1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/property.h> 33 #include <linux/suspend.h> 34 #include <linux/wait.h> 35 #include <asm/unaligned.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 #include <net/bluetooth/l2cap.h> 40 #include <net/bluetooth/mgmt.h> 41 42 #include "hci_request.h" 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 #include "aosp.h" 48 49 static void hci_rx_work(struct work_struct *work); 50 static void hci_cmd_work(struct work_struct *work); 51 static void hci_tx_work(struct work_struct *work); 52 53 /* HCI device list */ 54 LIST_HEAD(hci_dev_list); 55 DEFINE_RWLOCK(hci_dev_list_lock); 56 57 /* HCI callback list */ 58 LIST_HEAD(hci_cb_list); 59 DEFINE_MUTEX(hci_cb_list_lock); 60 61 /* HCI ID Numbering */ 62 static DEFINE_IDA(hci_index_ida); 63 64 /* ---- HCI debugfs entries ---- */ 65 66 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 67 size_t count, loff_t *ppos) 68 { 69 struct hci_dev *hdev = file->private_data; 70 char buf[3]; 71 72 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 73 buf[1] = '\n'; 74 buf[2] = '\0'; 75 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 76 } 77 78 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 79 size_t count, loff_t *ppos) 80 { 81 struct hci_dev *hdev = file->private_data; 82 struct sk_buff *skb; 83 bool enable; 84 int err; 85 86 if (!test_bit(HCI_UP, &hdev->flags)) 87 return -ENETDOWN; 88 89 err = kstrtobool_from_user(user_buf, count, &enable); 90 if (err) 91 return err; 92 93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 94 return -EALREADY; 95 96 hci_req_sync_lock(hdev); 97 if (enable) 98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 else 101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 102 HCI_CMD_TIMEOUT); 103 hci_req_sync_unlock(hdev); 104 105 if (IS_ERR(skb)) 106 return PTR_ERR(skb); 107 108 kfree_skb(skb); 109 110 hci_dev_change_flag(hdev, HCI_DUT_MODE); 111 112 return count; 113 } 114 115 static const struct file_operations dut_mode_fops = { 116 .open = simple_open, 117 .read = dut_mode_read, 118 .write = dut_mode_write, 119 .llseek = default_llseek, 120 }; 121 122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 123 size_t count, loff_t *ppos) 124 { 125 struct hci_dev *hdev = file->private_data; 126 char buf[3]; 127 128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 129 buf[1] = '\n'; 130 buf[2] = '\0'; 131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 132 } 133 134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 135 size_t count, loff_t *ppos) 136 { 137 struct hci_dev *hdev = file->private_data; 138 bool enable; 139 int err; 140 141 err = kstrtobool_from_user(user_buf, count, &enable); 142 if (err) 143 return err; 144 145 /* When the diagnostic flags are not persistent and the transport 146 * is not active or in user channel operation, then there is no need 147 * for the vendor callback. Instead just store the desired value and 148 * the setting will be programmed when the controller gets powered on. 149 */ 150 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 151 (!test_bit(HCI_RUNNING, &hdev->flags) || 152 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 153 goto done; 154 155 hci_req_sync_lock(hdev); 156 err = hdev->set_diag(hdev, enable); 157 hci_req_sync_unlock(hdev); 158 159 if (err < 0) 160 return err; 161 162 done: 163 if (enable) 164 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 165 else 166 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 167 168 return count; 169 } 170 171 static const struct file_operations vendor_diag_fops = { 172 .open = simple_open, 173 .read = vendor_diag_read, 174 .write = vendor_diag_write, 175 .llseek = default_llseek, 176 }; 177 178 static void hci_debugfs_create_basic(struct hci_dev *hdev) 179 { 180 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 181 &dut_mode_fops); 182 183 if (hdev->set_diag) 184 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 185 &vendor_diag_fops); 186 } 187 188 static int hci_reset_req(struct hci_request *req, unsigned long opt) 189 { 190 BT_DBG("%s %ld", req->hdev->name, opt); 191 192 /* Reset device */ 193 set_bit(HCI_RESET, &req->hdev->flags); 194 hci_req_add(req, HCI_OP_RESET, 0, NULL); 195 return 0; 196 } 197 198 static void bredr_init(struct hci_request *req) 199 { 200 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 201 202 /* Read Local Supported Features */ 203 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 204 205 /* Read Local Version */ 206 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 207 208 /* Read BD Address */ 209 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 210 } 211 212 static void amp_init1(struct hci_request *req) 213 { 214 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 215 216 /* Read Local Version */ 217 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 218 219 /* Read Local Supported Commands */ 220 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 221 222 /* Read Local AMP Info */ 223 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 224 225 /* Read Data Blk size */ 226 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 227 228 /* Read Flow Control Mode */ 229 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 230 231 /* Read Location Data */ 232 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 233 } 234 235 static int amp_init2(struct hci_request *req) 236 { 237 /* Read Local Supported Features. Not all AMP controllers 238 * support this so it's placed conditionally in the second 239 * stage init. 240 */ 241 if (req->hdev->commands[14] & 0x20) 242 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 243 244 return 0; 245 } 246 247 static int hci_init1_req(struct hci_request *req, unsigned long opt) 248 { 249 struct hci_dev *hdev = req->hdev; 250 251 BT_DBG("%s %ld", hdev->name, opt); 252 253 /* Reset */ 254 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 255 hci_reset_req(req, 0); 256 257 switch (hdev->dev_type) { 258 case HCI_PRIMARY: 259 bredr_init(req); 260 break; 261 case HCI_AMP: 262 amp_init1(req); 263 break; 264 default: 265 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 266 break; 267 } 268 269 return 0; 270 } 271 272 static void bredr_setup(struct hci_request *req) 273 { 274 __le16 param; 275 __u8 flt_type; 276 277 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 278 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 279 280 /* Read Class of Device */ 281 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 282 283 /* Read Local Name */ 284 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 285 286 /* Read Voice Setting */ 287 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 288 289 /* Read Number of Supported IAC */ 290 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 291 292 /* Read Current IAC LAP */ 293 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 294 295 /* Clear Event Filters */ 296 flt_type = HCI_FLT_CLEAR_ALL; 297 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 298 299 /* Connection accept timeout ~20 secs */ 300 param = cpu_to_le16(0x7d00); 301 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 302 } 303 304 static void le_setup(struct hci_request *req) 305 { 306 struct hci_dev *hdev = req->hdev; 307 308 /* Read LE Buffer Size */ 309 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 310 311 /* Read LE Local Supported Features */ 312 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 313 314 /* Read LE Supported States */ 315 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 316 317 /* LE-only controllers have LE implicitly enabled */ 318 if (!lmp_bredr_capable(hdev)) 319 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 320 } 321 322 static void hci_setup_event_mask(struct hci_request *req) 323 { 324 struct hci_dev *hdev = req->hdev; 325 326 /* The second byte is 0xff instead of 0x9f (two reserved bits 327 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 328 * command otherwise. 329 */ 330 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 331 332 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 333 * any event mask for pre 1.2 devices. 334 */ 335 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 336 return; 337 338 if (lmp_bredr_capable(hdev)) { 339 events[4] |= 0x01; /* Flow Specification Complete */ 340 } else { 341 /* Use a different default for LE-only devices */ 342 memset(events, 0, sizeof(events)); 343 events[1] |= 0x20; /* Command Complete */ 344 events[1] |= 0x40; /* Command Status */ 345 events[1] |= 0x80; /* Hardware Error */ 346 347 /* If the controller supports the Disconnect command, enable 348 * the corresponding event. In addition enable packet flow 349 * control related events. 350 */ 351 if (hdev->commands[0] & 0x20) { 352 events[0] |= 0x10; /* Disconnection Complete */ 353 events[2] |= 0x04; /* Number of Completed Packets */ 354 events[3] |= 0x02; /* Data Buffer Overflow */ 355 } 356 357 /* If the controller supports the Read Remote Version 358 * Information command, enable the corresponding event. 359 */ 360 if (hdev->commands[2] & 0x80) 361 events[1] |= 0x08; /* Read Remote Version Information 362 * Complete 363 */ 364 365 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 366 events[0] |= 0x80; /* Encryption Change */ 367 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 368 } 369 } 370 371 if (lmp_inq_rssi_capable(hdev) || 372 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 373 events[4] |= 0x02; /* Inquiry Result with RSSI */ 374 375 if (lmp_ext_feat_capable(hdev)) 376 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 377 378 if (lmp_esco_capable(hdev)) { 379 events[5] |= 0x08; /* Synchronous Connection Complete */ 380 events[5] |= 0x10; /* Synchronous Connection Changed */ 381 } 382 383 if (lmp_sniffsubr_capable(hdev)) 384 events[5] |= 0x20; /* Sniff Subrating */ 385 386 if (lmp_pause_enc_capable(hdev)) 387 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 388 389 if (lmp_ext_inq_capable(hdev)) 390 events[5] |= 0x40; /* Extended Inquiry Result */ 391 392 if (lmp_no_flush_capable(hdev)) 393 events[7] |= 0x01; /* Enhanced Flush Complete */ 394 395 if (lmp_lsto_capable(hdev)) 396 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 397 398 if (lmp_ssp_capable(hdev)) { 399 events[6] |= 0x01; /* IO Capability Request */ 400 events[6] |= 0x02; /* IO Capability Response */ 401 events[6] |= 0x04; /* User Confirmation Request */ 402 events[6] |= 0x08; /* User Passkey Request */ 403 events[6] |= 0x10; /* Remote OOB Data Request */ 404 events[6] |= 0x20; /* Simple Pairing Complete */ 405 events[7] |= 0x04; /* User Passkey Notification */ 406 events[7] |= 0x08; /* Keypress Notification */ 407 events[7] |= 0x10; /* Remote Host Supported 408 * Features Notification 409 */ 410 } 411 412 if (lmp_le_capable(hdev)) 413 events[7] |= 0x20; /* LE Meta-Event */ 414 415 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 416 } 417 418 static int hci_init2_req(struct hci_request *req, unsigned long opt) 419 { 420 struct hci_dev *hdev = req->hdev; 421 422 if (hdev->dev_type == HCI_AMP) 423 return amp_init2(req); 424 425 if (lmp_bredr_capable(hdev)) 426 bredr_setup(req); 427 else 428 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 429 430 if (lmp_le_capable(hdev)) 431 le_setup(req); 432 433 /* All Bluetooth 1.2 and later controllers should support the 434 * HCI command for reading the local supported commands. 435 * 436 * Unfortunately some controllers indicate Bluetooth 1.2 support, 437 * but do not have support for this command. If that is the case, 438 * the driver can quirk the behavior and skip reading the local 439 * supported commands. 440 */ 441 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 442 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 443 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 444 445 if (lmp_ssp_capable(hdev)) { 446 /* When SSP is available, then the host features page 447 * should also be available as well. However some 448 * controllers list the max_page as 0 as long as SSP 449 * has not been enabled. To achieve proper debugging 450 * output, force the minimum max_page to 1 at least. 451 */ 452 hdev->max_page = 0x01; 453 454 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 455 u8 mode = 0x01; 456 457 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 458 sizeof(mode), &mode); 459 } else { 460 struct hci_cp_write_eir cp; 461 462 memset(hdev->eir, 0, sizeof(hdev->eir)); 463 memset(&cp, 0, sizeof(cp)); 464 465 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 466 } 467 } 468 469 if (lmp_inq_rssi_capable(hdev) || 470 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 471 u8 mode; 472 473 /* If Extended Inquiry Result events are supported, then 474 * they are clearly preferred over Inquiry Result with RSSI 475 * events. 476 */ 477 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 478 479 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 480 } 481 482 if (lmp_inq_tx_pwr_capable(hdev)) 483 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 484 485 if (lmp_ext_feat_capable(hdev)) { 486 struct hci_cp_read_local_ext_features cp; 487 488 cp.page = 0x01; 489 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 490 sizeof(cp), &cp); 491 } 492 493 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 494 u8 enable = 1; 495 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 496 &enable); 497 } 498 499 return 0; 500 } 501 502 static void hci_setup_link_policy(struct hci_request *req) 503 { 504 struct hci_dev *hdev = req->hdev; 505 struct hci_cp_write_def_link_policy cp; 506 u16 link_policy = 0; 507 508 if (lmp_rswitch_capable(hdev)) 509 link_policy |= HCI_LP_RSWITCH; 510 if (lmp_hold_capable(hdev)) 511 link_policy |= HCI_LP_HOLD; 512 if (lmp_sniff_capable(hdev)) 513 link_policy |= HCI_LP_SNIFF; 514 if (lmp_park_capable(hdev)) 515 link_policy |= HCI_LP_PARK; 516 517 cp.policy = cpu_to_le16(link_policy); 518 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 519 } 520 521 static void hci_set_le_support(struct hci_request *req) 522 { 523 struct hci_dev *hdev = req->hdev; 524 struct hci_cp_write_le_host_supported cp; 525 526 /* LE-only devices do not support explicit enablement */ 527 if (!lmp_bredr_capable(hdev)) 528 return; 529 530 memset(&cp, 0, sizeof(cp)); 531 532 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 533 cp.le = 0x01; 534 cp.simul = 0x00; 535 } 536 537 if (cp.le != lmp_host_le_capable(hdev)) 538 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 539 &cp); 540 } 541 542 static void hci_set_event_mask_page_2(struct hci_request *req) 543 { 544 struct hci_dev *hdev = req->hdev; 545 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 546 bool changed = false; 547 548 /* If Connectionless Peripheral Broadcast central role is supported 549 * enable all necessary events for it. 550 */ 551 if (lmp_cpb_central_capable(hdev)) { 552 events[1] |= 0x40; /* Triggered Clock Capture */ 553 events[1] |= 0x80; /* Synchronization Train Complete */ 554 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 555 events[2] |= 0x20; /* CPB Channel Map Change */ 556 changed = true; 557 } 558 559 /* If Connectionless Peripheral Broadcast peripheral role is supported 560 * enable all necessary events for it. 561 */ 562 if (lmp_cpb_peripheral_capable(hdev)) { 563 events[2] |= 0x01; /* Synchronization Train Received */ 564 events[2] |= 0x02; /* CPB Receive */ 565 events[2] |= 0x04; /* CPB Timeout */ 566 events[2] |= 0x08; /* Truncated Page Complete */ 567 changed = true; 568 } 569 570 /* Enable Authenticated Payload Timeout Expired event if supported */ 571 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 572 events[2] |= 0x80; 573 changed = true; 574 } 575 576 /* Some Broadcom based controllers indicate support for Set Event 577 * Mask Page 2 command, but then actually do not support it. Since 578 * the default value is all bits set to zero, the command is only 579 * required if the event mask has to be changed. In case no change 580 * to the event mask is needed, skip this command. 581 */ 582 if (changed) 583 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 584 sizeof(events), events); 585 } 586 587 static int hci_init3_req(struct hci_request *req, unsigned long opt) 588 { 589 struct hci_dev *hdev = req->hdev; 590 u8 p; 591 592 hci_setup_event_mask(req); 593 594 if (hdev->commands[6] & 0x20 && 595 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 596 struct hci_cp_read_stored_link_key cp; 597 598 bacpy(&cp.bdaddr, BDADDR_ANY); 599 cp.read_all = 0x01; 600 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 601 } 602 603 if (hdev->commands[5] & 0x10) 604 hci_setup_link_policy(req); 605 606 if (hdev->commands[8] & 0x01) 607 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 608 609 if (hdev->commands[18] & 0x04 && 610 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 611 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL); 612 613 /* Some older Broadcom based Bluetooth 1.2 controllers do not 614 * support the Read Page Scan Type command. Check support for 615 * this command in the bit mask of supported commands. 616 */ 617 if (hdev->commands[13] & 0x01) 618 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 619 620 if (lmp_le_capable(hdev)) { 621 u8 events[8]; 622 623 memset(events, 0, sizeof(events)); 624 625 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 626 events[0] |= 0x10; /* LE Long Term Key Request */ 627 628 /* If controller supports the Connection Parameters Request 629 * Link Layer Procedure, enable the corresponding event. 630 */ 631 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 632 events[0] |= 0x20; /* LE Remote Connection 633 * Parameter Request 634 */ 635 636 /* If the controller supports the Data Length Extension 637 * feature, enable the corresponding event. 638 */ 639 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 640 events[0] |= 0x40; /* LE Data Length Change */ 641 642 /* If the controller supports LL Privacy feature, enable 643 * the corresponding event. 644 */ 645 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY) 646 events[1] |= 0x02; /* LE Enhanced Connection 647 * Complete 648 */ 649 650 /* If the controller supports Extended Scanner Filter 651 * Policies, enable the corresponding event. 652 */ 653 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 654 events[1] |= 0x04; /* LE Direct Advertising 655 * Report 656 */ 657 658 /* If the controller supports Channel Selection Algorithm #2 659 * feature, enable the corresponding event. 660 */ 661 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 662 events[2] |= 0x08; /* LE Channel Selection 663 * Algorithm 664 */ 665 666 /* If the controller supports the LE Set Scan Enable command, 667 * enable the corresponding advertising report event. 668 */ 669 if (hdev->commands[26] & 0x08) 670 events[0] |= 0x02; /* LE Advertising Report */ 671 672 /* If the controller supports the LE Create Connection 673 * command, enable the corresponding event. 674 */ 675 if (hdev->commands[26] & 0x10) 676 events[0] |= 0x01; /* LE Connection Complete */ 677 678 /* If the controller supports the LE Connection Update 679 * command, enable the corresponding event. 680 */ 681 if (hdev->commands[27] & 0x04) 682 events[0] |= 0x04; /* LE Connection Update 683 * Complete 684 */ 685 686 /* If the controller supports the LE Read Remote Used Features 687 * command, enable the corresponding event. 688 */ 689 if (hdev->commands[27] & 0x20) 690 events[0] |= 0x08; /* LE Read Remote Used 691 * Features Complete 692 */ 693 694 /* If the controller supports the LE Read Local P-256 695 * Public Key command, enable the corresponding event. 696 */ 697 if (hdev->commands[34] & 0x02) 698 events[0] |= 0x80; /* LE Read Local P-256 699 * Public Key Complete 700 */ 701 702 /* If the controller supports the LE Generate DHKey 703 * command, enable the corresponding event. 704 */ 705 if (hdev->commands[34] & 0x04) 706 events[1] |= 0x01; /* LE Generate DHKey Complete */ 707 708 /* If the controller supports the LE Set Default PHY or 709 * LE Set PHY commands, enable the corresponding event. 710 */ 711 if (hdev->commands[35] & (0x20 | 0x40)) 712 events[1] |= 0x08; /* LE PHY Update Complete */ 713 714 /* If the controller supports LE Set Extended Scan Parameters 715 * and LE Set Extended Scan Enable commands, enable the 716 * corresponding event. 717 */ 718 if (use_ext_scan(hdev)) 719 events[1] |= 0x10; /* LE Extended Advertising 720 * Report 721 */ 722 723 /* If the controller supports the LE Extended Advertising 724 * command, enable the corresponding event. 725 */ 726 if (ext_adv_capable(hdev)) 727 events[2] |= 0x02; /* LE Advertising Set 728 * Terminated 729 */ 730 731 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 732 events); 733 734 /* Read LE Advertising Channel TX Power */ 735 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 736 /* HCI TS spec forbids mixing of legacy and extended 737 * advertising commands wherein READ_ADV_TX_POWER is 738 * also included. So do not call it if extended adv 739 * is supported otherwise controller will return 740 * COMMAND_DISALLOWED for extended commands. 741 */ 742 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 743 } 744 745 if (hdev->commands[38] & 0x80) { 746 /* Read LE Min/Max Tx Power*/ 747 hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER, 748 0, NULL); 749 } 750 751 if (hdev->commands[26] & 0x40) { 752 /* Read LE Accept List Size */ 753 hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 754 0, NULL); 755 } 756 757 if (hdev->commands[26] & 0x80) { 758 /* Clear LE Accept List */ 759 hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL); 760 } 761 762 if (hdev->commands[34] & 0x40) { 763 /* Read LE Resolving List Size */ 764 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 765 0, NULL); 766 } 767 768 if (hdev->commands[34] & 0x20) { 769 /* Clear LE Resolving List */ 770 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); 771 } 772 773 if (hdev->commands[35] & 0x04) { 774 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout); 775 776 /* Set RPA timeout */ 777 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2, 778 &rpa_timeout); 779 } 780 781 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 782 /* Read LE Maximum Data Length */ 783 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 784 785 /* Read LE Suggested Default Data Length */ 786 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 787 } 788 789 if (ext_adv_capable(hdev)) { 790 /* Read LE Number of Supported Advertising Sets */ 791 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 792 0, NULL); 793 } 794 795 hci_set_le_support(req); 796 } 797 798 /* Read features beyond page 1 if available */ 799 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 800 struct hci_cp_read_local_ext_features cp; 801 802 cp.page = p; 803 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 804 sizeof(cp), &cp); 805 } 806 807 return 0; 808 } 809 810 static int hci_init4_req(struct hci_request *req, unsigned long opt) 811 { 812 struct hci_dev *hdev = req->hdev; 813 814 /* Some Broadcom based Bluetooth controllers do not support the 815 * Delete Stored Link Key command. They are clearly indicating its 816 * absence in the bit mask of supported commands. 817 * 818 * Check the supported commands and only if the command is marked 819 * as supported send it. If not supported assume that the controller 820 * does not have actual support for stored link keys which makes this 821 * command redundant anyway. 822 * 823 * Some controllers indicate that they support handling deleting 824 * stored link keys, but they don't. The quirk lets a driver 825 * just disable this command. 826 */ 827 if (hdev->commands[6] & 0x80 && 828 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 829 struct hci_cp_delete_stored_link_key cp; 830 831 bacpy(&cp.bdaddr, BDADDR_ANY); 832 cp.delete_all = 0x01; 833 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 834 sizeof(cp), &cp); 835 } 836 837 /* Set event mask page 2 if the HCI command for it is supported */ 838 if (hdev->commands[22] & 0x04) 839 hci_set_event_mask_page_2(req); 840 841 /* Read local codec list if the HCI command is supported */ 842 if (hdev->commands[29] & 0x20) 843 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 844 845 /* Read local pairing options if the HCI command is supported */ 846 if (hdev->commands[41] & 0x08) 847 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL); 848 849 /* Get MWS transport configuration if the HCI command is supported */ 850 if (hdev->commands[30] & 0x08) 851 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 852 853 /* Check for Synchronization Train support */ 854 if (lmp_sync_train_capable(hdev)) 855 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 856 857 /* Enable Secure Connections if supported and configured */ 858 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 859 bredr_sc_enabled(hdev)) { 860 u8 support = 0x01; 861 862 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 863 sizeof(support), &support); 864 } 865 866 /* Set erroneous data reporting if supported to the wideband speech 867 * setting value 868 */ 869 if (hdev->commands[18] & 0x08 && 870 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) { 871 bool enabled = hci_dev_test_flag(hdev, 872 HCI_WIDEBAND_SPEECH_ENABLED); 873 874 if (enabled != 875 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) { 876 struct hci_cp_write_def_err_data_reporting cp; 877 878 cp.err_data_reporting = enabled ? 879 ERR_DATA_REPORTING_ENABLED : 880 ERR_DATA_REPORTING_DISABLED; 881 882 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 883 sizeof(cp), &cp); 884 } 885 } 886 887 /* Set Suggested Default Data Length to maximum if supported */ 888 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 889 struct hci_cp_le_write_def_data_len cp; 890 891 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 892 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 893 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 894 } 895 896 /* Set Default PHY parameters if command is supported */ 897 if (hdev->commands[35] & 0x20) { 898 struct hci_cp_le_set_default_phy cp; 899 900 cp.all_phys = 0x00; 901 cp.tx_phys = hdev->le_tx_def_phys; 902 cp.rx_phys = hdev->le_rx_def_phys; 903 904 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 905 } 906 907 return 0; 908 } 909 910 static int __hci_init(struct hci_dev *hdev) 911 { 912 int err; 913 914 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 915 if (err < 0) 916 return err; 917 918 if (hci_dev_test_flag(hdev, HCI_SETUP)) 919 hci_debugfs_create_basic(hdev); 920 921 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 922 if (err < 0) 923 return err; 924 925 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 926 * BR/EDR/LE type controllers. AMP controllers only need the 927 * first two stages of init. 928 */ 929 if (hdev->dev_type != HCI_PRIMARY) 930 return 0; 931 932 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 933 if (err < 0) 934 return err; 935 936 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 937 if (err < 0) 938 return err; 939 940 /* This function is only called when the controller is actually in 941 * configured state. When the controller is marked as unconfigured, 942 * this initialization procedure is not run. 943 * 944 * It means that it is possible that a controller runs through its 945 * setup phase and then discovers missing settings. If that is the 946 * case, then this function will not be called. It then will only 947 * be called during the config phase. 948 * 949 * So only when in setup phase or config phase, create the debugfs 950 * entries and register the SMP channels. 951 */ 952 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 953 !hci_dev_test_flag(hdev, HCI_CONFIG)) 954 return 0; 955 956 hci_debugfs_create_common(hdev); 957 958 if (lmp_bredr_capable(hdev)) 959 hci_debugfs_create_bredr(hdev); 960 961 if (lmp_le_capable(hdev)) 962 hci_debugfs_create_le(hdev); 963 964 return 0; 965 } 966 967 static int hci_init0_req(struct hci_request *req, unsigned long opt) 968 { 969 struct hci_dev *hdev = req->hdev; 970 971 BT_DBG("%s %ld", hdev->name, opt); 972 973 /* Reset */ 974 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 975 hci_reset_req(req, 0); 976 977 /* Read Local Version */ 978 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 979 980 /* Read BD Address */ 981 if (hdev->set_bdaddr) 982 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 983 984 return 0; 985 } 986 987 static int __hci_unconf_init(struct hci_dev *hdev) 988 { 989 int err; 990 991 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 992 return 0; 993 994 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 995 if (err < 0) 996 return err; 997 998 if (hci_dev_test_flag(hdev, HCI_SETUP)) 999 hci_debugfs_create_basic(hdev); 1000 1001 return 0; 1002 } 1003 1004 static int hci_scan_req(struct hci_request *req, unsigned long opt) 1005 { 1006 __u8 scan = opt; 1007 1008 BT_DBG("%s %x", req->hdev->name, scan); 1009 1010 /* Inquiry and Page scans */ 1011 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1012 return 0; 1013 } 1014 1015 static int hci_auth_req(struct hci_request *req, unsigned long opt) 1016 { 1017 __u8 auth = opt; 1018 1019 BT_DBG("%s %x", req->hdev->name, auth); 1020 1021 /* Authentication */ 1022 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 1023 return 0; 1024 } 1025 1026 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 1027 { 1028 __u8 encrypt = opt; 1029 1030 BT_DBG("%s %x", req->hdev->name, encrypt); 1031 1032 /* Encryption */ 1033 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 1034 return 0; 1035 } 1036 1037 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 1038 { 1039 __le16 policy = cpu_to_le16(opt); 1040 1041 BT_DBG("%s %x", req->hdev->name, policy); 1042 1043 /* Default link policy */ 1044 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 1045 return 0; 1046 } 1047 1048 /* Get HCI device by index. 1049 * Device is held on return. */ 1050 struct hci_dev *hci_dev_get(int index) 1051 { 1052 struct hci_dev *hdev = NULL, *d; 1053 1054 BT_DBG("%d", index); 1055 1056 if (index < 0) 1057 return NULL; 1058 1059 read_lock(&hci_dev_list_lock); 1060 list_for_each_entry(d, &hci_dev_list, list) { 1061 if (d->id == index) { 1062 hdev = hci_dev_hold(d); 1063 break; 1064 } 1065 } 1066 read_unlock(&hci_dev_list_lock); 1067 return hdev; 1068 } 1069 1070 /* ---- Inquiry support ---- */ 1071 1072 bool hci_discovery_active(struct hci_dev *hdev) 1073 { 1074 struct discovery_state *discov = &hdev->discovery; 1075 1076 switch (discov->state) { 1077 case DISCOVERY_FINDING: 1078 case DISCOVERY_RESOLVING: 1079 return true; 1080 1081 default: 1082 return false; 1083 } 1084 } 1085 1086 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1087 { 1088 int old_state = hdev->discovery.state; 1089 1090 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1091 1092 if (old_state == state) 1093 return; 1094 1095 hdev->discovery.state = state; 1096 1097 switch (state) { 1098 case DISCOVERY_STOPPED: 1099 hci_update_background_scan(hdev); 1100 1101 if (old_state != DISCOVERY_STARTING) 1102 mgmt_discovering(hdev, 0); 1103 break; 1104 case DISCOVERY_STARTING: 1105 break; 1106 case DISCOVERY_FINDING: 1107 mgmt_discovering(hdev, 1); 1108 break; 1109 case DISCOVERY_RESOLVING: 1110 break; 1111 case DISCOVERY_STOPPING: 1112 break; 1113 } 1114 } 1115 1116 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1117 { 1118 struct discovery_state *cache = &hdev->discovery; 1119 struct inquiry_entry *p, *n; 1120 1121 list_for_each_entry_safe(p, n, &cache->all, all) { 1122 list_del(&p->all); 1123 kfree(p); 1124 } 1125 1126 INIT_LIST_HEAD(&cache->unknown); 1127 INIT_LIST_HEAD(&cache->resolve); 1128 } 1129 1130 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1131 bdaddr_t *bdaddr) 1132 { 1133 struct discovery_state *cache = &hdev->discovery; 1134 struct inquiry_entry *e; 1135 1136 BT_DBG("cache %p, %pMR", cache, bdaddr); 1137 1138 list_for_each_entry(e, &cache->all, all) { 1139 if (!bacmp(&e->data.bdaddr, bdaddr)) 1140 return e; 1141 } 1142 1143 return NULL; 1144 } 1145 1146 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1147 bdaddr_t *bdaddr) 1148 { 1149 struct discovery_state *cache = &hdev->discovery; 1150 struct inquiry_entry *e; 1151 1152 BT_DBG("cache %p, %pMR", cache, bdaddr); 1153 1154 list_for_each_entry(e, &cache->unknown, list) { 1155 if (!bacmp(&e->data.bdaddr, bdaddr)) 1156 return e; 1157 } 1158 1159 return NULL; 1160 } 1161 1162 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1163 bdaddr_t *bdaddr, 1164 int state) 1165 { 1166 struct discovery_state *cache = &hdev->discovery; 1167 struct inquiry_entry *e; 1168 1169 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1170 1171 list_for_each_entry(e, &cache->resolve, list) { 1172 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1173 return e; 1174 if (!bacmp(&e->data.bdaddr, bdaddr)) 1175 return e; 1176 } 1177 1178 return NULL; 1179 } 1180 1181 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1182 struct inquiry_entry *ie) 1183 { 1184 struct discovery_state *cache = &hdev->discovery; 1185 struct list_head *pos = &cache->resolve; 1186 struct inquiry_entry *p; 1187 1188 list_del(&ie->list); 1189 1190 list_for_each_entry(p, &cache->resolve, list) { 1191 if (p->name_state != NAME_PENDING && 1192 abs(p->data.rssi) >= abs(ie->data.rssi)) 1193 break; 1194 pos = &p->list; 1195 } 1196 1197 list_add(&ie->list, pos); 1198 } 1199 1200 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1201 bool name_known) 1202 { 1203 struct discovery_state *cache = &hdev->discovery; 1204 struct inquiry_entry *ie; 1205 u32 flags = 0; 1206 1207 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1208 1209 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1210 1211 if (!data->ssp_mode) 1212 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1213 1214 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1215 if (ie) { 1216 if (!ie->data.ssp_mode) 1217 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1218 1219 if (ie->name_state == NAME_NEEDED && 1220 data->rssi != ie->data.rssi) { 1221 ie->data.rssi = data->rssi; 1222 hci_inquiry_cache_update_resolve(hdev, ie); 1223 } 1224 1225 goto update; 1226 } 1227 1228 /* Entry not in the cache. Add new one. */ 1229 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1230 if (!ie) { 1231 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1232 goto done; 1233 } 1234 1235 list_add(&ie->all, &cache->all); 1236 1237 if (name_known) { 1238 ie->name_state = NAME_KNOWN; 1239 } else { 1240 ie->name_state = NAME_NOT_KNOWN; 1241 list_add(&ie->list, &cache->unknown); 1242 } 1243 1244 update: 1245 if (name_known && ie->name_state != NAME_KNOWN && 1246 ie->name_state != NAME_PENDING) { 1247 ie->name_state = NAME_KNOWN; 1248 list_del(&ie->list); 1249 } 1250 1251 memcpy(&ie->data, data, sizeof(*data)); 1252 ie->timestamp = jiffies; 1253 cache->timestamp = jiffies; 1254 1255 if (ie->name_state == NAME_NOT_KNOWN) 1256 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1257 1258 done: 1259 return flags; 1260 } 1261 1262 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1263 { 1264 struct discovery_state *cache = &hdev->discovery; 1265 struct inquiry_info *info = (struct inquiry_info *) buf; 1266 struct inquiry_entry *e; 1267 int copied = 0; 1268 1269 list_for_each_entry(e, &cache->all, all) { 1270 struct inquiry_data *data = &e->data; 1271 1272 if (copied >= num) 1273 break; 1274 1275 bacpy(&info->bdaddr, &data->bdaddr); 1276 info->pscan_rep_mode = data->pscan_rep_mode; 1277 info->pscan_period_mode = data->pscan_period_mode; 1278 info->pscan_mode = data->pscan_mode; 1279 memcpy(info->dev_class, data->dev_class, 3); 1280 info->clock_offset = data->clock_offset; 1281 1282 info++; 1283 copied++; 1284 } 1285 1286 BT_DBG("cache %p, copied %d", cache, copied); 1287 return copied; 1288 } 1289 1290 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1291 { 1292 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1293 struct hci_dev *hdev = req->hdev; 1294 struct hci_cp_inquiry cp; 1295 1296 BT_DBG("%s", hdev->name); 1297 1298 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1299 return 0; 1300 1301 /* Start Inquiry */ 1302 memcpy(&cp.lap, &ir->lap, 3); 1303 cp.length = ir->length; 1304 cp.num_rsp = ir->num_rsp; 1305 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1306 1307 return 0; 1308 } 1309 1310 int hci_inquiry(void __user *arg) 1311 { 1312 __u8 __user *ptr = arg; 1313 struct hci_inquiry_req ir; 1314 struct hci_dev *hdev; 1315 int err = 0, do_inquiry = 0, max_rsp; 1316 long timeo; 1317 __u8 *buf; 1318 1319 if (copy_from_user(&ir, ptr, sizeof(ir))) 1320 return -EFAULT; 1321 1322 hdev = hci_dev_get(ir.dev_id); 1323 if (!hdev) 1324 return -ENODEV; 1325 1326 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1327 err = -EBUSY; 1328 goto done; 1329 } 1330 1331 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1332 err = -EOPNOTSUPP; 1333 goto done; 1334 } 1335 1336 if (hdev->dev_type != HCI_PRIMARY) { 1337 err = -EOPNOTSUPP; 1338 goto done; 1339 } 1340 1341 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1342 err = -EOPNOTSUPP; 1343 goto done; 1344 } 1345 1346 /* Restrict maximum inquiry length to 60 seconds */ 1347 if (ir.length > 60) { 1348 err = -EINVAL; 1349 goto done; 1350 } 1351 1352 hci_dev_lock(hdev); 1353 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1354 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1355 hci_inquiry_cache_flush(hdev); 1356 do_inquiry = 1; 1357 } 1358 hci_dev_unlock(hdev); 1359 1360 timeo = ir.length * msecs_to_jiffies(2000); 1361 1362 if (do_inquiry) { 1363 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1364 timeo, NULL); 1365 if (err < 0) 1366 goto done; 1367 1368 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1369 * cleared). If it is interrupted by a signal, return -EINTR. 1370 */ 1371 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1372 TASK_INTERRUPTIBLE)) { 1373 err = -EINTR; 1374 goto done; 1375 } 1376 } 1377 1378 /* for unlimited number of responses we will use buffer with 1379 * 255 entries 1380 */ 1381 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1382 1383 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1384 * copy it to the user space. 1385 */ 1386 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 1387 if (!buf) { 1388 err = -ENOMEM; 1389 goto done; 1390 } 1391 1392 hci_dev_lock(hdev); 1393 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1394 hci_dev_unlock(hdev); 1395 1396 BT_DBG("num_rsp %d", ir.num_rsp); 1397 1398 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1399 ptr += sizeof(ir); 1400 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1401 ir.num_rsp)) 1402 err = -EFAULT; 1403 } else 1404 err = -EFAULT; 1405 1406 kfree(buf); 1407 1408 done: 1409 hci_dev_put(hdev); 1410 return err; 1411 } 1412 1413 /** 1414 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 1415 * (BD_ADDR) for a HCI device from 1416 * a firmware node property. 1417 * @hdev: The HCI device 1418 * 1419 * Search the firmware node for 'local-bd-address'. 1420 * 1421 * All-zero BD addresses are rejected, because those could be properties 1422 * that exist in the firmware tables, but were not updated by the firmware. For 1423 * example, the DTS could define 'local-bd-address', with zero BD addresses. 1424 */ 1425 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 1426 { 1427 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 1428 bdaddr_t ba; 1429 int ret; 1430 1431 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 1432 (u8 *)&ba, sizeof(ba)); 1433 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 1434 return; 1435 1436 bacpy(&hdev->public_addr, &ba); 1437 } 1438 1439 static int hci_dev_do_open(struct hci_dev *hdev) 1440 { 1441 int ret = 0; 1442 1443 BT_DBG("%s %p", hdev->name, hdev); 1444 1445 hci_req_sync_lock(hdev); 1446 1447 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1448 ret = -ENODEV; 1449 goto done; 1450 } 1451 1452 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1453 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1454 /* Check for rfkill but allow the HCI setup stage to 1455 * proceed (which in itself doesn't cause any RF activity). 1456 */ 1457 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1458 ret = -ERFKILL; 1459 goto done; 1460 } 1461 1462 /* Check for valid public address or a configured static 1463 * random address, but let the HCI setup proceed to 1464 * be able to determine if there is a public address 1465 * or not. 1466 * 1467 * In case of user channel usage, it is not important 1468 * if a public address or static random address is 1469 * available. 1470 * 1471 * This check is only valid for BR/EDR controllers 1472 * since AMP controllers do not have an address. 1473 */ 1474 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1475 hdev->dev_type == HCI_PRIMARY && 1476 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1477 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1478 ret = -EADDRNOTAVAIL; 1479 goto done; 1480 } 1481 } 1482 1483 if (test_bit(HCI_UP, &hdev->flags)) { 1484 ret = -EALREADY; 1485 goto done; 1486 } 1487 1488 if (hdev->open(hdev)) { 1489 ret = -EIO; 1490 goto done; 1491 } 1492 1493 set_bit(HCI_RUNNING, &hdev->flags); 1494 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1495 1496 atomic_set(&hdev->cmd_cnt, 1); 1497 set_bit(HCI_INIT, &hdev->flags); 1498 1499 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1500 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 1501 bool invalid_bdaddr; 1502 1503 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1504 1505 if (hdev->setup) 1506 ret = hdev->setup(hdev); 1507 1508 /* The transport driver can set the quirk to mark the 1509 * BD_ADDR invalid before creating the HCI device or in 1510 * its setup callback. 1511 */ 1512 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 1513 &hdev->quirks); 1514 1515 if (ret) 1516 goto setup_failed; 1517 1518 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 1519 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 1520 hci_dev_get_bd_addr_from_property(hdev); 1521 1522 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1523 hdev->set_bdaddr) { 1524 ret = hdev->set_bdaddr(hdev, 1525 &hdev->public_addr); 1526 1527 /* If setting of the BD_ADDR from the device 1528 * property succeeds, then treat the address 1529 * as valid even if the invalid BD_ADDR 1530 * quirk indicates otherwise. 1531 */ 1532 if (!ret) 1533 invalid_bdaddr = false; 1534 } 1535 } 1536 1537 setup_failed: 1538 /* The transport driver can set these quirks before 1539 * creating the HCI device or in its setup callback. 1540 * 1541 * For the invalid BD_ADDR quirk it is possible that 1542 * it becomes a valid address if the bootloader does 1543 * provide it (see above). 1544 * 1545 * In case any of them is set, the controller has to 1546 * start up as unconfigured. 1547 */ 1548 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1549 invalid_bdaddr) 1550 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1551 1552 /* For an unconfigured controller it is required to 1553 * read at least the version information provided by 1554 * the Read Local Version Information command. 1555 * 1556 * If the set_bdaddr driver callback is provided, then 1557 * also the original Bluetooth public device address 1558 * will be read using the Read BD Address command. 1559 */ 1560 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1561 ret = __hci_unconf_init(hdev); 1562 } 1563 1564 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1565 /* If public address change is configured, ensure that 1566 * the address gets programmed. If the driver does not 1567 * support changing the public address, fail the power 1568 * on procedure. 1569 */ 1570 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1571 hdev->set_bdaddr) 1572 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1573 else 1574 ret = -EADDRNOTAVAIL; 1575 } 1576 1577 if (!ret) { 1578 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1579 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1580 ret = __hci_init(hdev); 1581 if (!ret && hdev->post_init) 1582 ret = hdev->post_init(hdev); 1583 } 1584 } 1585 1586 /* If the HCI Reset command is clearing all diagnostic settings, 1587 * then they need to be reprogrammed after the init procedure 1588 * completed. 1589 */ 1590 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1591 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1592 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1593 ret = hdev->set_diag(hdev, true); 1594 1595 msft_do_open(hdev); 1596 aosp_do_open(hdev); 1597 1598 clear_bit(HCI_INIT, &hdev->flags); 1599 1600 if (!ret) { 1601 hci_dev_hold(hdev); 1602 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1603 hci_adv_instances_set_rpa_expired(hdev, true); 1604 set_bit(HCI_UP, &hdev->flags); 1605 hci_sock_dev_event(hdev, HCI_DEV_UP); 1606 hci_leds_update_powered(hdev, true); 1607 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1608 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1609 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1610 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1611 hci_dev_test_flag(hdev, HCI_MGMT) && 1612 hdev->dev_type == HCI_PRIMARY) { 1613 ret = __hci_req_hci_power_on(hdev); 1614 mgmt_power_on(hdev, ret); 1615 } 1616 } else { 1617 /* Init failed, cleanup */ 1618 flush_work(&hdev->tx_work); 1619 1620 /* Since hci_rx_work() is possible to awake new cmd_work 1621 * it should be flushed first to avoid unexpected call of 1622 * hci_cmd_work() 1623 */ 1624 flush_work(&hdev->rx_work); 1625 flush_work(&hdev->cmd_work); 1626 1627 skb_queue_purge(&hdev->cmd_q); 1628 skb_queue_purge(&hdev->rx_q); 1629 1630 if (hdev->flush) 1631 hdev->flush(hdev); 1632 1633 if (hdev->sent_cmd) { 1634 kfree_skb(hdev->sent_cmd); 1635 hdev->sent_cmd = NULL; 1636 } 1637 1638 clear_bit(HCI_RUNNING, &hdev->flags); 1639 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1640 1641 hdev->close(hdev); 1642 hdev->flags &= BIT(HCI_RAW); 1643 } 1644 1645 done: 1646 hci_req_sync_unlock(hdev); 1647 return ret; 1648 } 1649 1650 /* ---- HCI ioctl helpers ---- */ 1651 1652 int hci_dev_open(__u16 dev) 1653 { 1654 struct hci_dev *hdev; 1655 int err; 1656 1657 hdev = hci_dev_get(dev); 1658 if (!hdev) 1659 return -ENODEV; 1660 1661 /* Devices that are marked as unconfigured can only be powered 1662 * up as user channel. Trying to bring them up as normal devices 1663 * will result into a failure. Only user channel operation is 1664 * possible. 1665 * 1666 * When this function is called for a user channel, the flag 1667 * HCI_USER_CHANNEL will be set first before attempting to 1668 * open the device. 1669 */ 1670 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1671 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1672 err = -EOPNOTSUPP; 1673 goto done; 1674 } 1675 1676 /* We need to ensure that no other power on/off work is pending 1677 * before proceeding to call hci_dev_do_open. This is 1678 * particularly important if the setup procedure has not yet 1679 * completed. 1680 */ 1681 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1682 cancel_delayed_work(&hdev->power_off); 1683 1684 /* After this call it is guaranteed that the setup procedure 1685 * has finished. This means that error conditions like RFKILL 1686 * or no valid public or static random address apply. 1687 */ 1688 flush_workqueue(hdev->req_workqueue); 1689 1690 /* For controllers not using the management interface and that 1691 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1692 * so that pairing works for them. Once the management interface 1693 * is in use this bit will be cleared again and userspace has 1694 * to explicitly enable it. 1695 */ 1696 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1697 !hci_dev_test_flag(hdev, HCI_MGMT)) 1698 hci_dev_set_flag(hdev, HCI_BONDABLE); 1699 1700 err = hci_dev_do_open(hdev); 1701 1702 done: 1703 hci_dev_put(hdev); 1704 return err; 1705 } 1706 1707 /* This function requires the caller holds hdev->lock */ 1708 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1709 { 1710 struct hci_conn_params *p; 1711 1712 list_for_each_entry(p, &hdev->le_conn_params, list) { 1713 if (p->conn) { 1714 hci_conn_drop(p->conn); 1715 hci_conn_put(p->conn); 1716 p->conn = NULL; 1717 } 1718 list_del_init(&p->action); 1719 } 1720 1721 BT_DBG("All LE pending actions cleared"); 1722 } 1723 1724 int hci_dev_do_close(struct hci_dev *hdev) 1725 { 1726 bool auto_off; 1727 1728 BT_DBG("%s %p", hdev->name, hdev); 1729 1730 cancel_delayed_work(&hdev->power_off); 1731 cancel_delayed_work(&hdev->ncmd_timer); 1732 1733 hci_request_cancel_all(hdev); 1734 hci_req_sync_lock(hdev); 1735 1736 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1737 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1738 test_bit(HCI_UP, &hdev->flags)) { 1739 /* Execute vendor specific shutdown routine */ 1740 if (hdev->shutdown) 1741 hdev->shutdown(hdev); 1742 } 1743 1744 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1745 cancel_delayed_work_sync(&hdev->cmd_timer); 1746 hci_req_sync_unlock(hdev); 1747 return 0; 1748 } 1749 1750 hci_leds_update_powered(hdev, false); 1751 1752 /* Flush RX and TX works */ 1753 flush_work(&hdev->tx_work); 1754 flush_work(&hdev->rx_work); 1755 1756 if (hdev->discov_timeout > 0) { 1757 hdev->discov_timeout = 0; 1758 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1759 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1760 } 1761 1762 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1763 cancel_delayed_work(&hdev->service_cache); 1764 1765 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 1766 struct adv_info *adv_instance; 1767 1768 cancel_delayed_work_sync(&hdev->rpa_expired); 1769 1770 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 1771 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1772 } 1773 1774 /* Avoid potential lockdep warnings from the *_flush() calls by 1775 * ensuring the workqueue is empty up front. 1776 */ 1777 drain_workqueue(hdev->workqueue); 1778 1779 hci_dev_lock(hdev); 1780 1781 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1782 1783 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1784 1785 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1786 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1787 hci_dev_test_flag(hdev, HCI_MGMT)) 1788 __mgmt_power_off(hdev); 1789 1790 hci_inquiry_cache_flush(hdev); 1791 hci_pend_le_actions_clear(hdev); 1792 hci_conn_hash_flush(hdev); 1793 hci_dev_unlock(hdev); 1794 1795 smp_unregister(hdev); 1796 1797 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1798 1799 aosp_do_close(hdev); 1800 msft_do_close(hdev); 1801 1802 if (hdev->flush) 1803 hdev->flush(hdev); 1804 1805 /* Reset device */ 1806 skb_queue_purge(&hdev->cmd_q); 1807 atomic_set(&hdev->cmd_cnt, 1); 1808 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1809 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1810 set_bit(HCI_INIT, &hdev->flags); 1811 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1812 clear_bit(HCI_INIT, &hdev->flags); 1813 } 1814 1815 /* flush cmd work */ 1816 flush_work(&hdev->cmd_work); 1817 1818 /* Drop queues */ 1819 skb_queue_purge(&hdev->rx_q); 1820 skb_queue_purge(&hdev->cmd_q); 1821 skb_queue_purge(&hdev->raw_q); 1822 1823 /* Drop last sent command */ 1824 if (hdev->sent_cmd) { 1825 cancel_delayed_work_sync(&hdev->cmd_timer); 1826 kfree_skb(hdev->sent_cmd); 1827 hdev->sent_cmd = NULL; 1828 } 1829 1830 clear_bit(HCI_RUNNING, &hdev->flags); 1831 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1832 1833 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks)) 1834 wake_up(&hdev->suspend_wait_q); 1835 1836 /* After this point our queues are empty 1837 * and no tasks are scheduled. */ 1838 hdev->close(hdev); 1839 1840 /* Clear flags */ 1841 hdev->flags &= BIT(HCI_RAW); 1842 hci_dev_clear_volatile_flags(hdev); 1843 1844 /* Controller radio is available but is currently powered down */ 1845 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1846 1847 memset(hdev->eir, 0, sizeof(hdev->eir)); 1848 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1849 bacpy(&hdev->random_addr, BDADDR_ANY); 1850 1851 hci_req_sync_unlock(hdev); 1852 1853 hci_dev_put(hdev); 1854 return 0; 1855 } 1856 1857 int hci_dev_close(__u16 dev) 1858 { 1859 struct hci_dev *hdev; 1860 int err; 1861 1862 hdev = hci_dev_get(dev); 1863 if (!hdev) 1864 return -ENODEV; 1865 1866 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1867 err = -EBUSY; 1868 goto done; 1869 } 1870 1871 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1872 cancel_delayed_work(&hdev->power_off); 1873 1874 err = hci_dev_do_close(hdev); 1875 1876 done: 1877 hci_dev_put(hdev); 1878 return err; 1879 } 1880 1881 static int hci_dev_do_reset(struct hci_dev *hdev) 1882 { 1883 int ret; 1884 1885 BT_DBG("%s %p", hdev->name, hdev); 1886 1887 hci_req_sync_lock(hdev); 1888 1889 /* Drop queues */ 1890 skb_queue_purge(&hdev->rx_q); 1891 skb_queue_purge(&hdev->cmd_q); 1892 1893 /* Avoid potential lockdep warnings from the *_flush() calls by 1894 * ensuring the workqueue is empty up front. 1895 */ 1896 drain_workqueue(hdev->workqueue); 1897 1898 hci_dev_lock(hdev); 1899 hci_inquiry_cache_flush(hdev); 1900 hci_conn_hash_flush(hdev); 1901 hci_dev_unlock(hdev); 1902 1903 if (hdev->flush) 1904 hdev->flush(hdev); 1905 1906 atomic_set(&hdev->cmd_cnt, 1); 1907 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1908 1909 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1910 1911 hci_req_sync_unlock(hdev); 1912 return ret; 1913 } 1914 1915 int hci_dev_reset(__u16 dev) 1916 { 1917 struct hci_dev *hdev; 1918 int err; 1919 1920 hdev = hci_dev_get(dev); 1921 if (!hdev) 1922 return -ENODEV; 1923 1924 if (!test_bit(HCI_UP, &hdev->flags)) { 1925 err = -ENETDOWN; 1926 goto done; 1927 } 1928 1929 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1930 err = -EBUSY; 1931 goto done; 1932 } 1933 1934 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1935 err = -EOPNOTSUPP; 1936 goto done; 1937 } 1938 1939 err = hci_dev_do_reset(hdev); 1940 1941 done: 1942 hci_dev_put(hdev); 1943 return err; 1944 } 1945 1946 int hci_dev_reset_stat(__u16 dev) 1947 { 1948 struct hci_dev *hdev; 1949 int ret = 0; 1950 1951 hdev = hci_dev_get(dev); 1952 if (!hdev) 1953 return -ENODEV; 1954 1955 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1956 ret = -EBUSY; 1957 goto done; 1958 } 1959 1960 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1961 ret = -EOPNOTSUPP; 1962 goto done; 1963 } 1964 1965 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1966 1967 done: 1968 hci_dev_put(hdev); 1969 return ret; 1970 } 1971 1972 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1973 { 1974 bool conn_changed, discov_changed; 1975 1976 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1977 1978 if ((scan & SCAN_PAGE)) 1979 conn_changed = !hci_dev_test_and_set_flag(hdev, 1980 HCI_CONNECTABLE); 1981 else 1982 conn_changed = hci_dev_test_and_clear_flag(hdev, 1983 HCI_CONNECTABLE); 1984 1985 if ((scan & SCAN_INQUIRY)) { 1986 discov_changed = !hci_dev_test_and_set_flag(hdev, 1987 HCI_DISCOVERABLE); 1988 } else { 1989 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1990 discov_changed = hci_dev_test_and_clear_flag(hdev, 1991 HCI_DISCOVERABLE); 1992 } 1993 1994 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1995 return; 1996 1997 if (conn_changed || discov_changed) { 1998 /* In case this was disabled through mgmt */ 1999 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2000 2001 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2002 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 2003 2004 mgmt_new_settings(hdev); 2005 } 2006 } 2007 2008 int hci_dev_cmd(unsigned int cmd, void __user *arg) 2009 { 2010 struct hci_dev *hdev; 2011 struct hci_dev_req dr; 2012 int err = 0; 2013 2014 if (copy_from_user(&dr, arg, sizeof(dr))) 2015 return -EFAULT; 2016 2017 hdev = hci_dev_get(dr.dev_id); 2018 if (!hdev) 2019 return -ENODEV; 2020 2021 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 2022 err = -EBUSY; 2023 goto done; 2024 } 2025 2026 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 2027 err = -EOPNOTSUPP; 2028 goto done; 2029 } 2030 2031 if (hdev->dev_type != HCI_PRIMARY) { 2032 err = -EOPNOTSUPP; 2033 goto done; 2034 } 2035 2036 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2037 err = -EOPNOTSUPP; 2038 goto done; 2039 } 2040 2041 switch (cmd) { 2042 case HCISETAUTH: 2043 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2044 HCI_INIT_TIMEOUT, NULL); 2045 break; 2046 2047 case HCISETENCRYPT: 2048 if (!lmp_encrypt_capable(hdev)) { 2049 err = -EOPNOTSUPP; 2050 break; 2051 } 2052 2053 if (!test_bit(HCI_AUTH, &hdev->flags)) { 2054 /* Auth must be enabled first */ 2055 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2056 HCI_INIT_TIMEOUT, NULL); 2057 if (err) 2058 break; 2059 } 2060 2061 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 2062 HCI_INIT_TIMEOUT, NULL); 2063 break; 2064 2065 case HCISETSCAN: 2066 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 2067 HCI_INIT_TIMEOUT, NULL); 2068 2069 /* Ensure that the connectable and discoverable states 2070 * get correctly modified as this was a non-mgmt change. 2071 */ 2072 if (!err) 2073 hci_update_scan_state(hdev, dr.dev_opt); 2074 break; 2075 2076 case HCISETLINKPOL: 2077 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 2078 HCI_INIT_TIMEOUT, NULL); 2079 break; 2080 2081 case HCISETLINKMODE: 2082 hdev->link_mode = ((__u16) dr.dev_opt) & 2083 (HCI_LM_MASTER | HCI_LM_ACCEPT); 2084 break; 2085 2086 case HCISETPTYPE: 2087 if (hdev->pkt_type == (__u16) dr.dev_opt) 2088 break; 2089 2090 hdev->pkt_type = (__u16) dr.dev_opt; 2091 mgmt_phy_configuration_changed(hdev, NULL); 2092 break; 2093 2094 case HCISETACLMTU: 2095 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2096 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2097 break; 2098 2099 case HCISETSCOMTU: 2100 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2101 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2102 break; 2103 2104 default: 2105 err = -EINVAL; 2106 break; 2107 } 2108 2109 done: 2110 hci_dev_put(hdev); 2111 return err; 2112 } 2113 2114 int hci_get_dev_list(void __user *arg) 2115 { 2116 struct hci_dev *hdev; 2117 struct hci_dev_list_req *dl; 2118 struct hci_dev_req *dr; 2119 int n = 0, size, err; 2120 __u16 dev_num; 2121 2122 if (get_user(dev_num, (__u16 __user *) arg)) 2123 return -EFAULT; 2124 2125 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2126 return -EINVAL; 2127 2128 size = sizeof(*dl) + dev_num * sizeof(*dr); 2129 2130 dl = kzalloc(size, GFP_KERNEL); 2131 if (!dl) 2132 return -ENOMEM; 2133 2134 dr = dl->dev_req; 2135 2136 read_lock(&hci_dev_list_lock); 2137 list_for_each_entry(hdev, &hci_dev_list, list) { 2138 unsigned long flags = hdev->flags; 2139 2140 /* When the auto-off is configured it means the transport 2141 * is running, but in that case still indicate that the 2142 * device is actually down. 2143 */ 2144 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2145 flags &= ~BIT(HCI_UP); 2146 2147 (dr + n)->dev_id = hdev->id; 2148 (dr + n)->dev_opt = flags; 2149 2150 if (++n >= dev_num) 2151 break; 2152 } 2153 read_unlock(&hci_dev_list_lock); 2154 2155 dl->dev_num = n; 2156 size = sizeof(*dl) + n * sizeof(*dr); 2157 2158 err = copy_to_user(arg, dl, size); 2159 kfree(dl); 2160 2161 return err ? -EFAULT : 0; 2162 } 2163 2164 int hci_get_dev_info(void __user *arg) 2165 { 2166 struct hci_dev *hdev; 2167 struct hci_dev_info di; 2168 unsigned long flags; 2169 int err = 0; 2170 2171 if (copy_from_user(&di, arg, sizeof(di))) 2172 return -EFAULT; 2173 2174 hdev = hci_dev_get(di.dev_id); 2175 if (!hdev) 2176 return -ENODEV; 2177 2178 /* When the auto-off is configured it means the transport 2179 * is running, but in that case still indicate that the 2180 * device is actually down. 2181 */ 2182 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2183 flags = hdev->flags & ~BIT(HCI_UP); 2184 else 2185 flags = hdev->flags; 2186 2187 strcpy(di.name, hdev->name); 2188 di.bdaddr = hdev->bdaddr; 2189 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2190 di.flags = flags; 2191 di.pkt_type = hdev->pkt_type; 2192 if (lmp_bredr_capable(hdev)) { 2193 di.acl_mtu = hdev->acl_mtu; 2194 di.acl_pkts = hdev->acl_pkts; 2195 di.sco_mtu = hdev->sco_mtu; 2196 di.sco_pkts = hdev->sco_pkts; 2197 } else { 2198 di.acl_mtu = hdev->le_mtu; 2199 di.acl_pkts = hdev->le_pkts; 2200 di.sco_mtu = 0; 2201 di.sco_pkts = 0; 2202 } 2203 di.link_policy = hdev->link_policy; 2204 di.link_mode = hdev->link_mode; 2205 2206 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2207 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2208 2209 if (copy_to_user(arg, &di, sizeof(di))) 2210 err = -EFAULT; 2211 2212 hci_dev_put(hdev); 2213 2214 return err; 2215 } 2216 2217 /* ---- Interface to HCI drivers ---- */ 2218 2219 static int hci_rfkill_set_block(void *data, bool blocked) 2220 { 2221 struct hci_dev *hdev = data; 2222 2223 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2224 2225 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2226 return -EBUSY; 2227 2228 if (blocked) { 2229 hci_dev_set_flag(hdev, HCI_RFKILLED); 2230 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2231 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2232 hci_dev_do_close(hdev); 2233 } else { 2234 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2235 } 2236 2237 return 0; 2238 } 2239 2240 static const struct rfkill_ops hci_rfkill_ops = { 2241 .set_block = hci_rfkill_set_block, 2242 }; 2243 2244 static void hci_power_on(struct work_struct *work) 2245 { 2246 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2247 int err; 2248 2249 BT_DBG("%s", hdev->name); 2250 2251 if (test_bit(HCI_UP, &hdev->flags) && 2252 hci_dev_test_flag(hdev, HCI_MGMT) && 2253 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2254 cancel_delayed_work(&hdev->power_off); 2255 hci_req_sync_lock(hdev); 2256 err = __hci_req_hci_power_on(hdev); 2257 hci_req_sync_unlock(hdev); 2258 mgmt_power_on(hdev, err); 2259 return; 2260 } 2261 2262 err = hci_dev_do_open(hdev); 2263 if (err < 0) { 2264 hci_dev_lock(hdev); 2265 mgmt_set_powered_failed(hdev, err); 2266 hci_dev_unlock(hdev); 2267 return; 2268 } 2269 2270 /* During the HCI setup phase, a few error conditions are 2271 * ignored and they need to be checked now. If they are still 2272 * valid, it is important to turn the device back off. 2273 */ 2274 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2275 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2276 (hdev->dev_type == HCI_PRIMARY && 2277 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2278 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2279 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2280 hci_dev_do_close(hdev); 2281 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2282 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2283 HCI_AUTO_OFF_TIMEOUT); 2284 } 2285 2286 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2287 /* For unconfigured devices, set the HCI_RAW flag 2288 * so that userspace can easily identify them. 2289 */ 2290 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2291 set_bit(HCI_RAW, &hdev->flags); 2292 2293 /* For fully configured devices, this will send 2294 * the Index Added event. For unconfigured devices, 2295 * it will send Unconfigued Index Added event. 2296 * 2297 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2298 * and no event will be send. 2299 */ 2300 mgmt_index_added(hdev); 2301 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2302 /* When the controller is now configured, then it 2303 * is important to clear the HCI_RAW flag. 2304 */ 2305 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2306 clear_bit(HCI_RAW, &hdev->flags); 2307 2308 /* Powering on the controller with HCI_CONFIG set only 2309 * happens with the transition from unconfigured to 2310 * configured. This will send the Index Added event. 2311 */ 2312 mgmt_index_added(hdev); 2313 } 2314 } 2315 2316 static void hci_power_off(struct work_struct *work) 2317 { 2318 struct hci_dev *hdev = container_of(work, struct hci_dev, 2319 power_off.work); 2320 2321 BT_DBG("%s", hdev->name); 2322 2323 hci_dev_do_close(hdev); 2324 } 2325 2326 static void hci_error_reset(struct work_struct *work) 2327 { 2328 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2329 2330 BT_DBG("%s", hdev->name); 2331 2332 if (hdev->hw_error) 2333 hdev->hw_error(hdev, hdev->hw_error_code); 2334 else 2335 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2336 2337 if (hci_dev_do_close(hdev)) 2338 return; 2339 2340 hci_dev_do_open(hdev); 2341 } 2342 2343 void hci_uuids_clear(struct hci_dev *hdev) 2344 { 2345 struct bt_uuid *uuid, *tmp; 2346 2347 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2348 list_del(&uuid->list); 2349 kfree(uuid); 2350 } 2351 } 2352 2353 void hci_link_keys_clear(struct hci_dev *hdev) 2354 { 2355 struct link_key *key; 2356 2357 list_for_each_entry(key, &hdev->link_keys, list) { 2358 list_del_rcu(&key->list); 2359 kfree_rcu(key, rcu); 2360 } 2361 } 2362 2363 void hci_smp_ltks_clear(struct hci_dev *hdev) 2364 { 2365 struct smp_ltk *k; 2366 2367 list_for_each_entry(k, &hdev->long_term_keys, list) { 2368 list_del_rcu(&k->list); 2369 kfree_rcu(k, rcu); 2370 } 2371 } 2372 2373 void hci_smp_irks_clear(struct hci_dev *hdev) 2374 { 2375 struct smp_irk *k; 2376 2377 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 2378 list_del_rcu(&k->list); 2379 kfree_rcu(k, rcu); 2380 } 2381 } 2382 2383 void hci_blocked_keys_clear(struct hci_dev *hdev) 2384 { 2385 struct blocked_key *b; 2386 2387 list_for_each_entry(b, &hdev->blocked_keys, list) { 2388 list_del_rcu(&b->list); 2389 kfree_rcu(b, rcu); 2390 } 2391 } 2392 2393 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 2394 { 2395 bool blocked = false; 2396 struct blocked_key *b; 2397 2398 rcu_read_lock(); 2399 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 2400 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 2401 blocked = true; 2402 break; 2403 } 2404 } 2405 2406 rcu_read_unlock(); 2407 return blocked; 2408 } 2409 2410 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2411 { 2412 struct link_key *k; 2413 2414 rcu_read_lock(); 2415 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2416 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2417 rcu_read_unlock(); 2418 2419 if (hci_is_blocked_key(hdev, 2420 HCI_BLOCKED_KEY_TYPE_LINKKEY, 2421 k->val)) { 2422 bt_dev_warn_ratelimited(hdev, 2423 "Link key blocked for %pMR", 2424 &k->bdaddr); 2425 return NULL; 2426 } 2427 2428 return k; 2429 } 2430 } 2431 rcu_read_unlock(); 2432 2433 return NULL; 2434 } 2435 2436 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2437 u8 key_type, u8 old_key_type) 2438 { 2439 /* Legacy key */ 2440 if (key_type < 0x03) 2441 return true; 2442 2443 /* Debug keys are insecure so don't store them persistently */ 2444 if (key_type == HCI_LK_DEBUG_COMBINATION) 2445 return false; 2446 2447 /* Changed combination key and there's no previous one */ 2448 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2449 return false; 2450 2451 /* Security mode 3 case */ 2452 if (!conn) 2453 return true; 2454 2455 /* BR/EDR key derived using SC from an LE link */ 2456 if (conn->type == LE_LINK) 2457 return true; 2458 2459 /* Neither local nor remote side had no-bonding as requirement */ 2460 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2461 return true; 2462 2463 /* Local side had dedicated bonding as requirement */ 2464 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2465 return true; 2466 2467 /* Remote side had dedicated bonding as requirement */ 2468 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2469 return true; 2470 2471 /* If none of the above criteria match, then don't store the key 2472 * persistently */ 2473 return false; 2474 } 2475 2476 static u8 ltk_role(u8 type) 2477 { 2478 if (type == SMP_LTK) 2479 return HCI_ROLE_MASTER; 2480 2481 return HCI_ROLE_SLAVE; 2482 } 2483 2484 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2485 u8 addr_type, u8 role) 2486 { 2487 struct smp_ltk *k; 2488 2489 rcu_read_lock(); 2490 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2491 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2492 continue; 2493 2494 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2495 rcu_read_unlock(); 2496 2497 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 2498 k->val)) { 2499 bt_dev_warn_ratelimited(hdev, 2500 "LTK blocked for %pMR", 2501 &k->bdaddr); 2502 return NULL; 2503 } 2504 2505 return k; 2506 } 2507 } 2508 rcu_read_unlock(); 2509 2510 return NULL; 2511 } 2512 2513 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2514 { 2515 struct smp_irk *irk_to_return = NULL; 2516 struct smp_irk *irk; 2517 2518 rcu_read_lock(); 2519 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2520 if (!bacmp(&irk->rpa, rpa)) { 2521 irk_to_return = irk; 2522 goto done; 2523 } 2524 } 2525 2526 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2527 if (smp_irk_matches(hdev, irk->val, rpa)) { 2528 bacpy(&irk->rpa, rpa); 2529 irk_to_return = irk; 2530 goto done; 2531 } 2532 } 2533 2534 done: 2535 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2536 irk_to_return->val)) { 2537 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2538 &irk_to_return->bdaddr); 2539 irk_to_return = NULL; 2540 } 2541 2542 rcu_read_unlock(); 2543 2544 return irk_to_return; 2545 } 2546 2547 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2548 u8 addr_type) 2549 { 2550 struct smp_irk *irk_to_return = NULL; 2551 struct smp_irk *irk; 2552 2553 /* Identity Address must be public or static random */ 2554 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2555 return NULL; 2556 2557 rcu_read_lock(); 2558 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2559 if (addr_type == irk->addr_type && 2560 bacmp(bdaddr, &irk->bdaddr) == 0) { 2561 irk_to_return = irk; 2562 goto done; 2563 } 2564 } 2565 2566 done: 2567 2568 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2569 irk_to_return->val)) { 2570 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2571 &irk_to_return->bdaddr); 2572 irk_to_return = NULL; 2573 } 2574 2575 rcu_read_unlock(); 2576 2577 return irk_to_return; 2578 } 2579 2580 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2581 bdaddr_t *bdaddr, u8 *val, u8 type, 2582 u8 pin_len, bool *persistent) 2583 { 2584 struct link_key *key, *old_key; 2585 u8 old_key_type; 2586 2587 old_key = hci_find_link_key(hdev, bdaddr); 2588 if (old_key) { 2589 old_key_type = old_key->type; 2590 key = old_key; 2591 } else { 2592 old_key_type = conn ? conn->key_type : 0xff; 2593 key = kzalloc(sizeof(*key), GFP_KERNEL); 2594 if (!key) 2595 return NULL; 2596 list_add_rcu(&key->list, &hdev->link_keys); 2597 } 2598 2599 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2600 2601 /* Some buggy controller combinations generate a changed 2602 * combination key for legacy pairing even when there's no 2603 * previous key */ 2604 if (type == HCI_LK_CHANGED_COMBINATION && 2605 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2606 type = HCI_LK_COMBINATION; 2607 if (conn) 2608 conn->key_type = type; 2609 } 2610 2611 bacpy(&key->bdaddr, bdaddr); 2612 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2613 key->pin_len = pin_len; 2614 2615 if (type == HCI_LK_CHANGED_COMBINATION) 2616 key->type = old_key_type; 2617 else 2618 key->type = type; 2619 2620 if (persistent) 2621 *persistent = hci_persistent_key(hdev, conn, type, 2622 old_key_type); 2623 2624 return key; 2625 } 2626 2627 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2628 u8 addr_type, u8 type, u8 authenticated, 2629 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2630 { 2631 struct smp_ltk *key, *old_key; 2632 u8 role = ltk_role(type); 2633 2634 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2635 if (old_key) 2636 key = old_key; 2637 else { 2638 key = kzalloc(sizeof(*key), GFP_KERNEL); 2639 if (!key) 2640 return NULL; 2641 list_add_rcu(&key->list, &hdev->long_term_keys); 2642 } 2643 2644 bacpy(&key->bdaddr, bdaddr); 2645 key->bdaddr_type = addr_type; 2646 memcpy(key->val, tk, sizeof(key->val)); 2647 key->authenticated = authenticated; 2648 key->ediv = ediv; 2649 key->rand = rand; 2650 key->enc_size = enc_size; 2651 key->type = type; 2652 2653 return key; 2654 } 2655 2656 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2657 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2658 { 2659 struct smp_irk *irk; 2660 2661 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2662 if (!irk) { 2663 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2664 if (!irk) 2665 return NULL; 2666 2667 bacpy(&irk->bdaddr, bdaddr); 2668 irk->addr_type = addr_type; 2669 2670 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2671 } 2672 2673 memcpy(irk->val, val, 16); 2674 bacpy(&irk->rpa, rpa); 2675 2676 return irk; 2677 } 2678 2679 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2680 { 2681 struct link_key *key; 2682 2683 key = hci_find_link_key(hdev, bdaddr); 2684 if (!key) 2685 return -ENOENT; 2686 2687 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2688 2689 list_del_rcu(&key->list); 2690 kfree_rcu(key, rcu); 2691 2692 return 0; 2693 } 2694 2695 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2696 { 2697 struct smp_ltk *k; 2698 int removed = 0; 2699 2700 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2701 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2702 continue; 2703 2704 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2705 2706 list_del_rcu(&k->list); 2707 kfree_rcu(k, rcu); 2708 removed++; 2709 } 2710 2711 return removed ? 0 : -ENOENT; 2712 } 2713 2714 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2715 { 2716 struct smp_irk *k; 2717 2718 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2719 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2720 continue; 2721 2722 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2723 2724 list_del_rcu(&k->list); 2725 kfree_rcu(k, rcu); 2726 } 2727 } 2728 2729 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2730 { 2731 struct smp_ltk *k; 2732 struct smp_irk *irk; 2733 u8 addr_type; 2734 2735 if (type == BDADDR_BREDR) { 2736 if (hci_find_link_key(hdev, bdaddr)) 2737 return true; 2738 return false; 2739 } 2740 2741 /* Convert to HCI addr type which struct smp_ltk uses */ 2742 if (type == BDADDR_LE_PUBLIC) 2743 addr_type = ADDR_LE_DEV_PUBLIC; 2744 else 2745 addr_type = ADDR_LE_DEV_RANDOM; 2746 2747 irk = hci_get_irk(hdev, bdaddr, addr_type); 2748 if (irk) { 2749 bdaddr = &irk->bdaddr; 2750 addr_type = irk->addr_type; 2751 } 2752 2753 rcu_read_lock(); 2754 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2755 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2756 rcu_read_unlock(); 2757 return true; 2758 } 2759 } 2760 rcu_read_unlock(); 2761 2762 return false; 2763 } 2764 2765 /* HCI command timer function */ 2766 static void hci_cmd_timeout(struct work_struct *work) 2767 { 2768 struct hci_dev *hdev = container_of(work, struct hci_dev, 2769 cmd_timer.work); 2770 2771 if (hdev->sent_cmd) { 2772 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2773 u16 opcode = __le16_to_cpu(sent->opcode); 2774 2775 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2776 } else { 2777 bt_dev_err(hdev, "command tx timeout"); 2778 } 2779 2780 if (hdev->cmd_timeout) 2781 hdev->cmd_timeout(hdev); 2782 2783 atomic_set(&hdev->cmd_cnt, 1); 2784 queue_work(hdev->workqueue, &hdev->cmd_work); 2785 } 2786 2787 /* HCI ncmd timer function */ 2788 static void hci_ncmd_timeout(struct work_struct *work) 2789 { 2790 struct hci_dev *hdev = container_of(work, struct hci_dev, 2791 ncmd_timer.work); 2792 2793 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 2794 2795 /* During HCI_INIT phase no events can be injected if the ncmd timer 2796 * triggers since the procedure has its own timeout handling. 2797 */ 2798 if (test_bit(HCI_INIT, &hdev->flags)) 2799 return; 2800 2801 /* This is an irrecoverable state, inject hardware error event */ 2802 hci_reset_dev(hdev); 2803 } 2804 2805 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2806 bdaddr_t *bdaddr, u8 bdaddr_type) 2807 { 2808 struct oob_data *data; 2809 2810 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2811 if (bacmp(bdaddr, &data->bdaddr) != 0) 2812 continue; 2813 if (data->bdaddr_type != bdaddr_type) 2814 continue; 2815 return data; 2816 } 2817 2818 return NULL; 2819 } 2820 2821 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2822 u8 bdaddr_type) 2823 { 2824 struct oob_data *data; 2825 2826 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2827 if (!data) 2828 return -ENOENT; 2829 2830 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2831 2832 list_del(&data->list); 2833 kfree(data); 2834 2835 return 0; 2836 } 2837 2838 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2839 { 2840 struct oob_data *data, *n; 2841 2842 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2843 list_del(&data->list); 2844 kfree(data); 2845 } 2846 } 2847 2848 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2849 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2850 u8 *hash256, u8 *rand256) 2851 { 2852 struct oob_data *data; 2853 2854 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2855 if (!data) { 2856 data = kmalloc(sizeof(*data), GFP_KERNEL); 2857 if (!data) 2858 return -ENOMEM; 2859 2860 bacpy(&data->bdaddr, bdaddr); 2861 data->bdaddr_type = bdaddr_type; 2862 list_add(&data->list, &hdev->remote_oob_data); 2863 } 2864 2865 if (hash192 && rand192) { 2866 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2867 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2868 if (hash256 && rand256) 2869 data->present = 0x03; 2870 } else { 2871 memset(data->hash192, 0, sizeof(data->hash192)); 2872 memset(data->rand192, 0, sizeof(data->rand192)); 2873 if (hash256 && rand256) 2874 data->present = 0x02; 2875 else 2876 data->present = 0x00; 2877 } 2878 2879 if (hash256 && rand256) { 2880 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2881 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2882 } else { 2883 memset(data->hash256, 0, sizeof(data->hash256)); 2884 memset(data->rand256, 0, sizeof(data->rand256)); 2885 if (hash192 && rand192) 2886 data->present = 0x01; 2887 } 2888 2889 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2890 2891 return 0; 2892 } 2893 2894 /* This function requires the caller holds hdev->lock */ 2895 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2896 { 2897 struct adv_info *adv_instance; 2898 2899 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2900 if (adv_instance->instance == instance) 2901 return adv_instance; 2902 } 2903 2904 return NULL; 2905 } 2906 2907 /* This function requires the caller holds hdev->lock */ 2908 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2909 { 2910 struct adv_info *cur_instance; 2911 2912 cur_instance = hci_find_adv_instance(hdev, instance); 2913 if (!cur_instance) 2914 return NULL; 2915 2916 if (cur_instance == list_last_entry(&hdev->adv_instances, 2917 struct adv_info, list)) 2918 return list_first_entry(&hdev->adv_instances, 2919 struct adv_info, list); 2920 else 2921 return list_next_entry(cur_instance, list); 2922 } 2923 2924 /* This function requires the caller holds hdev->lock */ 2925 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2926 { 2927 struct adv_info *adv_instance; 2928 2929 adv_instance = hci_find_adv_instance(hdev, instance); 2930 if (!adv_instance) 2931 return -ENOENT; 2932 2933 BT_DBG("%s removing %dMR", hdev->name, instance); 2934 2935 if (hdev->cur_adv_instance == instance) { 2936 if (hdev->adv_instance_timeout) { 2937 cancel_delayed_work(&hdev->adv_instance_expire); 2938 hdev->adv_instance_timeout = 0; 2939 } 2940 hdev->cur_adv_instance = 0x00; 2941 } 2942 2943 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2944 2945 list_del(&adv_instance->list); 2946 kfree(adv_instance); 2947 2948 hdev->adv_instance_cnt--; 2949 2950 return 0; 2951 } 2952 2953 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 2954 { 2955 struct adv_info *adv_instance, *n; 2956 2957 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 2958 adv_instance->rpa_expired = rpa_expired; 2959 } 2960 2961 /* This function requires the caller holds hdev->lock */ 2962 void hci_adv_instances_clear(struct hci_dev *hdev) 2963 { 2964 struct adv_info *adv_instance, *n; 2965 2966 if (hdev->adv_instance_timeout) { 2967 cancel_delayed_work(&hdev->adv_instance_expire); 2968 hdev->adv_instance_timeout = 0; 2969 } 2970 2971 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2972 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2973 list_del(&adv_instance->list); 2974 kfree(adv_instance); 2975 } 2976 2977 hdev->adv_instance_cnt = 0; 2978 hdev->cur_adv_instance = 0x00; 2979 } 2980 2981 static void adv_instance_rpa_expired(struct work_struct *work) 2982 { 2983 struct adv_info *adv_instance = container_of(work, struct adv_info, 2984 rpa_expired_cb.work); 2985 2986 BT_DBG(""); 2987 2988 adv_instance->rpa_expired = true; 2989 } 2990 2991 /* This function requires the caller holds hdev->lock */ 2992 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2993 u16 adv_data_len, u8 *adv_data, 2994 u16 scan_rsp_len, u8 *scan_rsp_data, 2995 u16 timeout, u16 duration, s8 tx_power, 2996 u32 min_interval, u32 max_interval) 2997 { 2998 struct adv_info *adv_instance; 2999 3000 adv_instance = hci_find_adv_instance(hdev, instance); 3001 if (adv_instance) { 3002 memset(adv_instance->adv_data, 0, 3003 sizeof(adv_instance->adv_data)); 3004 memset(adv_instance->scan_rsp_data, 0, 3005 sizeof(adv_instance->scan_rsp_data)); 3006 } else { 3007 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 3008 instance < 1 || instance > hdev->le_num_of_adv_sets) 3009 return -EOVERFLOW; 3010 3011 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 3012 if (!adv_instance) 3013 return -ENOMEM; 3014 3015 adv_instance->pending = true; 3016 adv_instance->instance = instance; 3017 list_add(&adv_instance->list, &hdev->adv_instances); 3018 hdev->adv_instance_cnt++; 3019 } 3020 3021 adv_instance->flags = flags; 3022 adv_instance->adv_data_len = adv_data_len; 3023 adv_instance->scan_rsp_len = scan_rsp_len; 3024 adv_instance->min_interval = min_interval; 3025 adv_instance->max_interval = max_interval; 3026 adv_instance->tx_power = tx_power; 3027 3028 if (adv_data_len) 3029 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 3030 3031 if (scan_rsp_len) 3032 memcpy(adv_instance->scan_rsp_data, 3033 scan_rsp_data, scan_rsp_len); 3034 3035 adv_instance->timeout = timeout; 3036 adv_instance->remaining_time = timeout; 3037 3038 if (duration == 0) 3039 adv_instance->duration = hdev->def_multi_adv_rotation_duration; 3040 else 3041 adv_instance->duration = duration; 3042 3043 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, 3044 adv_instance_rpa_expired); 3045 3046 BT_DBG("%s for %dMR", hdev->name, instance); 3047 3048 return 0; 3049 } 3050 3051 /* This function requires the caller holds hdev->lock */ 3052 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 3053 u16 adv_data_len, u8 *adv_data, 3054 u16 scan_rsp_len, u8 *scan_rsp_data) 3055 { 3056 struct adv_info *adv_instance; 3057 3058 adv_instance = hci_find_adv_instance(hdev, instance); 3059 3060 /* If advertisement doesn't exist, we can't modify its data */ 3061 if (!adv_instance) 3062 return -ENOENT; 3063 3064 if (adv_data_len) { 3065 memset(adv_instance->adv_data, 0, 3066 sizeof(adv_instance->adv_data)); 3067 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 3068 adv_instance->adv_data_len = adv_data_len; 3069 } 3070 3071 if (scan_rsp_len) { 3072 memset(adv_instance->scan_rsp_data, 0, 3073 sizeof(adv_instance->scan_rsp_data)); 3074 memcpy(adv_instance->scan_rsp_data, 3075 scan_rsp_data, scan_rsp_len); 3076 adv_instance->scan_rsp_len = scan_rsp_len; 3077 } 3078 3079 return 0; 3080 } 3081 3082 /* This function requires the caller holds hdev->lock */ 3083 void hci_adv_monitors_clear(struct hci_dev *hdev) 3084 { 3085 struct adv_monitor *monitor; 3086 int handle; 3087 3088 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 3089 hci_free_adv_monitor(hdev, monitor); 3090 3091 idr_destroy(&hdev->adv_monitors_idr); 3092 } 3093 3094 /* Frees the monitor structure and do some bookkeepings. 3095 * This function requires the caller holds hdev->lock. 3096 */ 3097 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 3098 { 3099 struct adv_pattern *pattern; 3100 struct adv_pattern *tmp; 3101 3102 if (!monitor) 3103 return; 3104 3105 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 3106 list_del(&pattern->list); 3107 kfree(pattern); 3108 } 3109 3110 if (monitor->handle) 3111 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 3112 3113 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 3114 hdev->adv_monitors_cnt--; 3115 mgmt_adv_monitor_removed(hdev, monitor->handle); 3116 } 3117 3118 kfree(monitor); 3119 } 3120 3121 int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status) 3122 { 3123 return mgmt_add_adv_patterns_monitor_complete(hdev, status); 3124 } 3125 3126 int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status) 3127 { 3128 return mgmt_remove_adv_monitor_complete(hdev, status); 3129 } 3130 3131 /* Assigns handle to a monitor, and if offloading is supported and power is on, 3132 * also attempts to forward the request to the controller. 3133 * Returns true if request is forwarded (result is pending), false otherwise. 3134 * This function requires the caller holds hdev->lock. 3135 */ 3136 bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor, 3137 int *err) 3138 { 3139 int min, max, handle; 3140 3141 *err = 0; 3142 3143 if (!monitor) { 3144 *err = -EINVAL; 3145 return false; 3146 } 3147 3148 min = HCI_MIN_ADV_MONITOR_HANDLE; 3149 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 3150 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 3151 GFP_KERNEL); 3152 if (handle < 0) { 3153 *err = handle; 3154 return false; 3155 } 3156 3157 monitor->handle = handle; 3158 3159 if (!hdev_is_powered(hdev)) 3160 return false; 3161 3162 switch (hci_get_adv_monitor_offload_ext(hdev)) { 3163 case HCI_ADV_MONITOR_EXT_NONE: 3164 hci_update_background_scan(hdev); 3165 bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err); 3166 /* Message was not forwarded to controller - not an error */ 3167 return false; 3168 case HCI_ADV_MONITOR_EXT_MSFT: 3169 *err = msft_add_monitor_pattern(hdev, monitor); 3170 bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name, 3171 *err); 3172 break; 3173 } 3174 3175 return (*err == 0); 3176 } 3177 3178 /* Attempts to tell the controller and free the monitor. If somehow the 3179 * controller doesn't have a corresponding handle, remove anyway. 3180 * Returns true if request is forwarded (result is pending), false otherwise. 3181 * This function requires the caller holds hdev->lock. 3182 */ 3183 static bool hci_remove_adv_monitor(struct hci_dev *hdev, 3184 struct adv_monitor *monitor, 3185 u16 handle, int *err) 3186 { 3187 *err = 0; 3188 3189 switch (hci_get_adv_monitor_offload_ext(hdev)) { 3190 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 3191 goto free_monitor; 3192 case HCI_ADV_MONITOR_EXT_MSFT: 3193 *err = msft_remove_monitor(hdev, monitor, handle); 3194 break; 3195 } 3196 3197 /* In case no matching handle registered, just free the monitor */ 3198 if (*err == -ENOENT) 3199 goto free_monitor; 3200 3201 return (*err == 0); 3202 3203 free_monitor: 3204 if (*err == -ENOENT) 3205 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 3206 monitor->handle); 3207 hci_free_adv_monitor(hdev, monitor); 3208 3209 *err = 0; 3210 return false; 3211 } 3212 3213 /* Returns true if request is forwarded (result is pending), false otherwise. 3214 * This function requires the caller holds hdev->lock. 3215 */ 3216 bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err) 3217 { 3218 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 3219 bool pending; 3220 3221 if (!monitor) { 3222 *err = -EINVAL; 3223 return false; 3224 } 3225 3226 pending = hci_remove_adv_monitor(hdev, monitor, handle, err); 3227 if (!*err && !pending) 3228 hci_update_background_scan(hdev); 3229 3230 bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending", 3231 hdev->name, handle, *err, pending ? "" : "not "); 3232 3233 return pending; 3234 } 3235 3236 /* Returns true if request is forwarded (result is pending), false otherwise. 3237 * This function requires the caller holds hdev->lock. 3238 */ 3239 bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err) 3240 { 3241 struct adv_monitor *monitor; 3242 int idr_next_id = 0; 3243 bool pending = false; 3244 bool update = false; 3245 3246 *err = 0; 3247 3248 while (!*err && !pending) { 3249 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 3250 if (!monitor) 3251 break; 3252 3253 pending = hci_remove_adv_monitor(hdev, monitor, 0, err); 3254 3255 if (!*err && !pending) 3256 update = true; 3257 } 3258 3259 if (update) 3260 hci_update_background_scan(hdev); 3261 3262 bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending", 3263 hdev->name, *err, pending ? "" : "not "); 3264 3265 return pending; 3266 } 3267 3268 /* This function requires the caller holds hdev->lock */ 3269 bool hci_is_adv_monitoring(struct hci_dev *hdev) 3270 { 3271 return !idr_is_empty(&hdev->adv_monitors_idr); 3272 } 3273 3274 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 3275 { 3276 if (msft_monitor_supported(hdev)) 3277 return HCI_ADV_MONITOR_EXT_MSFT; 3278 3279 return HCI_ADV_MONITOR_EXT_NONE; 3280 } 3281 3282 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 3283 bdaddr_t *bdaddr, u8 type) 3284 { 3285 struct bdaddr_list *b; 3286 3287 list_for_each_entry(b, bdaddr_list, list) { 3288 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3289 return b; 3290 } 3291 3292 return NULL; 3293 } 3294 3295 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 3296 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 3297 u8 type) 3298 { 3299 struct bdaddr_list_with_irk *b; 3300 3301 list_for_each_entry(b, bdaddr_list, list) { 3302 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3303 return b; 3304 } 3305 3306 return NULL; 3307 } 3308 3309 struct bdaddr_list_with_flags * 3310 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 3311 bdaddr_t *bdaddr, u8 type) 3312 { 3313 struct bdaddr_list_with_flags *b; 3314 3315 list_for_each_entry(b, bdaddr_list, list) { 3316 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3317 return b; 3318 } 3319 3320 return NULL; 3321 } 3322 3323 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 3324 { 3325 struct bdaddr_list *b, *n; 3326 3327 list_for_each_entry_safe(b, n, bdaddr_list, list) { 3328 list_del(&b->list); 3329 kfree(b); 3330 } 3331 } 3332 3333 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3334 { 3335 struct bdaddr_list *entry; 3336 3337 if (!bacmp(bdaddr, BDADDR_ANY)) 3338 return -EBADF; 3339 3340 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3341 return -EEXIST; 3342 3343 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3344 if (!entry) 3345 return -ENOMEM; 3346 3347 bacpy(&entry->bdaddr, bdaddr); 3348 entry->bdaddr_type = type; 3349 3350 list_add(&entry->list, list); 3351 3352 return 0; 3353 } 3354 3355 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3356 u8 type, u8 *peer_irk, u8 *local_irk) 3357 { 3358 struct bdaddr_list_with_irk *entry; 3359 3360 if (!bacmp(bdaddr, BDADDR_ANY)) 3361 return -EBADF; 3362 3363 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3364 return -EEXIST; 3365 3366 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3367 if (!entry) 3368 return -ENOMEM; 3369 3370 bacpy(&entry->bdaddr, bdaddr); 3371 entry->bdaddr_type = type; 3372 3373 if (peer_irk) 3374 memcpy(entry->peer_irk, peer_irk, 16); 3375 3376 if (local_irk) 3377 memcpy(entry->local_irk, local_irk, 16); 3378 3379 list_add(&entry->list, list); 3380 3381 return 0; 3382 } 3383 3384 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3385 u8 type, u32 flags) 3386 { 3387 struct bdaddr_list_with_flags *entry; 3388 3389 if (!bacmp(bdaddr, BDADDR_ANY)) 3390 return -EBADF; 3391 3392 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3393 return -EEXIST; 3394 3395 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3396 if (!entry) 3397 return -ENOMEM; 3398 3399 bacpy(&entry->bdaddr, bdaddr); 3400 entry->bdaddr_type = type; 3401 entry->current_flags = flags; 3402 3403 list_add(&entry->list, list); 3404 3405 return 0; 3406 } 3407 3408 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3409 { 3410 struct bdaddr_list *entry; 3411 3412 if (!bacmp(bdaddr, BDADDR_ANY)) { 3413 hci_bdaddr_list_clear(list); 3414 return 0; 3415 } 3416 3417 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 3418 if (!entry) 3419 return -ENOENT; 3420 3421 list_del(&entry->list); 3422 kfree(entry); 3423 3424 return 0; 3425 } 3426 3427 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3428 u8 type) 3429 { 3430 struct bdaddr_list_with_irk *entry; 3431 3432 if (!bacmp(bdaddr, BDADDR_ANY)) { 3433 hci_bdaddr_list_clear(list); 3434 return 0; 3435 } 3436 3437 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 3438 if (!entry) 3439 return -ENOENT; 3440 3441 list_del(&entry->list); 3442 kfree(entry); 3443 3444 return 0; 3445 } 3446 3447 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3448 u8 type) 3449 { 3450 struct bdaddr_list_with_flags *entry; 3451 3452 if (!bacmp(bdaddr, BDADDR_ANY)) { 3453 hci_bdaddr_list_clear(list); 3454 return 0; 3455 } 3456 3457 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 3458 if (!entry) 3459 return -ENOENT; 3460 3461 list_del(&entry->list); 3462 kfree(entry); 3463 3464 return 0; 3465 } 3466 3467 /* This function requires the caller holds hdev->lock */ 3468 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3469 bdaddr_t *addr, u8 addr_type) 3470 { 3471 struct hci_conn_params *params; 3472 3473 list_for_each_entry(params, &hdev->le_conn_params, list) { 3474 if (bacmp(¶ms->addr, addr) == 0 && 3475 params->addr_type == addr_type) { 3476 return params; 3477 } 3478 } 3479 3480 return NULL; 3481 } 3482 3483 /* This function requires the caller holds hdev->lock */ 3484 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3485 bdaddr_t *addr, u8 addr_type) 3486 { 3487 struct hci_conn_params *param; 3488 3489 switch (addr_type) { 3490 case ADDR_LE_DEV_PUBLIC_RESOLVED: 3491 addr_type = ADDR_LE_DEV_PUBLIC; 3492 break; 3493 case ADDR_LE_DEV_RANDOM_RESOLVED: 3494 addr_type = ADDR_LE_DEV_RANDOM; 3495 break; 3496 } 3497 3498 list_for_each_entry(param, list, action) { 3499 if (bacmp(¶m->addr, addr) == 0 && 3500 param->addr_type == addr_type) 3501 return param; 3502 } 3503 3504 return NULL; 3505 } 3506 3507 /* This function requires the caller holds hdev->lock */ 3508 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3509 bdaddr_t *addr, u8 addr_type) 3510 { 3511 struct hci_conn_params *params; 3512 3513 params = hci_conn_params_lookup(hdev, addr, addr_type); 3514 if (params) 3515 return params; 3516 3517 params = kzalloc(sizeof(*params), GFP_KERNEL); 3518 if (!params) { 3519 bt_dev_err(hdev, "out of memory"); 3520 return NULL; 3521 } 3522 3523 bacpy(¶ms->addr, addr); 3524 params->addr_type = addr_type; 3525 3526 list_add(¶ms->list, &hdev->le_conn_params); 3527 INIT_LIST_HEAD(¶ms->action); 3528 3529 params->conn_min_interval = hdev->le_conn_min_interval; 3530 params->conn_max_interval = hdev->le_conn_max_interval; 3531 params->conn_latency = hdev->le_conn_latency; 3532 params->supervision_timeout = hdev->le_supv_timeout; 3533 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3534 3535 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3536 3537 return params; 3538 } 3539 3540 static void hci_conn_params_free(struct hci_conn_params *params) 3541 { 3542 if (params->conn) { 3543 hci_conn_drop(params->conn); 3544 hci_conn_put(params->conn); 3545 } 3546 3547 list_del(¶ms->action); 3548 list_del(¶ms->list); 3549 kfree(params); 3550 } 3551 3552 /* This function requires the caller holds hdev->lock */ 3553 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3554 { 3555 struct hci_conn_params *params; 3556 3557 params = hci_conn_params_lookup(hdev, addr, addr_type); 3558 if (!params) 3559 return; 3560 3561 hci_conn_params_free(params); 3562 3563 hci_update_background_scan(hdev); 3564 3565 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3566 } 3567 3568 /* This function requires the caller holds hdev->lock */ 3569 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3570 { 3571 struct hci_conn_params *params, *tmp; 3572 3573 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3574 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3575 continue; 3576 3577 /* If trying to establish one time connection to disabled 3578 * device, leave the params, but mark them as just once. 3579 */ 3580 if (params->explicit_connect) { 3581 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 3582 continue; 3583 } 3584 3585 list_del(¶ms->list); 3586 kfree(params); 3587 } 3588 3589 BT_DBG("All LE disabled connection parameters were removed"); 3590 } 3591 3592 /* This function requires the caller holds hdev->lock */ 3593 static void hci_conn_params_clear_all(struct hci_dev *hdev) 3594 { 3595 struct hci_conn_params *params, *tmp; 3596 3597 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 3598 hci_conn_params_free(params); 3599 3600 BT_DBG("All LE connection parameters were removed"); 3601 } 3602 3603 /* Copy the Identity Address of the controller. 3604 * 3605 * If the controller has a public BD_ADDR, then by default use that one. 3606 * If this is a LE only controller without a public address, default to 3607 * the static random address. 3608 * 3609 * For debugging purposes it is possible to force controllers with a 3610 * public address to use the static random address instead. 3611 * 3612 * In case BR/EDR has been disabled on a dual-mode controller and 3613 * userspace has configured a static address, then that address 3614 * becomes the identity address instead of the public BR/EDR address. 3615 */ 3616 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3617 u8 *bdaddr_type) 3618 { 3619 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3620 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 3621 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 3622 bacmp(&hdev->static_addr, BDADDR_ANY))) { 3623 bacpy(bdaddr, &hdev->static_addr); 3624 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3625 } else { 3626 bacpy(bdaddr, &hdev->bdaddr); 3627 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3628 } 3629 } 3630 3631 static void hci_suspend_clear_tasks(struct hci_dev *hdev) 3632 { 3633 int i; 3634 3635 for (i = 0; i < __SUSPEND_NUM_TASKS; i++) 3636 clear_bit(i, hdev->suspend_tasks); 3637 3638 wake_up(&hdev->suspend_wait_q); 3639 } 3640 3641 static int hci_suspend_wait_event(struct hci_dev *hdev) 3642 { 3643 #define WAKE_COND \ 3644 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \ 3645 __SUSPEND_NUM_TASKS) 3646 3647 int i; 3648 int ret = wait_event_timeout(hdev->suspend_wait_q, 3649 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT); 3650 3651 if (ret == 0) { 3652 bt_dev_err(hdev, "Timed out waiting for suspend events"); 3653 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) { 3654 if (test_bit(i, hdev->suspend_tasks)) 3655 bt_dev_err(hdev, "Suspend timeout bit: %d", i); 3656 clear_bit(i, hdev->suspend_tasks); 3657 } 3658 3659 ret = -ETIMEDOUT; 3660 } else { 3661 ret = 0; 3662 } 3663 3664 return ret; 3665 } 3666 3667 static void hci_prepare_suspend(struct work_struct *work) 3668 { 3669 struct hci_dev *hdev = 3670 container_of(work, struct hci_dev, suspend_prepare); 3671 3672 hci_dev_lock(hdev); 3673 hci_req_prepare_suspend(hdev, hdev->suspend_state_next); 3674 hci_dev_unlock(hdev); 3675 } 3676 3677 static int hci_change_suspend_state(struct hci_dev *hdev, 3678 enum suspended_state next) 3679 { 3680 hdev->suspend_state_next = next; 3681 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); 3682 queue_work(hdev->req_workqueue, &hdev->suspend_prepare); 3683 return hci_suspend_wait_event(hdev); 3684 } 3685 3686 static void hci_clear_wake_reason(struct hci_dev *hdev) 3687 { 3688 hci_dev_lock(hdev); 3689 3690 hdev->wake_reason = 0; 3691 bacpy(&hdev->wake_addr, BDADDR_ANY); 3692 hdev->wake_addr_type = 0; 3693 3694 hci_dev_unlock(hdev); 3695 } 3696 3697 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 3698 void *data) 3699 { 3700 struct hci_dev *hdev = 3701 container_of(nb, struct hci_dev, suspend_notifier); 3702 int ret = 0; 3703 u8 state = BT_RUNNING; 3704 3705 /* If powering down, wait for completion. */ 3706 if (mgmt_powering_down(hdev)) { 3707 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks); 3708 ret = hci_suspend_wait_event(hdev); 3709 if (ret) 3710 goto done; 3711 } 3712 3713 /* Suspend notifier should only act on events when powered. */ 3714 if (!hdev_is_powered(hdev) || 3715 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3716 goto done; 3717 3718 if (action == PM_SUSPEND_PREPARE) { 3719 /* Suspend consists of two actions: 3720 * - First, disconnect everything and make the controller not 3721 * connectable (disabling scanning) 3722 * - Second, program event filter/accept list and enable scan 3723 */ 3724 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT); 3725 if (!ret) 3726 state = BT_SUSPEND_DISCONNECT; 3727 3728 /* Only configure accept list if disconnect succeeded and wake 3729 * isn't being prevented. 3730 */ 3731 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) { 3732 ret = hci_change_suspend_state(hdev, 3733 BT_SUSPEND_CONFIGURE_WAKE); 3734 if (!ret) 3735 state = BT_SUSPEND_CONFIGURE_WAKE; 3736 } 3737 3738 hci_clear_wake_reason(hdev); 3739 mgmt_suspending(hdev, state); 3740 3741 } else if (action == PM_POST_SUSPEND) { 3742 ret = hci_change_suspend_state(hdev, BT_RUNNING); 3743 3744 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 3745 hdev->wake_addr_type); 3746 } 3747 3748 done: 3749 /* We always allow suspend even if suspend preparation failed and 3750 * attempt to recover in resume. 3751 */ 3752 if (ret) 3753 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 3754 action, ret); 3755 3756 return NOTIFY_DONE; 3757 } 3758 3759 /* Alloc HCI device */ 3760 struct hci_dev *hci_alloc_dev(void) 3761 { 3762 struct hci_dev *hdev; 3763 3764 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3765 if (!hdev) 3766 return NULL; 3767 3768 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3769 hdev->esco_type = (ESCO_HV1); 3770 hdev->link_mode = (HCI_LM_ACCEPT); 3771 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3772 hdev->io_capability = 0x03; /* No Input No Output */ 3773 hdev->manufacturer = 0xffff; /* Default to internal use */ 3774 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3775 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3776 hdev->adv_instance_cnt = 0; 3777 hdev->cur_adv_instance = 0x00; 3778 hdev->adv_instance_timeout = 0; 3779 3780 hdev->advmon_allowlist_duration = 300; 3781 hdev->advmon_no_filter_duration = 500; 3782 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 3783 3784 hdev->sniff_max_interval = 800; 3785 hdev->sniff_min_interval = 80; 3786 3787 hdev->le_adv_channel_map = 0x07; 3788 hdev->le_adv_min_interval = 0x0800; 3789 hdev->le_adv_max_interval = 0x0800; 3790 hdev->le_scan_interval = 0x0060; 3791 hdev->le_scan_window = 0x0030; 3792 hdev->le_scan_int_suspend = 0x0400; 3793 hdev->le_scan_window_suspend = 0x0012; 3794 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 3795 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 3796 hdev->le_scan_int_adv_monitor = 0x0060; 3797 hdev->le_scan_window_adv_monitor = 0x0030; 3798 hdev->le_scan_int_connect = 0x0060; 3799 hdev->le_scan_window_connect = 0x0060; 3800 hdev->le_conn_min_interval = 0x0018; 3801 hdev->le_conn_max_interval = 0x0028; 3802 hdev->le_conn_latency = 0x0000; 3803 hdev->le_supv_timeout = 0x002a; 3804 hdev->le_def_tx_len = 0x001b; 3805 hdev->le_def_tx_time = 0x0148; 3806 hdev->le_max_tx_len = 0x001b; 3807 hdev->le_max_tx_time = 0x0148; 3808 hdev->le_max_rx_len = 0x001b; 3809 hdev->le_max_rx_time = 0x0148; 3810 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 3811 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 3812 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 3813 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 3814 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 3815 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 3816 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 3817 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 3818 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 3819 3820 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3821 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3822 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3823 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3824 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 3825 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 3826 3827 /* default 1.28 sec page scan */ 3828 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 3829 hdev->def_page_scan_int = 0x0800; 3830 hdev->def_page_scan_window = 0x0012; 3831 3832 mutex_init(&hdev->lock); 3833 mutex_init(&hdev->req_lock); 3834 3835 INIT_LIST_HEAD(&hdev->mgmt_pending); 3836 INIT_LIST_HEAD(&hdev->reject_list); 3837 INIT_LIST_HEAD(&hdev->accept_list); 3838 INIT_LIST_HEAD(&hdev->uuids); 3839 INIT_LIST_HEAD(&hdev->link_keys); 3840 INIT_LIST_HEAD(&hdev->long_term_keys); 3841 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3842 INIT_LIST_HEAD(&hdev->remote_oob_data); 3843 INIT_LIST_HEAD(&hdev->le_accept_list); 3844 INIT_LIST_HEAD(&hdev->le_resolv_list); 3845 INIT_LIST_HEAD(&hdev->le_conn_params); 3846 INIT_LIST_HEAD(&hdev->pend_le_conns); 3847 INIT_LIST_HEAD(&hdev->pend_le_reports); 3848 INIT_LIST_HEAD(&hdev->conn_hash.list); 3849 INIT_LIST_HEAD(&hdev->adv_instances); 3850 INIT_LIST_HEAD(&hdev->blocked_keys); 3851 3852 INIT_WORK(&hdev->rx_work, hci_rx_work); 3853 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3854 INIT_WORK(&hdev->tx_work, hci_tx_work); 3855 INIT_WORK(&hdev->power_on, hci_power_on); 3856 INIT_WORK(&hdev->error_reset, hci_error_reset); 3857 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend); 3858 3859 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3860 3861 skb_queue_head_init(&hdev->rx_q); 3862 skb_queue_head_init(&hdev->cmd_q); 3863 skb_queue_head_init(&hdev->raw_q); 3864 3865 init_waitqueue_head(&hdev->req_wait_q); 3866 init_waitqueue_head(&hdev->suspend_wait_q); 3867 3868 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3869 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 3870 3871 hci_request_setup(hdev); 3872 3873 hci_init_sysfs(hdev); 3874 discovery_init(hdev); 3875 3876 return hdev; 3877 } 3878 EXPORT_SYMBOL(hci_alloc_dev); 3879 3880 /* Free HCI device */ 3881 void hci_free_dev(struct hci_dev *hdev) 3882 { 3883 /* will free via device release */ 3884 put_device(&hdev->dev); 3885 } 3886 EXPORT_SYMBOL(hci_free_dev); 3887 3888 /* Register HCI device */ 3889 int hci_register_dev(struct hci_dev *hdev) 3890 { 3891 int id, error; 3892 3893 if (!hdev->open || !hdev->close || !hdev->send) 3894 return -EINVAL; 3895 3896 /* Do not allow HCI_AMP devices to register at index 0, 3897 * so the index can be used as the AMP controller ID. 3898 */ 3899 switch (hdev->dev_type) { 3900 case HCI_PRIMARY: 3901 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3902 break; 3903 case HCI_AMP: 3904 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3905 break; 3906 default: 3907 return -EINVAL; 3908 } 3909 3910 if (id < 0) 3911 return id; 3912 3913 sprintf(hdev->name, "hci%d", id); 3914 hdev->id = id; 3915 3916 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3917 3918 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3919 if (!hdev->workqueue) { 3920 error = -ENOMEM; 3921 goto err; 3922 } 3923 3924 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3925 hdev->name); 3926 if (!hdev->req_workqueue) { 3927 destroy_workqueue(hdev->workqueue); 3928 error = -ENOMEM; 3929 goto err; 3930 } 3931 3932 if (!IS_ERR_OR_NULL(bt_debugfs)) 3933 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3934 3935 dev_set_name(&hdev->dev, "%s", hdev->name); 3936 3937 error = device_add(&hdev->dev); 3938 if (error < 0) 3939 goto err_wqueue; 3940 3941 hci_leds_init(hdev); 3942 3943 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3944 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3945 hdev); 3946 if (hdev->rfkill) { 3947 if (rfkill_register(hdev->rfkill) < 0) { 3948 rfkill_destroy(hdev->rfkill); 3949 hdev->rfkill = NULL; 3950 } 3951 } 3952 3953 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3954 hci_dev_set_flag(hdev, HCI_RFKILLED); 3955 3956 hci_dev_set_flag(hdev, HCI_SETUP); 3957 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3958 3959 if (hdev->dev_type == HCI_PRIMARY) { 3960 /* Assume BR/EDR support until proven otherwise (such as 3961 * through reading supported features during init. 3962 */ 3963 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3964 } 3965 3966 write_lock(&hci_dev_list_lock); 3967 list_add(&hdev->list, &hci_dev_list); 3968 write_unlock(&hci_dev_list_lock); 3969 3970 /* Devices that are marked for raw-only usage are unconfigured 3971 * and should not be included in normal operation. 3972 */ 3973 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3974 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3975 3976 hci_sock_dev_event(hdev, HCI_DEV_REG); 3977 hci_dev_hold(hdev); 3978 3979 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 3980 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 3981 error = register_pm_notifier(&hdev->suspend_notifier); 3982 if (error) 3983 goto err_wqueue; 3984 } 3985 3986 queue_work(hdev->req_workqueue, &hdev->power_on); 3987 3988 idr_init(&hdev->adv_monitors_idr); 3989 3990 return id; 3991 3992 err_wqueue: 3993 destroy_workqueue(hdev->workqueue); 3994 destroy_workqueue(hdev->req_workqueue); 3995 err: 3996 ida_simple_remove(&hci_index_ida, hdev->id); 3997 3998 return error; 3999 } 4000 EXPORT_SYMBOL(hci_register_dev); 4001 4002 /* Unregister HCI device */ 4003 void hci_unregister_dev(struct hci_dev *hdev) 4004 { 4005 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 4006 4007 hci_dev_set_flag(hdev, HCI_UNREGISTER); 4008 4009 write_lock(&hci_dev_list_lock); 4010 list_del(&hdev->list); 4011 write_unlock(&hci_dev_list_lock); 4012 4013 cancel_work_sync(&hdev->power_on); 4014 4015 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 4016 hci_suspend_clear_tasks(hdev); 4017 unregister_pm_notifier(&hdev->suspend_notifier); 4018 cancel_work_sync(&hdev->suspend_prepare); 4019 } 4020 4021 hci_dev_do_close(hdev); 4022 4023 if (!test_bit(HCI_INIT, &hdev->flags) && 4024 !hci_dev_test_flag(hdev, HCI_SETUP) && 4025 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4026 hci_dev_lock(hdev); 4027 mgmt_index_removed(hdev); 4028 hci_dev_unlock(hdev); 4029 } 4030 4031 /* mgmt_index_removed should take care of emptying the 4032 * pending list */ 4033 BUG_ON(!list_empty(&hdev->mgmt_pending)); 4034 4035 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 4036 4037 if (hdev->rfkill) { 4038 rfkill_unregister(hdev->rfkill); 4039 rfkill_destroy(hdev->rfkill); 4040 } 4041 4042 device_del(&hdev->dev); 4043 /* Actual cleanup is deferred until hci_cleanup_dev(). */ 4044 hci_dev_put(hdev); 4045 } 4046 EXPORT_SYMBOL(hci_unregister_dev); 4047 4048 /* Cleanup HCI device */ 4049 void hci_cleanup_dev(struct hci_dev *hdev) 4050 { 4051 debugfs_remove_recursive(hdev->debugfs); 4052 kfree_const(hdev->hw_info); 4053 kfree_const(hdev->fw_info); 4054 4055 destroy_workqueue(hdev->workqueue); 4056 destroy_workqueue(hdev->req_workqueue); 4057 4058 hci_dev_lock(hdev); 4059 hci_bdaddr_list_clear(&hdev->reject_list); 4060 hci_bdaddr_list_clear(&hdev->accept_list); 4061 hci_uuids_clear(hdev); 4062 hci_link_keys_clear(hdev); 4063 hci_smp_ltks_clear(hdev); 4064 hci_smp_irks_clear(hdev); 4065 hci_remote_oob_data_clear(hdev); 4066 hci_adv_instances_clear(hdev); 4067 hci_adv_monitors_clear(hdev); 4068 hci_bdaddr_list_clear(&hdev->le_accept_list); 4069 hci_bdaddr_list_clear(&hdev->le_resolv_list); 4070 hci_conn_params_clear_all(hdev); 4071 hci_discovery_filter_clear(hdev); 4072 hci_blocked_keys_clear(hdev); 4073 hci_dev_unlock(hdev); 4074 4075 ida_simple_remove(&hci_index_ida, hdev->id); 4076 } 4077 4078 /* Suspend HCI device */ 4079 int hci_suspend_dev(struct hci_dev *hdev) 4080 { 4081 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 4082 return 0; 4083 } 4084 EXPORT_SYMBOL(hci_suspend_dev); 4085 4086 /* Resume HCI device */ 4087 int hci_resume_dev(struct hci_dev *hdev) 4088 { 4089 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 4090 return 0; 4091 } 4092 EXPORT_SYMBOL(hci_resume_dev); 4093 4094 /* Reset HCI device */ 4095 int hci_reset_dev(struct hci_dev *hdev) 4096 { 4097 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 4098 struct sk_buff *skb; 4099 4100 skb = bt_skb_alloc(3, GFP_ATOMIC); 4101 if (!skb) 4102 return -ENOMEM; 4103 4104 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 4105 skb_put_data(skb, hw_err, 3); 4106 4107 bt_dev_err(hdev, "Injecting HCI hardware error event"); 4108 4109 /* Send Hardware Error to upper stack */ 4110 return hci_recv_frame(hdev, skb); 4111 } 4112 EXPORT_SYMBOL(hci_reset_dev); 4113 4114 /* Receive frame from HCI drivers */ 4115 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 4116 { 4117 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 4118 && !test_bit(HCI_INIT, &hdev->flags))) { 4119 kfree_skb(skb); 4120 return -ENXIO; 4121 } 4122 4123 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 4124 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 4125 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 4126 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 4127 kfree_skb(skb); 4128 return -EINVAL; 4129 } 4130 4131 /* Incoming skb */ 4132 bt_cb(skb)->incoming = 1; 4133 4134 /* Time stamp */ 4135 __net_timestamp(skb); 4136 4137 skb_queue_tail(&hdev->rx_q, skb); 4138 queue_work(hdev->workqueue, &hdev->rx_work); 4139 4140 return 0; 4141 } 4142 EXPORT_SYMBOL(hci_recv_frame); 4143 4144 /* Receive diagnostic message from HCI drivers */ 4145 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 4146 { 4147 /* Mark as diagnostic packet */ 4148 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 4149 4150 /* Time stamp */ 4151 __net_timestamp(skb); 4152 4153 skb_queue_tail(&hdev->rx_q, skb); 4154 queue_work(hdev->workqueue, &hdev->rx_work); 4155 4156 return 0; 4157 } 4158 EXPORT_SYMBOL(hci_recv_diag); 4159 4160 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 4161 { 4162 va_list vargs; 4163 4164 va_start(vargs, fmt); 4165 kfree_const(hdev->hw_info); 4166 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 4167 va_end(vargs); 4168 } 4169 EXPORT_SYMBOL(hci_set_hw_info); 4170 4171 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 4172 { 4173 va_list vargs; 4174 4175 va_start(vargs, fmt); 4176 kfree_const(hdev->fw_info); 4177 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 4178 va_end(vargs); 4179 } 4180 EXPORT_SYMBOL(hci_set_fw_info); 4181 4182 /* ---- Interface to upper protocols ---- */ 4183 4184 int hci_register_cb(struct hci_cb *cb) 4185 { 4186 BT_DBG("%p name %s", cb, cb->name); 4187 4188 mutex_lock(&hci_cb_list_lock); 4189 list_add_tail(&cb->list, &hci_cb_list); 4190 mutex_unlock(&hci_cb_list_lock); 4191 4192 return 0; 4193 } 4194 EXPORT_SYMBOL(hci_register_cb); 4195 4196 int hci_unregister_cb(struct hci_cb *cb) 4197 { 4198 BT_DBG("%p name %s", cb, cb->name); 4199 4200 mutex_lock(&hci_cb_list_lock); 4201 list_del(&cb->list); 4202 mutex_unlock(&hci_cb_list_lock); 4203 4204 return 0; 4205 } 4206 EXPORT_SYMBOL(hci_unregister_cb); 4207 4208 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 4209 { 4210 int err; 4211 4212 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 4213 skb->len); 4214 4215 /* Time stamp */ 4216 __net_timestamp(skb); 4217 4218 /* Send copy to monitor */ 4219 hci_send_to_monitor(hdev, skb); 4220 4221 if (atomic_read(&hdev->promisc)) { 4222 /* Send copy to the sockets */ 4223 hci_send_to_sock(hdev, skb); 4224 } 4225 4226 /* Get rid of skb owner, prior to sending to the driver. */ 4227 skb_orphan(skb); 4228 4229 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 4230 kfree_skb(skb); 4231 return; 4232 } 4233 4234 err = hdev->send(hdev, skb); 4235 if (err < 0) { 4236 bt_dev_err(hdev, "sending frame failed (%d)", err); 4237 kfree_skb(skb); 4238 } 4239 } 4240 4241 /* Send HCI command */ 4242 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 4243 const void *param) 4244 { 4245 struct sk_buff *skb; 4246 4247 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 4248 4249 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4250 if (!skb) { 4251 bt_dev_err(hdev, "no memory for command"); 4252 return -ENOMEM; 4253 } 4254 4255 /* Stand-alone HCI commands must be flagged as 4256 * single-command requests. 4257 */ 4258 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 4259 4260 skb_queue_tail(&hdev->cmd_q, skb); 4261 queue_work(hdev->workqueue, &hdev->cmd_work); 4262 4263 return 0; 4264 } 4265 4266 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 4267 const void *param) 4268 { 4269 struct sk_buff *skb; 4270 4271 if (hci_opcode_ogf(opcode) != 0x3f) { 4272 /* A controller receiving a command shall respond with either 4273 * a Command Status Event or a Command Complete Event. 4274 * Therefore, all standard HCI commands must be sent via the 4275 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 4276 * Some vendors do not comply with this rule for vendor-specific 4277 * commands and do not return any event. We want to support 4278 * unresponded commands for such cases only. 4279 */ 4280 bt_dev_err(hdev, "unresponded command not supported"); 4281 return -EINVAL; 4282 } 4283 4284 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4285 if (!skb) { 4286 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 4287 opcode); 4288 return -ENOMEM; 4289 } 4290 4291 hci_send_frame(hdev, skb); 4292 4293 return 0; 4294 } 4295 EXPORT_SYMBOL(__hci_cmd_send); 4296 4297 /* Get data from the previously sent command */ 4298 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 4299 { 4300 struct hci_command_hdr *hdr; 4301 4302 if (!hdev->sent_cmd) 4303 return NULL; 4304 4305 hdr = (void *) hdev->sent_cmd->data; 4306 4307 if (hdr->opcode != cpu_to_le16(opcode)) 4308 return NULL; 4309 4310 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 4311 4312 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 4313 } 4314 4315 /* Send HCI command and wait for command complete event */ 4316 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 4317 const void *param, u32 timeout) 4318 { 4319 struct sk_buff *skb; 4320 4321 if (!test_bit(HCI_UP, &hdev->flags)) 4322 return ERR_PTR(-ENETDOWN); 4323 4324 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 4325 4326 hci_req_sync_lock(hdev); 4327 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 4328 hci_req_sync_unlock(hdev); 4329 4330 return skb; 4331 } 4332 EXPORT_SYMBOL(hci_cmd_sync); 4333 4334 /* Send ACL data */ 4335 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 4336 { 4337 struct hci_acl_hdr *hdr; 4338 int len = skb->len; 4339 4340 skb_push(skb, HCI_ACL_HDR_SIZE); 4341 skb_reset_transport_header(skb); 4342 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 4343 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 4344 hdr->dlen = cpu_to_le16(len); 4345 } 4346 4347 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 4348 struct sk_buff *skb, __u16 flags) 4349 { 4350 struct hci_conn *conn = chan->conn; 4351 struct hci_dev *hdev = conn->hdev; 4352 struct sk_buff *list; 4353 4354 skb->len = skb_headlen(skb); 4355 skb->data_len = 0; 4356 4357 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4358 4359 switch (hdev->dev_type) { 4360 case HCI_PRIMARY: 4361 hci_add_acl_hdr(skb, conn->handle, flags); 4362 break; 4363 case HCI_AMP: 4364 hci_add_acl_hdr(skb, chan->handle, flags); 4365 break; 4366 default: 4367 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4368 return; 4369 } 4370 4371 list = skb_shinfo(skb)->frag_list; 4372 if (!list) { 4373 /* Non fragmented */ 4374 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 4375 4376 skb_queue_tail(queue, skb); 4377 } else { 4378 /* Fragmented */ 4379 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4380 4381 skb_shinfo(skb)->frag_list = NULL; 4382 4383 /* Queue all fragments atomically. We need to use spin_lock_bh 4384 * here because of 6LoWPAN links, as there this function is 4385 * called from softirq and using normal spin lock could cause 4386 * deadlocks. 4387 */ 4388 spin_lock_bh(&queue->lock); 4389 4390 __skb_queue_tail(queue, skb); 4391 4392 flags &= ~ACL_START; 4393 flags |= ACL_CONT; 4394 do { 4395 skb = list; list = list->next; 4396 4397 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4398 hci_add_acl_hdr(skb, conn->handle, flags); 4399 4400 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4401 4402 __skb_queue_tail(queue, skb); 4403 } while (list); 4404 4405 spin_unlock_bh(&queue->lock); 4406 } 4407 } 4408 4409 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 4410 { 4411 struct hci_dev *hdev = chan->conn->hdev; 4412 4413 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 4414 4415 hci_queue_acl(chan, &chan->data_q, skb, flags); 4416 4417 queue_work(hdev->workqueue, &hdev->tx_work); 4418 } 4419 4420 /* Send SCO data */ 4421 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 4422 { 4423 struct hci_dev *hdev = conn->hdev; 4424 struct hci_sco_hdr hdr; 4425 4426 BT_DBG("%s len %d", hdev->name, skb->len); 4427 4428 hdr.handle = cpu_to_le16(conn->handle); 4429 hdr.dlen = skb->len; 4430 4431 skb_push(skb, HCI_SCO_HDR_SIZE); 4432 skb_reset_transport_header(skb); 4433 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 4434 4435 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 4436 4437 skb_queue_tail(&conn->data_q, skb); 4438 queue_work(hdev->workqueue, &hdev->tx_work); 4439 } 4440 4441 /* ---- HCI TX task (outgoing data) ---- */ 4442 4443 /* HCI Connection scheduler */ 4444 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 4445 int *quote) 4446 { 4447 struct hci_conn_hash *h = &hdev->conn_hash; 4448 struct hci_conn *conn = NULL, *c; 4449 unsigned int num = 0, min = ~0; 4450 4451 /* We don't have to lock device here. Connections are always 4452 * added and removed with TX task disabled. */ 4453 4454 rcu_read_lock(); 4455 4456 list_for_each_entry_rcu(c, &h->list, list) { 4457 if (c->type != type || skb_queue_empty(&c->data_q)) 4458 continue; 4459 4460 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 4461 continue; 4462 4463 num++; 4464 4465 if (c->sent < min) { 4466 min = c->sent; 4467 conn = c; 4468 } 4469 4470 if (hci_conn_num(hdev, type) == num) 4471 break; 4472 } 4473 4474 rcu_read_unlock(); 4475 4476 if (conn) { 4477 int cnt, q; 4478 4479 switch (conn->type) { 4480 case ACL_LINK: 4481 cnt = hdev->acl_cnt; 4482 break; 4483 case SCO_LINK: 4484 case ESCO_LINK: 4485 cnt = hdev->sco_cnt; 4486 break; 4487 case LE_LINK: 4488 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4489 break; 4490 default: 4491 cnt = 0; 4492 bt_dev_err(hdev, "unknown link type %d", conn->type); 4493 } 4494 4495 q = cnt / num; 4496 *quote = q ? q : 1; 4497 } else 4498 *quote = 0; 4499 4500 BT_DBG("conn %p quote %d", conn, *quote); 4501 return conn; 4502 } 4503 4504 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 4505 { 4506 struct hci_conn_hash *h = &hdev->conn_hash; 4507 struct hci_conn *c; 4508 4509 bt_dev_err(hdev, "link tx timeout"); 4510 4511 rcu_read_lock(); 4512 4513 /* Kill stalled connections */ 4514 list_for_each_entry_rcu(c, &h->list, list) { 4515 if (c->type == type && c->sent) { 4516 bt_dev_err(hdev, "killing stalled connection %pMR", 4517 &c->dst); 4518 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 4519 } 4520 } 4521 4522 rcu_read_unlock(); 4523 } 4524 4525 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 4526 int *quote) 4527 { 4528 struct hci_conn_hash *h = &hdev->conn_hash; 4529 struct hci_chan *chan = NULL; 4530 unsigned int num = 0, min = ~0, cur_prio = 0; 4531 struct hci_conn *conn; 4532 int cnt, q, conn_num = 0; 4533 4534 BT_DBG("%s", hdev->name); 4535 4536 rcu_read_lock(); 4537 4538 list_for_each_entry_rcu(conn, &h->list, list) { 4539 struct hci_chan *tmp; 4540 4541 if (conn->type != type) 4542 continue; 4543 4544 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4545 continue; 4546 4547 conn_num++; 4548 4549 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 4550 struct sk_buff *skb; 4551 4552 if (skb_queue_empty(&tmp->data_q)) 4553 continue; 4554 4555 skb = skb_peek(&tmp->data_q); 4556 if (skb->priority < cur_prio) 4557 continue; 4558 4559 if (skb->priority > cur_prio) { 4560 num = 0; 4561 min = ~0; 4562 cur_prio = skb->priority; 4563 } 4564 4565 num++; 4566 4567 if (conn->sent < min) { 4568 min = conn->sent; 4569 chan = tmp; 4570 } 4571 } 4572 4573 if (hci_conn_num(hdev, type) == conn_num) 4574 break; 4575 } 4576 4577 rcu_read_unlock(); 4578 4579 if (!chan) 4580 return NULL; 4581 4582 switch (chan->conn->type) { 4583 case ACL_LINK: 4584 cnt = hdev->acl_cnt; 4585 break; 4586 case AMP_LINK: 4587 cnt = hdev->block_cnt; 4588 break; 4589 case SCO_LINK: 4590 case ESCO_LINK: 4591 cnt = hdev->sco_cnt; 4592 break; 4593 case LE_LINK: 4594 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4595 break; 4596 default: 4597 cnt = 0; 4598 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 4599 } 4600 4601 q = cnt / num; 4602 *quote = q ? q : 1; 4603 BT_DBG("chan %p quote %d", chan, *quote); 4604 return chan; 4605 } 4606 4607 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 4608 { 4609 struct hci_conn_hash *h = &hdev->conn_hash; 4610 struct hci_conn *conn; 4611 int num = 0; 4612 4613 BT_DBG("%s", hdev->name); 4614 4615 rcu_read_lock(); 4616 4617 list_for_each_entry_rcu(conn, &h->list, list) { 4618 struct hci_chan *chan; 4619 4620 if (conn->type != type) 4621 continue; 4622 4623 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4624 continue; 4625 4626 num++; 4627 4628 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 4629 struct sk_buff *skb; 4630 4631 if (chan->sent) { 4632 chan->sent = 0; 4633 continue; 4634 } 4635 4636 if (skb_queue_empty(&chan->data_q)) 4637 continue; 4638 4639 skb = skb_peek(&chan->data_q); 4640 if (skb->priority >= HCI_PRIO_MAX - 1) 4641 continue; 4642 4643 skb->priority = HCI_PRIO_MAX - 1; 4644 4645 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 4646 skb->priority); 4647 } 4648 4649 if (hci_conn_num(hdev, type) == num) 4650 break; 4651 } 4652 4653 rcu_read_unlock(); 4654 4655 } 4656 4657 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4658 { 4659 /* Calculate count of blocks used by this packet */ 4660 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4661 } 4662 4663 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4664 { 4665 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4666 /* ACL tx timeout must be longer than maximum 4667 * link supervision timeout (40.9 seconds) */ 4668 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4669 HCI_ACL_TX_TIMEOUT)) 4670 hci_link_tx_to(hdev, ACL_LINK); 4671 } 4672 } 4673 4674 /* Schedule SCO */ 4675 static void hci_sched_sco(struct hci_dev *hdev) 4676 { 4677 struct hci_conn *conn; 4678 struct sk_buff *skb; 4679 int quote; 4680 4681 BT_DBG("%s", hdev->name); 4682 4683 if (!hci_conn_num(hdev, SCO_LINK)) 4684 return; 4685 4686 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 4687 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4688 BT_DBG("skb %p len %d", skb, skb->len); 4689 hci_send_frame(hdev, skb); 4690 4691 conn->sent++; 4692 if (conn->sent == ~0) 4693 conn->sent = 0; 4694 } 4695 } 4696 } 4697 4698 static void hci_sched_esco(struct hci_dev *hdev) 4699 { 4700 struct hci_conn *conn; 4701 struct sk_buff *skb; 4702 int quote; 4703 4704 BT_DBG("%s", hdev->name); 4705 4706 if (!hci_conn_num(hdev, ESCO_LINK)) 4707 return; 4708 4709 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 4710 "e))) { 4711 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4712 BT_DBG("skb %p len %d", skb, skb->len); 4713 hci_send_frame(hdev, skb); 4714 4715 conn->sent++; 4716 if (conn->sent == ~0) 4717 conn->sent = 0; 4718 } 4719 } 4720 } 4721 4722 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4723 { 4724 unsigned int cnt = hdev->acl_cnt; 4725 struct hci_chan *chan; 4726 struct sk_buff *skb; 4727 int quote; 4728 4729 __check_timeout(hdev, cnt); 4730 4731 while (hdev->acl_cnt && 4732 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4733 u32 priority = (skb_peek(&chan->data_q))->priority; 4734 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4735 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4736 skb->len, skb->priority); 4737 4738 /* Stop if priority has changed */ 4739 if (skb->priority < priority) 4740 break; 4741 4742 skb = skb_dequeue(&chan->data_q); 4743 4744 hci_conn_enter_active_mode(chan->conn, 4745 bt_cb(skb)->force_active); 4746 4747 hci_send_frame(hdev, skb); 4748 hdev->acl_last_tx = jiffies; 4749 4750 hdev->acl_cnt--; 4751 chan->sent++; 4752 chan->conn->sent++; 4753 4754 /* Send pending SCO packets right away */ 4755 hci_sched_sco(hdev); 4756 hci_sched_esco(hdev); 4757 } 4758 } 4759 4760 if (cnt != hdev->acl_cnt) 4761 hci_prio_recalculate(hdev, ACL_LINK); 4762 } 4763 4764 static void hci_sched_acl_blk(struct hci_dev *hdev) 4765 { 4766 unsigned int cnt = hdev->block_cnt; 4767 struct hci_chan *chan; 4768 struct sk_buff *skb; 4769 int quote; 4770 u8 type; 4771 4772 __check_timeout(hdev, cnt); 4773 4774 BT_DBG("%s", hdev->name); 4775 4776 if (hdev->dev_type == HCI_AMP) 4777 type = AMP_LINK; 4778 else 4779 type = ACL_LINK; 4780 4781 while (hdev->block_cnt > 0 && 4782 (chan = hci_chan_sent(hdev, type, "e))) { 4783 u32 priority = (skb_peek(&chan->data_q))->priority; 4784 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 4785 int blocks; 4786 4787 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4788 skb->len, skb->priority); 4789 4790 /* Stop if priority has changed */ 4791 if (skb->priority < priority) 4792 break; 4793 4794 skb = skb_dequeue(&chan->data_q); 4795 4796 blocks = __get_blocks(hdev, skb); 4797 if (blocks > hdev->block_cnt) 4798 return; 4799 4800 hci_conn_enter_active_mode(chan->conn, 4801 bt_cb(skb)->force_active); 4802 4803 hci_send_frame(hdev, skb); 4804 hdev->acl_last_tx = jiffies; 4805 4806 hdev->block_cnt -= blocks; 4807 quote -= blocks; 4808 4809 chan->sent += blocks; 4810 chan->conn->sent += blocks; 4811 } 4812 } 4813 4814 if (cnt != hdev->block_cnt) 4815 hci_prio_recalculate(hdev, type); 4816 } 4817 4818 static void hci_sched_acl(struct hci_dev *hdev) 4819 { 4820 BT_DBG("%s", hdev->name); 4821 4822 /* No ACL link over BR/EDR controller */ 4823 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 4824 return; 4825 4826 /* No AMP link over AMP controller */ 4827 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 4828 return; 4829 4830 switch (hdev->flow_ctl_mode) { 4831 case HCI_FLOW_CTL_MODE_PACKET_BASED: 4832 hci_sched_acl_pkt(hdev); 4833 break; 4834 4835 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 4836 hci_sched_acl_blk(hdev); 4837 break; 4838 } 4839 } 4840 4841 static void hci_sched_le(struct hci_dev *hdev) 4842 { 4843 struct hci_chan *chan; 4844 struct sk_buff *skb; 4845 int quote, cnt, tmp; 4846 4847 BT_DBG("%s", hdev->name); 4848 4849 if (!hci_conn_num(hdev, LE_LINK)) 4850 return; 4851 4852 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4853 4854 __check_timeout(hdev, cnt); 4855 4856 tmp = cnt; 4857 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4858 u32 priority = (skb_peek(&chan->data_q))->priority; 4859 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4860 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4861 skb->len, skb->priority); 4862 4863 /* Stop if priority has changed */ 4864 if (skb->priority < priority) 4865 break; 4866 4867 skb = skb_dequeue(&chan->data_q); 4868 4869 hci_send_frame(hdev, skb); 4870 hdev->le_last_tx = jiffies; 4871 4872 cnt--; 4873 chan->sent++; 4874 chan->conn->sent++; 4875 4876 /* Send pending SCO packets right away */ 4877 hci_sched_sco(hdev); 4878 hci_sched_esco(hdev); 4879 } 4880 } 4881 4882 if (hdev->le_pkts) 4883 hdev->le_cnt = cnt; 4884 else 4885 hdev->acl_cnt = cnt; 4886 4887 if (cnt != tmp) 4888 hci_prio_recalculate(hdev, LE_LINK); 4889 } 4890 4891 static void hci_tx_work(struct work_struct *work) 4892 { 4893 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4894 struct sk_buff *skb; 4895 4896 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4897 hdev->sco_cnt, hdev->le_cnt); 4898 4899 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4900 /* Schedule queues and send stuff to HCI driver */ 4901 hci_sched_sco(hdev); 4902 hci_sched_esco(hdev); 4903 hci_sched_acl(hdev); 4904 hci_sched_le(hdev); 4905 } 4906 4907 /* Send next queued raw (unknown type) packet */ 4908 while ((skb = skb_dequeue(&hdev->raw_q))) 4909 hci_send_frame(hdev, skb); 4910 } 4911 4912 /* ----- HCI RX task (incoming data processing) ----- */ 4913 4914 /* ACL data packet */ 4915 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4916 { 4917 struct hci_acl_hdr *hdr = (void *) skb->data; 4918 struct hci_conn *conn; 4919 __u16 handle, flags; 4920 4921 skb_pull(skb, HCI_ACL_HDR_SIZE); 4922 4923 handle = __le16_to_cpu(hdr->handle); 4924 flags = hci_flags(handle); 4925 handle = hci_handle(handle); 4926 4927 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4928 handle, flags); 4929 4930 hdev->stat.acl_rx++; 4931 4932 hci_dev_lock(hdev); 4933 conn = hci_conn_hash_lookup_handle(hdev, handle); 4934 hci_dev_unlock(hdev); 4935 4936 if (conn) { 4937 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4938 4939 /* Send to upper protocol */ 4940 l2cap_recv_acldata(conn, skb, flags); 4941 return; 4942 } else { 4943 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4944 handle); 4945 } 4946 4947 kfree_skb(skb); 4948 } 4949 4950 /* SCO data packet */ 4951 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4952 { 4953 struct hci_sco_hdr *hdr = (void *) skb->data; 4954 struct hci_conn *conn; 4955 __u16 handle, flags; 4956 4957 skb_pull(skb, HCI_SCO_HDR_SIZE); 4958 4959 handle = __le16_to_cpu(hdr->handle); 4960 flags = hci_flags(handle); 4961 handle = hci_handle(handle); 4962 4963 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4964 handle, flags); 4965 4966 hdev->stat.sco_rx++; 4967 4968 hci_dev_lock(hdev); 4969 conn = hci_conn_hash_lookup_handle(hdev, handle); 4970 hci_dev_unlock(hdev); 4971 4972 if (conn) { 4973 /* Send to upper protocol */ 4974 bt_cb(skb)->sco.pkt_status = flags & 0x03; 4975 sco_recv_scodata(conn, skb); 4976 return; 4977 } else { 4978 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4979 handle); 4980 } 4981 4982 kfree_skb(skb); 4983 } 4984 4985 static bool hci_req_is_complete(struct hci_dev *hdev) 4986 { 4987 struct sk_buff *skb; 4988 4989 skb = skb_peek(&hdev->cmd_q); 4990 if (!skb) 4991 return true; 4992 4993 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4994 } 4995 4996 static void hci_resend_last(struct hci_dev *hdev) 4997 { 4998 struct hci_command_hdr *sent; 4999 struct sk_buff *skb; 5000 u16 opcode; 5001 5002 if (!hdev->sent_cmd) 5003 return; 5004 5005 sent = (void *) hdev->sent_cmd->data; 5006 opcode = __le16_to_cpu(sent->opcode); 5007 if (opcode == HCI_OP_RESET) 5008 return; 5009 5010 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 5011 if (!skb) 5012 return; 5013 5014 skb_queue_head(&hdev->cmd_q, skb); 5015 queue_work(hdev->workqueue, &hdev->cmd_work); 5016 } 5017 5018 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 5019 hci_req_complete_t *req_complete, 5020 hci_req_complete_skb_t *req_complete_skb) 5021 { 5022 struct sk_buff *skb; 5023 unsigned long flags; 5024 5025 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 5026 5027 /* If the completed command doesn't match the last one that was 5028 * sent we need to do special handling of it. 5029 */ 5030 if (!hci_sent_cmd_data(hdev, opcode)) { 5031 /* Some CSR based controllers generate a spontaneous 5032 * reset complete event during init and any pending 5033 * command will never be completed. In such a case we 5034 * need to resend whatever was the last sent 5035 * command. 5036 */ 5037 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 5038 hci_resend_last(hdev); 5039 5040 return; 5041 } 5042 5043 /* If we reach this point this event matches the last command sent */ 5044 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 5045 5046 /* If the command succeeded and there's still more commands in 5047 * this request the request is not yet complete. 5048 */ 5049 if (!status && !hci_req_is_complete(hdev)) 5050 return; 5051 5052 /* If this was the last command in a request the complete 5053 * callback would be found in hdev->sent_cmd instead of the 5054 * command queue (hdev->cmd_q). 5055 */ 5056 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 5057 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 5058 return; 5059 } 5060 5061 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 5062 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 5063 return; 5064 } 5065 5066 /* Remove all pending commands belonging to this request */ 5067 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 5068 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 5069 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 5070 __skb_queue_head(&hdev->cmd_q, skb); 5071 break; 5072 } 5073 5074 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 5075 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 5076 else 5077 *req_complete = bt_cb(skb)->hci.req_complete; 5078 kfree_skb(skb); 5079 } 5080 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 5081 } 5082 5083 static void hci_rx_work(struct work_struct *work) 5084 { 5085 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 5086 struct sk_buff *skb; 5087 5088 BT_DBG("%s", hdev->name); 5089 5090 while ((skb = skb_dequeue(&hdev->rx_q))) { 5091 /* Send copy to monitor */ 5092 hci_send_to_monitor(hdev, skb); 5093 5094 if (atomic_read(&hdev->promisc)) { 5095 /* Send copy to the sockets */ 5096 hci_send_to_sock(hdev, skb); 5097 } 5098 5099 /* If the device has been opened in HCI_USER_CHANNEL, 5100 * the userspace has exclusive access to device. 5101 * When device is HCI_INIT, we still need to process 5102 * the data packets to the driver in order 5103 * to complete its setup(). 5104 */ 5105 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5106 !test_bit(HCI_INIT, &hdev->flags)) { 5107 kfree_skb(skb); 5108 continue; 5109 } 5110 5111 if (test_bit(HCI_INIT, &hdev->flags)) { 5112 /* Don't process data packets in this states. */ 5113 switch (hci_skb_pkt_type(skb)) { 5114 case HCI_ACLDATA_PKT: 5115 case HCI_SCODATA_PKT: 5116 case HCI_ISODATA_PKT: 5117 kfree_skb(skb); 5118 continue; 5119 } 5120 } 5121 5122 /* Process frame */ 5123 switch (hci_skb_pkt_type(skb)) { 5124 case HCI_EVENT_PKT: 5125 BT_DBG("%s Event packet", hdev->name); 5126 hci_event_packet(hdev, skb); 5127 break; 5128 5129 case HCI_ACLDATA_PKT: 5130 BT_DBG("%s ACL data packet", hdev->name); 5131 hci_acldata_packet(hdev, skb); 5132 break; 5133 5134 case HCI_SCODATA_PKT: 5135 BT_DBG("%s SCO data packet", hdev->name); 5136 hci_scodata_packet(hdev, skb); 5137 break; 5138 5139 default: 5140 kfree_skb(skb); 5141 break; 5142 } 5143 } 5144 } 5145 5146 static void hci_cmd_work(struct work_struct *work) 5147 { 5148 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 5149 struct sk_buff *skb; 5150 5151 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 5152 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 5153 5154 /* Send queued commands */ 5155 if (atomic_read(&hdev->cmd_cnt)) { 5156 skb = skb_dequeue(&hdev->cmd_q); 5157 if (!skb) 5158 return; 5159 5160 kfree_skb(hdev->sent_cmd); 5161 5162 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 5163 if (hdev->sent_cmd) { 5164 if (hci_req_status_pend(hdev)) 5165 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 5166 atomic_dec(&hdev->cmd_cnt); 5167 hci_send_frame(hdev, skb); 5168 if (test_bit(HCI_RESET, &hdev->flags)) 5169 cancel_delayed_work(&hdev->cmd_timer); 5170 else 5171 schedule_delayed_work(&hdev->cmd_timer, 5172 HCI_CMD_TIMEOUT); 5173 } else { 5174 skb_queue_head(&hdev->cmd_q, skb); 5175 queue_work(hdev->workqueue, &hdev->cmd_work); 5176 } 5177 } 5178 } 5179
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.