_throttle(void) 1940 { 1941 return !(current->flags & PF_LESS_THROTTLE) || 1942 current->backing_dev_info == NULL || 1943 bdi_write_congested(current->backing_dev_info); 1944 } 1945 1946 /* 1947 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1948 * of reclaimed pages 1949 */ 1950 static noinline_for_stack unsigned long 1951 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1952 struct scan_control *sc, enum lru_list lru) 1953 { 1954 LIST_HEAD(page_list); 1955 unsigned long nr_scanned; 1956 unsigned long nr_reclaimed = 0; 1957 unsigned long nr_taken; 1958 struct reclaim_stat stat; 1959 int file = is_file_lru(lru); 1960 enum vm_event_item item; 1961 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1962 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1963 bool stalled = false; 1964 1965 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1966 if (stalled) 1967 return 0; 1968 1969 /* wait a bit for the reclaimer. */ 1970 msleep(100); 1971 stalled = true; 1972 1973 /* We are about to die and free our memory. Return now. */ 1974 if (fatal_signal_pending(current)) 1975 return SWAP_CLUSTER_MAX; 1976 } 1977 1978 lru_add_drain(); 1979 1980 spin_lock_irq(&pgdat->lru_lock); 1981 1982 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1983 &nr_scanned, sc, lru); 1984 1985 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1986 reclaim_stat->recent_scanned[file] += nr_taken; 1987 1988 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1989 if (global_reclaim(sc)) 1990 __count_vm_events(item, nr_scanned); 1991 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1992 spin_unlock_irq(&pgdat->lru_lock); 1993 1994 if (nr_taken == 0) 1995 return 0; 1996 1997 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1998 &stat, false); 1999 2000 spin_lock_irq(&pgdat->lru_lock); 2001 2002 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 2003 if (global_reclaim(sc)) 2004 __count_vm_events(item, nr_reclaimed); 2005 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 2006 reclaim_stat->recent_rotated[0] += stat.nr_activate[0]; 2007 reclaim_stat->recent_rotated[1] += stat.nr_activate[1]; 2008 2009 move_pages_to_lru(lruvec, &page_list); 2010 2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2012 2013 spin_unlock_irq(&pgdat->lru_lock); 2014 2015 mem_cgroup_uncharge_list(&page_list); 2016 free_unref_page_list(&page_list); 2017 2018 /* 2019 * If dirty pages are scanned that are not queued for IO, it 2020 * implies that flushers are not doing their job. This can 2021 * happen when memory pressure pushes dirty pages to the end of 2022 * the LRU before the dirty limits are breached and the dirty 2023 * data has expired. It can also happen when the proportion of 2024 * dirty pages grows not through writes but through memory 2025 * pressure reclaiming all the clean cache. And in some cases, 2026 * the flushers simply cannot keep up with the allocation 2027 * rate. Nudge the flusher threads in case they are asleep. 2028 */ 2029 if (stat.nr_unqueued_dirty == nr_taken) 2030 wakeup_flusher_threads(WB_REASON_VMSCAN); 2031 2032 sc->nr.dirty += stat.nr_dirty; 2033 sc->nr.congested += stat.nr_congested; 2034 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 2035 sc->nr.writeback += stat.nr_writeback; 2036 sc->nr.immediate += stat.nr_immediate; 2037 sc->nr.taken += nr_taken; 2038 if (file) 2039 sc->nr.file_taken += nr_taken; 2040 2041 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 2042 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 2043 return nr_reclaimed; 2044 } 2045 2046 static void shrink_active_list(unsigned long nr_to_scan, 2047 struct lruvec *lruvec, 2048 struct scan_control *sc, 2049 enum lru_list lru) 2050 { 2051 unsigned long nr_taken; 2052 unsigned long nr_scanned; 2053 unsigned long vm_flags; 2054 LIST_HEAD(l_hold); /* The pages which were snipped off */ 2055 LIST_HEAD(l_active); 2056 LIST_HEAD(l_inactive); 2057 struct page *page; 2058 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2059 unsigned nr_deactivate, nr_activate; 2060 unsigned nr_rotated = 0; 2061 int file = is_file_lru(lru); 2062 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2063 2064 lru_add_drain(); 2065 2066 spin_lock_irq(&pgdat->lru_lock); 2067 2068 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2069 &nr_scanned, sc, lru); 2070 2071 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2072 reclaim_stat->recent_scanned[file] += nr_taken; 2073 2074 __count_vm_events(PGREFILL, nr_scanned); 2075 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2076 2077 spin_unlock_irq(&pgdat->lru_lock); 2078 2079 while (!list_empty(&l_hold)) { 2080 cond_resched(); 2081 page = lru_to_page(&l_hold); 2082 list_del(&page->lru); 2083 2084 if (unlikely(!page_evictable(page))) { 2085 putback_lru_page(page); 2086 continue; 2087 } 2088 2089 if (unlikely(buffer_heads_over_limit)) { 2090 if (page_has_private(page) && trylock_page(page)) { 2091 if (page_has_private(page)) 2092 try_to_release_page(page, 0); 2093 unlock_page(page); 2094 } 2095 } 2096 2097 if (page_referenced(page, 0, sc->target_mem_cgroup, 2098 &vm_flags)) { 2099 nr_rotated += hpage_nr_pages(page); 2100 /* 2101 * Identify referenced, file-backed active pages and 2102 * give them one more trip around the active list. So 2103 * that executable code get better chances to stay in 2104 * memory under moderate memory pressure. Anon pages 2105 * are not likely to be evicted by use-once streaming 2106 * IO, plus JVM can create lots of anon VM_EXEC pages, 2107 * so we ignore them here. 2108 */ 2109 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 2110 list_add(&page->lru, &l_active); 2111 continue; 2112 } 2113 } 2114 2115 ClearPageActive(page); /* we are de-activating */ 2116 SetPageWorkingset(page); 2117 list_add(&page->lru, &l_inactive); 2118 } 2119 2120 /* 2121 * Move pages back to the lru list. 2122 */ 2123 spin_lock_irq(&pgdat->lru_lock); 2124 /* 2125 * Count referenced pages from currently used mappings as rotated, 2126 * even though only some of them are actually re-activated. This 2127 * helps balance scan pressure between file and anonymous pages in 2128 * get_scan_count. 2129 */ 2130 reclaim_stat->recent_rotated[file] += nr_rotated; 2131 2132 nr_activate = move_pages_to_lru(lruvec, &l_active); 2133 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2134 /* Keep all free pages in l_active list */ 2135 list_splice(&l_inactive, &l_active); 2136 2137 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2138 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2139 2140 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2141 spin_unlock_irq(&pgdat->lru_lock); 2142 2143 mem_cgroup_uncharge_list(&l_active); 2144 free_unref_page_list(&l_active); 2145 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2146 nr_deactivate, nr_rotated, sc->priority, file); 2147 } 2148 2149 /* 2150 * The inactive anon list should be small enough that the VM never has 2151 * to do too much work. 2152 * 2153 * The inactive file list should be small enough to leave most memory 2154 * to the established workingset on the scan-resistant active list, 2155 * but large enough to avoid thrashing the aggregate readahead window. 2156 * 2157 * Both inactive lists should also be large enough that each inactive 2158 * page has a chance to be referenced again before it is reclaimed. 2159 * 2160 * If that fails and refaulting is observed, the inactive list grows. 2161 * 2162 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2163 * on this LRU, maintained by the pageout code. An inactive_ratio 2164 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2165 * 2166 * total target max 2167 * memory ratio inactive 2168 * ------------------------------------- 2169 * 10MB 1 5MB 2170 * 100MB 1 50MB 2171 * 1GB 3 250MB 2172 * 10GB 10 0.9GB 2173 * 100GB 31 3GB 2174 * 1TB 101 10GB 2175 * 10TB 320 32GB 2176 */ 2177 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2178 struct scan_control *sc, bool trace) 2179 { 2180 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2181 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2182 enum lru_list inactive_lru = file * LRU_FILE; 2183 unsigned long inactive, active; 2184 unsigned long inactive_ratio; 2185 unsigned long refaults; 2186 unsigned long gb; 2187 2188 /* 2189 * If we don't have swap space, anonymous page deactivation 2190 * is pointless. 2191 */ 2192 if (!file && !total_swap_pages) 2193 return false; 2194 2195 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2196 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2197 2198 /* 2199 * When refaults are being observed, it means a new workingset 2200 * is being established. Disable active list protection to get 2201 * rid of the stale workingset quickly. 2202 */ 2203 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2204 if (file && lruvec->refaults != refaults) { 2205 inactive_ratio = 0; 2206 } else { 2207 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2208 if (gb) 2209 inactive_ratio = int_sqrt(10 * gb); 2210 else 2211 inactive_ratio = 1; 2212 } 2213 2214 if (trace) 2215 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2216 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2217 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2218 inactive_ratio, file); 2219 2220 return inactive * inactive_ratio < active; 2221 } 2222 2223 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2224 struct lruvec *lruvec, struct scan_control *sc) 2225 { 2226 if (is_active_lru(lru)) { 2227 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2228 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2229 return 0; 2230 } 2231 2232 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2233 } 2234 2235 enum scan_balance { 2236 SCAN_EQUAL, 2237 SCAN_FRACT, 2238 SCAN_ANON, 2239 SCAN_FILE, 2240 }; 2241 2242 /* 2243 * Determine how aggressively the anon and file LRU lists should be 2244 * scanned. The relative value of each set of LRU lists is determined 2245 * by looking at the fraction of the pages scanned we did rotate back 2246 * onto the active list instead of evict. 2247 * 2248 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2249 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2250 */ 2251 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2252 struct scan_control *sc, unsigned long *nr, 2253 unsigned long *lru_pages) 2254 { 2255 int swappiness = mem_cgroup_swappiness(memcg); 2256 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2257 u64 fraction[2]; 2258 u64 denominator = 0; /* gcc */ 2259 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2260 unsigned long anon_prio, file_prio; 2261 enum scan_balance scan_balance; 2262 unsigned long anon, file; 2263 unsigned long ap, fp; 2264 enum lru_list lru; 2265 2266 /* If we have no swap space, do not bother scanning anon pages. */ 2267 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2268 scan_balance = SCAN_FILE; 2269 goto out; 2270 } 2271 2272 /* 2273 * Global reclaim will swap to prevent OOM even with no 2274 * swappiness, but memcg users want to use this knob to 2275 * disable swapping for individual groups completely when 2276 * using the memory controller's swap limit feature would be 2277 * too expensive. 2278 */ 2279 if (!global_reclaim(sc) && !swappiness) { 2280 scan_balance = SCAN_FILE; 2281 goto out; 2282 } 2283 2284 /* 2285 * Do not apply any pressure balancing cleverness when the 2286 * system is close to OOM, scan both anon and file equally 2287 * (unless the swappiness setting disagrees with swapping). 2288 */ 2289 if (!sc->priority && swappiness) { 2290 scan_balance = SCAN_EQUAL; 2291 goto out; 2292 } 2293 2294 /* 2295 * Prevent the reclaimer from falling into the cache trap: as 2296 * cache pages start out inactive, every cache fault will tip 2297 * the scan balance towards the file LRU. And as the file LRU 2298 * shrinks, so does the window for rotation from references. 2299 * This means we have a runaway feedback loop where a tiny 2300 * thrashing file LRU becomes infinitely more attractive than 2301 * anon pages. Try to detect this based on file LRU size. 2302 */ 2303 if (global_reclaim(sc)) { 2304 unsigned long pgdatfile; 2305 unsigned long pgdatfree; 2306 int z; 2307 unsigned long total_high_wmark = 0; 2308 2309 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2310 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2311 node_page_state(pgdat, NR_INACTIVE_FILE); 2312 2313 for (z = 0; z < MAX_NR_ZONES; z++) { 2314 struct zone *zone = &pgdat->node_zones[z]; 2315 if (!managed_zone(zone)) 2316 continue; 2317 2318 total_high_wmark += high_wmark_pages(zone); 2319 } 2320 2321 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2322 /* 2323 * Force SCAN_ANON if there are enough inactive 2324 * anonymous pages on the LRU in eligible zones. 2325 * Otherwise, the small LRU gets thrashed. 2326 */ 2327 if (!inactive_list_is_low(lruvec, false, sc, false) && 2328 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) 2329 >> sc->priority) { 2330 scan_balance = SCAN_ANON; 2331 goto out; 2332 } 2333 } 2334 } 2335 2336 /* 2337 * If there is enough inactive page cache, i.e. if the size of the 2338 * inactive list is greater than that of the active list *and* the 2339 * inactive list actually has some pages to scan on this priority, we 2340 * do not reclaim anything from the anonymous working set right now. 2341 * Without the second condition we could end up never scanning an 2342 * lruvec even if it has plenty of old anonymous pages unless the 2343 * system is under heavy pressure. 2344 */ 2345 if (!inactive_list_is_low(lruvec, true, sc, false) && 2346 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2347 scan_balance = SCAN_FILE; 2348 goto out; 2349 } 2350 2351 scan_balance = SCAN_FRACT; 2352 2353 /* 2354 * With swappiness at 100, anonymous and file have the same priority. 2355 * This scanning priority is essentially the inverse of IO cost. 2356 */ 2357 anon_prio = swappiness; 2358 file_prio = 200 - anon_prio; 2359 2360 /* 2361 * OK, so we have swap space and a fair amount of page cache 2362 * pages. We use the recently rotated / recently scanned 2363 * ratios to determine how valuable each cache is. 2364 * 2365 * Because workloads change over time (and to avoid overflow) 2366 * we keep these statistics as a floating average, which ends 2367 * up weighing recent references more than old ones. 2368 * 2369 * anon in [0], file in [1] 2370 */ 2371 2372 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2373 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2374 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2375 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2376 2377 spin_lock_irq(&pgdat->lru_lock); 2378 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2379 reclaim_stat->recent_scanned[0] /= 2; 2380 reclaim_stat->recent_rotated[0] /= 2; 2381 } 2382 2383 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2384 reclaim_stat->recent_scanned[1] /= 2; 2385 reclaim_stat->recent_rotated[1] /= 2; 2386 } 2387 2388 /* 2389 * The amount of pressure on anon vs file pages is inversely 2390 * proportional to the fraction of recently scanned pages on 2391 * each list that were recently referenced and in active use. 2392 */ 2393 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2394 ap /= reclaim_stat->recent_rotated[0] + 1; 2395 2396 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2397 fp /= reclaim_stat->recent_rotated[1] + 1; 2398 spin_unlock_irq(&pgdat->lru_lock); 2399 2400 fraction[0] = ap; 2401 fraction[1] = fp; 2402 denominator = ap + fp + 1; 2403 out: 2404 *lru_pages = 0; 2405 for_each_evictable_lru(lru) { 2406 int file = is_file_lru(lru); 2407 unsigned long size; 2408 unsigned long scan; 2409 2410 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2411 scan = size >> sc->priority; 2412 /* 2413 * If the cgroup's already been deleted, make sure to 2414 * scrape out the remaining cache. 2415 */ 2416 if (!scan && !mem_cgroup_online(memcg)) 2417 scan = min(size, SWAP_CLUSTER_MAX); 2418 2419 switch (scan_balance) { 2420 case SCAN_EQUAL: 2421 /* Scan lists relative to size */ 2422 break; 2423 case SCAN_FRACT: 2424 /* 2425 * Scan types proportional to swappiness and 2426 * their relative recent reclaim efficiency. 2427 * Make sure we don't miss the last page 2428 * because of a round-off error. 2429 */ 2430 scan = DIV64_U64_ROUND_UP(scan * fraction[file], 2431 denominator); 2432 break; 2433 case SCAN_FILE: 2434 case SCAN_ANON: 2435 /* Scan one type exclusively */ 2436 if ((scan_balance == SCAN_FILE) != file) { 2437 size = 0; 2438 scan = 0; 2439 } 2440 break; 2441 default: 2442 /* Look ma, no brain */ 2443 BUG(); 2444 } 2445 2446 *lru_pages += size; 2447 nr[lru] = scan; 2448 } 2449 } 2450 2451 /* 2452 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2453 */ 2454 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2455 struct scan_control *sc, unsigned long *lru_pages) 2456 { 2457 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2458 unsigned long nr[NR_LRU_LISTS]; 2459 unsigned long targets[NR_LRU_LISTS]; 2460 unsigned long nr_to_scan; 2461 enum lru_list lru; 2462 unsigned long nr_reclaimed = 0; 2463 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2464 struct blk_plug plug; 2465 bool scan_adjusted; 2466 2467 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2468 2469 /* Record the original scan target for proportional adjustments later */ 2470 memcpy(targets, nr, sizeof(nr)); 2471 2472 /* 2473 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2474 * event that can occur when there is little memory pressure e.g. 2475 * multiple streaming readers/writers. Hence, we do not abort scanning 2476 * when the requested number of pages are reclaimed when scanning at 2477 * DEF_PRIORITY on the assumption that the fact we are direct 2478 * reclaiming implies that kswapd is not keeping up and it is best to 2479 * do a batch of work at once. For memcg reclaim one check is made to 2480 * abort proportional reclaim if either the file or anon lru has already 2481 * dropped to zero at the first pass. 2482 */ 2483 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2484 sc->priority == DEF_PRIORITY); 2485 2486 blk_start_plug(&plug); 2487 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2488 nr[LRU_INACTIVE_FILE]) { 2489 unsigned long nr_anon, nr_file, percentage; 2490 unsigned long nr_scanned; 2491 2492 for_each_evictable_lru(lru) { 2493 if (nr[lru]) { 2494 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2495 nr[lru] -= nr_to_scan; 2496 2497 nr_reclaimed += shrink_list(lru, nr_to_scan, 2498 lruvec, sc); 2499 } 2500 } 2501 2502 cond_resched(); 2503 2504 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2505 continue; 2506 2507 /* 2508 * For kswapd and memcg, reclaim at least the number of pages 2509 * requested. Ensure that the anon and file LRUs are scanned 2510 * proportionally what was requested by get_scan_count(). We 2511 * stop reclaiming one LRU and reduce the amount scanning 2512 * proportional to the original scan target. 2513 */ 2514 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2515 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2516 2517 /* 2518 * It's just vindictive to attack the larger once the smaller 2519 * has gone to zero. And given the way we stop scanning the 2520 * smaller below, this makes sure that we only make one nudge 2521 * towards proportionality once we've got nr_to_reclaim. 2522 */ 2523 if (!nr_file || !nr_anon) 2524 break; 2525 2526 if (nr_file > nr_anon) { 2527 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2528 targets[LRU_ACTIVE_ANON] + 1; 2529 lru = LRU_BASE; 2530 percentage = nr_anon * 100 / scan_target; 2531 } else { 2532 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2533 targets[LRU_ACTIVE_FILE] + 1; 2534 lru = LRU_FILE; 2535 percentage = nr_file * 100 / scan_target; 2536 } 2537 2538 /* Stop scanning the smaller of the LRU */ 2539 nr[lru] = 0; 2540 nr[lru + LRU_ACTIVE] = 0; 2541 2542 /* 2543 * Recalculate the other LRU scan count based on its original 2544 * scan target and the percentage scanning already complete 2545 */ 2546 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2547 nr_scanned = targets[lru] - nr[lru]; 2548 nr[lru] = targets[lru] * (100 - percentage) / 100; 2549 nr[lru] -= min(nr[lru], nr_scanned); 2550 2551 lru += LRU_ACTIVE; 2552 nr_scanned = targets[lru] - nr[lru]; 2553 nr[lru] = targets[lru] * (100 - percentage) / 100; 2554 nr[lru] -= min(nr[lru], nr_scanned); 2555 2556 scan_adjusted = true; 2557 } 2558 blk_finish_plug(&plug); 2559 sc->nr_reclaimed += nr_reclaimed; 2560 2561 /* 2562 * Even if we did not try to evict anon pages at all, we want to 2563 * rebalance the anon lru active/inactive ratio. 2564 */ 2565 if (inactive_list_is_low(lruvec, false, sc, true)) 2566 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2567 sc, LRU_ACTIVE_ANON); 2568 } 2569 2570 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2571 static bool in_reclaim_compaction(struct scan_control *sc) 2572 { 2573 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2574 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2575 sc->priority < DEF_PRIORITY - 2)) 2576 return true; 2577 2578 return false; 2579 } 2580 2581 /* 2582 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2583 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2584 * true if more pages should be reclaimed such that when the page allocator 2585 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2586 * It will give up earlier than that if there is difficulty reclaiming pages. 2587 */ 2588 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2589 unsigned long nr_reclaimed, 2590 unsigned long nr_scanned, 2591 struct scan_control *sc) 2592 { 2593 unsigned long pages_for_compaction; 2594 unsigned long inactive_lru_pages; 2595 int z; 2596 2597 /* If not in reclaim/compaction mode, stop */ 2598 if (!in_reclaim_compaction(sc)) 2599 return false; 2600 2601 /* Consider stopping depending on scan and reclaim activity */ 2602 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { 2603 /* 2604 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the 2605 * full LRU list has been scanned and we are still failing 2606 * to reclaim pages. This full LRU scan is potentially 2607 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed 2608 */ 2609 if (!nr_reclaimed && !nr_scanned) 2610 return false; 2611 } else { 2612 /* 2613 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably 2614 * fail without consequence, stop if we failed to reclaim 2615 * any pages from the last SWAP_CLUSTER_MAX number of 2616 * pages that were scanned. This will return to the 2617 * caller faster at the risk reclaim/compaction and 2618 * the resulting allocation attempt fails 2619 */ 2620 if (!nr_reclaimed) 2621 return false; 2622 } 2623 2624 /* 2625 * If we have not reclaimed enough pages for compaction and the 2626 * inactive lists are large enough, continue reclaiming 2627 */ 2628 pages_for_compaction = compact_gap(sc->order); 2629 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2630 if (get_nr_swap_pages() > 0) 2631 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2632 if (sc->nr_reclaimed < pages_for_compaction && 2633 inactive_lru_pages > pages_for_compaction) 2634 return true; 2635 2636 /* If compaction would go ahead or the allocation would succeed, stop */ 2637 for (z = 0; z <= sc->reclaim_idx; z++) { 2638 struct zone *zone = &pgdat->node_zones[z]; 2639 if (!managed_zone(zone)) 2640 continue; 2641 2642 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2643 case COMPACT_SUCCESS: 2644 case COMPACT_CONTINUE: 2645 return false; 2646 default: 2647 /* check next zone */ 2648 ; 2649 } 2650 } 2651 return true; 2652 } 2653 2654 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) 2655 { 2656 return test_bit(PGDAT_CONGESTED, &pgdat->flags) || 2657 (memcg && memcg_congested(pgdat, memcg)); 2658 } 2659 2660 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2661 { 2662 struct reclaim_state *reclaim_state = current->reclaim_state; 2663 unsigned long nr_reclaimed, nr_scanned; 2664 bool reclaimable = false; 2665 2666 do { 2667 struct mem_cgroup *root = sc->target_mem_cgroup; 2668 struct mem_cgroup_reclaim_cookie reclaim = { 2669 .pgdat = pgdat, 2670 .priority = sc->priority, 2671 }; 2672 unsigned long node_lru_pages = 0; 2673 struct mem_cgroup *memcg; 2674 2675 memset(&sc->nr, 0, sizeof(sc->nr)); 2676 2677 nr_reclaimed = sc->nr_reclaimed; 2678 nr_scanned = sc->nr_scanned; 2679 2680 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2681 do { 2682 unsigned long lru_pages; 2683 unsigned long reclaimed; 2684 unsigned long scanned; 2685 2686 switch (mem_cgroup_protected(root, memcg)) { 2687 case MEMCG_PROT_MIN: 2688 /* 2689 * Hard protection. 2690 * If there is no reclaimable memory, OOM. 2691 */ 2692 continue; 2693 case MEMCG_PROT_LOW: 2694 /* 2695 * Soft protection. 2696 * Respect the protection only as long as 2697 * there is an unprotected supply 2698 * of reclaimable memory from other cgroups. 2699 */ 2700 if (!sc->memcg_low_reclaim) { 2701 sc->memcg_low_skipped = 1; 2702 continue; 2703 } 2704 memcg_memory_event(memcg, MEMCG_LOW); 2705 break; 2706 case MEMCG_PROT_NONE: 2707 break; 2708 } 2709 2710 reclaimed = sc->nr_reclaimed; 2711 scanned = sc->nr_scanned; 2712 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2713 node_lru_pages += lru_pages; 2714 2715 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2716 sc->priority); 2717 2718 /* Record the group's reclaim efficiency */ 2719 vmpressure(sc->gfp_mask, memcg, false, 2720 sc->nr_scanned - scanned, 2721 sc->nr_reclaimed - reclaimed); 2722 2723 /* 2724 * Kswapd have to scan all memory cgroups to fulfill 2725 * the overall scan target for the node. 2726 * 2727 * Limit reclaim, on the other hand, only cares about 2728 * nr_to_reclaim pages to be reclaimed and it will 2729 * retry with decreasing priority if one round over the 2730 * whole hierarchy is not sufficient. 2731 */ 2732 if (!current_is_kswapd() && 2733 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2734 mem_cgroup_iter_break(root, memcg); 2735 break; 2736 } 2737 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2738 2739 if (reclaim_state) { 2740 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2741 reclaim_state->reclaimed_slab = 0; 2742 } 2743 2744 /* Record the subtree's reclaim efficiency */ 2745 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2746 sc->nr_scanned - nr_scanned, 2747 sc->nr_reclaimed - nr_reclaimed); 2748 2749 if (sc->nr_reclaimed - nr_reclaimed) 2750 reclaimable = true; 2751 2752 if (current_is_kswapd()) { 2753 /* 2754 * If reclaim is isolating dirty pages under writeback, 2755 * it implies that the long-lived page allocation rate 2756 * is exceeding the page laundering rate. Either the 2757 * global limits are not being effective at throttling 2758 * processes due to the page distribution throughout 2759 * zones or there is heavy usage of a slow backing 2760 * device. The only option is to throttle from reclaim 2761 * context which is not ideal as there is no guarantee 2762 * the dirtying process is throttled in the same way 2763 * balance_dirty_pages() manages. 2764 * 2765 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2766 * count the number of pages under pages flagged for 2767 * immediate reclaim and stall if any are encountered 2768 * in the nr_immediate check below. 2769 */ 2770 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2771 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2772 2773 /* 2774 * Tag a node as congested if all the dirty pages 2775 * scanned were backed by a congested BDI and 2776 * wait_iff_congested will stall. 2777 */ 2778 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2779 set_bit(PGDAT_CONGESTED, &pgdat->flags); 2780 2781 /* Allow kswapd to start writing pages during reclaim.*/ 2782 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2783 set_bit(PGDAT_DIRTY, &pgdat->flags); 2784 2785 /* 2786 * If kswapd scans pages marked marked for immediate 2787 * reclaim and under writeback (nr_immediate), it 2788 * implies that pages are cycling through the LRU 2789 * faster than they are written so also forcibly stall. 2790 */ 2791 if (sc->nr.immediate) 2792 congestion_wait(BLK_RW_ASYNC, HZ/10); 2793 } 2794 2795 /* 2796 * Legacy memcg will stall in page writeback so avoid forcibly 2797 * stalling in wait_iff_congested(). 2798 */ 2799 if (!global_reclaim(sc) && sane_reclaim(sc) && 2800 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2801 set_memcg_congestion(pgdat, root, true); 2802 2803 /* 2804 * Stall direct reclaim for IO completions if underlying BDIs 2805 * and node is congested. Allow kswapd to continue until it 2806 * starts encountering unqueued dirty pages or cycling through 2807 * the LRU too quickly. 2808 */ 2809 if (!sc->hibernation_mode && !current_is_kswapd() && 2810 current_may_throttle() && pgdat_memcg_congested(pgdat, root)) 2811 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2812 2813 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2814 sc->nr_scanned - nr_scanned, sc)); 2815 2816 /* 2817 * Kswapd gives up on balancing particular nodes after too 2818 * many failures to reclaim anything from them and goes to 2819 * sleep. On reclaim progress, reset the failure counter. A 2820 * successful direct reclaim run will revive a dormant kswapd. 2821 */ 2822 if (reclaimable) 2823 pgdat->kswapd_failures = 0; 2824 2825 return reclaimable; 2826 } 2827 2828 /* 2829 * Returns true if compaction should go ahead for a costly-order request, or 2830 * the allocation would already succeed without compaction. Return false if we 2831 * should reclaim first. 2832 */ 2833 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2834 { 2835 unsigned long watermark; 2836 enum compact_result suitable; 2837 2838 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2839 if (suitable == COMPACT_SUCCESS) 2840 /* Allocation should succeed already. Don't reclaim. */ 2841 return true; 2842 if (suitable == COMPACT_SKIPPED) 2843 /* Compaction cannot yet proceed. Do reclaim. */ 2844 return false; 2845 2846 /* 2847 * Compaction is already possible, but it takes time to run and there 2848 * are potentially other callers using the pages just freed. So proceed 2849 * with reclaim to make a buffer of free pages available to give 2850 * compaction a reasonable chance of completing and allocating the page. 2851 * Note that we won't actually reclaim the whole buffer in one attempt 2852 * as the target watermark in should_continue_reclaim() is lower. But if 2853 * we are already above the high+gap watermark, don't reclaim at all. 2854 */ 2855 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2856 2857 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2858 } 2859 2860 /* 2861 * This is the direct reclaim path, for page-allocating processes. We only 2862 * try to reclaim pages from zones which will satisfy the caller's allocation 2863 * request. 2864 * 2865 * If a zone is deemed to be full of pinned pages then just give it a light 2866 * scan then give up on it. 2867 */ 2868 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2869 { 2870 struct zoneref *z; 2871 struct zone *zone; 2872 unsigned long nr_soft_reclaimed; 2873 unsigned long nr_soft_scanned; 2874 gfp_t orig_mask; 2875 pg_data_t *last_pgdat = NULL; 2876 2877 /* 2878 * If the number of buffer_heads in the machine exceeds the maximum 2879 * allowed level, force direct reclaim to scan the highmem zone as 2880 * highmem pages could be pinning lowmem pages storing buffer_heads 2881 */ 2882 orig_mask = sc->gfp_mask; 2883 if (buffer_heads_over_limit) { 2884 sc->gfp_mask |= __GFP_HIGHMEM; 2885 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2886 } 2887 2888 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2889 sc->reclaim_idx, sc->nodemask) { 2890 /* 2891 * Take care memory controller reclaiming has small influence 2892 * to global LRU. 2893 */ 2894 if (global_reclaim(sc)) { 2895 if (!cpuset_zone_allowed(zone, 2896 GFP_KERNEL | __GFP_HARDWALL)) 2897 continue; 2898 2899 /* 2900 * If we already have plenty of memory free for 2901 * compaction in this zone, don't free any more. 2902 * Even though compaction is invoked for any 2903 * non-zero order, only frequent costly order 2904 * reclamation is disruptive enough to become a 2905 * noticeable problem, like transparent huge 2906 * page allocations. 2907 */ 2908 if (IS_ENABLED(CONFIG_COMPACTION) && 2909 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2910 compaction_ready(zone, sc)) { 2911 sc->compaction_ready = true; 2912 continue; 2913 } 2914 2915 /* 2916 * Shrink each node in the zonelist once. If the 2917 * zonelist is ordered by zone (not the default) then a 2918 * node may be shrunk multiple times but in that case 2919 * the user prefers lower zones being preserved. 2920 */ 2921 if (zone->zone_pgdat == last_pgdat) 2922 continue; 2923 2924 /* 2925 * This steals pages from memory cgroups over softlimit 2926 * and returns the number of reclaimed pages and 2927 * scanned pages. This works for global memory pressure 2928 * and balancing, not for a memcg's limit. 2929 */ 2930 nr_soft_scanned = 0; 2931 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2932 sc->order, sc->gfp_mask, 2933 &nr_soft_scanned); 2934 sc->nr_reclaimed += nr_soft_reclaimed; 2935 sc->nr_scanned += nr_soft_scanned; 2936 /* need some check for avoid more shrink_zone() */ 2937 } 2938 2939 /* See comment about same check for global reclaim above */ 2940 if (zone->zone_pgdat == last_pgdat) 2941 continue; 2942 last_pgdat = zone->zone_pgdat; 2943 shrink_node(zone->zone_pgdat, sc); 2944 } 2945 2946 /* 2947 * Restore to original mask to avoid the impact on the caller if we 2948 * promoted it to __GFP_HIGHMEM. 2949 */ 2950 sc->gfp_mask = orig_mask; 2951 } 2952 2953 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2954 { 2955 struct mem_cgroup *memcg; 2956 2957 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2958 do { 2959 unsigned long refaults; 2960 struct lruvec *lruvec; 2961 2962 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2963 refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE); 2964 lruvec->refaults = refaults; 2965 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2966 } 2967 2968 /* 2969 * This is the main entry point to direct page reclaim. 2970 * 2971 * If a full scan of the inactive list fails to free enough memory then we 2972 * are "out of memory" and something needs to be killed. 2973 * 2974 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2975 * high - the zone may be full of dirty or under-writeback pages, which this 2976 * caller can't do much about. We kick the writeback threads and take explicit 2977 * naps in the hope that some of these pages can be written. But if the 2978 * allocating task holds filesystem locks which prevent writeout this might not 2979 * work, and the allocation attempt will fail. 2980 * 2981 * returns: 0, if no pages reclaimed 2982 * else, the number of pages reclaimed 2983 */ 2984 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2985 struct scan_control *sc) 2986 { 2987 int initial_priority = sc->priority; 2988 pg_data_t *last_pgdat; 2989 struct zoneref *z; 2990 struct zone *zone; 2991 retry: 2992 delayacct_freepages_start(); 2993 2994 if (global_reclaim(sc)) 2995 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2996 2997 do { 2998 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2999 sc->priority); 3000 sc->nr_scanned = 0; 3001 shrink_zones(zonelist, sc); 3002 3003 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3004 break; 3005 3006 if (sc->compaction_ready) 3007 break; 3008 3009 /* 3010 * If we're getting trouble reclaiming, start doing 3011 * writepage even in laptop mode. 3012 */ 3013 if (sc->priority < DEF_PRIORITY - 2) 3014 sc->may_writepage = 1; 3015 } while (--sc->priority >= 0); 3016 3017 last_pgdat = NULL; 3018 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3019 sc->nodemask) { 3020 if (zone->zone_pgdat == last_pgdat) 3021 continue; 3022 last_pgdat = zone->zone_pgdat; 3023 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3024 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); 3025 } 3026 3027 delayacct_freepages_end(); 3028 3029 if (sc->nr_reclaimed) 3030 return sc->nr_reclaimed; 3031 3032 /* Aborted reclaim to try compaction? don't OOM, then */ 3033 if (sc->compaction_ready) 3034 return 1; 3035 3036 /* Untapped cgroup reserves? Don't OOM, retry. */ 3037 if (sc->memcg_low_skipped) { 3038 sc->priority = initial_priority; 3039 sc->memcg_low_reclaim = 1; 3040 sc->memcg_low_skipped = 0; 3041 goto retry; 3042 } 3043 3044 return 0; 3045 } 3046 3047 static bool allow_direct_reclaim(pg_data_t *pgdat) 3048 { 3049 struct zone *zone; 3050 unsigned long pfmemalloc_reserve = 0; 3051 unsigned long free_pages = 0; 3052 int i; 3053 bool wmark_ok; 3054 3055 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3056 return true; 3057 3058 for (i = 0; i <= ZONE_NORMAL; i++) { 3059 zone = &pgdat->node_zones[i]; 3060 if (!managed_zone(zone)) 3061 continue; 3062 3063 if (!zone_reclaimable_pages(zone)) 3064 continue; 3065 3066 pfmemalloc_reserve += min_wmark_pages(zone); 3067 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3068 } 3069 3070 /* If there are no reserves (unexpected config) then do not throttle */ 3071 if (!pfmemalloc_reserve) 3072 return true; 3073 3074 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3075 3076 /* kswapd must be awake if processes are being throttled */ 3077 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3078 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 3079 (enum zone_type)ZONE_NORMAL); 3080 wake_up_interruptible(&pgdat->kswapd_wait); 3081 } 3082 3083 return wmark_ok; 3084 } 3085 3086 /* 3087 * Throttle direct reclaimers if backing storage is backed by the network 3088 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3089 * depleted. kswapd will continue to make progress and wake the processes 3090 * when the low watermark is reached. 3091 * 3092 * Returns true if a fatal signal was delivered during throttling. If this 3093 * happens, the page allocator should not consider triggering the OOM killer. 3094 */ 3095 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3096 nodemask_t *nodemask) 3097 { 3098 struct zoneref *z; 3099 struct zone *zone; 3100 pg_data_t *pgdat = NULL; 3101 3102 /* 3103 * Kernel threads should not be throttled as they may be indirectly 3104 * responsible for cleaning pages necessary for reclaim to make forward 3105 * progress. kjournald for example may enter direct reclaim while 3106 * committing a transaction where throttling it could forcing other 3107 * processes to block on log_wait_commit(). 3108 */ 3109 if (current->flags & PF_KTHREAD) 3110 goto out; 3111 3112 /* 3113 * If a fatal signal is pending, this process should not throttle. 3114 * It should return quickly so it can exit and free its memory 3115 */ 3116 if (fatal_signal_pending(current)) 3117 goto out; 3118 3119 /* 3120 * Check if the pfmemalloc reserves are ok by finding the first node 3121 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3122 * GFP_KERNEL will be required for allocating network buffers when 3123 * swapping over the network so ZONE_HIGHMEM is unusable. 3124 * 3125 * Throttling is based on the first usable node and throttled processes 3126 * wait on a queue until kswapd makes progress and wakes them. There 3127 * is an affinity then between processes waking up and where reclaim 3128 * progress has been made assuming the process wakes on the same node. 3129 * More importantly, processes running on remote nodes will not compete 3130 * for remote pfmemalloc reserves and processes on different nodes 3131 * should make reasonable progress. 3132 */ 3133 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3134 gfp_zone(gfp_mask), nodemask) { 3135 if (zone_idx(zone) > ZONE_NORMAL) 3136 continue; 3137 3138 /* Throttle based on the first usable node */ 3139 pgdat = zone->zone_pgdat; 3140 if (allow_direct_reclaim(pgdat)) 3141 goto out; 3142 break; 3143 } 3144 3145 /* If no zone was usable by the allocation flags then do not throttle */ 3146 if (!pgdat) 3147 goto out; 3148 3149 /* Account for the throttling */ 3150 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3151 3152 /* 3153 * If the caller cannot enter the filesystem, it's possible that it 3154 * is due to the caller holding an FS lock or performing a journal 3155 * transaction in the case of a filesystem like ext[3|4]. In this case, 3156 * it is not safe to block on pfmemalloc_wait as kswapd could be 3157 * blocked waiting on the same lock. Instead, throttle for up to a 3158 * second before continuing. 3159 */ 3160 if (!(gfp_mask & __GFP_FS)) { 3161 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3162 allow_direct_reclaim(pgdat), HZ); 3163 3164 goto check_pending; 3165 } 3166 3167 /* Throttle until kswapd wakes the process */ 3168 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3169 allow_direct_reclaim(pgdat)); 3170 3171 check_pending: 3172 if (fatal_signal_pending(current)) 3173 return true; 3174 3175 out: 3176 return false; 3177 } 3178 3179 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3180 gfp_t gfp_mask, nodemask_t *nodemask) 3181 { 3182 unsigned long nr_reclaimed; 3183 struct scan_control sc = { 3184 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3185 .gfp_mask = current_gfp_context(gfp_mask), 3186 .reclaim_idx = gfp_zone(gfp_mask), 3187 .order = order, 3188 .nodemask = nodemask, 3189 .priority = DEF_PRIORITY, 3190 .may_writepage = !laptop_mode, 3191 .may_unmap = 1, 3192 .may_swap = 1, 3193 }; 3194 3195 /* 3196 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3197 * Confirm they are large enough for max values. 3198 */ 3199 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3200 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3201 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3202 3203 /* 3204 * Do not enter reclaim if fatal signal was delivered while throttled. 3205 * 1 is returned so that the page allocator does not OOM kill at this 3206 * point. 3207 */ 3208 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3209 return 1; 3210 3211 set_task_reclaim_state(current, &sc.reclaim_state); 3212 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3213 3214 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3215 3216 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3217 set_task_reclaim_state(current, NULL); 3218 3219 return nr_reclaimed; 3220 } 3221 3222 #ifdef CONFIG_MEMCG 3223 3224 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 3225 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3226 gfp_t gfp_mask, bool noswap, 3227 pg_data_t *pgdat, 3228 unsigned long *nr_scanned) 3229 { 3230 struct scan_control sc = { 3231 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3232 .target_mem_cgroup = memcg, 3233 .may_writepage = !laptop_mode, 3234 .may_unmap = 1, 3235 .reclaim_idx = MAX_NR_ZONES - 1, 3236 .may_swap = !noswap, 3237 }; 3238 unsigned long lru_pages; 3239 3240 WARN_ON_ONCE(!current->reclaim_state); 3241 3242 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3243 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3244 3245 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3246 sc.gfp_mask); 3247 3248 /* 3249 * NOTE: Although we can get the priority field, using it 3250 * here is not a good idea, since it limits the pages we can scan. 3251 * if we don't reclaim here, the shrink_node from balance_pgdat 3252 * will pick up pages from other mem cgroup's as well. We hack 3253 * the priority and make it zero. 3254 */ 3255 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3256 3257 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3258 3259 *nr_scanned = sc.nr_scanned; 3260 3261 return sc.nr_reclaimed; 3262 } 3263 3264 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3265 unsigned long nr_pages, 3266 gfp_t gfp_mask, 3267 bool may_swap) 3268 { 3269 struct zonelist *zonelist; 3270 unsigned long nr_reclaimed; 3271 unsigned long pflags; 3272 int nid; 3273 unsigned int noreclaim_flag; 3274 struct scan_control sc = { 3275 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3276 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3277 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3278 .reclaim_idx = MAX_NR_ZONES - 1, 3279 .target_mem_cgroup = memcg, 3280 .priority = DEF_PRIORITY, 3281 .may_writepage = !laptop_mode, 3282 .may_unmap = 1, 3283 .may_swap = may_swap, 3284 }; 3285 3286 set_task_reclaim_state(current, &sc.reclaim_state); 3287 /* 3288 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3289 * take care of from where we get pages. So the node where we start the 3290 * scan does not need to be the current node. 3291 */ 3292 nid = mem_cgroup_select_victim_node(memcg); 3293 3294 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3295 3296 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3297 3298 psi_memstall_enter(&pflags); 3299 noreclaim_flag = memalloc_noreclaim_save(); 3300 3301 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3302 3303 memalloc_noreclaim_restore(noreclaim_flag); 3304 psi_memstall_leave(&pflags); 3305 3306 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3307 set_task_reclaim_state(current, NULL); 3308 3309 return nr_reclaimed; 3310 } 3311 #endif 3312 3313 static void age_active_anon(struct pglist_data *pgdat, 3314 struct scan_control *sc) 3315 { 3316 struct mem_cgroup *memcg; 3317 3318 if (!total_swap_pages) 3319 return; 3320 3321 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3322 do { 3323 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3324 3325 if (inactive_list_is_low(lruvec, false, sc, true)) 3326 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3327 sc, LRU_ACTIVE_ANON); 3328 3329 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3330 } while (memcg); 3331 } 3332 3333 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) 3334 { 3335 int i; 3336 struct zone *zone; 3337 3338 /* 3339 * Check for watermark boosts top-down as the higher zones 3340 * are more likely to be boosted. Both watermarks and boosts 3341 * should not be checked at the time time as reclaim would 3342 * start prematurely when there is no boosting and a lower 3343 * zone is balanced. 3344 */ 3345 for (i = classzone_idx; i >= 0; i--) { 3346 zone = pgdat->node_zones + i; 3347 if (!managed_zone(zone)) 3348 continue; 3349 3350 if (zone->watermark_boost) 3351 return true; 3352 } 3353 3354 return false; 3355 } 3356 3357 /* 3358 * Returns true if there is an eligible zone balanced for the request order 3359 * and classzone_idx 3360 */ 3361 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3362 { 3363 int i; 3364 unsigned long mark = -1; 3365 struct zone *zone; 3366 3367 /* 3368 * Check watermarks bottom-up as lower zones are more likely to 3369 * meet watermarks. 3370 */ 3371 for (i = 0; i <= classzone_idx; i++) { 3372 zone = pgdat->node_zones + i; 3373 3374 if (!managed_zone(zone)) 3375 continue; 3376 3377 mark = high_wmark_pages(zone); 3378 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3379 return true; 3380 } 3381 3382 /* 3383 * If a node has no populated zone within classzone_idx, it does not 3384 * need balancing by definition. This can happen if a zone-restricted 3385 * allocation tries to wake a remote kswapd. 3386 */ 3387 if (mark == -1) 3388 return true; 3389 3390 return false; 3391 } 3392 3393 /* Clear pgdat state for congested, dirty or under writeback. */ 3394 static void clear_pgdat_congested(pg_data_t *pgdat) 3395 { 3396 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3397 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3398 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3399 } 3400 3401 /* 3402 * Prepare kswapd for sleeping. This verifies that there are no processes 3403 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3404 * 3405 * Returns true if kswapd is ready to sleep 3406 */ 3407 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3408 { 3409 /* 3410 * The throttled processes are normally woken up in balance_pgdat() as 3411 * soon as allow_direct_reclaim() is true. But there is a potential 3412 * race between when kswapd checks the watermarks and a process gets 3413 * throttled. There is also a potential race if processes get 3414 * throttled, kswapd wakes, a large process exits thereby balancing the 3415 * zones, which causes kswapd to exit balance_pgdat() before reaching 3416 * the wake up checks. If kswapd is going to sleep, no process should 3417 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3418 * the wake up is premature, processes will wake kswapd and get 3419 * throttled again. The difference from wake ups in balance_pgdat() is 3420 * that here we are under prepare_to_wait(). 3421 */ 3422 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3423 wake_up_all(&pgdat->pfmemalloc_wait); 3424 3425 /* Hopeless node, leave it to direct reclaim */ 3426 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3427 return true; 3428 3429 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3430 clear_pgdat_congested(pgdat); 3431 return true; 3432 } 3433 3434 return false; 3435 } 3436 3437 /* 3438 * kswapd shrinks a node of pages that are at or below the highest usable 3439 * zone that is currently unbalanced. 3440 * 3441 * Returns true if kswapd scanned at least the requested number of pages to 3442 * reclaim or if the lack of progress was due to pages under writeback. 3443 * This is used to determine if the scanning priority needs to be raised. 3444 */ 3445 static bool kswapd_shrink_node(pg_data_t *pgdat, 3446 struct scan_control *sc) 3447 { 3448 struct zone *zone; 3449 int z; 3450 3451 /* Reclaim a number of pages proportional to the number of zones */ 3452 sc->nr_to_reclaim = 0; 3453 for (z = 0; z <= sc->reclaim_idx; z++) { 3454 zone = pgdat->node_zones + z; 3455 if (!managed_zone(zone)) 3456 continue; 3457 3458 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3459 } 3460 3461 /* 3462 * Historically care was taken to put equal pressure on all zones but 3463 * now pressure is applied based on node LRU order. 3464 */ 3465 shrink_node(pgdat, sc); 3466 3467 /* 3468 * Fragmentation may mean that the system cannot be rebalanced for 3469 * high-order allocations. If twice the allocation size has been 3470 * reclaimed then recheck watermarks only at order-0 to prevent 3471 * excessive reclaim. Assume that a process requested a high-order 3472 * can direct reclaim/compact. 3473 */ 3474 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3475 sc->order = 0; 3476 3477 return sc->nr_scanned >= sc->nr_to_reclaim; 3478 } 3479 3480 /* 3481 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3482 * that are eligible for use by the caller until at least one zone is 3483 * balanced. 3484 * 3485 * Returns the order kswapd finished reclaiming at. 3486 * 3487 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3488 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3489 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3490 * or lower is eligible for reclaim until at least one usable zone is 3491 * balanced. 3492 */ 3493 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3494 { 3495 int i; 3496 unsigned long nr_soft_reclaimed; 3497 unsigned long nr_soft_scanned; 3498 unsigned long pflags; 3499 unsigned long nr_boost_reclaim; 3500 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3501 bool boosted; 3502 struct zone *zone; 3503 struct scan_control sc = { 3504 .gfp_mask = GFP_KERNEL, 3505 .order = order, 3506 .may_unmap = 1, 3507 }; 3508 3509 set_task_reclaim_state(current, &sc.reclaim_state); 3510 psi_memstall_enter(&pflags); 3511 __fs_reclaim_acquire(); 3512 3513 count_vm_event(PAGEOUTRUN); 3514 3515 /* 3516 * Account for the reclaim boost. Note that the zone boost is left in 3517 * place so that parallel allocations that are near the watermark will 3518 * stall or direct reclaim until kswapd is finished. 3519 */ 3520 nr_boost_reclaim = 0; 3521 for (i = 0; i <= classzone_idx; i++) { 3522 zone = pgdat->node_zones + i; 3523 if (!managed_zone(zone)) 3524 continue; 3525 3526 nr_boost_reclaim += zone->watermark_boost; 3527 zone_boosts[i] = zone->watermark_boost; 3528 } 3529 boosted = nr_boost_reclaim; 3530 3531 restart: 3532 sc.priority = DEF_PRIORITY; 3533 do { 3534 unsigned long nr_reclaimed = sc.nr_reclaimed; 3535 bool raise_priority = true; 3536 bool balanced; 3537 bool ret; 3538 3539 sc.reclaim_idx = classzone_idx; 3540 3541 /* 3542 * If the number of buffer_heads exceeds the maximum allowed 3543 * then consider reclaiming from all zones. This has a dual 3544 * purpose -- on 64-bit systems it is expected that 3545 * buffer_heads are stripped during active rotation. On 32-bit 3546 * systems, highmem pages can pin lowmem memory and shrinking 3547 * buffers can relieve lowmem pressure. Reclaim may still not 3548 * go ahead if all eligible zones for the original allocation 3549 * request are balanced to avoid excessive reclaim from kswapd. 3550 */ 3551 if (buffer_heads_over_limit) { 3552 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3553 zone = pgdat->node_zones + i; 3554 if (!managed_zone(zone)) 3555 continue; 3556 3557 sc.reclaim_idx = i; 3558 break; 3559 } 3560 } 3561 3562 /* 3563 * If the pgdat is imbalanced then ignore boosting and preserve 3564 * the watermarks for a later time and restart. Note that the 3565 * zone watermarks will be still reset at the end of balancing 3566 * on the grounds that the normal reclaim should be enough to 3567 * re-evaluate if boosting is required when kswapd next wakes. 3568 */ 3569 balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); 3570 if (!balanced && nr_boost_reclaim) { 3571 nr_boost_reclaim = 0; 3572 goto restart; 3573 } 3574 3575 /* 3576 * If boosting is not active then only reclaim if there are no 3577 * eligible zones. Note that sc.reclaim_idx is not used as 3578 * buffer_heads_over_limit may have adjusted it. 3579 */ 3580 if (!nr_boost_reclaim && balanced) 3581 goto out; 3582 3583 /* Limit the priority of boosting to avoid reclaim writeback */ 3584 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3585 raise_priority = false; 3586 3587 /* 3588 * Do not writeback or swap pages for boosted reclaim. The 3589 * intent is to relieve pressure not issue sub-optimal IO 3590 * from reclaim context. If no pages are reclaimed, the 3591 * reclaim will be aborted. 3592 */ 3593 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3594 sc.may_swap = !nr_boost_reclaim; 3595 3596 /* 3597 * Do some background aging of the anon list, to give 3598 * pages a chance to be referenced before reclaiming. All 3599 * pages are rotated regardless of classzone as this is 3600 * about consistent aging. 3601 */ 3602 age_active_anon(pgdat, &sc); 3603 3604 /* 3605 * If we're getting trouble reclaiming, start doing writepage 3606 * even in laptop mode. 3607 */ 3608 if (sc.priority < DEF_PRIORITY - 2) 3609 sc.may_writepage = 1; 3610 3611 /* Call soft limit reclaim before calling shrink_node. */ 3612 sc.nr_scanned = 0; 3613 nr_soft_scanned = 0; 3614 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3615 sc.gfp_mask, &nr_soft_scanned); 3616 sc.nr_reclaimed += nr_soft_reclaimed; 3617 3618 /* 3619 * There should be no need to raise the scanning priority if 3620 * enough pages are already being scanned that that high 3621 * watermark would be met at 100% efficiency. 3622 */ 3623 if (kswapd_shrink_node(pgdat, &sc)) 3624 raise_priority = false; 3625 3626 /* 3627 * If the low watermark is met there is no need for processes 3628 * to be throttled on pfmemalloc_wait as they should not be 3629 * able to safely make forward progress. Wake them 3630 */ 3631 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3632 allow_direct_reclaim(pgdat)) 3633 wake_up_all(&pgdat->pfmemalloc_wait); 3634 3635 /* Check if kswapd should be suspending */ 3636 __fs_reclaim_release(); 3637 ret = try_to_freeze(); 3638 __fs_reclaim_acquire(); 3639 if (ret || kthread_should_stop()) 3640 break; 3641 3642 /* 3643 * Raise priority if scanning rate is too low or there was no 3644 * progress in reclaiming pages 3645 */ 3646 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3647 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3648 3649 /* 3650 * If reclaim made no progress for a boost, stop reclaim as 3651 * IO cannot be queued and it could be an infinite loop in 3652 * extreme circumstances. 3653 */ 3654 if (nr_boost_reclaim && !nr_reclaimed) 3655 break; 3656 3657 if (raise_priority || !nr_reclaimed) 3658 sc.priority--; 3659 } while (sc.priority >= 1); 3660 3661 if (!sc.nr_reclaimed) 3662 pgdat->kswapd_failures++; 3663 3664 out: 3665 /* If reclaim was boosted, account for the reclaim done in this pass */ 3666 if (boosted) { 3667 unsigned long flags; 3668 3669 for (i = 0; i <= classzone_idx; i++) { 3670 if (!zone_boosts[i]) 3671 continue; 3672 3673 /* Increments are under the zone lock */ 3674 zone = pgdat->node_zones + i; 3675 spin_lock_irqsave(&zone->lock, flags); 3676 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3677 spin_unlock_irqrestore(&zone->lock, flags); 3678 } 3679 3680 /* 3681 * As there is now likely space, wakeup kcompact to defragment 3682 * pageblocks. 3683 */ 3684 wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); 3685 } 3686 3687 snapshot_refaults(NULL, pgdat); 3688 __fs_reclaim_release(); 3689 psi_memstall_leave(&pflags); 3690 set_task_reclaim_state(current, NULL); 3691 3692 /* 3693 * Return the order kswapd stopped reclaiming at as 3694 * prepare_kswapd_sleep() takes it into account. If another caller 3695 * entered the allocator slow path while kswapd was awake, order will 3696 * remain at the higher level. 3697 */ 3698 return sc.order; 3699 } 3700 3701 /* 3702 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be 3703 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not 3704 * a valid index then either kswapd runs for first time or kswapd couldn't sleep 3705 * after previous reclaim attempt (node is still unbalanced). In that case 3706 * return the zone index of the previous kswapd reclaim cycle. 3707 */ 3708 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3709 enum zone_type prev_classzone_idx) 3710 { 3711 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3712 return prev_classzone_idx; 3713 return pgdat->kswapd_classzone_idx; 3714 } 3715 3716 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3717 unsigned int classzone_idx) 3718 { 3719 long remaining = 0; 3720 DEFINE_WAIT(wait); 3721 3722 if (freezing(current) || kthread_should_stop()) 3723 return; 3724 3725 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3726 3727 /* 3728 * Try to sleep for a short interval. Note that kcompactd will only be 3729 * woken if it is possible to sleep for a short interval. This is 3730 * deliberate on the assumption that if reclaim cannot keep an 3731 * eligible zone balanced that it's also unlikely that compaction will 3732 * succeed. 3733 */ 3734 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3735 /* 3736 * Compaction records what page blocks it recently failed to 3737 * isolate pages from and skips them in the future scanning. 3738 * When kswapd is going to sleep, it is reasonable to assume 3739 * that pages and compaction may succeed so reset the cache. 3740 */ 3741 reset_isolation_suitable(pgdat); 3742 3743 /* 3744 * We have freed the memory, now we should compact it to make 3745 * allocation of the requested order possible. 3746 */ 3747 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3748 3749 remaining = schedule_timeout(HZ/10); 3750 3751 /* 3752 * If woken prematurely then reset kswapd_classzone_idx and 3753 * order. The values will either be from a wakeup request or 3754 * the previous request that slept prematurely. 3755 */ 3756 if (remaining) { 3757 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3758 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3759 } 3760 3761 finish_wait(&pgdat->kswapd_wait, &wait); 3762 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3763 } 3764 3765 /* 3766 * After a short sleep, check if it was a premature sleep. If not, then 3767 * go fully to sleep until explicitly woken up. 3768 */ 3769 if (!remaining && 3770 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3771 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3772 3773 /* 3774 * vmstat counters are not perfectly accurate and the estimated 3775 * value for counters such as NR_FREE_PAGES can deviate from the 3776 * true value by nr_online_cpus * threshold. To avoid the zone 3777 * watermarks being breached while under pressure, we reduce the 3778 * per-cpu vmstat threshold while kswapd is awake and restore 3779 * them before going back to sleep. 3780 */ 3781 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3782 3783 if (!kthread_should_stop()) 3784 schedule(); 3785 3786 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3787 } else { 3788 if (remaining) 3789 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3790 else 3791 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3792 } 3793 finish_wait(&pgdat->kswapd_wait, &wait); 3794 } 3795 3796 /* 3797 * The background pageout daemon, started as a kernel thread 3798 * from the init process. 3799 * 3800 * This basically trickles out pages so that we have _some_ 3801 * free memory available even if there is no other activity 3802 * that frees anything up. This is needed for things like routing 3803 * etc, where we otherwise might have all activity going on in 3804 * asynchronous contexts that cannot page things out. 3805 * 3806 * If there are applications that are active memory-allocators 3807 * (most normal use), this basically shouldn't matter. 3808 */ 3809 static int kswapd(void *p) 3810 { 3811 unsigned int alloc_order, reclaim_order; 3812 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3813 pg_data_t *pgdat = (pg_data_t*)p; 3814 struct task_struct *tsk = current; 3815 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3816 3817 if (!cpumask_empty(cpumask)) 3818 set_cpus_allowed_ptr(tsk, cpumask); 3819 3820 /* 3821 * Tell the memory management that we're a "memory allocator", 3822 * and that if we need more memory we should get access to it 3823 * regardless (see "__alloc_pages()"). "kswapd" should 3824 * never get caught in the normal page freeing logic. 3825 * 3826 * (Kswapd normally doesn't need memory anyway, but sometimes 3827 * you need a small amount of memory in order to be able to 3828 * page out something else, and this flag essentially protects 3829 * us from recursively trying to free more memory as we're 3830 * trying to free the first piece of memory in the first place). 3831 */ 3832 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3833 set_freezable(); 3834 3835 pgdat->kswapd_order = 0; 3836 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3837 for ( ; ; ) { 3838 bool ret; 3839 3840 alloc_order = reclaim_order = pgdat->kswapd_order; 3841 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3842 3843 kswapd_try_sleep: 3844 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3845 classzone_idx); 3846 3847 /* Read the new order and classzone_idx */ 3848 alloc_order = reclaim_order = pgdat->kswapd_order; 3849 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3850 pgdat->kswapd_order = 0; 3851 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3852 3853 ret = try_to_freeze(); 3854 if (kthread_should_stop()) 3855 break; 3856 3857 /* 3858 * We can speed up thawing tasks if we don't call balance_pgdat 3859 * after returning from the refrigerator 3860 */ 3861 if (ret) 3862 continue; 3863 3864 /* 3865 * Reclaim begins at the requested order but if a high-order 3866 * reclaim fails then kswapd falls back to reclaiming for 3867 * order-0. If that happens, kswapd will consider sleeping 3868 * for the order it finished reclaiming at (reclaim_order) 3869 * but kcompactd is woken to compact for the original 3870 * request (alloc_order). 3871 */ 3872 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3873 alloc_order); 3874 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3875 if (reclaim_order < alloc_order) 3876 goto kswapd_try_sleep; 3877 } 3878 3879 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3880 3881 return 0; 3882 } 3883 3884 /* 3885 * A zone is low on free memory or too fragmented for high-order memory. If 3886 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3887 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3888 * has failed or is not needed, still wake up kcompactd if only compaction is 3889 * needed. 3890 */ 3891 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3892 enum zone_type classzone_idx) 3893 { 3894 pg_data_t *pgdat; 3895 3896 if (!managed_zone(zone)) 3897 return; 3898 3899 if (!cpuset_zone_allowed(zone, gfp_flags)) 3900 return; 3901 pgdat = zone->zone_pgdat; 3902 3903 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3904 pgdat->kswapd_classzone_idx = classzone_idx; 3905 else 3906 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, 3907 classzone_idx); 3908 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3909 if (!waitqueue_active(&pgdat->kswapd_wait)) 3910 return; 3911 3912 /* Hopeless node, leave it to direct reclaim if possible */ 3913 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 3914 (pgdat_balanced(pgdat, order, classzone_idx) && 3915 !pgdat_watermark_boosted(pgdat, classzone_idx))) { 3916 /* 3917 * There may be plenty of free memory available, but it's too 3918 * fragmented for high-order allocations. Wake up kcompactd 3919 * and rely on compaction_suitable() to determine if it's 3920 * needed. If it fails, it will defer subsequent attempts to 3921 * ratelimit its work. 3922 */ 3923 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 3924 wakeup_kcompactd(pgdat, order, classzone_idx); 3925 return; 3926 } 3927 3928 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, 3929 gfp_flags); 3930 wake_up_interruptible(&pgdat->kswapd_wait); 3931 } 3932 3933 #ifdef CONFIG_HIBERNATION 3934 /* 3935 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3936 * freed pages. 3937 * 3938 * Rather than trying to age LRUs the aim is to preserve the overall 3939 * LRU order by reclaiming preferentially 3940 * inactive > active > active referenced > active mapped 3941 */ 3942 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3943 { 3944 struct scan_control sc = { 3945 .nr_to_reclaim = nr_to_reclaim, 3946 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3947 .reclaim_idx = MAX_NR_ZONES - 1, 3948 .priority = DEF_PRIORITY, 3949 .may_writepage = 1, 3950 .may_unmap = 1, 3951 .may_swap = 1, 3952 .hibernation_mode = 1, 3953 }; 3954 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3955 unsigned long nr_reclaimed; 3956 unsigned int noreclaim_flag; 3957 3958 fs_reclaim_acquire(sc.gfp_mask); 3959 noreclaim_flag = memalloc_noreclaim_save(); 3960 set_task_reclaim_state(current, &sc.reclaim_state); 3961 3962 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3963 3964 set_task_reclaim_state(current, NULL); 3965 memalloc_noreclaim_restore(noreclaim_flag); 3966 fs_reclaim_release(sc.gfp_mask); 3967 3968 return nr_reclaimed; 3969 } 3970 #endif /* CONFIG_HIBERNATION */ 3971 3972 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3973 not required for correctness. So if the last cpu in a node goes 3974 away, we get changed to run anywhere: as the first one comes back, 3975 restore their cpu bindings. */ 3976 static int kswapd_cpu_online(unsigned int cpu) 3977 { 3978 int nid; 3979 3980 for_each_node_state(nid, N_MEMORY) { 3981 pg_data_t *pgdat = NODE_DATA(nid); 3982 const struct cpumask *mask; 3983 3984 mask = cpumask_of_node(pgdat->node_id); 3985 3986 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3987 /* One of our CPUs online: restore mask */ 3988 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3989 } 3990 return 0; 3991 } 3992 3993 /* 3994 * This kswapd start function will be called by init and node-hot-add. 3995 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3996 */ 3997 int kswapd_run(int nid) 3998 { 3999 pg_data_t *pgdat = NODE_DATA(nid); 4000 int ret = 0; 4001 4002 if (pgdat->kswapd) 4003 return 0; 4004 4005 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4006 if (IS_ERR(pgdat->kswapd)) { 4007 /* failure at boot is fatal */ 4008 BUG_ON(system_state < SYSTEM_RUNNING); 4009 pr_err("Failed to start kswapd on node %d\n", nid); 4010 ret = PTR_ERR(pgdat->kswapd); 4011 pgdat->kswapd = NULL; 4012 } 4013 return ret; 4014 } 4015 4016 /* 4017 * Called by memory hotplug when all memory in a node is offlined. Caller must 4018 * hold mem_hotplug_begin/end(). 4019 */ 4020 void kswapd_stop(int nid) 4021 { 4022 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4023 4024 if (kswapd) { 4025 kthread_stop(kswapd); 4026 NODE_DATA(nid)->kswapd = NULL; 4027 } 4028 } 4029 4030 static int __init kswapd_init(void) 4031 { 4032 int nid, ret; 4033 4034 swap_setup(); 4035 for_each_node_state(nid, N_MEMORY) 4036 kswapd_run(nid); 4037 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 4038 "mm/vmscan:online", kswapd_cpu_online, 4039 NULL); 4040 WARN_ON(ret < 0); 4041 return 0; 4042 } 4043 4044 module_init(kswapd_init) 4045 4046 #ifdef CONFIG_NUMA 4047 /* 4048 * Node reclaim mode 4049 * 4050 * If non-zero call node_reclaim when the number of free pages falls below 4051 * the watermarks. 4052 */ 4053 int node_reclaim_mode __read_mostly; 4054 4055 #define RECLAIM_OFF 0 4056 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4057 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4058 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4059 4060 /* 4061 * Priority for NODE_RECLAIM. This determines the fraction of pages 4062 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4063 * a zone. 4064 */ 4065 #define NODE_RECLAIM_PRIORITY 4 4066 4067 /* 4068 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4069 * occur. 4070 */ 4071 int sysctl_min_unmapped_ratio = 1; 4072 4073 /* 4074 * If the number of slab pages in a zone grows beyond this percentage then 4075 * slab reclaim needs to occur. 4076 */ 4077 int sysctl_min_slab_ratio = 5; 4078 4079 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4080 { 4081 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4082 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4083 node_page_state(pgdat, NR_ACTIVE_FILE); 4084 4085 /* 4086 * It's possible for there to be more file mapped pages than 4087 * accounted for by the pages on the file LRU lists because 4088 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4089 */ 4090 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4091 } 4092 4093 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 4094 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4095 { 4096 unsigned long nr_pagecache_reclaimable; 4097 unsigned long delta = 0; 4098 4099 /* 4100 * If RECLAIM_UNMAP is set, then all file pages are considered 4101 * potentially reclaimable. Otherwise, we have to worry about 4102 * pages like swapcache and node_unmapped_file_pages() provides 4103 * a better estimate 4104 */ 4105 if (node_reclaim_mode & RECLAIM_UNMAP) 4106 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4107 else 4108 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4109 4110 /* If we can't clean pages, remove dirty pages from consideration */ 4111 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4112 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4113 4114 /* Watch for any possible underflows due to delta */ 4115 if (unlikely(delta > nr_pagecache_reclaimable)) 4116 delta = nr_pagecache_reclaimable; 4117 4118 return nr_pagecache_reclaimable - delta; 4119 } 4120 4121 /* 4122 * Try to free up some pages from this node through reclaim. 4123 */ 4124 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4125 { 4126 /* Minimum pages needed in order to stay on node */ 4127 const unsigned long nr_pages = 1 << order; 4128 struct task_struct *p = current; 4129 unsigned int noreclaim_flag; 4130 struct scan_control sc = { 4131 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4132 .gfp_mask = current_gfp_context(gfp_mask), 4133 .order = order, 4134 .priority = NODE_RECLAIM_PRIORITY, 4135 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4136 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4137 .may_swap = 1, 4138 .reclaim_idx = gfp_zone(gfp_mask), 4139 }; 4140 4141 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4142 sc.gfp_mask); 4143 4144 cond_resched(); 4145 fs_reclaim_acquire(sc.gfp_mask); 4146 /* 4147 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4148 * and we also need to be able to write out pages for RECLAIM_WRITE 4149 * and RECLAIM_UNMAP. 4150 */ 4151 noreclaim_flag = memalloc_noreclaim_save(); 4152 p->flags |= PF_SWAPWRITE; 4153 set_task_reclaim_state(p, &sc.reclaim_state); 4154 4155 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4156 /* 4157 * Free memory by calling shrink node with increasing 4158 * priorities until we have enough memory freed. 4159 */ 4160 do { 4161 shrink_node(pgdat, &sc); 4162 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4163 } 4164 4165 set_task_reclaim_state(p, NULL); 4166 current->flags &= ~PF_SWAPWRITE; 4167 memalloc_noreclaim_restore(noreclaim_flag); 4168 fs_reclaim_release(sc.gfp_mask); 4169 4170 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4171 4172 return sc.nr_reclaimed >= nr_pages; 4173 } 4174 4175 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4176 { 4177 int ret; 4178 4179 /* 4180 * Node reclaim reclaims unmapped file backed pages and 4181 * slab pages if we are over the defined limits. 4182 * 4183 * A small portion of unmapped file backed pages is needed for 4184 * file I/O otherwise pages read by file I/O will be immediately 4185 * thrown out if the node is overallocated. So we do not reclaim 4186 * if less than a specified percentage of the node is used by 4187 * unmapped file backed pages. 4188 */ 4189 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4190 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 4191 return NODE_RECLAIM_FULL; 4192 4193 /* 4194 * Do not scan if the allocation should not be delayed. 4195 */ 4196 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4197 return NODE_RECLAIM_NOSCAN; 4198 4199 /* 4200 * Only run node reclaim on the local node or on nodes that do not 4201 * have associated processors. This will favor the local processor 4202 * over remote processors and spread off node memory allocations 4203 * as wide as possible. 4204 */ 4205 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4206 return NODE_RECLAIM_NOSCAN; 4207 4208 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4209 return NODE_RECLAIM_NOSCAN; 4210 4211 ret = __node_reclaim(pgdat, gfp_mask, order); 4212 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4213 4214 if (!ret) 4215 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4216 4217 return ret; 4218 } 4219 #endif 4220 4221 /* 4222 * page_evictable - test whether a page is evictable 4223 * @page: the page to test 4224 * 4225 * Test whether page is evictable--i.e., should be placed on active/inactive 4226 * lists vs unevictable list. 4227 * 4228 * Reasons page might not be evictable: 4229 * (1) page's mapping marked unevictable 4230 * (2) page is part of an mlocked VMA 4231 * 4232 */ 4233 int page_evictable(struct page *page) 4234 { 4235 int ret; 4236 4237 /* Prevent address_space of inode and swap cache from being freed */ 4238 rcu_read_lock(); 4239 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 4240 rcu_read_unlock(); 4241 return ret; 4242 } 4243 4244 /** 4245 * check_move_unevictable_pages - check pages for evictability and move to 4246 * appropriate zone lru list 4247 * @pvec: pagevec with lru pages to check 4248 * 4249 * Checks pages for evictability, if an evictable page is in the unevictable 4250 * lru list, moves it to the appropriate evictable lru list. This function 4251 * should be only used for lru pages. 4252 */ 4253 void check_move_unevictable_pages(struct pagevec *pvec) 4254 { 4255 struct lruvec *lruvec; 4256 struct pglist_data *pgdat = NULL; 4257 int pgscanned = 0; 4258 int pgrescued = 0; 4259 int i; 4260 4261 for (i = 0; i < pvec->nr; i++) { 4262 struct page *page = pvec->pages[i]; 4263 struct pglist_data *pagepgdat = page_pgdat(page); 4264 4265 pgscanned++; 4266 if (pagepgdat != pgdat) { 4267 if (pgdat) 4268 spin_unlock_irq(&pgdat->lru_lock); 4269 pgdat = pagepgdat; 4270 spin_lock_irq(&pgdat->lru_lock); 4271 } 4272 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4273 4274 if (!PageLRU(page) || !PageUnevictable(page)) 4275 continue; 4276 4277 if (page_evictable(page)) { 4278 enum lru_list lru = page_lru_base_type(page); 4279 4280 VM_BUG_ON_PAGE(PageActive(page), page); 4281 ClearPageUnevictable(page); 4282 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4283 add_page_to_lru_list(page, lruvec, lru); 4284 pgrescued++; 4285 } 4286 } 4287 4288 if (pgdat) { 4289 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4290 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4291 spin_unlock_irq(&pgdat->lru_lock); 4292 } 4293 } 4294 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4295
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.